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focuss o f t war e  deve l opm en t  t o o l s

Volta: Developing 
Distributed Applications 
by Recompiling

Dragos Manolescu, Brian Beckman, and Benjamin Livshits, Microsoft

This tool suite 
recompiles 
nondistributed 
executables into 
functionally 
equivalent distributed 
form, inserting 
remoting and 
synchronization 
boilerplate code and 
facilitating post hoc 
instrumentation. 

C
ontemporary programming languages and tool suites are designed for quick 
and easy construction of sequential, nondistributed applications. To write 
distributed applications, programmers must learn and use a large variety of 
lower-level libraries for cross-tier communication, data marshaling, synchroni-

zation, and security. The libraries’ sole purpose is to support distributed execution of ap-
plication logic that could just as well be executed sequentially. In fact, programmers often 
create prototype applications that run in simplified, streamlined, sequential environments

so that they can test and debug their code. Then 
they manually break up the prototype, inserting 
communication and synchronization code and dis-
tributing the pieces among multiple execution tiers.

We’ve created tools that, directed by declarative 
annotations such as RunAt and Async, insert boilerplate 
code and transform nondistributed executables into 
logically identical, asynchronous, distributed appli-
cations. The tools, released by Microsoft Live Labs 
as Volta, revolve around rewriting programs at the 
CIL (.NET Common Intermediate Language)1 byte-
code level. We call this approach recompiling.

Motivating example
Consider Word Worm (available at http://labs.live.
com/volta/samples/WordWorm.html), a Volta ap-
plication that does real-time word completion as 
the user types characters into a browser text box. 
Word Worm is a prototypical multitier Web appli-
cation, with nontrivial application logic on both the 
client and server tiers.

We started this application on a single tier, with 

all components written in C# and running on the 
client. We also used a data structure such as the pre-
fix tree, which stores positional indices. This strat-
egy let us implement and debug on a single tier the 
critical elements as well as cursors and sliding win-
dows for the dictionary. We used a small mock dic-
tionary for initial development and debugging. With 
the basic functionality in place, we transformed the 
application into a functionally equivalent distrib-
uted application, with the full dictionary residing 
only on the server. We effected the transformation 
through declarative annotations marking the distri-
bution boundaries. Volta automatically inserted the 
necessary cross-tier communication, data marshal-
ing, and synchronization as a recompilation step, 
and retargeted the client to JavaScript.

This example, although small, illustrates al-
most all of Volta’s benefits. We can write applica-
tions in a familiar, comfortable environment with 
quick turnaround for debugging. When we’re ready 
to deploy an application on multiple tiers, Volta 
automates much of the necessary replumbing and  
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restructuring. Another way to look at this process 
is that Volta

pushes distributed programming’s necessary 
but tedious, error-prone details into tooling,
enables semantically neutral instrumentation, 
and
extends refactoring and end-to-end profiling 
across runtimes.

We believe that Volta reduces the time needed for 
and cost of building distributed applications. Our 
hypothesis is based on feedback from colleagues 
and product groups using Volta, from developers 
on the Volta community forum (http://tinyurl.com/
3tdy3f), and from personal experience building the 
online Volta samples. We’re working with partners 
to develop a disciplined usability study that will 
provide evidence. We hope that this article’s toy ex-
ample will convey a sense of Volta’s benefits.

Distributed-application 
development
At the crux of distributed-system design lies the par-
titioning of functionality across tiers. The first cri-
terion for partitioning is the location of resources, 
typically data on servers and presentation on cli-
ents. But partitioning must also account for the net-
work’s adverse operational effects such as latency, 
low throughput, and packet loss. Although Volta 
handles many routine and tedious aspects of coding 
distributed applications, executing in a distributed 
environment introduces many concerns that tools 
can’t fully address.2 For instance, local function 

■

■

■

calls become remote procedure calls, and the opera-
tional semantics of failure and concurrency control 
are unavoidably different. However, we can try to 
retain much of the functional semantics: looking 
up words on a client dictionary is pretty much the 
same as looking them up on a server dictionary, 
except that we ignore surprising delays, dropped 
packets, out-of-order processing, duplicates, and so 
on. Likewise, formerly trusted execution now par-
tially runs on an untrusted client.

