Turning Eclipse _

Finding Errors in
Eclipse Sources

Benjamin Livshits

Stanford University \ S

Summary

o We want to find errors in Eclipse
— Implemented a tool called Checklipse
(plugin)
— Uses lightweight static analysis
e Looks for violations of 3 design rules
— One API usage rule
— Two resource management rules

e Preliminary results are encouraging
— Ran Checklipse on Eclipse sources
— Found a total of 68 likely errors

— Checklipse checks multiple plugins in
minutes

Eclipse Code Base...

e Eclipse:
— One of the biggest Java projects ever written
— Very robust

e Still, a multitude of bugs exist
— bugs.eclipse.org — hundreds of known errors
— Think about unknown ones!

— Certain types of errors are repeatedly introduced over and over
e “Lapsed listener” errors discovered for different Eclipse releases

Y
RO T L

5

-
o

)]
[=)]
=
0
Y—
=]
e
@
0
E
=l
=

Eclipse Milestone

=

Error Patterns to the Rescue . %

o Lots of API-specific coding patterns

— Patterns are “specified”
e Using comments
e not at all

— Misuse of these patterns leads to errors

e This is great news for us!
— Discover what the error patterns are
— Find and report pattern violations
e Can do so using dynamic or static analysis
e On to the error patterns...
— 3 patterns evaluated

— Many more remain — looking to expand the
scope of Checklipse

Error pattern #1: Call super |

e A common rule of thumb in Eclipse co
— For many methods m
— A subclass implementing method m must call
super.m(...) inside method m

Checklipse
super checker

g m|m

Must call super,
but don't

Smart Insert

Read-Cnly

Error pattern #2: Failing to Dispose R

it

T

)

ny ,
POEHEREOSS
E!J'_T!Eﬂl w

AT
E-;:' 100

=,

e OS resource leaks are common:
— Many classes define method dispose()

— SWT design rule: dispose what you create
e Interesting special case: maps
e Need to clear most class-allocated maps in dispose()
e Failing to clear the maps, causes OS resource leaks

Extend super violation... | T Dispose checker viewsr 22 Lapsed listeners | Error Log | Problems | Javadoc | Declaration | Console | Progress | Search | Call Hierarchy

Locally allocated
maps

Checklipse

dispose checker

Not cleared

+- FProviderZontrols

Error pattern #3: Lapsed Listeners i 8

]

._

=,

iy e
s

l:"'._:!J:, s

e Memory leaks exist in Java, despite GC! i

e Common case of memory leaks:

— Listeners are used to register handlers for events,
such as mouse clicks, etc.

— Not un-registering listeners properly leads to memory
leaks

— Memory leaks lead to crashes and instabili

Extend super violation... | Dispose checker wviewer | B Lapsed listeners 3 Error Log | Problems | Javadoc | Declaration | Console | Progress | Search | Call Hierarchy | — O

Not unregistered 1
listener

1 I oD B A LA A I e A

unregistered listener

etDefault). getBreakpointManager), addBreakpointManagerListener(this)

. el

ol

Checking for Pattern Violations: How? [&

e Runtime or dynamic approaches s
— Aspects allow run time checking of rules
— Memory profilers and debuggers

— Custom-made tools:
o sleak by Steve Northover, the architect of SWT
e a tool to check for memory leaks in Eclipse code

— But: violations need to be triggered during a particular
execution!

e Instead, we analyze the Java source code of the plugins
e Advantages:

— No need to consider a particular execution
— So, can find all potential pattern violations

Static Analysis State of the Art [#&

e Sound and complete analysis approac
— Suffer from imprecision — false positives
— Don't scale to code bases the size of Eclipse

e We use unsound lightweight static analysis

— Runs fast — took several minutes to analyze
20 core Eclipse plugins

— Produces false positives
e Takes time to filter the false positives

— May miss errors

Why Lightweight Static Checking?

e Overall goal:
— Address whole c/asses of problems

— Better target debugging efforts of Eclipse
developers

e Make it fast and easy to audit potential
errors
— User is presented with three custom viewers

— One for each error pattern
e Extend super viewer
e Dispose rule viewer
e Lapsed listener viewer

e Can run analysis and fix the errors without
ever leaving Eclipse

We Find...

EXTEND SUPER
methods that require super to be called 38
calls to these methods 390
filtered calls 19
potential errors (methods not calling super) 13
DISPOSAL RULES
dispose methods checked 794
filtered methods 51
potential errors (leaking dispose methods) 42
LAPSED LISTENERS
subclasses of ViewPart checked 81
subclasses with matched listeners 6
subclasses not using listeners 53
subclasses with mismatched listeners 22

potential errors (classes with lapsed listeners) 13

TOTAL ERRORS 68

Status

i
. a kl;! £
Implemented Checklipse e
— Working tool
— Runs fast

— Available for download
suif.stanford.edu

Find 68 /ikely errors

%,.w — Many are hard to evaluate
4 ? — Used our best judgement to
,"“ determing what is an error

” — Need a strong knowledge of APIs

Future Work

-

Happy to pass the
errors over to IBM
engineers

o

-

A

~
Have a project to find and

correct similar error
patterns dynamically

Looking for new
patterns to check

A

)

