Locating Matching Method Calls by
Mining Revision History Data

Benjamin Livshits
Stanford University
and

Thomas Zimmermann
Saarland University

The Usual Suspects

[0 Much bug-detection research in recent years
[0 Focus: generic patterns, sometimes language-specific
B NULL dereferences

B Security

0 Buffer overruns

O Format string violations
® Memory

O Double-deletes

O Memory leaks
B L|ocking errors/threads

[0 Deadlock/races/atomicity

[0 Let's look at the space of error patterns in more detail

Classification of Error Patterns

NULL dereferences
Buffer overruns
Double-deletes
Generic pal Locks/threads

the usual suspects

NULL dereferences
Buffer overruns
Double-deletes

Locking errors/threads

Bugs in
App-specific J2EE servlets
patterns particular

to a system or a set

of APIs

- .

/
Device Bugs in
drivers Linux code

Error Pattern Iceberg

Classification of Error Patterns

There are
hundreds of
WinAmp plugins
out there
Anybody knows
any good error
patterns specific
to WinAmp
plugins?

Generic patterns --
the usual suspects

NULL dereferences
Buffer overruns
Double-deletes

Locking errors/threads

App-specific
patterns particular

to a system or a set
of APIs

[0 Intuition:

B Many other application-specific patterns exist

B Much of application-specific stuff remains a gray area so far
[0 Goal: Let’s figure out what the patterns are

Focus: Matching Method Pairs

O Start small:
B Matching method pairs
® Only two methods
m A very simple state machine
m Calls have match perfectly
O Very common, our inspiration is

B System calls
[0 fopen/fclose
O lock/unlock
I E—
B GUI operations
[0 addNotify/removeNotify
[0 addListener/removelistener
O createWidget/destroyWidget
O

0 Want to find more of the same

Our Insight

Our problem:

B Want to find matching method pairs that are
error patterns

Our technique:
B |ook at revision histories (think CVS)

Crucial observation:

Things that are frequently
checked in together
often form a pattern

Use data mining techniques to find method
that are often added at the same time

Our Insight (continued)

Now we know the potential patterns
“Profile” the patterns
B Run the application

B See how many times each pattern
O hits - number of times a pattern is followed
0 misses — number of times a pattern is violated

[0 Based on this statistics, classify the patterns
B Usage patterns — almost always hold

B Error patterns - violated a large number of the
times, but still hold most of the time

B Unlikely patterns - not validated enough times

System Architecture

=

mine CVS ‘ | sort and
histories patterns filter

Y

instrument relevant
method calls

revision history mining

A 4

run the application

A 4

dynamic analysis <

post-process

usage

= patterns

A 4

reporting report
patterns

report
bugs

Mining Basics

] —
Foo. java | o1 .addListener Sequence of revisions
~**| o1.removeListener Files Foo.java
] . ' !
Bar.iaz: o2.addListener Bar.Java, BaZ._]aVa,
| o2.removelistener qu_java

System.out.printin : o :
] Simplification: look at

Baz.java | 03.addListener
*-23| 03.removeListener method C:a”S Only_
list.iterator Look for interesting
iter.nasNext patterns in the way
iter.next

- methods are called
Qux.java | o4 addListener

1.41 .
System.out.printin
]

1.42 | o4.removelistener

v

Foo.

Bar.

Baz.

Qux.

Mining Matching Method Calls

java
1.12

java
1.47

java
1.23

java
1.41

—

o1l.addListener
ol.removelistener

o2.addListener
o2.removelListener
System.out.printin

o3.addListener
o3.removelistener
list.iterator
iter.hasNext
iter.next

o4d.addListener
System.out.printin

o4.removelistener

v

Use our observation:

B Methods that are
frequently added
simultaneously often
represent a use pattern

For instance:
éadListener(...);

removelistener(...);

Data Mining Summary

[0 We consider method calls added in each check-in
B We want to find patterns of method calls

[0 Too many potential pairs to consider
B Want to filter and rank them
B Use support and confidence for that
[0 Support and confidence of each pattern
B Standard metrics used in data mining
B Support reflects how many times each pair appears

B Confidence reflects how strongly a particular pair is
correlated

[0 Refer to the paper for details

Improvements Over the Traditional Approach

[0 The default data mining approach doesn't
really work
B Filters based on confidence and support
B Still too many potential patterns!

1. Filtering:

B Consider only pairs with the same initial
subsequence as potential patterns

2. Ranking:

B Use one-line “fixes” to find likely error patterns

Matching Initial Call Sequences

Foo. java
1.12

Bar. java
1.47

Baz. java
1.23

Qux. java
1.41

1.42

—

ol.addListener
ol.removelistener

o2.addListener
o2.removelistener

o3.addListener
o3.removelListener

iter.hasNext
iter.next

—> 1 Pair
> 3Peirs 1 Pair

> 10Pars 2 Pairs

=) 1>Peir 0 Pairs

> 0 Pairs

Using Fixes to Rank Patterns

—
Foo. java Look for one-call
1.12 —— = =
additions which likely
Bar. java - |ndlcate fIXES.