Although partitioning should result from classic 
engineering trade-off analysis based on quantitative 
data, most tools and technologies force us to make 
an a priori partition before writing a single line of 
code—for example, clicking on the File menu, then 
New, then picking a client or a server project. When 
problems surface, we have a dilemma: should we 
stick with the current, now-known-broken design 
and kludge it into suitability? Or scrap it, start over, 
and eat the redevelopment cost? Sound engineer-
ing practice would have us simulating, prototyping, 
and measuring, and only then partitioning, partly 
on the basis of quantitative measurements.

Recompiling CIL
To get out of this predicament, we must make it 
easier to change software after it’s already “turn-
ing over”—that is, working in some demonstrable 
if vestigial way. More than a decade ago, object- 
oriented designers dealt with a similar dilemma. 
They came up with refactoring, a technique that 
facilitates change.3 Refactoring improves design by 
applying successive, behavior-preserving transfor-
mations. Nowadays, refactoring is so widespread 
that most development environments support it.

We’d like to bring two capabilities—refinement 
through successive transformations, and the ability 
to revisit design decisions often—to the develop-
ment of distributed applications. In particular, we 
want our development tools to facilitate reassigning 
code to different tiers. Usually, refactoring implies 
absolute preservation of semantics. In our case, we 
preserve only the functional semantics; as we al-
luded to earlier, we know we can’t preserve opera-
tional semantics. We achieve this through transfor-
mations at the CIL bytecode level. However, these 
techniques aren’t restricted to CIL; we could apply 
them to Java bytecode, for example.

Figure 1 shows transformations from source 
code in several .NET languages to native code. Our 
recompiler operates in the middle, after the lan-
guage compilers transform source code into CIL 
and before just-in-time compilers generate native 
code. The recompiler reads and writes CIL, and the 
recompilation entails CIL-to-CIL transformations.

C++ C# Visual
Basic

Python

Recompiler

JavaScript

CIL

x86
architecture

Language compilers

Just-in-time compilers Code generator

ARM
architecture

Figure 1. The CIL (.NET 
Common Intermediate 
Language) recompiler. 
Because the tool 
reads and writes CIL, 
it can take the CIL 
generated by any 
language compiler 
and recompile it into 
CIL with remoting, 
synchronization, and 
instrumentation code.
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CIL-level recompilation confers several ben-
efits over other approaches, such as source-code 
transformation. First, the recompiler is language 
independent. Because all .NET programming lan-
guages compile into CIL, recompilation works 
the same way for programs written in any combi-
nation of .NET languages. This leverages the re-
search and practical experience that went into the 
individual language compilers and tools. Our re-
compiler doesn’t interfere with compiler analyses 
or optimization, and the developer enjoys all the 
benefits of source-level programming with inte-
grated development environments (IDEs) such as 
Visual Studio.

Volta provides a many-to-many mapping be-
tween the languages in which we write distributed 
code and the runtimes where the code executes.4 This 
contrasts with the approach adopted by the Google 
Web Toolkit (http://code.google.com/webtoolkit) 
and Script# (http://projects.nikhilk.net/projects/ 
scriptsharp.aspx), which operate at the source level. 
Consequently, it supports all the features of high-
level languages rather than a subset. Moreover, we 
don’t need to revise and update the recompiler when 
the language we’re using changes but only when the 
CIL specification changes, which happens much 
more infrequently. For example, CIL didn’t change 
at all during the time that C# evolved from version 
2.0 to 3.0.5

How Volta works
This section covers the details of Volta recompiler 
implementation. After introducing a simple ex-
ample as the exploratory vehicle, we turn to tier- 
splitting refactoring, semantically neutral instru-
mentation, and retargeting.

Distributed fibonacci
We begin with a synthetic application that we tai-
lored to show that

the assignment of specific bits of code to client 
and server dramatically affects performance 
and
Volta helps measure this performance and re-
partition the code.

Consider the simple application in Figure 2, in 
which the application code computes the Fibonacci 
number for a positive-integer argument. Two C# 
classes carry out the computation: MainComputation 
implements the expensive recursive algorithm, and 
BaseComputation validates the inputs. We start by calling 
the Fibonacci method on an instance of MainComputation.

Once we have a working application running on 
a single tier, we’re ready to make a trial partition, 

■

■

measure performance, and potentially change the 
partition assignments. We first convert the original 
local function call into a remote invocation, then 
into an asynchronous remote invocation. The first 
transformation affects the trial partition; the sec-
ond transformation makes the application robust 
against unpredictable network latency.

