Reflection Analysis
for Java

-’ Benjamin Livshits,

John Whaley,
Monica S. Lam

Stanford University

¥

Background: Bug Detection

‘ m Our focus: bug detection tools
m Troubling observation: large portions of the program are not analyzed

Race conditions Memory leaks SQL injections
null dereferences Resource usage errors Cross-site scripting

jgap freetts gruntspud jedit columba jfreechart

Missing portions of the callgraph (# methods)

Reflection is to Blame

Reflection is at the core of the problem
Most analyses for Java ignore reflection
— Fine approach for a while
— SpecJVM hardly uses reflection at all
Call graph is incomplete
— Code not analyzed => bugs are missing
Can no longer get away with this

— Reflection is very common in Java: JBoss,
Tomcat, Eclipse, etc. are reflection-based

— Ignoring reflection misses 2 application
& more \'

elephant: neglected issues nobody is

Reflection is the proverbial white l
talking about

¥

Introduction to Reflection

+

m Reflection is a dynamic language feature
m Used to query object and class information

— static Class Class.forName (String className)
m Obtain a java.lang.Class object

m].e. Class.forName (“java.lang.String”) getsan
object corresponding to class String

— Object Class.newInstance()
m Object constructor in disguise
m Create a new object of a given class

Class c¢ = Class.forName (“java.lang.String”);

Object o c.newlInstance();

m This makes a new empty string o

Running Example

m Most typical use of reflection:
— Take a class name, make a Class object

— Create object of that class, cast and use it

. String className = ...;
. Class c¢ = Class.forName (className);

. Object o =-emewIms new T, ();
. T t = (T) o; new T,();

m Statically convert
Class.newInstance => new T ()

¥

Other Reflective Constructs

m Object creation — most common idiom

m But there is more:
— Access methods
— Access fields
— Constructor objects

m Please refer to the paper for more...

Loading Application Plugins

‘ public void addHandlers (String path) {

while (it.hasNext()) {
XmlElement child = (XmlElement) it .next ();
String id = child.getAttribute("id");

a String clazz = child.getAttribute('"class");

AbstractPluginHandler handler = null;
try {
Class ¢ = Class.forName (clazz);
9 handler (AbstractPluginHandler) @
c.newlInstance () ;

registerHandler (handler);
} catch (ClassNotFoundException e) {

Real-life Reflection Scenarios

+

m Real-life scenarios:
— Specifying application extensions
m Read names of extension classes from a file

— Custom object serialization

m Serialized objects are converted into runtime data
structures using reflection

— Code may be unavailable on a given platform
m Check before calling a method or creating an object
m Can be used to get around JDK incompatibilities

m Our 60-page TR has detailed case studies

Talk Outline

+

m Introduction to Reflection

m Reflection analysis framework

— Possible analysis approaches to constructing a
call graph in the presence of reflection

— Pointer analysis-based approximation

— Deciding when to ask for user input

— Cast-based approximation

— Overall analysis framework architecture

m Experimental results
m Conclusions

¥

What to Do About Reflection?

T _

. String className = ...;
. Class ¢ Class.forName (className) ;

. Object o = c.newlnstance();
. Tt (T) o;

1. Anything goes [§| 2. Ask the user 3. Subtypes of T 4. Analyze ciassName

+ Obviously + Goodresults | + More + Better still
conservative _ A lot of work precise _ Need to
- Call graph for user, - T may know
g?(trgrr]réely difficult to have where
imgprecise find many className
answers subtypes comes from

Analyzing Class Names

+

m Looking at className seems promising

String stringClass = “java.lang.String”;

foo(stringClass);

void foo(String clazz) {
bar (clazz);
}
void bar (String className) {

Class ¢ = Class.forName (className) ;

}

m This is interprocedural const+copy prop on strings

¥

Pointer Analysis Can Help

+

Stack variables Heap objects

stringClass
clazz .\
F

className

.

—-»

java.lang.String

Reflection Resolution
Using Points-to

+

. String className = ...;
. Class c¢ Class.forName (className) ;

. Object o c.newlInstance() ;
. Tt (T) o;

m Need to know what className is
— Could be a local string constant like java.lang.String
— But could be a variable passed through many layers of calls
m Points-to analysis says what className refers to

— className --> concrete heap object

Resolution May Fail!

String className = r.readLine();
. Class ¢ = Class.forName (className);
. Object o = c.newlnstance();

T t = (T) o;

Need help figuring out what className is

Two options
1. Can ask user for help
m Callto r.readLine on line 1 is a specification point
m User needs to specify what can be read from a file
m Analysis helps the user by listing all specification points

2. Can use cast information
m Constrain possible types instantiated on line 3 to subclasses of T

m Need additional assumptions

1. Specification Files

‘ m Format: invocation site => class

loadImpl() @ 43 InetAddress.‘java:1231
java.net.Inet4AddressImpl

loadImpl() @ 43 InetAddress.‘java:1231
java.net.Inet6AddressImpl

lookup () @ 86 AbstractCharsetProvider. java:126
sun.nio.cs.ISO 8859 15

lookup () @ 86 AbstractCharsetProvider. java:126
sun.nio.cs.MS1251

tryToLoadClass () @ 29 DataFlavor. java:64 =>
java.io.InputStream

2. Using Cast Information

. String className = ...;
. Class c¢ Class.forName (className) ;

. Object o c.newlInstance() ;
. Tt (T) o;

Providing specification files is tedious,
time-consuming, error-prone

Leverage cast data instead
— O 1instanceof T

— Can constrain type of o if

1. Cast succeeds
2. We know all subclasses of T

Analysis Assumptions

+

1. Assumption: Correct casts.
Type cast operations that always operate on
the result of a call to Class.newInstance

are correct; they will always succeed without
throwing a ClassCastException.

