
Towards Realistic and Reproducible
Web CrawlMeasurements

Jordan Jueckstock†, Shaown Sarker†, Peter SnyderΔ, Aidan Beggs†,
Panagiotis Papadopoulos⋄, Matteo Varvello★, Ben LivshitsΔ, Alexandros Kapravelos†

†North Carolina State University, Δ Brave Software, ⋄Telefonica Research,★Nokia Bell Labs

ABSTRACT
Accuratewebmeasurement is critical for understanding and improv-
ing security and privacy online. Implicit in these measurements is
the assumption that automated crawls generalize to the experiences
of typical web users, despite significant anecdotal evidence to the
contrary. Anecdotal evidence suggests that the web behaves differ-
ently when approached fromwell-knownmeasurement endpoints,
or with well-knownmeasurement and automation frameworks, for
reasons ranging from DDOS detection, hiding malicious behavior,
or bot detection. This work improves the state of web privacy and se-
curity by investigating how, and in what ways, privacy and security
measurements change when using typical web measurement tools,
compared to measurement configurations intentionally designed
to match “real” web users. We build a web measurement framework
encompassing network endpoints and browser configurations
ranging from off-the-shelf defaults commonly used in research
studies to configurations more representative of typical web users,
and we note the effect of realism factors on security and privacy
relevant measurements when applied to the Tranco top 25k web
domains. We find that web privacy and security measurements are
significantly affected by measurement vantage point and browser
configuration, and conclude that unless researchers carefully
consider if and how their web measurement tools match real world
users, the research community is likely systematically missing
important signals. For example, we find that browser configuration
alone can cause shifts in 19% of known ad and tracking domains
encountered, and similarly affects the loading frequency of up
to 10% of distinct families of JavaScript code units executed. We
also find that choice of measurement network points have similar,
though less dramatic, effects on privacy and security measurements.
To aid the measurement replicability, and to aid future web research,
we share our dataset and precise measurement configurations.
ACMReference Format:
Jordan Jueckstock†, Shaown Sarker†, Peter SnyderΔ, Aidan Beggs†,
Panagiotis Papadopoulos⋄, Matteo Varvello★, Ben LivshitsΔ, Alexan-
dros Kapravelos†. 2021. Towards Realistic and Reproducible Web Crawl
Measurements. In Proceedings of the Web Conference 2021 (WWW ’21),
April 19–23, 2021, Ljubljana, Slovenia.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3442381.3450050

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450050

1 INTRODUCTION
Research into web security and privacy depends on web measure-
ments for ground truth [18, 21]. Automated, web-scale crawls have
been used to estimate user tracking granularity [10] and regulatory
compliance [11] among other important questions. Ahmad et al.
found nearly 16% of papers recently published across many top
security, privacy, and network measurement venues relying at least
in part on data collected via automated web crawls [7].

Implicit in most automated web measurement work is the
assumption that the web encountered through automated measure-
ment is the same as the web encountered by typical web users, or at
least similar enough so that the findings for the former generalize to
the experiences of the latter. However, as crucial as this assumption
is to much security and privacy work, we find that this assumption
has not been systematically studied or assessed.

Moreconcerning, the relatedwork thatdoesexist suggests that the
gap between the “measured” web and the “experienced” webmay be
large. For example, Zeber et al. [26] compared results between auto-
mated crawls from different network endpoints against anonymized
browsing sessionsprovidedbyvolunteers, they found somedramatic
mismatches between the crawls and user sessions in key privacy
metrics (e.g., prominence of 3rd party domains contacted), but left
unresolved the question of how much impact was attributable to
sites deliberately discriminating against “unrealistic” clients.

Similar work by Ahmad et al. [7] assessed the impact of user
agent choice on web crawl observations, from primitive headless
agents like cURL to sophisticated full-browser frameworks like
OpenWPM [10]. While these results again showed dramatic
divergence in common security and privacy metrics, the authors’
emphasis was on experiment reproducibility, and their analysis did
not attempt to quantify the direct effects of bot detection/discrimina-
tion on results. Other recent publications document that many web
sites perform dynamic bot detection [14] and that somemalicious
content actively evades visitors from non-residential networks [24].

Thisworkaims to improve the stateofwebprivacyand securityby
investigating how the web changes when observed with typical web
measurement techniques, compared tomeasurement configurations
carefully designed to closely match those of typical web users. More
specifically, we measure how choices in browser configuration (BC)
and network vantage point (VP) affect common privacy and security
metrics. We design BCs and VPs to closely match those of typical
web users and treat them as ground truth against which commonly
used alternatives can be compared in a robustly controlled and
repeated web crawl over the Tranco top 25K web domains [16].

This study considers three commonly used measurement VPs
(i.e., popular cloud provider, research university, residential ISP)
and two common BCs (one with the default configuration of a
popular browser automation framework, and the other configured

https://doi.org/10.1145/3442381.3450050
https://doi.org/10.1145/3442381.3450050


to more closely approximate a standard desktop browser). We
treat the measurements taken from the standard desktop browser
BC and residential ISP VP as “realistic”, or ground truth (i.e., the
web as encountered by typical web users), and consider consistent
differences in results between our ground truth configurations and
the other VP and BC configurations to be a form of measurement
bias. Higher levels of consistent difference between configurations
are constitutes larger measurement bias, and thus a greater
threat to validity to measurement studies employing unrealistic
configurations. Our analyses ignore ephemeral outliers and identify
data points showing consistently significant differences among VP
and BC variants across all repeated crawls. We believe our approach
establishes a lower bound onmeasurement bias (see Section 2.7) that
can be expected from unrealistic web measurement methodology.

We find significant, and sometimes dramatic, differences in com-
mon privacy and security measurements attributable to VP and BC
selection. A partial list of this work’s findings include that certain
commonly used measurement configurations introduce significant
measurement bias regarding which domains are encountered, and
how much traffic is sent to those domains. We find that measure-
ments from cloud VP introduce higher measurement bias than other
measured VPs. We also find that using non-realistic BCs introduces
significant measurement bias regarding which well-known advertis-
ingand trackingdomainsareencountered;measurements takenwith
the default puppeteer1 configuration, for example, miss up to 19% of
realistic advertising and tracking domains encountered. We observe
that non-realistic choices in BC and VP can introduce similar mea-
surement bias into which JavaScript libraries are observed on the
web. We also present case studies demonstrating that non-realistic
measurement configurations cause different patterns in JS API calls.

Finally, we use our findings to provide recommendations for
future web privacy and security research, to maximize “realism”
in measurement results. We provide more detailed guidance
and discussion in Section 4, but in summary, we conclude that
researchers should avoid lowest-common-denominator crawlers,
such as stockPuppeteer drivingheadlessChromium,when assessing
real-world security and privacy concerns.
Contributions: Our core contributions include:

(1) Comprehensive documentation and implementation
details of our synchronized parallel web crawl methodology,
measuring how the privacy and security characteristics of
the web change under different measurement configurations.

(2) The completedatasetgeneratedby crawling theTranco25K
top sites from 3 measurement vantage points, and under two
representative browser configurations.

(3) Conclusions and guidance on how future research
should incorporate this work’s findings to improve how
accurately findings from automated web measurements can
generalize to real world, human browsing behavior.

2 METHODOLOGY
Our experiments center on simultaneous visits to top-ranked web
sites by multiple clients differing in realism of network vantage
point (VP) and browser configuration (BC), with controls in place
to neutralize differences introduced by external factors such
1https://github.com/puppeteer/puppeteer/

as available system resources, DNS resolution, and sources of
programmatic entropy available to client-side JS scripts. Recent
work [7] has documented an unfortunate propensity of authors
employing web crawls to under-specify the design parameters of
their crawls, frustrating reproduction of results. Here we specify
and justify our crawl design criteria in reproducible detail.

2.1 Approach to Realism
As we attempt to measure the extent to which automated web
measurements can be distorted by unrealistic (i.e., non-human-like)
crawlers, we face a challenge defining and deploying a “realistic”
crawler. Ideally, we would compare a typical automated crawler
directly against a live, human counterpart. Such an ideal experiment
is impractical for several reasons: human volunteers do not scale
well, and using real-world browsing data is fraught with ethical
concerns, if it is even available at all. Our solution is to select VP and
BC alternatives that can be reasonably ranked in order of relative
realism based on known instances of adversarial response (e.g., bot
detection, malicious cloaking). We expect the differences observed
(if any) between lower-realism and higher-realism crawlers, if all
other factors are controlled, to provide a lower bound for expected
differences between typical crawlers and actual human users.

