
Towards Security by Construction for Web 2.0 Applications

Benjamin Livshits and́Ulfar Erlingsson

Microsoft Research

While security experts routinely bemoan the current state of
the art in software security, from the standpoint of the appli-
cation developer, application security requirements present yet
another hurdle to overcome. Given the pressure for extra func-
tionality, “lesser” concerns such as performance and security
often do not get the time they deserve. While it is common to
blame this on developer education, a big part of the problem is
that it is extremely easy to write unsecure code.

1 Introduction
By way of illustration, consider an application that prompts
the user for her name and sends a greeting back to the browser.
The following example illustrates how one can accomplish this
task in a Java/J2EE application:

ServletResponseStream out = resp.getOutputStream();

out.println("<p>Hello, " + username + ".</p>");

However, the apparent simplicity of this example is deceptive:
assuminguserName is supplied as application input, this piece
of code is vulnerable to cross-site scripting [2]. This is because
executable JavaScript can be embedded intouserName. When
the request is processed within the Web application, this Java-
Script will be passed to the client’s browser for execution. In
summary, the most natural way to achieve the task of printing
the user’s name is broken:the default is unsafe. To make this
secure, the developer has to apply input sanitization: he needs
to exclude the myriad different ways to pass JavaScript into
the application [11], often a tedious and error-prone task. It
is, however, very rare that there is a compelling reason to have
previously unseen JavaScript code passed to the browser.

2 Opportunities
While both secure programming methodologies and static
analysis tools have been used to detect “low-level” security
issues such as cross-site scripting, we believe that Web soft-
ware development needs to be elevated to a level where these
and other issues are automatically eliminated.

It is our position that, just like in the case of desktop soft-
ware [6, 9], Web application development frameworks soft-
ware construction frameworks can expose an excellent oppor-
tunity for fundamental improvements in their security. Frame-
works and libraries can export security policies that would au-
tomatically extend to framework clients. As a result, we could
eliminate entire classes of security bugs, leaving developers
free to focus on architectural concerns.

Recent interest in enforcing strong security properties on the
client side, within the browser sandbox [5, 7, 8, 12], makes us
believe that these mechanism will eventually make their ways
into mainstream browsers. We think that the moment is ripe

to focus on the properties that need to be enforced. Moreover,
it creates a great opportunity to automate the process of policy
generation by having framework elements expose their secu-
rity requirements [6, 9].

3 Analyzing Dojo Pages
To illustrate what we mean when we talk about security poli-
cies, let us consider the Dojo Toolkit, a popular suite of li-
braries that simplify the development of Ajax applications [4].

3.1 Mail Reading Pane

Dojo makes it easy to construct a rich-text email client as
shown in Figure 1 by laying out several interface components
of predefined Dojo types. E.g., the reading pane at the bottom
of the screen is declared as

<div id="contentPane" dojoType="ContentPane"

sizeMin="20" sizeShare="80"

href="Mail/MailAccount.html" style="padding: 5px">

</div>

This declaration allows the pane contents to be loaded from
Mail/MailAccount.html, an HTML file that can is changed at
runtime, depending on the message being selected. How-
ever, there is generally no compelling reason to allow con-
tent pane contents to contain executable JavaScript. We can
assume a “safe default” position and create a simple analy-
sis that will generate no-execute policies for everyContentPane

on the page. This simple default will go a long way toward
preventing cross-site scripting and JavaScript worms, such as
Yamanner [3] that propagated through Yahoo! Mail each time

Figure 1: Sample mail application constructed using Dojo Toolkit

1

Controller

this.controller

id=”myTreeController”

Tree

this.myTreeWidget

id=”myTreeWidget”

Context menu

this.ctxMenu

id=“TreeContextMenu”

listener event subscriber

Figure 2: Tree widget-menu-controller architecture in Dojo

a user opened a cleverly crafted email message. Moreover, re-
lying on Dojo components to “know” about their own security
requirements makes it largely unnecessary to specify policies
manually, such with<noexecute> blocks in BEEP [7, 8].

3.2 Tree Widgets

Similar default policies can be produced for other widgets.
Consider theTree widget in the Dojo toolkit that allows one
to create multi-level trees. Node labels support HTML and are
explicitly specified within the tree as follows:

<span class="dojoTreeNodeLabelTitle"

dojoattachevent="onClick: onTitleClick"

dojoattachpoint="titleNode">HTML label

Right-clicking on tree nodes allows the user to remove them,
add new children, etc. Moreover, labels have event-processing
code attached to them to support mouse-clicks, etc. The safe
default is to ensure that HTML within the node label declara-
tion does not execute JavaScript codeoutsidethe Dojo toolkit.
A stronger safe default is to assert that code within the tree
declaration cannot affect anything outside of the declaration.
Enforcement of this policy would be particularly useful as a
protection against RSS injection if the tree widget is used to
display an RSS feed in a mashup page such aslive.com.