To partition the application, we mark Main­
Computation with the RunAt custom attribute (see Fig-
ure 3). The C# compiler converts this attribute into 
.NET CIL metadata and saves it in the executable.6 
The Volta recompiler in turn reads the executable’s 
metadata and inserts boilerplate code for remote in-
vocation and for marshaling parameters and return 
values. No other changes to the source code from 
Figure 2 are required.

public class BaseComputation
{
 public int Fibonacci(int n)
 {
  if (n < 2)
   return BaseComputation.Validate(n);
  else
   return Fibonacci(BaseComputation.Validate (n – 1)) +   
    Fibonacci(BaseComputation.Validate (n – 2));
 }
}

public class BaseComputation
{
 public static int Validate(int argument)
 { 
  if (argument < 0)   
   return –argument;
  else 
   return argument;
 }
}

Figure 2. Fibonacci computation. The application code computes the 
Fibonacci number for a positive-integer argument.

[RunAt(“Server”)]
public class MainComputation
{
 public int Fibonacci(int n)
 {
  if (n < 2)
   return BaseComputation.Validate(n);
  else
   return Fibonacci(BaseComputation.Validate (n – 1)) +
    Fibonacci(BaseComputation.Validate (n – 2));
 }
}

Figure 3. Tier splitting 
through declarative 
annotation. To begin 
the partitioning, we first 
convert the original 
local function call into a 
remote invocation, then 
into an asynchronous 
remote invocation.
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Volta’s tier-splitting transformation is a refac-
toring in that it preserves the program’s behavior.7 
From the caller’s viewpoint, it still looks like just 
the initial Fibonacci method. However, the recom-
piler transforms the single-tier application into an 
equivalent two-tier application by translating an-
notated local method calls into remote-service 
invocations.

Distributed-design best practices recommend 

that all calls across the network be asynchronous. 
On the client, we declare a variant of the original 
Fibonacci function (see Figure 4), adding an addi-
tional argument of type Action<int> to receive the re-
sult. We then tag this variant with the Async attribute 
(the second line) and update the call site, supplying 
a lambda expression as an additional argument (the 
last line). On the basis of metadata on the method 
declaration, the Volta recompiler supplies the im-
plementation of this new variant automatically.

The declaration of the asynchronous method is 
the only place where we make observable changes 
to the source code. Without Volta we would have to 
implement asynchronous invocation by hand, using 
.NET asynchronous delegates.8 Figure 5 shows the 
code we’d have to write.

The code for remoting and asynchronous in-
vocation is too cumbersome to present here, eas-
ily overshadowing the original application code 
in accidental complexity9 and development cost. 
Tools can and should generate most of it, reduc-
ing the cognitive load on distributed-application 
developers.

tier-splitting refactoring
We start building applications with the code run-
ning on one tier—typically the client tier, where we 
assume the typical .NET developer is most com-
fortable. All method invocations are local calls. 
Once we have a working application, we mark the 
classes that we want to execute on the server with 
the RunAt custom attribute (see Figure 3).

This attribute’s presence in the CIL’s metadata 
instructs the recompiler to apply tier-splitting refac-
toring, transforming the initial single-tier CIL into 
multitier CIL: a proxy-service pair. The code that 
calls the Fibonacci method on an instance of MainCom­
putation doesn’t change. Under the covers, the trans-
formed Fibonacci method now calls a proxy. The 
proxy running on the client communicates with a 
service on the server, which executes the old body 
of the Fibonacci method. The recompiler moves 
the old body to the server, wrapping the original  
implementation within a service that responds to 
communications from the proxy on the client.

Figure 6a shows what the client code would look 
like if we had written it in C#. Of course, there’s no 
C# source for the new client code; the recompiler 
operates entirely at the CIL level. The Call method of 
the Proxy class encapsulates communication over the 
network, including the complexities of HttpRequest on 
the server and XmlHttpRequest on the client. Likewise, 
the GetInstance method of the Serializer class returns a 
serializer suitable for marshalling arguments and 
results.

