Finding Security Violations
by Using Precise Source-

level Analysis

by

V.Benjamin Livshits and Monica Lam
{livshits, lam}@cs.stanford.edu

SUIF Group

CSL, Stanford University

Computer Break-ins: Major problem

e Software break-ins: relatively easy to do: a
lot of prior art

e An article selection from [destroy.net]:

(S)ma]shing The Stack For Fun And Profit [Aleph
ne

How to write Buffer Overflows [Mudge]
Finding and exploiting programs with buffer
overflows [Prym]
e Sites like that describe techniques and
provide tools to simplify creating new
exploits

Potential Targets

e Typical targets:
Widely available UNIX programs: sendmail, BIND, etc.
Various server-type programs
ftp, http
pop, Imap
irc, whois, finger
Mail clients (overrun filenames for attachments)
Netscape mail (7/1998)
MS Outlook mail (11/1998)
The list goes on and on...

Sad Consequences

e Patching mode: need to apply patches in a timely manner

e Recent cost estimate: a survey by analyst group Baroudi Bloor
[www.baroudi.com]

Lost Revenue due to Down Time - biggest cost
..but also
System Admin Time Costs
Development Costs
Reputation and Good Will -- cannot be measured
4 Baroudi Bloor report: failure to patch on time I
If failure to apply a patch costs 4 hours in System Admin Time to clean
up the effects and patch the system, 2 hours in Developer Time to

re-code any applications that have been affected by the patch or damage done
by failure to patch and 30 minutes of downtime the cost of not patching is a whopping:

_ $820 + $410 + $500,000 = $501,230 -

e Legal issues to consider

Who is responsible for lost and corrupt data? What to do with
stolen credit card numbers, etc.?

Legislation demands compliance to security standards

Most Prevalent Classes

e SecurityFocus.com study of security reports in 2002

e Tried fo identify most prevalent classes
e 3,582 CVE entries (1/2000 to 10/2002)

e Approximately 25% of the CVE was not classified

—

/}

Would like to
address these

EEI Buffer overflow

. Malf or medinput

I:I Shell Metachar actersi
I:I For mat strings

‘B Badpermissions
O Symlink Following

@ Privilege Handling

O Cross-sitescripting

@ Cryptographicerror

B Directory Traversal

Security Vulnerabilities over Time

CERT Advisory by Year

0 -

B Toral

O Buffer Overflows
20 Are they all

m gone?
15 =
Or just the
104 easy ones?
n_M
1988 l9gy 1990 199] 1902 1993 1994 1995 1996 1997 199y 1999 2000 2001

Focus of Our Work

e We believe that tools are needed to
detect security vulnerabilities

e We concentrate on the following types of
vulnerabilities:
Buffer overruns
Format string violations

e Provide tools that are practical and precise

How Buffer Overruns Work

e Different flavors of overruns with different
levels of complexity

e Simplest: overrun a static buffer

e There is no array bounds checking in C - hackers
can exploit that

e Different flavors are descibed in detail in
Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade, [C.Cowan et al]

e We concentrate on overrunning static buffers

Don’t want user data to be copied to
static buffers!

Mechanics of a Simple Overrun

1. Arrange for suitable code
to be available in program

FFFF address space
A tiaoh usually by supplying a string
e de with executable code
> 2. Get the program to jump to
' return ﬁ that code with suitable
String®l address | |Stack parameters loaded into
Growth Growth registers & memory
Local usually by overwriting a
variables return address to point to
the string
BUEfer | 4000 3. Put something interesting

into the exploit code
such as exec("sh"), etc.

How Format String Violations Work

The "%n" format specifier - root of all evil

Stores the number of bytes that are actually formatted:
printf (“%.20x3n”,buffer, &bytes_formatted);

e This is benign, but the following is not:

printf (argv[0]);

e Can use the power of "%n" to overwrite return address,
etc.

Requires some skill to abuse this feature

In the best case - a crash, in the worst case - can gain
control of the remote machine

e However the following is fine:

printf (“%s”, argv([0]);

Don’t want user data to be used as
format strings!

Existing Auditing Tools

e Various specialized dynamic tools
Require a particular input/test case to run

Areas:
Network security
Runtime break-in detection
StackGuard for buffer overruns, many others

e Lexical scanners
Publicly available

RATS [securesoftware.com]

ITS4 [cigital.com]

pscan [open source] - simple format string violation finder
Typically imprecise:

Tend to inundate the user with warnings

Digging through the warnings is tedious

Discourages the user

e Can we do better with static analysis?

