
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 September/October 2008 I E E E S o f t w a r E 	 53

focuss o f t war e deve l opm en t t o o l s

Volta: Developing
Distributed Applications
by Recompiling

Dragos Manolescu, Brian Beckman, and Benjamin Livshits, Microsoft

This tool suite
recompiles
nondistributed
executables into
functionally
equivalent distributed
form, inserting
remoting and
synchronization
boilerplate code and
facilitating post hoc
instrumentation.

C
ontemporary programming languages and tool suites are designed for quick
and easy construction of sequential, nondistributed applications. To write
distributed applications, programmers must learn and use a large variety of
lower-level libraries for cross-tier communication, data marshaling, synchroni-

zation, and security. The libraries’ sole purpose is to support distributed execution of ap-
plication logic that could just as well be executed sequentially. In fact, programmers often
create prototype applications that run in simplified, streamlined, sequential environments

so that they can test and debug their code. Then
they manually break up the prototype, inserting
communication and synchronization code and dis-
tributing the pieces among multiple execution tiers.

We’ve created tools that, directed by declarative
annotations such as RunAt and Async, insert boilerplate
code and transform nondistributed executables into
logically identical, asynchronous, distributed appli-
cations. The tools, released by Microsoft Live Labs
as Volta, revolve around rewriting programs at the
CIL (.NET Common Intermediate Language)1 byte-
code level. We call this approach recompiling.

Motivating example
Consider Word Worm (available at http://labs.live.
com/volta/samples/WordWorm.html), a Volta ap-
plication that does real-time word completion as
the user types characters into a browser text box.
Word Worm is a prototypical multitier Web appli-
cation, with nontrivial application logic on both the
client and server tiers.

We started this application on a single tier, with

all components written in C# and running on the
client. We also used a data structure such as the pre-
fix tree, which stores positional indices. This strat-
egy let us implement and debug on a single tier the
critical elements as well as cursors and sliding win-
dows for the dictionary. We used a small mock dic-
tionary for initial development and debugging. With
the basic functionality in place, we transformed the
application into a functionally equivalent distrib-
uted application, with the full dictionary residing
only on the server. We effected the transformation
through declarative annotations marking the distri-
bution boundaries. Volta automatically inserted the
necessary cross-tier communication, data marshal-
ing, and synchronization as a recompilation step,
and retargeted the client to JavaScript.

This example, although small, illustrates al-
most all of Volta’s benefits. We can write applica-
tions in a familiar, comfortable environment with
quick turnaround for debugging. When we’re ready
to deploy an application on multiple tiers, Volta
automates much of the necessary replumbing and

54	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

restructuring. Another way to look at this process
is that Volta

pushes distributed programming’s necessary
but tedious, error-prone details into tooling,
enables semantically neutral instrumentation,
and
extends refactoring and end-to-end profiling
across runtimes.

We believe that Volta reduces the time needed for
and cost of building distributed applications. Our
hypothesis is based on feedback from colleagues
and product groups using Volta, from developers
on the Volta community forum (http://tinyurl.com/
3tdy3f), and from personal experience building the
online Volta samples. We’re working with partners
to develop a disciplined usability study that will
provide evidence. We hope that this article’s toy ex-
ample will convey a sense of Volta’s benefits.

Distributed-application
development
At the crux of distributed-system design lies the par-
titioning of functionality across tiers. The first cri-
terion for partitioning is the location of resources,
typically data on servers and presentation on cli-
ents. But partitioning must also account for the net-
work’s adverse operational effects such as latency,
low throughput, and packet loss. Although Volta
handles many routine and tedious aspects of coding
distributed applications, executing in a distributed
environment introduces many concerns that tools
can’t fully address.2 For instance, local function

■

■

■

calls become remote procedure calls, and the opera-
tional semantics of failure and concurrency control
are unavoidably different. However, we can try to
retain much of the functional semantics: looking
up words on a client dictionary is pretty much the
same as looking them up on a server dictionary,
except that we ignore surprising delays, dropped
packets, out-of-order processing, duplicates, and so
on. Likewise, formerly trusted execution now par-
tially runs on an untrusted client.