// declaration of asynchronous method (no definition required)
[Async]
public extern void Fibonacci(int n, Action<int> continuation);

// call site update for asynchronous invocation
mc.Fibonacci(argument,(res) => Console.WriteLine(“Result = {0}”, res));

Figure 4. Declaration and client-side modifications for asynchronous 
invocations. The declaration instructs the C# compiler to insert the 
appropriate metadata into the generated CIL, and the call site update 
reflects the signature of the automatically generated method.

public class MainComputation
{
    public delegate int FibonacciDelegate(int n);

    public void Fibonacci(int n, Action<int> continuation)
    {
        var mc = new MainComputation();
        var ad = new FibonacciDelegate(mc.Fibonacci);

        var rp = new ResultProcessor(continuation);
        var cb = new AsyncCallback(rp.ReceiveResult);

        var ar = ad.BeginInvoke(n, cb, new Object());
    }

    public class ResultProcessor
    {
        private Action<int> _storedContinuation;

        public ResultProcessor(Action<int> continuation)
        {
            _storedContination = continuation;
        }

        public void ReceiveResult (IAsyncResult ia)
        {
            var ar = (AsyncResult)ia;
            var ad = ar.AsyncDelegate;
            var fd = (FibonacciDelegate)(ad);
            var result = fd.EndInvoke(ia);
            _storedContinuation(result);
        }
    }
}

Figure 5. Invoking a 
synchronous method 
with asynchronous 
delegates. Without 
Volta, we’d have to 
manually implement 
asynchronous 
invocation using 
.NET asynchronous 
delegates.
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The new server code must include the body of 
the Fibonacci method from the old client code plus 
communication boilerplate. The recompiler exposes 
the initial application code by injecting a Service class 
into a copy of MainComputation—the one marked with 
RunAt. The service dispatches the invocations it re-
ceives from the proxy on the client to the Fibonacci 
method running on the server.

Figure 6b shows what the server code would look 
like if we had written it in C#. Of course, there’s no 
C# source for the server code. The boilerplate code 
ProcessMethod takes an instance of the Call class. The 
GetInstance method of the Call class returns an instance 
of the transplanted MainComputation, code we wrote for 
the client. It contains the Fibonacci method (see Fig-
ure 2), which is our business logic. The boilerplate 
Call object also has a GetParameter method, which un-
marshalls the parameter values sent by the client. 
Finally, Call has a Return method, which marshals the 
computation’s result.

So far, we have an easy way to make calls re-
mote. The Async attribute (see Figure 3) declares our 
intent to invoke asynchronously the call we made 
remote. We must also change the Fibonacci sig-
nature to add a callback parameter, which is now 
available for static type-checking and IntelliSense. 
The recompiler supplies the implementation of the 
asynchronous delegates from Figure 5, so the decla-
ration needs an extern modifier.

Volta doesn’t make decisions about remoting 
boundaries; it only writes boilerplate code in a pol-
icy-agnostic manner. Also, Volta isn’t in the same 
space as automated partitioning; if anything, the 
tool would facilitate such research.10

End-to-end instrumentation and profiling
Let’s revisit Fibonacci and collect data about the 
partitioning between client and server. The de-
veloper sets a project option to enable end-to-end 
profiling. The option instructs the recompiler to 
instrument the tier-crossing boundaries. The in-
strumentation inserts time stamps and sends data 
to a logging service. The service—also generated by 
the recompiler—aggregates the data into trace files. 
Figure 7 illustrates user profiling, together with the 
remoting and instrumentation process.

The instrumented code can collect complete ap-
plication traces, enabling us to compute statistics for 
latency and throughput and to perform application 
diagnostics. We have specialized tools for quickly 
interpreting the effects of partitioning. For exam-
ple, Figure 8 displays the communication after tier- 
splitting BaseComputation in the Microsoft Service Trace 
Viewer.11 The graph shows a chatty client-service 
interaction (which is why we tier-split BaseComputation). 
The time stamps let us quantify the processing time 
associated with each invocation, so that we can 
evaluate the effects of the initial, trial partitioning. 
Because partitioning the code was easy in the first 
place, changing the partitions on the basis of mea-
surements is equally easy. In effect, we’re promoting 
tried-and-true methods of quantitative optimization 
into the distributed realm.

Injecting instrumentation is a proven technique. 
The MIPS Pixie program lets programmers insert 
arbitrary instrumentation at multiple levels: instruc-
tions, basic blocks, functions, and so on.12 Another 
instrumentation platform, AjaxScope,13 monitors 
the client-side behavior of Web 2.0 applications by 

public int Fibonacci(int n) 
{
    object[] objArray = new object[] { n };
    return Proxy.Call<int>(__Serializer.GetInstance(), __GetUri(), “MainComputation”, 0, this, null, objArray);
}
(a)

protected override void ProcessMethod(Service<MainComputation>.Call call)
{
    switch (call.GetMethod())
    {
      case 0:
        call.Return<int>(call.GetInstance().Fibonacci(call.GetParameter<int>(0)));
        break;
      // additional dispatching
      default:
        throw new InvalidMethodException();
    }
}
(b)

Figure 6. Tier-split code 
reconstructed from 
generated CIL: (a) client 
and (b) server. The 
recompiler inserts code 
that invokes the service 
and dispatches the call 
to the initial code. 
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injecting the instrumentation into client-side Java-
Script. Just as in Figure 7, the instrumented Java-
Script code periodically collates and sends log mes-
sages back to the AjaxScope proxy for analysis.