2.2 RealismVariables
Two variables control the range of realism attempted by our clients:
the network endpoint fromwhich we visit pages (vantage point, or
VP) and the browser settings employed (browser configuration, or
BC). Each target URL (Section 2.4) is visited to produce a page set,
the result of visiting that URL simultaneously from each distinct
VP/BC pairing.

2.2.1 Vantage Point (VP). We collected data from three distinct,
representative VPs: a major research university network, a nearby
residential ISP network, and a popular cloud provider’s network
(Amazon AWS). The university and residential endpoints are
co-located in the same city. The cloud endpoint was placed in the
cloud provider’s nearest available datacenter, which is within the
same national border, in a neighboring province. The residential
network provides the ostensible best-case in VP realism, as it is
used exclusively for end-user activities. The university network
combines both end-user and infrastructure activities; its realism
is presumed to fall somewhere between the residential and cloud
extremes. The cloud network provides an expected worst-case in VP
realism as its typical use is for infrastructure rather than end-user
network access. Connectivity via these endpoints is achieved via
implementation details discussed in Section 2.5.

According to IP geolocation data provided by https://ifconfig.co,
the university and residential endpoints were 6 km apart, while the
university and cloud endpoints were 375 km apart. Naturally, the
distance separating the cloud endpoint from its counterparts raises
concerns about the effect of geo-targeted web content. We address
this concern in the discussion of our analysis approach (Section 3).

2.2.2 Browser Configuration (BC). We crawl using two variants of
Puppeteer2 controlling Chromium 80: a lower-realism naive variant
and a higher-realism stealth variant. Relative realism is inferred
2https://github.com/puppeteer/puppeteer/

2

https://github.com/puppeteer/puppeteer/
https://ifconfig.co
https://github.com/puppeteer/puppeteer/


from the ongoing arms race between developers of bots (automatic,
non-human user agents) and bot detectors. The naive BC, running
Chromium in headless mode using stock Puppeteer, is easy to detect
as a bot thanks to identifying quirks [4] of Chrome’s headless mode,
(e.g., “ChromeHeadless” in the User Agent string). The stealth BC
presents a harder target by running the browser in non-headless
mode and using a community-provided stealth plugin for Puppeteer
that adds bot-detection countermeasures such as spoofing available
media codecs to better match consumer devices and suppressing
the tell-tale Navigator.webdriver attribute. The existence and
continuedmaintenance of the stealth plugin, an explicit workaround
for bot detection of headless Puppeteer crawlers, indicates that there
exists some population of content in the wild for which our naive
BC will be considered “unrealistic” and our stealth BC “realistic.”

2.2.3 Summary. Each of our page sets comprises 6 synchronized
parallel visits to the same URL, one for each combination of our 3
networkVPs and2BCs representing a rangeof relative realism levels.

2.3 Control Constants
Our analysis of results across VP/BC depends on eliminating as
many sources of irrelevant differences across clients as possible. To
this end we aggressively homogenize all readily controllable aspects
of our crawls across all clients.

2.3.1 Workflow & Timeouts. All page visits follow the same work-
flow and employ the same timeout limits for each phase. First, the
browser is launched with a clean user profile (i.e., no cookies or
cached content), instrumentation callbacks are established, and the
browser is navigated to the target URL. If this initial navigation
fails to successfully fetch an HTML document within the navigation
timeout of𝑇𝑁 =30 seconds, the page visit is aborted. Otherwise, the
browser is left idle, running JS code and firing timers as needed, for
the loiter timeout of𝑇𝐿 =15 seconds. Once the loiter time is expended,
the crawlerbegins to “teardown” thevisit byfirst capturinganumber
of page artifacts (such as final DOMHTML and screenshot). If this
“tear down” process exceeds thewatchdog timeout limit of𝑇𝐷 =15
seconds, the page visit is aborted. (All non-aborted page navigations
are considered successful, even if they never fire the official “load”
event.) The theoretical maximum time taken per page, then, is 60
seconds.Wediscuss selectionof theseparameter values inSection2.6

2.3.2 DNS Resolution. We configured all browsers at all endpoints
to resolve DNS names using CloudFlare’s popular 1.1.1.1 resolver
network [1]. Our experiment is not designed to measure the impact
of DNS resolution onweb content, so we did not performA/B crawls
with and without CloudFlare’s DNS service. Rather, our goal is to
reduce potential noise caused by using different DNS servers from
different providers with completely different priorities and quality
of service.

2.3.3 JS Entropy Sources. Dynamic resource loading triggered
by JS code has been known to rely on sources of randomness
available to JS programmers, such as the Math.randomAPI, or on the
current timestamp as returned (withmillisecond granularity) by new
Date(). Whenever a new frame is created, our crawler pre-loads
its execution context with a JS polyfill from the Google Catapult

project’s Web Page Replay framework 3 that provides deterministic
alternatives to these APIs.

2.3.4 Bandwidth/Latency. To compensate for differences in
available bandwidth and typical latency between our VPs, we
used Chromium’s network throttling support to limit maximum
throughput and minimum request latency to the lowest-common-
denominator in our setup. Unsurprisingly, our network bottleneck
was the residential VP, equipped with asymmetric bandwidth (200
Mbps down, 10 Mbps up) which had to be shared with two residents
compelled to work from home thanks to the COVID-19 pandemic.
We set bandwidth limits arithmetically, by dividing 50% of available
residential bandwidth (each direction) among the workers deployed
there and setting identical limits on all other workers. We measured
the highest round-trip time for a simple HTTP request time
experiment conducted through each VP and used the maximum of
64ms (from residential) as the minimum latency for all workers.

2.3.5 Summary. All anticipated entropy sources are held as
constant as is practical across all visits: workflow timeouts, DNS
resolution (via CloudFlare), JS entropy sources, and lowest-common-
denominator bandwidth/latency throttling.

2.4 Web Site Selection
We visit the top 25,000 web domains as ranked by the Tranco list
of top sites [16] (snapshot 77PX). In keeping with our focus on
web security and privacy measurements, our interest is primarily
3rd-party infrastructure content such as advertisement frameworks,
trackers, and analytics scripts rather than 1st-party application
content or behavior, so we do not expend resources crawling
recursively into a website’s contents beyond the “landing page”
provided by navigating to the domain name itself as an HTTP URL.

Muchweb content is inherently dynamic [5] (e.g., news headlines,
advertisements) or even personalized (e.g., recommended content,
advertisements). Furthermore, the web depends on a strictly-best-
effort Internet, where ephemeral connectivity issues are common.
Such ephemeral noise threatens our ability to isolate meaningful dif-
ferences across endpoints. In addition to all the controls enumerated
above, we combat such noise with repetition, visiting our itinerary 3
times and factoring consistency across repetitions into our analysis.
Repetition count is not a well standardized parameter of web crawl
methodologies. If mentioned at all, it is typically justified in relation
to a particularmetric or analysis technique [7, 22].We chose 3 repeti-
tions pragmatically: it provides some robustness against temporary
connectivity issues and provides measurement of stability in obser-
vations across crawls while retaining modest resource overhead.

Since some environmental factors outside our control (e.g.,
diurnal activity patterns affecting network load) directly relate
to time, and since even responsible web crawling at slow rates
might well result in IP blacklisting over the course of a week-long
crawl, we decouple website popularity from time elapsed during the
experiment by randomizing the order of domains visited at the start
of each crawl repetition. This shuffling prevents diurnal patterns
from coincidingwith domain spacing in our crawl and gives us some
confidence that any rank-based metrics used in our analysis are not
accidental proxies for time-of-day or other temporal patterns.
3https://chromium.googlesource.com/catapult/

3

https://chromium.googlesource.com/catapult/


University Primary Cluster

http://example.com/
(university, naive)

http://example.com/
(university, stealth)

http://example.com/
(cloud, naive)

http://example.com/
(cloud, stealth)

Randomized Pass #3

. . .

example.com (#562)

. . .

Randomized Pass #2

. . .

. . .

example.com (#562)

Randomized Pass #1

example.com (#562)

. . .

. . .

Top 25K Domains
. . .

example.com (#562)

. . .

Residential
Outpost Cluster

http://example.com/
(residential, naive)

http://example.com/
(residential, stealth)

example.com
Cloud

SOCKS5
Relay

Figure 1:Workflow fromDomain List to Target Server

2.4.1 Summary. We visit the Tranco top 25,000 domains in a series
of 3 independent crawls. We randomize the order of site visits
within each crawl to decouple our results from potential time-based
confounding factors.