Although partitioning should result from classic
engineering trade-off analysis based on quantitative
data, most tools and technologies force us to make
an a priori partition before writing a single line of
code—for example, clicking on the File menu, then
New, then picking a client or a server project. When
problems surface, we have a dilemma: should we
stick with the current, now-known-broken design
and kludge it into suitability? Or scrap it, start over,
and eat the redevelopment cost? Sound engineer-
ing practice would have us simulating, prototyping,
and measuring, and only then partitioning, partly
on the basis of quantitative measurements.

Recompiling CIL
To get out of this predicament, we must make it
easier to change software after it’s already “turn-
ing over”—that is, working in some demonstrable
if vestigial way. More than a decade ago, object-
oriented designers dealt with a similar dilemma.
They came up with refactoring, a technique that
facilitates change.3 Refactoring improves design by
applying successive, behavior-preserving transfor-
mations. Nowadays, refactoring is so widespread
that most development environments support it.

We’d like to bring two capabilities—refinement
through successive transformations, and the ability
to revisit design decisions often—to the develop-
ment of distributed applications. In particular, we
want our development tools to facilitate reassigning
code to different tiers. Usually, refactoring implies
absolute preservation of semantics. In our case, we
preserve only the functional semantics; as we al-
luded to earlier, we know we can’t preserve opera-
tional semantics. We achieve this through transfor-
mations at the CIL bytecode level. However, these
techniques aren’t restricted to CIL; we could apply
them to Java bytecode, for example.

Figure 1 shows transformations from source
code in several .NET languages to native code. Our
recompiler operates in the middle, after the lan-
guage compilers transform source code into CIL
and before just-in-time compilers generate native
code. The recompiler reads and writes CIL, and the
recompilation entails CIL-to-CIL transformations.

C++ C# Visual
Basic

Python

Recompiler

JavaScript

CIL

x86
architecture

Language compilers

Just-in-time compilers Code generator

ARM
architecture

Figure 1. The CIL (.NET
Common Intermediate
Language) recompiler.
Because the tool
reads and writes CIL,
it can take the CIL
generated by any
language compiler
and recompile it into
CIL with remoting,
synchronization, and
instrumentation code.

	 September/October 2008 I E E E S o f t w a r E 	 55

CIL-level recompilation confers several ben-
efits over other approaches, such as source-code
transformation. First, the recompiler is language
independent. Because all .NET programming lan-
guages compile into CIL, recompilation works
the same way for programs written in any combi-
nation of .NET languages. This leverages the re-
search and practical experience that went into the
individual language compilers and tools. Our re-
compiler doesn’t interfere with compiler analyses
or optimization, and the developer enjoys all the
benefits of source-level programming with inte-
grated development environments (IDEs) such as
Visual Studio.

Volta provides a many-to-many mapping be-
tween the languages in which we write distributed
code and the runtimes where the code executes.4 This
contrasts with the approach adopted by the Google
Web Toolkit (http://code.google.com/webtoolkit)
and Script# (http://projects.nikhilk.net/projects/
scriptsharp.aspx), which operate at the source level.
Consequently, it supports all the features of high-
level languages rather than a subset. Moreover, we
don’t need to revise and update the recompiler when
the language we’re using changes but only when the
CIL specification changes, which happens much
more infrequently. For example, CIL didn’t change
at all during the time that C# evolved from version
2.0 to 3.0.5

How Volta works
This section covers the details of Volta recompiler
implementation. After introducing a simple ex-
ample as the exploratory vehicle, we turn to tier-
splitting refactoring, semantically neutral instru-
mentation, and retargeting.

Distributed fibonacci
We begin with a synthetic application that we tai-
lored to show that

the assignment of specific bits of code to client
and server dramatically affects performance
and
Volta helps measure this performance and re-
partition the code.

Consider the simple application in Figure 2, in
which the application code computes the Fibonacci
number for a positive-integer argument. Two C#
classes carry out the computation: MainComputation
implements the expensive recursive algorithm, and
BaseComputation validates the inputs. We start by calling
the Fibonacci method on an instance of MainComputation.

Once we have a working application running on
a single tier, we’re ready to make a trial partition,

■

■

measure performance, and potentially change the
partition assignments. We first convert the original
local function call into a remote invocation, then
into an asynchronous remote invocation. The first
transformation affects the trial partition; the sec-
ond transformation makes the application robust
against unpredictable network latency.