Rewriting changes the game in end-to-end pro-
filing. The recompiler exposes a small surface area 
to the developer and pushes the details about col-
lecting and aggregating instrumentation data into 
tooling. Putting end-to-end profiling literally one 
click away improves maintainability—we can easily 

quantify the partitioning whenever functionality, 
location of resources, usage profiles, and other pa-
rameters change. In addition, through retargeting, 
we can instrument heterogeneous systems, where 
partitions execute in environments without a .NET 
runtime.

retargeting
Ajax-style Web-based applications are one of the 
most popular forms of distributed applications. 
They involve a heterogeneous mix, in which the 
server side executes on a runtime environment such 
as CLR (Common Language Runtime) or JRE (Java 
Runtime Environment) and the client side executes 
in a JavaScript engine hosted by a browser.

We’d like to use Volta for code that runs in the 
browser. Using Volta to transform CIL into Java-
Script was a natural decision, but it presents inter-
esting challenges. For example, CIL code often uses 
the branch instruction br. JavaScript has no equiva-
lent goto construct, so we simulate it with a tram-
poline14 (a loop that iteratively invokes other func-
tions) and a local program-counter variable (see 
Figure 9).

The full details of transforming CIL into Ja-
vaScript are beyond this article’s scope. However, 
we can simulate advanced control-flow constructs 
that aren’t natively supported by JavaScript, such as 
threads and coroutines.

V olta represents an innovative kind of soft-
ware tooling. It lets developers refactor 
a sequential application into an equiva-

lent distributed one with straightforward, declara-
tive annotations placed in the source code. It also 
enables unobtrusive, post hoc instrumentation for 
quantitative evaluation of the partitioning. Finally, 
it extends the reach of .NET programming lan-
guages, libraries, and tools to cover the cloud. We 
achieve all three capabilities through recompila-
tion of intermediate-language executables. Our ap-
proach has great promise for distributed-application 
development and beyond.

We’ve released a technology preview of the 
tools to the developer community. The release 
(http://labs.live.com/volta) includes several sample 
applications that we wrote in-house to verify our 
approach. The preview has attracted numerous 
early adopters, who used Volta to build various 
Web applications within a few days of the release.

In the long run, we expect tools such as Volta 
to dramatically reduce development costs and to in-
crease application robustness by reducing the com-
plexity of distributed-application development. By 

User code

PythonServerClient

Logging
service

Recompiler-inserted code

Remoting

Instrumentation

Volta-generated code

Figure 7. End-to-end profiling through recompiling. Data about the 
partitioning between client and server, including time stamps that help 
quantify each invocation’s processing time, are aggregated into trace 
files that developers can use to quickly interpret partitioning’s effect.

Figure 8. End-to-end  
profiling data displayed 
in the Microsoft Service 
Trace Viewer. The 
graphs let developers 
assess the effect 
of client-server 
partitioning.
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bringing mature tools and familiar .NET program-
ming languages into the realm of distributed ap-
plications, we hope to reduce developers’ cognitive 
load and concept count.

Future Volta work will focus on security through 
construction, finer-grained tier splitting, and tier 
migration. Security by construction will add invari-
ant checking code to both sides of tier-split applica-
tions. Finer-grained tier splitting will let developers 
annotate for tier-splitting methods or finer-grained 
constructs. Tier migration will allow parts of dis-
tributed applications to move dynamically.
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while (true) switch($next){
 case 0:
  {
  /*** uninteresting JavaScript code removed */
  if (br1 || br1 === “”) {
   $next = 27;
   continue;
 }
   /*** uninteresting JavaScript code removed */
  $next = 42;
  continue;
  }
      /*** other labels removed removed */
 case 60:
  {
 return loc_5;
  }
}

Figure 9. Implementing CIL’s br in JavaScript, trampolined style. 
Branching to a location is equivalent to setting the $next variable to 
the corresponding switch label.
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