1.47

Rank pairs for such
— methods higher.

Baz. java
1.23

] This is a fix!
Qux. java

1.41 Move pairs containing
- / removelistener up
1.42| o4.removelistener

v

Mining Setup

Apply these ideas to the revision
history of Eclipse

B Very large open-source project
B Many people working on it
Perform filtering based on

B Pattern support

B Pattern strength

Get 32 strongly correlated method
pairs in Eclipse

Some Interesting Method Pairs

1

kEventControlActivate

kEventControlDeactivate

addDebugEventListener

removeDebugEventListener

beginRule endRule
suspend resume

NewPtr DisposePtr
addListener removelListener
register deregister

addElementChangedListener

removeElementChangedListener

addResourceChangelListener

removeResourceChangelListener

addPropertyChangelistener

removePropertyChangelListener

createPropertyList reapPropertyList
preReplaceChild postReplaceChild
addWidget removeWidget
stopMeasuring commitMeasurements
blockSignal unblockSignal
HLock HUnlock

OpenEvent fireOpen

Some Interesting Method Pairs (2)

kEventControlActivate

kEventControlDeactivate

addDebugEventListener

removeDebugEventListener

beginRule

endRule

addListener Begin aPDIYing a thread :

addElementChangedListener

scheduling rule to a Java thread —

addResourceChangelistener

removeResourceChangelListener

addPropertyChangelListener

removePropertyChangelListener

createPropertylList reapPropertyList
preReplaceChild postReplaceChild
addwidget removeWidget
stopMeasuring commitMeasurements
blockSignal unblockSignal
HLock HUnlock

OpenEvent fireOpen

Some Interesting Method Pairs (3)

kEventControlActivate

kEventControlDeactivate

addDebugEventListener

removeDebugEventListener

beginRule endRule
suspend resume

NewPtr DisposePtr
addListener removelListener
register deregister

addElementChangedListener

removeElementChangedListener

addResourceChangelListener

removeResourceChangelListener

addPropertyChangelistener

removePropertyChangelListener

createPropertyList reapPropertyList
preReplaceChild postReplaceChild
addWidget removeWidget
stopMeasuring commitMeasurements
blockSignal

Register/unregister the current widget

with the parent display object for

subsequent event forwarding

Some Interesting Method Pairs (4)

kEventControlActivate

kEventControlDeactivate

addDebugEventListener

removeDebugEventListener

beginRule endRule
suspend resume

NewPtr DisposePtr
addListener removelListener
register deregister

addElementChangedListener

removeElementChangedListener

addResourceChangelListener

removeResourceChangelListener

addPropertyChangeListener

removePropertyChangelListener

Add/remove listener for a particular
— kind of GUI events

Some Interesting Method Pairs

kEventControlActivate kEventControlDeactivate
addDebugEventListener removeDebugEventListener
beginRule endRule

suspend resume

NewPtr DisposePtr

addListener removelListener

register deregister
addElementChangedListener removeElementChangedListener
addResourceChangelListener removeResourceChangelListener

addPropertyChangelis

=i | JS€ OS Native locking mechanism for

resources such as icons, etc. -

addWidget

stopMeasuring commitMeasurements
blockSignal unblockSignal
HLock HUnlock

OpenEvent fireOpen

Dynamically Check the Patterns

O Home-grown bytecode instrumenter

B Get a list of matching method pairs

B Instrument calls to any of the methods to dump parameters
[0 Post-processing of the output

B Process a stream of events

B Find and count matches and mismatches

< o.register(d) / matched

o.deregister(d)

?2??

\‘o.deregister(d) «<——— mismatched

Experimental Setup

Applied our approach to Eclipse
B One of the biggest Java applications
®m 2,900,000 lines of Java code

B Included many Eclipse plugins consisting of
lower quality code than the core

B Chose 32 matching method pairs
Times:

B 5 days to fetch and process CVS histories
B 30 minutes to compute the patterns
B An hour to instrument Eclipse

B And we are done!

Experimental Summary

Pattern classification:
B 5 are usage patterns
B 5 are error patterns
[

B 1/ were not hit at runtime

Error patterns

B Resulted in a total of 107 dynamically
confirmed bugs

B Results for a single run of Eclipse

A Preview of Coming Attractions...

We have a paper in FSE 2005
Describes a tool called DynaMine

Provides various extensions:

B More complex patterns:
[1 State machines
[0 Grammars

B More applications analyzed
B More bugs found