2. Assumption: Closed world.

We assume that only classes reachable from
the class path at analysis time can be used by
the application at runtime.

Casts Aren’t Always Present

+

m Can’t do anything if no cast post-
dominating a Class.newInstance call

Object factory(String className) {
Class ¢ = Class.forName (className) ;

return c.newlnstance();

SunEncoder t = (SunEncoder)
factory(“'sun.io.encoder.” + enc);
SomethingElse e = (SomethingElse)

factory (“SomethingElse"™);

¥

Call Graph Discovery Process

+

Program IR Call graph Reflection Resolved |} Final call
construction resolution calls graph

using
points-to

User-provided Cast-based
spec approximation

~ V>

Specification
points

¥

Juicy Implementation Detalls

+

m Call graph construction algorithm in the presence of
reflection is integrated with pointer analysis

— Pointer analysis already has to deal with virtual calls: new
methods are discovered, points-to relations for them are
created

— Reflection analysis is another level of complexity

s Uses bddbddb, an efficient program analysis tool
— Come to talk tomorrow
— Rules are expressed in Datalog, see the paper

— Rules that have to do with resolving method calls, etc. can
get quite involved

Datalog makes experimentation easy

Talk Outline

+

m Introduction to Reflection
m Reflection analysis framework

m Experimental results
— Benchmark information
— Setup: 5 flavors of reflection analysis
— Comparing...
m Effectiveness of Class.forName resolution

m Specification effort involved
m Call graph sizes

m Conclusions

¥

Experimental Summary

m Ran experiments on 6 very large
applications in common use

m Compare the following analysis strategies:
1. None -- no reflection resolution at all
2. Local -- intraprocedural analysis

3. Points-to -- relies on pointer analysis

4. Casts -- points-to + casts

¥ 5. Sound -- points-to + user spec

m Only version “"Sound” is conservative

Benchmark Information

+- Among top Java apps on SourceForge
m Large, modern apps, not Spec JVM

Line File App Available
Benchmark Description count count Jars classes

genetic algorithms

jgap package 32,961 172) 62,727

speech synthesis

freetts system 42,993 167 19 62,821
gruntspud graphical GVS client 80,138 378 10 63,847
jedit graphical text editor 144,496 427 1 62,910
columba graphical email client 149,044 1,170 35 53,689
Jfreechart chart drawing library 193,396 707 6 62,885

Total 643,028 3,021 80 368,879

¥

Classification of Calls

+

Fully resolved Partially resolved ' Fully unresolved

Q ©

R
AR

forName (className) forName (className) forName (className)

¥

Class. forName Resolution Stats

+

m Consider Class. forName resolution in jedit

B Fully Resolved O Partially Resolved B Unresolved

50 100 150 200

None

] Some reflective calls
Local don’t have targets on a

given analysis platform
N

Points-to

Casts I

Sound

¥

Reflective Calls with No Targets

‘ // Class javax.sound.sampled.AudioSystem

private static final String defaultServicesClassName =
"com.sun.media.sound.DefaultServices";

Vector getDefaultServices (String serviceName) {
Vector v = null;

try {
Class defaultServices =
Class.forName (defaultServicesClassName) ;
Method m = defaultServices.getMethod (
servicesMethodName, servicesParamTypes) ;
Object[] arguments = new Object[] { serviceName };
v = (Vector) m.invoke (defaultServices, arguments);
} catch(InvocationTargetException el) {

}

return v;

¥

Specification Effort

m Significantly less specification effort when starting
from Casts compared to starting with Points-to

Number of Class.forName calls requiring specification

0 5 10 15 20 25 30

jgap | ‘ ‘ ‘ e points-to
casts
points-to
casts
gruntspud ooints-to
casts
points-to

: casts
columba = points-to

casts
W Libs App

freetts G

jedit 7

jfreechart

Specification is Hard

+

m Took us about 15 hours to provide
specification for all benchmarks

m In many cases 2-3 iterations are necessary

— More reflective calls are gradually discovered
— More specification may be needed

m Fortunately, most unresolved calls are in
library code
— JDK, Apache, Swing, etc. have unresolved calls
— Specifications can be shared among libraries

Call Graph Sizes

+

Call graph size (numb) compared

0 None O Local
1|0 Points-to @ Casts
|| @ Sound

Methods

freetts gruntspud jedit columba jfreechart

¥

Callgraph Sizes Compared:
Sound vs None

+

Benchmark Classes Methods

freetts

gruntspud

columba

jfreechart

Related Work

+

m Call graph construction algorithms:
— Function pointers in C [EGH94,Zha98,MRR01,MRR04]
— Virtual functions in C++ [BS96,Bac98,AH96]
— Methods in Java [GC01,GDDC97,TP00,SHR+00,ALS02,RRHKO0O0]

m Reflection is a relatively unexplored research area

— Partial evaluation [BN99,Ruf93,MY98]
m "Compile reflection away”
m Type constrains are provided by hand

— Compiler frameworks accepting specification [TLSS99,LH03]
m Can add user-provided edges to the call graph

— Dynamic analysis [HDH2004]
m Dynamic online pointer analysis that addresses dynamic class loading

Conclusions

First call graph construction algorithm to explicitly deal with
the issue of reflection

— Uses points-to analysis for call graph discovery
— Finds specification points
— Casts are used to reduce specification effort

Applled to 6 large apps, 190,000 LOC combined

About 95% of calls to class. forName are resolved at least
partially without any Specs

There are some “stubborn” calls that require user-provided
specification or cast-based approximation

Cast-based approach reduces the specification burden

Reflection resolution significantly increases call graph size: as
much as 7X more methods, 7,000+ new methods