To partition the application, we mark Main­
Computation with the RunAt custom attribute (see Fig-
ure 3). The C# compiler converts this attribute into
.NET CIL metadata and saves it in the executable.6
The Volta recompiler in turn reads the executable’s
metadata and inserts boilerplate code for remote in-
vocation and for marshaling parameters and return
values. No other changes to the source code from
Figure 2 are required.

public class BaseComputation
{
 public int Fibonacci(int n)
 {
 if (n < 2)
 return BaseComputation.Validate(n);
 else
 return Fibonacci(BaseComputation.Validate (n – 1)) +
 Fibonacci(BaseComputation.Validate (n – 2));
 }
}

public class BaseComputation
{
 public static int Validate(int argument)
 {
 if (argument < 0)
 return –argument;
 else
 return argument;
 }
}

Figure 2. Fibonacci computation. The application code computes the
Fibonacci number for a positive-integer argument.

[RunAt(“Server”)]
public class MainComputation
{
 public int Fibonacci(int n)
 {
 if (n < 2)
 return BaseComputation.Validate(n);
 else
 return Fibonacci(BaseComputation.Validate (n – 1)) +
 Fibonacci(BaseComputation.Validate (n – 2));
 }
}

Figure 3. Tier splitting
through declarative
annotation. To begin
the partitioning, we first
convert the original
local function call into a
remote invocation, then
into an asynchronous
remote invocation.

56	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Volta’s tier-splitting transformation is a refac-
toring in that it preserves the program’s behavior.7
From the caller’s viewpoint, it still looks like just
the initial Fibonacci method. However, the recom-
piler transforms the single-tier application into an
equivalent two-tier application by translating an-
notated local method calls into remote-service
invocations.

Distributed-design best practices recommend

that all calls across the network be asynchronous.
On the client, we declare a variant of the original
Fibonacci function (see Figure 4), adding an addi-
tional argument of type Action<int> to receive the re-
sult. We then tag this variant with the Async attribute
(the second line) and update the call site, supplying
a lambda expression as an additional argument (the
last line). On the basis of metadata on the method
declaration, the Volta recompiler supplies the im-
plementation of this new variant automatically.

The declaration of the asynchronous method is
the only place where we make observable changes
to the source code. Without Volta we would have to
implement asynchronous invocation by hand, using
.NET asynchronous delegates.8 Figure 5 shows the
code we’d have to write.

The code for remoting and asynchronous in-
vocation is too cumbersome to present here, eas-
ily overshadowing the original application code
in accidental complexity9 and development cost.
Tools can and should generate most of it, reduc-
ing the cognitive load on distributed-application
developers.

tier-splitting refactoring
We start building applications with the code run-
ning on one tier—typically the client tier, where we
assume the typical .NET developer is most com-
fortable. All method invocations are local calls.
Once we have a working application, we mark the
classes that we want to execute on the server with
the RunAt custom attribute (see Figure 3).

This attribute’s presence in the CIL’s metadata
instructs the recompiler to apply tier-splitting refac-
toring, transforming the initial single-tier CIL into
multitier CIL: a proxy-service pair. The code that
calls the Fibonacci method on an instance of MainCom­
putation doesn’t change. Under the covers, the trans-
formed Fibonacci method now calls a proxy. The
proxy running on the client communicates with a
service on the server, which executes the old body
of the Fibonacci method. The recompiler moves
the old body to the server, wrapping the original
implementation within a service that responds to
communications from the proxy on the client.

Figure 6a shows what the client code would look
like if we had written it in C#. Of course, there’s no
C# source for the new client code; the recompiler
operates entirely at the CIL level. The Call method of
the Proxy class encapsulates communication over the
network, including the complexities of HttpRequest on
the server and XmlHttpRequest on the client. Likewise,
the GetInstance method of the Serializer class returns a
serializer suitable for marshalling arguments and
results.