Talk Outline

e Motivation: need better static analysis for
security

> Detecting security vulnerabilities: existing
approaches

e Static analysis: what are the components?
e Our approach: IPSSA + tools based on it
e Results and experience

Existing Static Approaches

e AFirst S’rer) Towards Automated Detection of Buffer
Overrun Vulnerabilities [D.Wagner]
Buffer overruns as an integer range analysis problem
Checked Sendmail 8.9.3: 4 bugs/44 warnings

Conclusion: following features are necessary to achieve better
precision

Flow sensitivity

Pointer analysis

e Detecting Format String Vulnerabilities with Type Qualifiers
[A.Aiken?

“Tainted" annotations, requires some, infers the rest

Conclusion: following features are necessary to achieve better
precision

Context sensitivity

Field sensitivity

Flow-, Path- & Context Sensitivity

Flow and path
sensitivity

Context sensi

Tivity

fgets (s, 100, stdin)

1]

if(P)

ge{is (P)
A\ ” foo (p)
foo (“abc”)
.\ /._/.

void f;;FF:;r *s) {

printf (s)

}

Pointer Analysis: Major Obstacle

e Need it to represent data flow in C:

a = 2;

o= 3

& s the value of a still 2?

e Yes if we can prove that p cannot point to a

e Should we put a flow edge from 3 fo a to
represent potential flow?

e Most existing pointer analysis approaches
emphasize scalability and not precision

e Crucial realization:
We only need precision in certain places

To Achieve Precision...

e Break the pointer analysis problem into two

e Precisely represent - "hot" locations
Local variables
Parameter passing

Field accesses and dereferences of parameters and
locals

e All the rest if "cold"

Data structures
Arrays
etc.

Hot vs Cold Locations

E ______
=)
o :
8 Cold location
: P 4
S .
O .
Array

T /vi HEEEN

al3] = % S
o I| e e
g ‘push(s, x) — | Stack ¥ = Pop(s) |
o e e e e e et
n

Putting it All Together:
Precision Requirements

Wagner et al. Aiken et al.

oFlow sensitivity eField sensitivity

ePointer analysis eContext sensitivity
+

And also...

e Ability to analyze code scattered among many functions and files
efficiently

This is where hard bugs hide

Path-sensitivity

Precise representation of library routines (Wagner, Aiken) such as
strcpy, strncpy, strtok, memcopy, sprintf, snprintf
fprintf, printf, fgets, gets

e Support features of C

Pass-by-reference semantics
varargs and va_list treatment
Function pointers

Tradeoff: Scalability vs Precision | :::
high [Formal verification}
‘ Our tool
-
e,
8 [Wagner et al]
B
O || Aikenetal |
o [Lexi;e:)llgudit }
fast slow and expensive

Speed / Scalability

Our Framework

Program
sources

IPSSA .
construction Data flow info

Abstracts away
many details.
Makes it easy to

write tools

Analyses: Common
framework. Makes
it easy to add new
analyses

Buffer
overruns

Format
violations

g

NULL
deref’s

Error
traces

...others...

To Summarize:
New Program Representation: IPSSA

e Intraprocedurally
SSA - static single assignment form

Local pointer resolution: pointers are resolved to
scalars, new names are introduced

e Interprocedurally
Parameter mapping
Globals treated as parameters
Side effects of calls are represented explicitly
e Hot vs Cold locations
Hot locations are represented precisely
Cold locations are multiple locations “lumped” together

e Models for system functions

Models of System Functions

e Excerpt from a model specification file

tainted io char* gets(non_null char(]
s[] = taint;
return (s, NULL);

s) {

}i

tainted io char* getenv(non_null char|[]
ret_loc” = taint;
return (unknown,

s) {

NULL) ;
}i

char* sprintf (char[]
buf® = ..."%;
return buf;

buf, non_tainted const char|]

}i

char* snprintf (char(]
buf® = ...7%;
return buf;

buf, int sz,

bi
io void fprintf (non_null FILE* file, non_tainted char(]

safe(...”);

}i

format,

non_tainted const char|]

format,

void* ..

format,

A

void~* ..

void* ..