2.5 Implementation Details
Figure 1 illustrates the high-level design of our crawling experiment
and hints at some of the implementation and infrastructure details
briefly discussed here.

2.5.1 Infrastructure. All university and cloud visits were hosted
on an 8-node Kubernetes cluster, comprising 352 total CPUs and
1.5TiB total RAM. Cloud visits were proxied through our Amazon
AWS endpoint using Go Simple Tunnel’s [3] SOCKS5-over-KCP
low-latency encrypted transport mode. Given the asymmetric
bandwidth available from the residential ISP, described in Section 2.2,
we could not tunnel crawls through this endpoint, as the tunnel
would be effectively throttled by the crippled upstream rate. Instead,
we placed a single-node (16 CPUs, 32GiB RAM) Kubernetes cluster
at the residential endpoint. Workers on this outpost cluster handled
all visits from the residential VP. All workers in the experiment (in
both clusters) were configuredwith CPU andmemory limits derived
to strictly prevent saturation of the outpost’s limited resources.
Bulk data (e.g., HTTP response bodies, VisibleV8 trace logs) was
stored in a local MongoDB server running alongside each cluster.
Post-processed summary data was stored in a single PostgreSQL
server colocated with the primary cluster: outpost post-processing
jobs communicated with this server via persistent SSH tunnel.

2.5.2 DNS Customization. The Chromium browser does not
provide runtime options to select a custom DNS resolver. Our
workaroundwas to configure all Chromium instances, not just those
visiting via the cloud endpoint, to use a local SOCKS5 proxy config-
ured to use our desired remote DNS server for name resolution. This
approach gave us easy control over DNS server selection without
altering the originating IP address of the request, and had the ad-
ditional benefit of normalizing connection overhead, proxy latency,
and Chrome error reporting between the local and cloud endpoints.

2.5.3 Synchronization. Even with careful resource tuning and
throttling, page setswill not remain synchronized across amulti-day
crawl experiment without help. Unsynchronized tests over the top
1K sites revealed that page visits from the same set would be spaced

far apart soon after the experiment began: e.g., by the time 400 do-
mains had been processed, the residential visits were already over 30
minutes behind their cloud and university counterparts (whichwere
less than a minute apart), despite uniform CPU and memory limits
and no sign of network bandwidth saturation at any VP. To provide
maximum comparability across control variables, we set out to
synchronize visit starts within page sets to be nearly instantaneous.

Workers in both clusters pulled page visit jobs from a single Redis-
backed work queue hosted in the primary cluster. Outpost workers
accessed this Redis server via a persistent SSH tunnel between the
clusters. We augmented the off-the-shelf work queue logic with a
custom synchronization barrier implemented using atomic counters
and pub/sub notifications provided by the same central Redis server.
Under this scheme, each job in a page set is tagged with a shared
sync tag which serves as a Redis key for storing an atomic counter
(initially 0). After pulling a job from the queue but before starting the
visit, workers subscribe to notifications for that sync tag, atomically
increment the sync counter and, if the returned value matches the
expected total count (e.g., 6), publish a notification to release allwork-
ers waiting on that tag. With this implementation in place, 99.8%
of all page sets in our primary experiment saw all 6 visits launched
within a 1 second window, with a mean launch window of 91ms.

2.5.4 Summary. We split our infrastructure into a primary and an
outpost cluster to work around asymmetric bandwidth limits for the
residential VP. DNS resolution customization is controlled via local
and remote SOCKS5 proxies, simplifying implementation and unify-
ingbehaviorandreportingacrossallvariants.Work isdistributedand
synchronized across the clusters via a central Redis server using stan-
dard work-queuing and custom barrier synchronization techniques.

2.6 Precautions & Pilot Experiments
As there is no universal “ground truth” for web crawl data collection,
we can validate our system only in a precautionary, best-effort sense.
We list here predictable threats to validity which we considered
and mitigated, along with experimental confirmation of reasonable
results.
Is the navigation timeout𝑇𝑁 =30𝑠 reasonable?: We believe so,
for two reasons: the 30 second timeout is comparable to timeouts in
similar work [22], and it is longer than what we expect a typical user
to tolerate, based both on widely agreed-upon web user experience
guidelines [2] and past user behavioral studies [19].

4



Is the loiter timeout𝑇𝐿 = 15𝑠 adequate to allow full page load
before shutting down?: Yes. We performed a pilot experiment
over the Tranco top 1K testing loiter times ranging from 15s to 60s in
5s increments and found no variation in howmany pages achieved
a full “page load” event. We did not test loiter times below 15s as
the distribution of successful page load times indicated 15s to be
the minimum reasonable lower bound.
Do the network bandwidth and latency throttling controls
distort pageperformance?: No.We tested the Tranco top 1Kwith
and without bandwidth/latency throttling and found essentially
no difference in error rate and other core statistics. The results were
in fact so similar we were tempted to eliminate the throttling from
the experiment controls. But given past experience suggesting that
top sites behave better than average, we left the controls enabled
in the event that lower-ranked sites generate load such that the
mismatch in available bandwidth between clusters might harm the
comparability of results.
Are the limited resources available at the residential outpost
able to keep pace with their beefier counterparts?: Yes. We
set CPU, memory, and bandwidth limits on all workers to lock
total use of system resource below potential saturation for the
lowest common denominator environment (the residential outpost).
Pilot tests during heavy residential network usage (e.g., video
conferencing) revealed neither impact to our collection speed or
success nor degradation observable by the residents. During this
test we specifically monitored the upstream bandwidth used by
post-processingwhen shipping data back to Postgres via SSH tunnel
and found it well-constrained below a peak rate of 1.5Mbps without
any specific limits or throttling being applied.

2.6.1 PrimaryExperimentConsistency. Theprimaryexperiment ran
from30April to 9May (2020).Wequeueda total of 450,000pagevisits,
of which 449,936 (99.99%) completed without fatal error. Of these
completed pages, 375,246 (83.40%) were completely successful and
74,690 (16.60%) experienced some level of failure. Note thatwe are ex-
tremely conservative in labelling failure, including pages that loaded
and collected content successfully but which failed to shut down
collection in a timely manner and were thus forcibly aborted late
in the page visit workflow. The reported failure rate is thus a lower
bound on the number of visits producing useful data for analysis.

We confirmed that our collection was free of any unexpected
patterns in failure rates relating to Tranco rank, time of day, or day
of experiment. The Tranco rank independence reassured us that our
pilot experiments focused on the top 1K applied reasonably to the
rest of the crawl. The time of day independence reassured us that
our residential outpost workers were coexisting peacefully with
the residential traffic. And the day of experiment independence
reassured us that our endpoints were not subjected to effective
blacklisting or other progressive service degradation over the
course of the experiment, as confirmed independently by reputation
monitoring provided by https://hetrixtools.com/.

2.6.2 Summary. We justify our choice of timeouts from prior
practice and specific testing. We verify that our results are not
contaminated with noise from resource saturation within either
cluster or from resource mismatch between clusters. We find that
errors do not appear correlated to potential time- or rank-based

confounding factors, implying that our observations are consistent
and reasonably robust.

2.7 QuantifyingMeasurement Bias
Our analysis depends on quantifying howmuch crawlers, differing
only in relative realism, record consistently, significantly different
web measurement results. A specific measurement that consistently,
significantly differs across a realism variable like VP or BC
constitutesmeasurement bias.

2.7.1 Bias Scores. To facilitate comparing and reasoning about bias,
we quantify it to produce a concrete score. We begin by aggregating
an additive metric (e.g., total requests) grouped by an entity (e.g.,
eTLD+1 domain of anHTTP request URL) and a control variable (e.g.,
VP or BC). We then compute each entity’s bias scores, one for each
distinct combination of control variables (e.g., stealth-vs.-naive, or
residential-vs.-cloud). For a pair of metrics𝑎 and𝑏, the score formula
is𝑅(log2𝑎−log2𝑏),where𝑅(𝑥) is thecommon integer rounding func-
tion (rounding away-from-0 at .5). Using differences of logarithms
providesmoredescriptivepower thanasimplecountdifferencewhile
avoiding the extreme outliers likely when using ratios. A stealth-vs.-
naive score of 2.0 for the domain example.com, for instance, shows
that sites sent 4× asmany 3rd party requests to example.com during
stealth crawls than on naive crawls. A score of −1.0 would indicate
2× as many requests on naive crawls compared to stealth crawls.
A score close to 0 (i.e., the majority of scores in practice) indicates
insignificant bias across our experiments for that domain.