// declaration of asynchronous method (no definition required)
[Async]
public extern void Fibonacci(int n, Action<int> continuation);

// call site update for asynchronous invocation
mc.Fibonacci(argument,(res) => Console.WriteLine(“Result = {0}”, res));

Figure 4. Declaration and client-side modifications for asynchronous
invocations. The declaration instructs the C# compiler to insert the
appropriate metadata into the generated CIL, and the call site update
reflects the signature of the automatically generated method.

public class MainComputation
{
 public delegate int FibonacciDelegate(int n);

 public void Fibonacci(int n, Action<int> continuation)
 {
 var mc = new MainComputation();
 var ad = new FibonacciDelegate(mc.Fibonacci);

 var rp = new ResultProcessor(continuation);
 var cb = new AsyncCallback(rp.ReceiveResult);

 var ar = ad.BeginInvoke(n, cb, new Object());
 }

 public class ResultProcessor
 {
 private Action<int> _storedContinuation;

 public ResultProcessor(Action<int> continuation)
 {
 _storedContination = continuation;
 }

 public void ReceiveResult (IAsyncResult ia)
 {
 var ar = (AsyncResult)ia;
 var ad = ar.AsyncDelegate;
 var fd = (FibonacciDelegate)(ad);
 var result = fd.EndInvoke(ia);
 _storedContinuation(result);
 }
 }
}

Figure 5. Invoking a
synchronous method
with asynchronous
delegates. Without
Volta, we’d have to
manually implement
asynchronous
invocation using
.NET asynchronous
delegates.

	 September/October 2008 I E E E S o f t w a r E 	 57

The new server code must include the body of
the Fibonacci method from the old client code plus
communication boilerplate. The recompiler exposes
the initial application code by injecting a Service class
into a copy of MainComputation—the one marked with
RunAt. The service dispatches the invocations it re-
ceives from the proxy on the client to the Fibonacci
method running on the server.

Figure 6b shows what the server code would look
like if we had written it in C#. Of course, there’s no
C# source for the server code. The boilerplate code
ProcessMethod takes an instance of the Call class. The
GetInstance method of the Call class returns an instance
of the transplanted MainComputation, code we wrote for
the client. It contains the Fibonacci method (see Fig-
ure 2), which is our business logic. The boilerplate
Call object also has a GetParameter method, which un-
marshalls the parameter values sent by the client.
Finally, Call has a Return method, which marshals the
computation’s result.

So far, we have an easy way to make calls re-
mote. The Async attribute (see Figure 3) declares our
intent to invoke asynchronously the call we made
remote. We must also change the Fibonacci sig-
nature to add a callback parameter, which is now
available for static type-checking and IntelliSense.
The recompiler supplies the implementation of the
asynchronous delegates from Figure 5, so the decla-
ration needs an extern modifier.

Volta doesn’t make decisions about remoting
boundaries; it only writes boilerplate code in a pol-
icy-agnostic manner. Also, Volta isn’t in the same
space as automated partitioning; if anything, the
tool would facilitate such research.10

End-to-end instrumentation and profiling
Let’s revisit Fibonacci and collect data about the
partitioning between client and server. The de-
veloper sets a project option to enable end-to-end
profiling. The option instructs the recompiler to
instrument the tier-crossing boundaries. The in-
strumentation inserts time stamps and sends data
to a logging service. The service—also generated by
the recompiler—aggregates the data into trace files.
Figure 7 illustrates user profiling, together with the
remoting and instrumentation process.

The instrumented code can collect complete ap-
plication traces, enabling us to compute statistics for
latency and throughput and to perform application
diagnostics. We have specialized tools for quickly
interpreting the effects of partitioning. For exam-
ple, Figure 8 displays the communication after tier-
splitting BaseComputation in the Microsoft Service Trace
Viewer.11 The graph shows a chatty client-service
interaction (which is why we tier-split BaseComputation).
The time stamps let us quantify the processing time
associated with each invocation, so that we can
evaluate the effects of the initial, trial partitioning.
Because partitioning the code was easy in the first
place, changing the partitions on the basis of mea-
surements is equally easy. In effect, we’re promoting
tried-and-true methods of quantitative optimization
into the distributed realm.