A

R

non_tainted
qualifiers,
explicit taint
variable
varargs are
represented by

|\} n

Pass-by-
reference
representation

Analysis Based on IPSSA

1. Start at sources of user input (roots)such as
argv[] elements
sources of input: fgets, gets, recv, getenv, etc.

2. Follow data flow provided by IPSSA until a sink
is found
Buffer of statically defined length

Vulnerable procedures: printf, fprintf, snprintf,
vsnprintf

3. Test path feasibility using predicates (optional
step)

4. Report bug, record path

000
0000
| | | | | :::.
| |
Example: Tainting Violation In muh | ¢
@
muh.c:839
0838 s = (char *)Ymalloc(1024);
0839 while(fgets(s, 1023, messagelog)) {
0840 if(s[strlen(s) = == '\n') s[strlen(s)...
0841 irc_notice(&c_client, status.nickname,” s);
0842 }
0843 FREESTRING(s);
0844
0845 irc_notice(&c_client, status.nickname, CLNT_MSGLOGEND) ;
irc.c:263

N
257 woid irc_notice (connection_type *connection, char nickname[], char *format,

e)
258 |

259 va_list wva;

260 char buffer[BUFFERSIZE];

261

262 va_start (va, format);

263 vsnprintf (buffer, BUFFERSIZE - 10, format, va);

264 va_end(va);

Example: Buffer Overrun in gzip

gzip.c:593 0589 if (to_stdout && !test && !'list && (!decompress ||
0590 SET_BINARY_MODE (fileno (stdout)) ;
0591 }
0592 while (optind < argc) {
0593 treat_file(argv[opt}nd++]);
/
gz“lcf716 0704 local void treat_file(iname)
0705 char *iname;
0706 {
0716 if (get_istat (iname, &istat) != OK) return;
\
92“30.1009 0997 local int get_istat (iname, sbuf)
" 0998 char *iname;
0999 struct stat *sbuf;
1000 {
1009 strcpy <ifn®me) ;
%. ——

Need to have a
model of strcpy

Recurring Patterns: Lessons Learned

e "Hard" violations pass through many
procedures

About 4 on average

Not surprising - the further away a root is from
a sink, the harded it is to find manually

e "Harder" violations pass through many files
e Relatively few unique root-sink pairs
e But... potentially many more root-sink paths

Do We Need Predicates?

‘Predicates are sometimes important in reducing false positive
ratio

‘Hugely depends on the application: help with NULLs

‘A few places where they matter in the security analysis

util.c (Ihttpd 0.1)

‘Predicates are sometimes
needed in function models for
precision

*When called with NULL as the
first argument, strtok returns
portions of the string previously
passed into it

*Otherwise, the passed in string
is stored internally

109 while (! feof (in))

110 {

111 getfileline (tempstring, 1in);

112

113 if(feof (in)) break;

114 ptrl = strtok(teppstring, "\" \t");
160 while(!feof(in)ﬂ>(/

161 { a

162 getfileline (tempstring, in);

163 r

164 if (feof (in)) break;

165 ptr%ﬁQ strtok (tempstring, "\"\t ");
166 ptr2 = strtok(NULL,/'\"\t "y

*No flow between tempstring
on line 114 and 165

*There /s flow between
tempstring and ptr2 on lines
165 and 166

&

000
000
L X
Summary of Experimental Results | ¢
Program |Version# |LOC [Procedures o / server-type programs
http 0.1 888 21| e Contained many violations
bftpd 1.0.11 2,946 47 .
trollftpd_|1.26 3,584 18 preV'O_USIY reported on
man |15t 4,139 83 SecurityFocus and other
cfingerd |1.4.3 5,094 66 . .
muh _ |2.05d 5,695 95 security sites
gzip 1.24 8,162 93
Program |Total Buffer Format [False Number [Number|Definitions|Proce |Tool's
name number of [overruns |string positives|of of spanned |dures |[runtime
warnings violations sources |sinks spanned|sec
Ihttpd 1 1 20 (w/o pr 4 1 7 4 7.08
bftpd 2 1 1 5 2 5,7 1,3 2.34
trollftpd 1 1 4 1 23 5 8.52
man 1 1 3 1 6 4 9.67
cfingerd 1 4 1 10 4 7.44
muh 1 3 1 7 3 7.52
gzip 1 1 3 1 7 3 2.03

Conclusions

e Outlined the need for static pointer analysis to detect
security violations

e Presented a program representation designed for bug
detection

e Described how it can be used in an analysis to find security
violations

e Presented experimental data that demonstrate the
effectiveness of our approach

e More details: there is a paper available:

http://suif.stanford.edu/~livshits/papers/fse03.ps

Thanks for listening!