2.7.2 Bias Consistency. Transient outliers are eliminated by
independently scoring results from each of our 3 crawl repetitions
and keeping only the entities (e.g., the 3rd party domains or JS script
families) found in all 3 measurement sets. This intersection con-
structs a synthetic score set, where each datapoint is computed as the
median of corresponding bias scores from the 3 measurement sets.

Intersecting the measurement sets also provides insight into
how consistent the bias scores are across crawl repetitions. For each
median bias score recorded in the synthetic score set, we keep the
count of distinct bias scores from which the median was picked,
a value in the range [1,𝑛] where 𝑛 is the number of measurement
sets (𝑛 = 3 in our experiment). Given a mean score-count 𝐶𝑚 ,
a consistency score 𝐶𝑠 can be computed, ranging from 0 (total
inconsistency) to 1 (total consistency).

𝐶𝑠 =
(𝑛−1)−(𝐶𝑚−1)

𝑛−1
2.7.3 Summary. We quantify magnitude and consistency scores
of bias for identical datapoints across endpoints. Visualizations of
these metrics are introduced and explained in Section 3.2.

3 RESULTS
We analyze the data collected via the experiments described in Sec-
tion 2 to assess the impact of crawler realism on simple, quantifiable
metrics such as volume of HTTP requests to 3rd party domains. We
apply our quantifiedmeasurement bias (Section 2.7) methodology to
progressively finer-grained breakdowns of the data collected in our
crawls: first using all 3rd party HTTP requests, then such requests
flagged by ad and tracker filter lists, then flagged requests divided by
Same Origin Policy (SOP) isolation context, and finally considering

5

https://hetrixtools.com/


VP/BC # of Refuseniks

Cloud 72
Naive 69
Stealth 30
Residential 11
University 2

Table 1: Some “refusenik” sites always fail navigation from
a single configuration but not its’ complements

some of the content loaded itself (i.e., JS script bodies). The results
show a significant number of 3rd party domains and JS script
families exhibiting consistently mismatched results across VP/BC,
implying lack of crawler realism can significantly bias crawl results.

3.1 Refusenik Sites
We identified a small but impressive collection of “refuseniks”: sites
that always failed to load from a particular vantage point (VP) or
browser configuration (BC) but which never failed to load from
complementary configurations (naive vs. stealth, for instance).
The total number and category of these sites is provided in Table
1. The largest categories for which service was refused (cloud for
VP, naive for BC) are intuitive, confirming expectations that some
sites aggressively block probable bots or crawlers altogether. The
residential and university share is small enough to be within the
realmof accident, but the number of stealth-refusing sites is puzzling.
One possible explanation is that since each visit involves 2 parallel
requests (one naive, one stealth) from each endpoint IP, with high
likelihood that the stealthy request will be slightly later than the
naive request (as headless browsers have lower startup overhead),
the stealth requests are more likely to run afoul of over-aggressive
per-IP rate limiting. We do not investigate farther, as the number
of refuseniks is too low to impact our other measurements.

3.2 Volume Biases in HTTP Traffic
Defining and Visualizing Request Bias: The volume of HTTP
requests sent during a page visit, broken down by the target domain
(specifically the eTLD+1, or the public DNS suffix plus one additional
label), is a useful metric for quickly gauging both the richness of
a page’s content and the potential advertising/tracking privacy
footprint of a visit to that page. When applied to the volume of
HTTP requests sent to 3rd party domains during page visits, the
measurement bias methodology described in Section 2.7 identifies
domains which (1) are contacted on each of our 3 experiments and
which (2) serve significantly different levels of traffic to different
VP/BC crawlers (i.e., are biased for/against a given configuration).
Bias visualizations such as Figure 2 plot the distribution of bias
scores along with total percentages of eTLD+1 domains having bias
scores < 0, = 0, and > 0 for each curve, along with the percentage
of total HTTP requests associated with that set of contexts, and the
corresponding bias consistency scores. Logarithmic scale is used on
the Y axis to keep the curvesmeaningful, as the central 0 column (i.e.,
the non-biased contexts) typically overpowers the tails containing
the significantly biased entities. E.g., in Figure 2, the “R/C” curve
plots bias scores for request volume per domain compared between
residential (R) and cloud (C) VPs. 3.5% of the consistently-present

10 5 0 5 10
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

R<C 1.8% / 1.4% (0.59) R>C 3.5% / 1.7% (0.77)

R=C 94.8% / 97.0% (0.96)

U<C 1.1% / 0.8% (0.57) U>C 3.4% / 1.7% (0.76)

U=C 95.5% / 97.5% (0.96)

R<U 1.5% / 0.9% (0.55) R>U 0.9% / 0.4% (0.47)

R=U 97.6% / 98.7% (0.96)

Stealth Only
R/C
U/C
R/U

Figure 2: Distributions of cross-VP request volume bias by
3rd-party domains (stealth BC only); nearly twice as many
domains consistently favor residential VP over the cloud VP
as vice versa (3.5%>1.8%).

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 3.5% / 2.7% (0.72) S>N 3.7% / 2.9% (0.81)

S=N 92.8% / 94.3% (0.97)

Residential Only

Figure 3: Distribution of stealth-vs.-naive traffic volume bias
scores for 3rd-party domains (residential VP only); more
symmetric than its cross-VP counterparts.
domains exhibited bias scores >0 (i.e., pro-residential) and 1.8% bias
scores <0 (i.e., pro-cloud). The pro-residential domains account for
1.7% of all requests observed, while their pro-cloud counterparts
account for 1.4% of all requests. The pro-residential domain set
score noticeably higher in consistency (0.77 vs. 0.59).

3.2.1 Measuring Request Bias. We find measurement bias in the
volume of all requests per target eTLD+1 across both VP and BC
(Figures 2 & 3). Some of the pro-cloud biased domains probably
serve ad content that geo-targets the cloud endpoint’s location. But
the asymmetry of the anti-cloud bias (i.e., about twice as many
domains show pro-residential bias as show pro-cloud bias) argues
against geo-targeting,which ought to have roughly symmetric effect
between two regions, as the defining factor. Cross-BC measurement
bias has no obvious geo-targeting component, so the near parity in
total domains showing pro-naive vs. pro-stealth bias is somewhat
surprising. The opposing sides of the BC bias curves do show subtly
asymmetric shape (which we note is strongest on the most realistic
VP, residential): pro-stealth bias is concentrated among a smaller
number of domains with higher bias scores, while pro-naive bias is
concentrated amongmore domainswith less pronounced bias scores.

6



4 2 0 2 4 6
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

R<C 2.9% / 1.1% (0.66) R>C 5.4% / 1.1% (0.79)

R=C 91.6% / 97.8% (0.95)

U<C 2.0% / 0.7% (0.68) U>C 5.3% / 1.3% (0.71)

U=C 92.7% / 98.0% (0.95)

R<U 2.1% / 0.6% (0.53) R>U 1.4% / 0.3% (0.46)

R=U 96.5% / 99.1% (0.94)

Stealth Only
R/C
U/C
R/U

Figure 4: Distributions of cross-VP ad/tracker request
volume bias by 3rd-party domains (stealth BC only); little
change from global cross-VP distributions.

We find that domains showing significant measurement bias
account for reasonable shares of overall request volume. The set
of consistently-present (i.e., not ephemeral, or seen in only one
sub-experiment) domains visualized in Figures 2 & 3 represents
92-93% of all domains encountered in any of our sub-experiments,
and these consistent domains account for 98-99% of all requests
recorded. These numbers demonstrate that our bias set intersection
successfully (Section 2.7) captures the core of domains that account
for the overwhelming majority of traffic while eliminating transient
red herrings. The share of total requests associated with the biased
domains for each curve (the second percentage listed for each curve)
is consistently lower than the corresponding share of domains, but
never so much so as to be trivial. These domains showing cross-VP
and cross-BP traffic volume measurement bias are clearly not
dominant, high-traffic providers, but in aggregate they account for
non-trivial volumes of traffic, especially considering cross-BC bias.

We believe bot-detection, whether to shield proprietary data from
scrapers or to avoiduseless/fraudulent advertising impressions, to be
a significant source of the observed measurement bias, as predicted
by our realism-by-proxy design argument (Section 2.1). Manual in-
spection of highly-Tranco-ranked domains present at both extremes
of the VP/BC bias distribution curves generally supports this the-
ory. The intersection of pro-stealth and pro-residential bias outlier
domains ordered by Tranco rank revealed a number of high-profile
brands and content providers within the top 25: usnews.com, ac-
cuweather.com, lego.com, lowes.com, dhl.com, hotels.com, ex-
pedia.com, and ti.com. Only a few similarly high-profile brands
appear in the top-ranked 25 domains from the complementary inter-
section of pro-naive, pro-cloud bias outliers, e.g. amazon.de and au-
dible.com. The notion that premium content providers, especially
those serving dynamic and potentially proprietary price data, would
show significant anti-bot bias is hardly surprising, nor is it of great
interest to security and privacy researchers. A more useful question
is whether known ad and tracking traffic exhibits similar biases.