Injecting instrumentation is a proven technique.
The MIPS Pixie program lets programmers insert
arbitrary instrumentation at multiple levels: instruc-
tions, basic blocks, functions, and so on.12 Another
instrumentation platform, AjaxScope,13 monitors
the client-side behavior of Web 2.0 applications by

public int Fibonacci(int n)
{
 object[] objArray = new object[] { n };
 return Proxy.Call<int>(__Serializer.GetInstance(), __GetUri(), “MainComputation”, 0, this, null, objArray);
}
(a)

protected override void ProcessMethod(Service<MainComputation>.Call call)
{
 switch (call.GetMethod())
 {
 case 0:
 call.Return<int>(call.GetInstance().Fibonacci(call.GetParameter<int>(0)));
 break;
 // additional dispatching
 default:
 throw new InvalidMethodException();
 }
}
(b)

Figure 6. Tier-split code
reconstructed from
generated CIL: (a) client
and (b) server. The
recompiler inserts code
that invokes the service
and dispatches the call
to the initial code.

58	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

injecting the instrumentation into client-side Java-
Script. Just as in Figure 7, the instrumented Java-
Script code periodically collates and sends log mes-
sages back to the AjaxScope proxy for analysis.

Rewriting changes the game in end-to-end pro-
filing. The recompiler exposes a small surface area
to the developer and pushes the details about col-
lecting and aggregating instrumentation data into
tooling. Putting end-to-end profiling literally one
click away improves maintainability—we can easily

quantify the partitioning whenever functionality,
location of resources, usage profiles, and other pa-
rameters change. In addition, through retargeting,
we can instrument heterogeneous systems, where
partitions execute in environments without a .NET
runtime.

retargeting
Ajax-style Web-based applications are one of the
most popular forms of distributed applications.
They involve a heterogeneous mix, in which the
server side executes on a runtime environment such
as CLR (Common Language Runtime) or JRE (Java
Runtime Environment) and the client side executes
in a JavaScript engine hosted by a browser.

We’d like to use Volta for code that runs in the
browser. Using Volta to transform CIL into Java-
Script was a natural decision, but it presents inter-
esting challenges. For example, CIL code often uses
the branch instruction br. JavaScript has no equiva-
lent goto construct, so we simulate it with a tram-
poline14 (a loop that iteratively invokes other func-
tions) and a local program-counter variable (see
Figure 9).

The full details of transforming CIL into Ja-
vaScript are beyond this article’s scope. However,
we can simulate advanced control-flow constructs
that aren’t natively supported by JavaScript, such as
threads and coroutines.

V olta represents an innovative kind of soft-
ware tooling. It lets developers refactor
a sequential application into an equiva-

lent distributed one with straightforward, declara-
tive annotations placed in the source code. It also
enables unobtrusive, post hoc instrumentation for
quantitative evaluation of the partitioning. Finally,
it extends the reach of .NET programming lan-
guages, libraries, and tools to cover the cloud. We
achieve all three capabilities through recompila-
tion of intermediate-language executables. Our ap-
proach has great promise for distributed-application
development and beyond.

We’ve released a technology preview of the
tools to the developer community. The release
(http://labs.live.com/volta) includes several sample
applications that we wrote in-house to verify our
approach. The preview has attracted numerous
early adopters, who used Volta to build various
Web applications within a few days of the release.

In the long run, we expect tools such as Volta
to dramatically reduce development costs and to in-
crease application robustness by reducing the com-
plexity of distributed-application development. By

User code

PythonServerClient

Logging
service

Recompiler-inserted code

Remoting

Instrumentation

Volta-generated code

Figure 7. End-to-end profiling through recompiling. Data about the
partitioning between client and server, including time stamps that help
quantify each invocation’s processing time, are aggregated into trace
files that developers can use to quickly interpret partitioning’s effect.

Figure 8. End-to-end
profiling data displayed
in the Microsoft Service
Trace Viewer. The
graphs let developers
assess the effect
of client-server
partitioning.

	 September/October 2008 I E E E S o f t w a r E 	 59

bringing mature tools and familiar .NET program-
ming languages into the realm of distributed ap-
plications, we hope to reduce developers’ cognitive
load and concept count.

Future Volta work will focus on security through
construction, finer-grained tier splitting, and tier
migration. Security by construction will add invari-
ant checking code to both sides of tier-split applica-
tions. Finer-grained tier splitting will let developers
annotate for tier-splitting methods or finer-grained
constructs. Tier migration will allow parts of dis-
tributed applications to move dynamically.