3.3 Context Menus and Tree Widgets

The static analysis of Dojo pages required so far was extremely
simple: we just needed to find places in the code with which to
associate our static policies. Dojo also supports context menus
activated on the right mouse click that can be associated with
individual trees. However, the relationship between a tree and
its associated menu is less trivial to encode: as Figure 2 shows,
it involves creating acontroller that mediates processing of
GUI events by subscribing to context menu events. The abbre-
viated version of code responsible for context menu creation
is shown in Figure 3. A more elaborate static analysis would
recover the relationship between the tree, context menu, and
its controller, and then issue a policy which would ensure at
runtime that context menu-initiated actions are not allowed to
affect the DOMoutside the treefor isolation of different com-
ponents within a mashup page.

4 Conclusions
Recently we have seen a strong trend towards using rich APIs
for Ajax application development. Just as in the context of
traditional desktop applications, this shift toward a rich frame-
works and APIs exposes opportunities for both runtime en-
forcement and bug finding [1, 6, 9]. Combined with runtime
enforcement in the context of the browser [5, 7, 8, 12], the use
of frameworks canautomaticallyresult in significantly more
secure applications without additional code annotation burden

var DemoTreeManager = {
djWdgt: null, myTreeWidget: null, ctxMenu = null,

addTreeContextMenu: function(){
ctxMenu = this.djWdgt.createWidget("TreeContextMenu",{});
ctxMenu.addChild(this.djWdgt.createWidget(

"TreeMenuItem",{caption:"Add Menu Item",
widgetId:"ctxAdd"}));

document.body.appendChild(ctxMenu.domNode);
/* Bind the context menu to the tree */
ctxMenu.listenTree(this.myTreeWidget);

},
addController: function(){

this.djWdgt.createWidget("TreeBasicController",
{widgetId:"myTreeController", DNDController:"create"}

);
},
bindEvents: function(){

dojo.event.topic.subscribe("ctxAdd/engage",
function (menuItem) { addNode(menuItem.getTreeNode(),

"myTreeController"); }
);

},
addNode: function(parent,controllerId){

this.controller = dojo.widget.manager.
getWidgetById(controllerId);

var res = this.controller.createChild(parent, 0,
{ title: "New node" });

},

init: function(){
/* Initialize this object */
this.djWdgt = dojo.widget;
this.myTreeWidget = this.djWdgt.manager.

getWidgetById("myTreeWidget");
this.addTreeContextMenu(); this.addController();
this.bindEvents();

}
};

Figure 3: Context menu creation code

being placed on the developer. While in this paper we only
explore the Dojo toolkit, similar opportunities exist in a stag-
gering variety of Ajax libraries and frameworks [10].

References
[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-

drusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of device drivers.
In Proceedings of the European Systems Conference, 2006.

[2] CGI Security. The cross-site scripting FAQ.http://www.cgisecurity.net/
articles/xss-faq.shtml.

[3] E. Chien. Malicious Yahooligans.http://www.symantec.com/avcenter/
reference/malicious.yahooligans.pdf, Aug. 2006.

[4] Dojo Foundation. Dojo, the JavaScript toolkit.http://dojotoolkit.org, 2007.
[5] Ú. Erlingsson, B. Livshits, and Y. Xie. End-to-end Web application security. In

Proceedings of the Workshop on Hot Topics in Operating Systems, May 2007.
[6] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building

system-specific, static analyses. InProceedings of the Conference on Programming
Language Design and Implementation, pages 69–82, June 2002.

[7] T. Jim, N. Swamy, and M. Hicks. BEEP: Browser-enforced embedded policies.
Technical report, Department of Computer Science, University of Maryland, 2006.

[8] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-
enforced embedded policies. InProceedings of the International World Wide Web
Conference, 2007.

[9] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security
vulnerabilities using PQL: a program query language. InProceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
Oct. 2005.

[10] Open Source Applications Foundation. Survey of AJAX/JavaScript libraries (24 li-
braries surveyed).http://wiki.osafoundation.org/bin/view/Projects/
AjaxLibraries, 2007.

[11] RSnake. XSS cheat sheet for filter evasion.http://ha.ckers.org/xss.html.
[12] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for browser

security. InProceedings of Conference on Principles of Programming Languages,
Jan. 2007.

2