3.2.2 Request Bias byKnownAd/TrackerDomains. Ofmore concern
to security and privacy researchers, we find traffic volume measure-
ment bias patternsmore pronounced among requests flagged by one
or both of the popular, community-maintained EasyList (EL) and
EasyPrivacy (EP) filter lists. In our experiment roughly a thirdof all

4 2 0 2 4 6 8
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 8.9% / 4.6% (0.82) S>N 9.8% / 4.5% (0.89)

S=N 81.3% / 91.0% (0.96)

Residential Only

Figure 5: Distribution of stealth-vs.-naive ad/tracker traffic
volume bias scores for 3rd-party domains (residential VP
only); BC bias is more common among these domains than
the global population.

Blocklists All Requests Main Frame 1st Party 3rd Party
Involved Sub-frames Sub-frames

-/- 23,970,789 21,051,929 819,194 2,043,325
-/EP 5,470,406 3,855,858 227,974 1,333,700
EL/- 5,032,267 2,085,177 647,012 2,197,150
EL/EP 1,142,609 581,767 71,877 475,750

Table 2: TotalHTTPrequests byEasyList/EasyPrivacymatch
and frame context

recorded requestsmatched blocking rules in one or both of these
lists; see Table 2. Figures 4 & 5 illustrate the shifts in measurement
bias distributions across VP (using stealth BC) and bias across BC
(using residential VP). The maximum bias score values shrink, but
the total share of biased domains increases to nearly 20% of those
contacted in all crawls. Furthermore, the consistency of cross-BC
bias distributions for flagged requests increases over that of the
global cross-BC distributions (0.89>0.81 and 0.82>0.72).

As when considering all requests, we find biased domains to ac-
count for a respectable share of all EL/EP-flagged requests. The set of
all consistently-present domains visualized in Figures 4& 5 accounts
for only 85-89% of all domains associated with any EL/EP requests,
but in every case these consistent domains account for over 99%of all
EL/EP requests. Once again, the filtering effect of intersecting results
across multiple crawls eliminates significant chaff from the results.

Domains showing high bias cross-VP saw both a relative domain
share increase and a relative request volume share decrease. But
domains showing high bias cross-BC showed a more intuitive
correlation between request volume and domain share, with
both increasing significantly over the all-requests distributions.
Again, these domains clearly do not dominate traffic volume, but
particularly in the case of BC bias outliers, they account for a
non-trivial amount of requests flagged by our filter lists.

When considering only likely advertising and tracker content,
the puzzle of the BC curves’ near symmetry is amplified. It makes
sense for advertisers or trackers to show pro-stealth bias as a result
of detecting and avoiding an obviously automated browser. But
the nearly equal share of domains showing apparent pro-naive bias
is counter-intuitive. Some portion of this activity, especially that

7



4 2 0 2 4 6 8
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 6.8% / 1.9% (0.88) S>N 10.5% / 16.1% (0.90)

S=N 82.7% / 82.0% (0.97)

Main Frame Only

8 6 4 2 0 2 4 6
Bias Score

S<N 43.1% / 61.8% (0.64) S>N 7.3% / 4.8% (0.64)

S=N 49.6% / 33.4% (0.88)

1st-Party Sub-frame Only

6 4 2 0 2 4 6
Bias Score

S<N 20.9% / 9.7% (0.65) S>N 10.1% / 7.9% (0.66)

S=N 69.0% / 82.3% (0.89)

3rd-Party Sub-frame Only

Figure 6: Distributions of stealth-vs.-naive ad/tracker traffic volume bias scores for 3rd-party domains (residential VP only)
broken down by browser frame context; sub-frames show radically different (and less intuitive) BC bias distributions than
main frames.

with low bias scores, is probably still related to defensive analytic
behavior triggered by the presence of a headless client. But the
presence of more extreme bias scores do not fit this explanation as
well, given that such fingerprinting and reporting behavior ought
to require significantly less request volume than serving typical ads
or monitoring user activity over time.

A partial explanation may be displacement of content providers
that more aggressively block bots by those which do not during
naive crawls. There is a statistically significant (though modest in
effect size) difference in distribution of Tranco ranks between the
pro-stealth and pro-naive sets of biased domains across all VPs, with
the median rank of the pro-stealth bias set being consistently higher
(i.e., a lower number) than its pro-naive counterpart. E.g., consid-
ering only residential VP data, the median naive rank = 18,360.0, the
median stealth rank = 12,198.5, and a Mann-Whitney one-tailed test
finds significant difference with 𝑃 <0.0014. Other VPs given slightly
different values but show the same direction and scale of gap in
median ranks, the same order of magnitude for 𝑃 , and near-identical
effect size (0.60). The modest effect size is unsurprising given the
significant overlap in distributions, but the bias is unmistakable and
consistent. We note that the rank skew between stealth and naive
biased-domain sets is likewise visible (and statistically significant to
the same level, albeit with slightly smaller effect size) in the bias sets
derived from all, as opposed to only requests flagged by filter lists.

3.2.3 Request Bias & Frame Context. Continuing to consider
only requests tagged by filter lists for ad and tracker content, we
find more dramatic and surprising shifts in measurement bias
when breaking down comparisons by browser frame/security
contexts and security origins. 5 Here we consider only cross-BC
measurement bias within the residential VP, as shown in Figure 6.
Cross-VP measurement bias patterns are unchanged from previous
analyses and are not discussed further. Note that these traffic share
4U = 427615.5,𝑛1 =801,𝑛2 =882
5All frames are associated with a security origin URL scheme, hostname, and port. It
maymatch the origin of themain document (a 1st party frame) or not (a 3rd party frame),
in which case the browser’s Same Origin Policy (SOP) will restrict its access to the main
frame’s contents. 3rd party frames commonly host advertising and tracking content.

percentages are not restricted to a particular frame context but are
computed globally for all requests tagged by our filter lists.

Sub-frames, of both first and third party domain origin, account
for only 22% of all requests but 44% of requests matched by EasyList
or EasyPrivacy rules. Unsurprisingly given their overall traffic share
(Table 2), main frame bias score distributions closely follow the
overall distributions. Sub-frame BC bias scores, however, both grow
in overall share and swing counter-intuitively to the pro-naive side,
probably in part because the much smaller share of traffic being
considered is more readily influenced by popular outliers.

The pattern of lower Tranco ranks (higher popularity) found in
the pro-stealth distributions vs. their pro-naive counterparts, present
in both previous breakdowns, evaporates for sub-frames. Many
factors contribute: the relatively small set of domains involved, the
extrememismatch in set size, and the fact that, onmanual inspection,
we found a fair number of extremely high-ranked domains had
crept into the pro-naive bias set (e.g., 4 Google domains, including
google.com, in the top 10 pro-naive outliers). The presence of
“heavy-hitter” domains is a first in our outlier analysis so far, and
is underscored by traffic share analysis.

The set of domains consistent across all crawls for main frame
EL/EP requests comprised 83-84% of all domains associatedwith any
EL/EP request,much like theprevious all-framesbreakdown.As seen
above, though, the sub-frames are different beasts altogether. The
total set of consistent domains considered here comprises only 9-11%
of all EL/EP-associated domains, but these account for an impressive
89-90% of all EL/EP flagged requests (obviously, when considering
all frames). That large share of traffic going to a small subset of do-
mains is not surprising when considering the presence of dominant
players like Google. What is surprising is how decisively skewed
this bias distribution is to the pro-naive side. We suspected that the
presence of Google and other top-tier players in this small pocket
of bias might be related to CAPTCHA deployment, but a search
of the 31,787 distinct stemmed URLs (consisting only of hostname
eTLD+1 and path component, sans query string) within this context
and BC yielded only a single hit on any obvious variant of the word
“CAPTCHA,” in a single URL requested by a single site, once per
visit. Of course, there is no reason to believe adversarial content will

8



6 4 2 0 2 4 6
Bias Score

100

101

102

103

104

105

Di
st

in
ct

 L
ex

ica
l H

as
he

s

R<C 2.1% / 2.3% (0.62) R>C 3.7% / 2.7% (0.80)

R=C 94.2% / 95.0% (0.95)

U<C 1.2% / 1.2% (0.59) U>C 3.6% / 2.2% (0.76)

U=C 95.3% / 96.6% (0.95)

R<U 2.0% / 2.2% (0.60) R>U 1.2% / 2.3% (0.54)

R=U 96.8% / 95.6% (0.95)

Stealth Only
R/C
U/C
R/U

Figure 7: Distribution of cross-VP execution frequency bias
for families of JS code (stealth BC only).
always advertise itself as such in domain names or URL paths, and it
remains plausible that at least some of this pro-naive phenomenon
is related to active adversarial response to suspected bots.