Acknowledgments
We thank our Volta team colleagues for doing the
project’s heavy lifting. The information in this article
represents our personal views and doesn’t necessarily
represent the current view of our employer, Micro-
soft Corp.

References
 1. Standard ECMA-335, Common Language Infrastruc-

ture (CLI), Ecma Int’l, 2006, www.ecma-international.
org/publications/standards/Ecma-335.htm.

 2. J. Waldo et al., A Note on Distributed Computing, s.l.,
tech. report SMLI TR-94-29, Sun Microsystems Labs,
1994.

 3. W.F. Opdyke and R.E. Johnson, “Refactoring: An Aid
in Designing Application Frameworks and Evolving
Object-Oriented Systems,” Proc. 1990 Symp. Object-
Oriented Programming Emphasizing Practical Applica-
tions (Sooppa 90), ACM Press, 1990, pp. 145–160.

 4. M.J. Foley, “Microsoft Architect Compares Volta and
Google’s GWT,” blog, 7 Dec. 2007, http://blogs.zdnet.
com/microsoft/?p=1023.

 5. G. Bierman, E. Meijer, and M. Torgersen, “Lost in
Translation: Formalizing Proposed Extensions to C#,”
Proc. 22nd Ann. ACM Sigplan Conf. Object-Oriented
Programming Systems and Applications (Oopsla 2007),
ACM Press, 2007, pp. 479−498.

 6. J. Bock, CIL Programming: Under the Hood of .NET,
tech. report 978-1590590416, Apress, 2002.

 7. W.F. Opdyke, “Refactoring Object-Oriented Frame-
works,” doctoral dissertation, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, 1992.

 8. R. Grimes, “.NET Delegates: Making Asynchronous
Method Calls in the .NET Environment,” MSDN
Magazine, Aug. 2001.

 9. F.P. Brooks, The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, 1995.

 10. S. Chong et al., “Secure Web Applications via Auto-
matic Partitioning,” Proc. 21st ACM Symp. Operating
Systems Principles, ACM Press, 2007, pp. 31−44.

 11. “Service Trace Viewer Tool,” MSDN, 2007, http://
msdn2.microsoft.com/en-us/library/ms732023.aspx.

 12. M.D. Smith, Tracing with Pixie, tech. report CSL-TR-
91-497, Computer Systems Laboratory, Stanford Univ.,
1991, pp. 1−29.

 13. E. Kiciman and B. Livshits, “AjaxScope: A Platform for
Remotely Monitoring the Client-Side Behavior of Web
2.0 Applications,” Proc. 21st ACM Symp. Operating
Systems Principles, ACM Press, 2007, pp. 17–30.

 14. S.E. Ganz, D. Friedman, and M. Wand, “Trampolined
Style,” Proc. 4th ACM Sigplan Int’l Conf. Functional
Programming, 1999, pp. 18−22.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

while (true) switch($next){
 case 0:
 {
 /*** uninteresting JavaScript code removed */
 if (br1 || br1 === “”) {
 $next = 27;
 continue;
 }
 /*** uninteresting JavaScript code removed */
 $next = 42;
 continue;
 }
 /*** other labels removed removed */
 case 60:
 {
 return loc_5;
 }
}

Figure 9. Implementing CIL’s br in JavaScript, trampolined style.
Branching to a location is equivalent to setting the $next variable to
the corresponding switch label.

About the Authors
Dragos Manolescu is a senior program manager on the Volta team at Microsoft
Live Labs. His interests include software architecture, Web systems, and disruptive technolo­
gies. He received his PhD in computer science from the University of Illinois at Urbana­
Champaign. Contact him at dragosm@microsoft.com.

Brian Beckman is a principal architect in Microsoft’s Developer Division, where he
works on optimization, security, transaction systems, programming languages, and physics
for video games. Before that, he worked at Caltech’s Jet Propulsion Laboratory on parallel
and distributed operating systems and software engineering. Beckman received his PhD in
astrophysical sciences from Princeton University. Contact him at brian.beckman@microsoft.
com.

Benjamin Livshits is a researcher at Microsoft Research. His interests include
compilers, static analysis, runtime analysis, application security, distributed systems, and
Web application development. Livshits received his PhD in computer science from Stanford
University. Contact him at livshits@microsoft.com.