3.2.4 Summary. Around 5% of content-providing domains show
significant measurement bias across VP, clearly favoring non-cloud
endpoints. From our most realistic VP (residential), measurement
bias across BC among HTTP traffic domains is more prominent,
accounting for over 7% of domains and over 5% of total HTTP traffic
volume. Request volume measurement bias becomes notably more
pronounced among domains flagged by filter lists as serving ads
and trackers, with nearly 20% of domains’ traffic strongly correlated
to choice of BC.

3.3 Content-Level Biases in JavaScript
3.3.1 Biases in Scripts Loaded. We find that the loading and
execution of JS script families shows measurement bias patterns
comparable to domain bias in requests. We define a "script family"
to be a set of JS scripts observed loading and executing by the Visi-
bleV8 [14] JS API tracing system that all share a common lexical hash.
We compute lexical hashes by tokenizing all JS scripts using the in-
dustry standard Esprima JS parser and computing the SHA256 hash
of the resulting sequence of token type names. Lexical hashes thus
ignore variance inwhitespace, comments, identifiers, and atomic val-
ues like number or string literals.We computed 258,236 total distinct
lexical hashes from1,517,281 total distinct scripts, not including4,364
distinct scripts that failed tokenization because of syntactic irreg-
ularities (such scripts are excluded from lexical hash based analysis).
To facilitate correlating script loading and HTTP traffic patterns, we
consider only scripts loaded via URL (as opposed to eval or similar
means). For reference, 87.9% of script families we observed were
loaded at least once via a script URL (either the source of a <script>
tag or the URL of an HTML document statically embedding JS code).

Measurement bias visualizations for script loading (Figures 7
and 8) show bias score distributions for distinct lexical hashes of
script bodies (i.e., “script families”). Figures include the percentage
of total script loads/executions associated with each subset of
script families (i.e., “execution share”). Script loading measurement
bias across VP (considering only stealthy BC; Figure 7) reveal
approximately 5% of the stable script family population showing
persistent bias for/against a given VP. Execution shares are closely

10 5 0 5 10
Bias Score

100

101

102

103

104

105

Di
st

in
ct

 L
ex

ica
l H

as
he

s

S<N 4.5% / 9.3% (0.79) S>N 5.4% / 4.8% (0.87)

S=N 90.1% / 85.9% (0.97)

Residential Only

Figure 8: Distribution of stealth-vs.-naive execution fre-
quency bias for families of JS code (residential VP only).

Sc
ri
pt

D
om

ai
n
B
ia
sS

et
s General Domain Bias Sets ScriptD

om
ain

B
iasSets

< = >

R<C 11.1% 87.1% 1.8%
2.1% 66.6% 31.2% R>C

U<C 14.1% 84.1% 1.8%
2.2% 66.0% 31.8% U>C

R<U 9.6% 89.5% 0.9%
1.2% 85.5% 13.3% R>U

S<N 12.3% 82.9% 3.9%
2.8% 71.0% 24.9% S>N

Table 3: Many domains showing no overall request volume
bias serve script content with distinct VP/BC biases.

aligned with overall script family population share (e.g., 2.1% of
script families show pro-cloud VP bias, and these account for 2.3%
of observed script executions). The clearest direction of VP bias is,
unsurprisingly, against the cloud endpoint (population shares of 3.7%
vs. 2.1% and 3.6% vs. 1.2% for the R/C and U/C curves, respectively).
Bias across BC (considering only residential VP; Figure 8) is twice
as pronounced, with about 10% of the script family population
showing consistent BC preference. Script loading BC bias appears
fairly symmetric, as with request/domain BC bias. One curious quirk
appears in BC script loading bias: the set of unbiased script families
is extremely stable (0.97 consistency score) but accounts for less
execution share (85.9%) than population share (90.1%). The “missing”
execution share appears to be mostly lost to the pro-naive bias set
(9.3% execution share vs. 4.5% population share). This imbalanced
distribution is consistentwith the likely scenario of servers engaging
in selective delivery of a relatively small population of bot-detection
scripts to obviously automated (i.e., headless) clients.

When we correlate script loading biases with overall HTTP
request volume biases, linked by source eTLD+1, we see that even
domains showing no significant request volume bias still show
measurement bias in the script content they serve. Each row of
Table 3 shows the intersection of a given script loading bias set
(e.g., “R<C“, or favoring-cloud-over-residential) with the general
HTTP request volume bias scores of the eTLD+1s fromwhich the
scripts were loaded. In each case, a majority of domains serving
execution-biased scripts do not show significant bias in overall
request volume (i.e., the majority share is always in the “=” column).
A few even exhibit counter-bias (marked in italics in Table 3; e.g.,

9



script families with pro-stealth bias loading from domains with
pro-naive bias in total requests). The overlap between like-biased
domain sets (marked in bold in Table 3) is significantly larger for
intuitive biases (e.g., favoring more realistic clients) than for their
counter-intuitive complements, suggesting that intuitive biases
reflect intentional, targeted behavior while their counter-intuitive
complements contain more random noise. Most importantly, we
see measurement bias patterns clearly extending beyond high level
request/domain volume statistics and into content itself.

3.3.2 Biases in JS APIs Used. We find examples of behavioral bias at
the JS API usage level even within script families loaded with equal
frequency across different configurations. A case study of apparent
server-side anti-cloud bias is provided by a video player script family
served from facebook.com. Two variants of this player are consis-
tently loaded during crawls from each VP for 29 sites with some
reasonably high Tranco ranks (e.g., #218, ettoday.net). The code is
notobfuscatedandmakes references toad-related features, including
"frauddetection," stronglysuggesting itspurpose is advertising.Anal-
ysisofAPI traces revealsa subtlebutuniversallyconsistentdifference
inAPI footprint between trace fromcloud clients and residential/uni-
versity clients. This cluster of 6API features is invoked only on a path
of execution triggered after a video successfully loads and begins
playing. The mismatch implies that on visits from our cloud VP, the
video content consistently fails to load and play as it does on the uni-
versity and residential visits. Location-based content targeting can-
not be ruled out as a factor, but it seems odd that apparentlyno videos
successfully played on cloud crawls rather than different videos,
across 29 distinct sites. API traces contain no tell-tale indicators of
bot-detection or other environment-sensitive behaviors, implicating
server-side logic as the probable culprit for the discrimination.

An unmistakable case of client-side anti-bot discrimination is
provided by a family of scripts served by crazyegg.com.We found
4 distinct lexical hashes (representing 161 total distinct scripts) with
near-identical code structure and API usage patterns. These scripts
were loaded on 158 distinct sites, including highly-ranked domains
like cnet.com, nationalgeographic.com, umich.edu. According
toVisibleV8API traces, a typical variant invoked less than15browser
API features during naive crawls, but nearly 60 API features during
stealth crawls. Investigationof the script code and tracedata revealed
the cause: a function named uaBot that performs a battery of increas-
ingly sophisticated and obscure checks for tell-tale artifacts of bots.

Execution traces from naive clients show execution never get-
ting beyond a simple user-agent string test, which fails on the pres-
ence of the string “eadless”. Stealth client traces show execution
proceeding through the entire range of tests (due largely to the
hardening provided by puppeteer-stealth, see Section 2.5) and
proceeding to invoke other, more application-oriented API function-
ality. Note that the majority of API invocations missing from naive
traces are not related to the bot tests themselves but are a conse-
quence of the short-circuit failure on bot-detection. Unsurprisingly,
crazyegg.com scores as a somewhat pro-stealth domain, serving
1.77 times as many requests on stealth crawls than on naive crawls.
At least someof this request volumebias is the direct result of a client-
side decision made in light of user-agent realism or lack thereof.

3.3.3 Summary. The loading and execution of lexically-distinct
families of JS code shows that measurement bias extends beyond

HTTP traffic volumes and into the content served. About 10%
of script families show significant and consistent bias across BC,
accounting for about 15% of all script executions. The vast majority
(66% to89%)of thedomains serving this client-biasedcontent showed
no significant bias in overall HTTP request volume, leading us to
conclude overall measurement bias effects may be even higher than
suggested by our simple HTTP request volume bias metrics. Case
studies of evasive scripts found in the wild reveal VP and BC biases
in runtime behaviors of the same script loaded by different clients.

4 DISCUSSIONAND FUTUREWORK
4.1 Application to Future Research
In this work we have found that seemingly minor decisions in
web measurement methodology can yield significantly different
measurements of privacy and security behaviors. In this subsection
we provide some suggestions on how researchers can integrate this
work’s findings, to improve the likelihood that their measurements
will generalize to actual user experiences.

4.1.1 Prefer User-Targeted Tools. While tools built for automated
testing are convenient, we recommend researchers take caution be-
fore applying them to research purposes. Browser automation frame-
works often introduce features that make them look very different
from standard browsers, and frequently trigger different code paths
than users encounter. Controlling a browser from an extension, or
through command line arguments, is less likely to be checked for and
detected by page script, and so less likely to result in special casing.

If the research needs capabilities only available through
testing-focused tools, as was the case in this work, we recommend
using tools6 that reduce the differences between automated and
human operated browsers.

4.1.2 Avoid Headless (or Similar) Modes. Firefox and Chromium-
based browsers include a “headless”mode,where pages are rendered
and executed, but not displayed to the user. While convenient,
we recommend researchers not use such modes. Headless modes
have the advantage of enabling more parallelism (because they
avoid the overheads needed to render to the user), but also
introduce differences in page execution, both directly (e.g., scripts
attempting to detect headless mode) and indirectly (e.g., execution
optimizations and limits used in headless mode).

Instead, we recommend using stock browsers in their stock
configuration wherever possible. While resources are higher, it
ensures that the measurement environment is similar to typical user
environments. Tools like Xvfb7 can also help perform headless-like
measurements with stock browsers.

4.1.3 Prefer Measurements from Residential IPs. While the
parallelism and high-availability of platforms like AWS make
them popular for web measurement, we recommend researchers
avoid them where possible. Instead we recommend performing
user-focused measurements from networks similar to those most
web browsing is done from: residential ISPs andmobile carriers. The
results in Section 3 demonstrate why we recommend measuring
from residential IPs.
6e.g., https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-
extra-plugin-stealth
7https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

10

https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml


We highlight here some of the issues encountered in our
residential IP measurements, to help other researchers avoid similar
problems. First, we needed to monitor popular IP block lists to make
sure the high volume of traffic (compared to typical web browsing)
generated by our experiments did not cause our IP to be flagged
for suspicious behavior. Second, measuring from a residential
IP required reducing the parallelism of our measurements, to
avoid adding noise (in the form of bandwidth exhaustion) into our
measurements. And third, we took care to consider other network
users in ways not needed when measuring from, say, AWS; a couple
of Netflix clients are unlikely to impact network behavior at an AWS
data-center, but very well could from a residential IP.

4.2 Limitations
Resource constraints restricted our efforts to a single example of
each class of VP (cloud, residential, and research university). This
set is obviously too small to generalize results across all cloud
or residential endpoints. Yet the baseline assumption that traffic
coming from residential networks is more likely to be end-user
traffic (and more likely to be treated as such) than traffic coming
from cloud networks is reasonable based on prior experience [12, 24].
The asymmetric nature of the VP bias we observed (i.e., more than
twice as many domains showed pro-residential bias as showed
pro-cloud bias) minimizes concerns about geographic ad targeting
contaminating our results, and strongly implies that cloud VPs are
less than ideal for unbiased measurements of end-user concerns.

As noted in Section 2.2, our stealthy BC is not stealthy in an
absolute sense (i.e., perfectly approximating human visitors).
However, the creation and continued community-maintenance of
the stealth plugin we use for our stealthy BC strongly implies that
there exists a set of real-world sites that will treat our stealthy BC
crawlers as humans while tagging our naive BC crawlers as bots.
This difference in outcomes provides uswith a lower-bound baseline
of measurement bias attributable to bot detection and other related
adversarial responses. Our findings therefore likely understate the
full potential impact of unrealistic crawlers on measurement results.

4.3 FutureWork
Completing this work has caused us to be more sensitive to, and
concerned about, other potential sources of bias, blind spots, or
threats to generalizability in web measurement research. A partial
list of additional possible sources for measurement-bias in web
measurement include: (1) differences in “dwell time” on pages during
measurements (2)how“child”pagesare selected (3)howandwhether
state is maintained across the crawl (4) operating system selection

In all such cases, the lack of common best practices in measure-
ment invite the possibility that thewebmeasured by researchersmay
be significantly different than the web experienced by typical users.
We plan on future work like this paper, to further understanding
and control for sources of measurement bias in web research.

5 RELATEDWORK
Whilemuch prior work has involvedweb crawls via various vantage
points (VPs) and browser configurations (BCs) and thus intersects
ours, we here summarize only a representative sample with special
focus on the crawler/human generalization question and other

topics involving content blocking or discrimination by the content
providers (as opposed to censorship by 3rd parties).

5.1 Generalizability
Zeber et al. [26] presented a recent, systematic treatment of how
well automated web crawls generalize to web human browsing.
Their methodology compared results from multiple automated
crawls, varied by VP and client operating system in a manner quite
similar to ours, both with each other and with anonymized data
collected from 50,000 human volunteers. Our work is scoped more
narrowly and deeply: we seek to quantify any gaps in coverage
attributable to differential treatment of automated crawls based on
VP or BC by performing fine-grained comparisons of HTTP request
volume and JavaScript behavior across configurations.

Ahmad et al. [7] surveyed web security, privacy, and measure-
ment research literature to quantify both the popularity of different
web crawling tools and frameworks and the reproducibility of
studies using them. They performed comparative crawls using a
representative sample of tools ranging from the primitive (e.g., cURL)
to the sophisticated (e.g., OpenWPM) and documented significantly
different results tool-by-tool across three example sets of result
metrics. Our work is similar in that we compare crawl-to-crawl
rather than attempting to quantify crawl-to-human differences. It
differs significantly, however, in that we use a much smaller set of
realistic tools alongwith varied network VPs to dig into fine-grained
content exclusion practices across these control variables.

5.2 Cloaking and Bot Detection
Invernizzi et al. [12] investigated websites attempting to hide their
malicious activities. The authors found a large number of websites
using IP lists to show benign content to visitors coming fromwell
knownmeasurement IPs, while showing malicious content to other
(assumed to be human) traffic. Vadrevu and Perdisci documented
examples of social engineering advertisement campaigns that
appeared to serve their payloads only to visitors coming from
residential networks [24].

Oest et al. created PhishFarm [20], a framework for deploying fake
phishing sites to evaluate the impact of various cloaking techniques
harvested fromreal-worldphishingkits on thecrawlersused tomain-
tain various anti-phishing blacklists (e.g., Google SafeBrowsing).

Van Goethem, Le Pochat, and Joosen [25] employed a multi-BC
approach to identify dedicated mobile versions of sites served on
custom sub-domains and to compare their security practices against
their desktop counterparts. While they encountered some instances
of malicious cloaking on compromised websites, their focus was
on gaining insight into developer security practices over time rather
than in deliberate discrimination. Doran and Gokhale [9] surveyed,
taxonomized, and compared state of the art web robot detection
techniques circa 2010.

5.3 Network Endpoint Discrimination
Much prior work has focused on the design and deployment of
systems for detectingwhennetworks and site providers discriminate
based on visitor attributes, primarily IP address. Bajpai et al. [8] pro-
vided a summary of this work, including the strengths, differences,
and lineages of existing proposals. In our study, we are concerned

11



about measuring how the web reacts when visited from different
endpoints using both naive andmore realistic clients. PacketLab [17]
proposed a universal measurement endpoint system by decoupling
the measurement logic from the actual system and adopting an
access control system for the physical endpoints. In contrast, our ar-
chitecture is not concerned with endpoint network infrastructure as
a packet source/sink but with measuring the impact on web content
metrics across multiple endpoints and user agent configurations.

Some researchers have focused on understanding when, why
and howwebsites block IP addresses for security reasons. Khattak
et al. [15] explored how websites treat requests coming from
the Tor network differently than “standard” internet traffic. The
work visited the 1k most popular websites and compared how
websites respond differently to Tor and non-Tor requests. Afroz
et al. [6] found that a significant amount of IP-based blacklisting
is likely unintended, and the result of overly-general security
policies on networks. Tschantz et al. [23] looked into a variety of
motivations for IP based blocking and found that security was a
major motivation, along with political (i.e., GDPR) reasons.

Additional research has explored the motivations for websites
presenting different content to users based on their IP addresses.
In contrast to cloaking, the content changes here are benign,
motivated by regulatory compliance or marketing. Fruchter et al.
[11] found that websites track users differently, and to varying
degrees, based on the regulations of the country the visitor’s IP
is based in. Iordanou et al. [13] described a system for measuring
n how e-commerce websites discriminate between users. The
authors considered several different motivations for discrimination,
including geography (measured by IP address), prior browsing
behavior (e.g., tracking-derived PPI) of the user, and site A/B testing.
The authors found that the first and third motivations explained
more site “discrimination” than the second motivation.

6 CONCLUSION
Where ground truth is drawn from measurement, observations
define reality. Our results show that realism in vantage point (VP)
and browser configuration (BC) have direct, even dramatic impact
on web crawl observations. We found VP bias against our cloud
endpoint too asymmetric to be ruled out as geo-targeting. We found
BC bias to be especially pronounced in blacklisted ad and tracker
traffic, with up to 19% of domains showing significant shifts in
traffic volume based on BC.We are hopeful that the contributions
we presented in this paper, from the systematic approach to
controlled and synchronized web crawls to the guidance offered to
those performing future measurements, will be of service to those
advancing along this important research front.
Availability: The open source implementation of our experiment
is available at https://anonymous.4open.science/r/50f4a903-744f-
4de9-adf6-f3dcb44367a3/, along with links to archives of the
collected data.

ACKNOWLEDGMENTS
Wewould like to thank our anonymous reviewers for their insightful
feedback and comments. This work was supported by the National
Science Foundation (NSF) under grant CNS-1703375 and the NSF
Center for Accelerated Real Time Analytics (CARTA).

REFERENCES
[1] [n.d.]. Historical trends in the usage statistics of dns server providers. https:

//w3techs.com/technologies/history_overview/dns_server. Accessed: 2020-5-29.
[2] [n.d.]. New Industry Benchmarks for Mobile Page Speed - ThinkWith Google.

https://www.thinkwithgoogle.com/marketing-resources/data-measurement/
mobile-page-speed-new-industry-benchmarks/. Accessed: 2020-5-6.

[3] 2015. GO Simple Tunnel - a simple tunnel written in golang.
https://github.com/ginuerzh/gost. Accessed: 2020-06-02.

[4] 2018. . https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-
headless-v2.html. Accessed: 2020-10-16.

[5] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. Elsas. 2009. The
Web Changes Everything: Understanding the Dynamics of Web Content. In
Proceedings of the Second ACM International Conference onWeb Search and Data
Mining (Barcelona, Spain) (WSDM ’09). Association for Computing Machinery,
New York, NY, USA, 282–291. https://doi.org/10.1145/1498759.1498837

[6] Sadia Afroz, Michael Carl Tschantz, Shaarif Sajid, Shoaib Asif Qazi, Mobin Javed,
and Vern Paxson. 2018. Exploring server-side blocking of regions. arXiv preprint
arXiv:1805.11606 (2018).

[7] SyedSulemanAhmad,MuhammadDaniyalDar,MuhammadFareedZaffar,Narseo
Vallina-Rodriguez, and Rishab Nithyanand. 2020. Apophanies or Epiphanies?
How Crawlers Impact Our Understanding of theWeb. In TheWeb Conference.

[8] Vaibhav Bajpai and Jürgen Schönwälder. 2015. A survey on internet performance
measurement platforms and related standardization efforts. IEEE Communications
Surveys & Tutorials 17, 3 (2015), 1313–1341.

[9] Derek Doran and Swapna S Gokhale. 2011. Web Robot Detection Techniques:
Overview and Limitations. Data Mining and Knowledge Discovery 22, 1-2 (2011),
183–210.

[10] Steven Englehardt andArvindNarayanan. 2016. Online Tracking: A 1-million-site
Measurement andAnalysis. In Proceedings of the ACMConference on Computer and
Communications Security (CCS). ACM. https://doi.org/10.1145/2976749.2978313

[11] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako. 2015.
Variations in tracking in relation to geographic location. arXiv preprint
arXiv:1506.04103 (2015).

[12] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean-Michel Picod, and Elie Bursztein. 2016. Cloak of visibility: Detecting when
machines browse a different web. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE.

[13] Costas Iordanou, Claudio Soriente, Michael Sirivianos, and Nikolaos Laoutaris.
2017. Who is fiddling with prices?: Building and deploying a watchdog service
for e-commerce. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. ACM, 376–389.

[14] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in theWild. /projects/vv8/. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[15] SheharbanoKhattak,David Fifield, SadiaAfroz,Mobin Javed, Srikanth Sundaresan,
Vern Paxson, Steven J Murdoch, and DamonMcCoy. 2016. Do you see what I see?
differential treatment of anonymous users. In Proceedings of the Symposium on
Network and Distributed System Security (NDSS). Internet Society.

[16] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, andWouter Joosen. 2019. Tranco: AResearch-Oriented Top Sites Ranking
Hardened Against Manipulation. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS). https://doi.org/10.14722/ndss.2019.23386

[17] Kirill Levchenko, Amogh Dhamdhere, Bradley Huffaker, Kc Claffy, Mark Allman,
and Vern Paxson. 2017. Packetlab: a universal measurement endpoint interface.
In Proceedings of the 2017 Internet Measurement Conference. ACM, 254–260.

[18] J. R. Mayer and J. C. Mitchell. 2012. Third-Party Web Tracking: Policy and
Technology. In Proceedings of the IEEE Symposium on Security and Privacy.

[19] Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004), 153–163.

[20] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman, and K. Tyers. 2019. PhishFarm:
A Scalable Framework for Measuring the Effectiveness of Evasion Techniques
against Browser Phishing Blacklists. In Proceedings of the IEEE Symposium on
Security and Privacy. 1344–1361.

[21] Franziska Roesner, Tadayoshi Kohno, and DavidWetherall. 2012. Detecting and
defending against third-party tracking on the web. In Proceedings of the USENIX
symposium on Networked Systems Design and Implementation (NSDI). USENIX
Association.

[22] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
FeatureUsage on theModernWeb. In Proceedings of theACMSIGCOMMconference
on Internet measurement conference (IMC). ACM.

[23] Michael Carl Tschantz, Sadia Afroz, Shaarif Sajid, Shoaib Asif Qazi, Mobin Javed,
and Vern Paxson. 2018. A bestiary of blocking: The motivations and modes
behind website unavailability. In 8th {USENIX} Workshop on Free and Open
Communications on the Internet ({FOCI} 18).

[24] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOTWhat You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proceedings
of the ACM Internet Measurement Conference (IMC).

12

https://anonymous.4open.science/r/50f4a903-744f-4de9-adf6-f3dcb44367a3/
https://anonymous.4open.science/r/50f4a903-744f-4de9-adf6-f3dcb44367a3/
https://w3techs.com/technologies/history_overview/dns_server
https://w3techs.com/technologies/history_overview/dns_server
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://github.com/ginuerzh/gost
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://doi.org/10.1145/1498759.1498837
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.14722/ndss.2019.23386


[25] Tom Van Goethem, Victor Le Pochat, andWouter Joosen. 2019. Mobile Friendly
or Attacker Friendly? A Large-Scale Security Evaluation of Mobile-First Websites.
In Proceedings of the 2019 ACMAsia Conference on Computer and Communications
Security (Auckland, New Zealand) (Asia CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 206–213. https://doi.org/10.1145/3321705.3329855

[26] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, andMartin Lopatka. 2020. The Representativeness of AutomatedWeb
Crawls as a Surrogate for Human Browsing. In TheWeb Conference.

13

https://doi.org/10.1145/3321705.3329855

	Abstract
	1 Introduction
	2 Methodology
	2.1 Approach to Realism
	2.2 Realism Variables
	2.3 Control Constants
	2.4 Web Site Selection
	2.5 Implementation Details
	2.6 Precautions & Pilot Experiments
	2.7 Quantifying Measurement Bias

	3 Results
	3.1 Refusenik Sites
	3.2 Volume Biases in HTTP Traffic
	3.3 Content-Level Biases in JavaScript

	4 Discussion and Future Work
	4.1 Application to Future Research
	4.2 Limitations
	4.3 Future Work

	5 Related Work
	5.1 Generalizability
	5.2 Cloaking and Bot Detection
	5.3 Network Endpoint Discrimination

	6 Conclusion
	References

