Finding Security Vulnerabilities

in Java Applications
with Static Analysis

Benjamin Livshits and Monica S. Lam

Stanford University

SecurityFocus.com Vulnerabilities...

® o U s W N e

[N I R S R S I N N I R R T e e T = T =)
O W ® UL e WN P O W ®do U WN R O .

PHPList Admin Page SQL Injection Vulnerability

Fetchmail POP3 Client Buffer Overflow Vulnerability

Z1lib Compression Library Buffer Overflow Vulnerability

NetPBM PSToPNM Arbitrary Code Execution Vulnerability

OpenlDAP TLS Plaintext Password Vulnerability

Perl RMTree Local Race Condition Vulnerability

Perl Local Race Condition Privilege Escalation Vulnerability

Vim ModeLines Further Variant Arbitrary Command Execution Vulnerability

Zlib Compression Library Decompression Buffer Overflow Vulnerability

Jabber Studio JabberD Multiple Remote Buffer Overflow Vulnerabilities

Netquery Multiple Remote Vulnerabilities

Multiple Vendor Telnet Client LINEMODE Sub-Options Remote Buffer Overflow Vulnerability
Apache mod_ssl SSLCipherSuite Restriction Bypass Vulnerability

Multiple Vendor Telnet Client Env_opt_add Heap-Based Buffer Overflow Vulnerability
MySQL Eventum Multiple Cross—-Site Scripting Vulnerabilities

MySQL Eventum Multiple SQL Injection Vulnerabilities

AderSoftware CFBB Index.CFM Cross—-Site Scripting Vulnerability

Cisco IOS IPv6 Processing Arbitrary Code Execution Vulnerability

ChurchInfo Multiple SQL Injection Vulnerabilities

PHPFreeNews Multiple Cross Site Scripting Vulnerabilities

Nullsoft Winamp Malformed ID3v2 Tag Buffer Overflow Vulnerability

PHPFreeNews Admin Login SQL Injection Vulnerability

Apple Mac OS X Font Book Font Collection Buffer Overflow Vulnerability

OpenBook Admin.PHP SQL Injection Vulnerability

PowerDNS LDAP Backend Query Escape Failure Vulnerability

PowerDNS Recursive Query Denial of Service Vulnerability

ProFTPD Shutdown Message Format String Vulnerability

ProFTPD SQLShowInfo SQL Output Format String Vulnerability

Info-ZIP UnZip Privilege Escalation Vulnerability

Trend Micro OfficeScan POP3 Module Shared Section Insecure Permissions Vulnerability

~

August 1st
2005

" JEE
Buffer Overrun in zlib (August 1st, 2005)

info discussion exploit solution references

Zlib Compression Library Buffer Overflow
Vulnerability

Zlib is susceptible to a buffer overflow vulnerability, This issue is
due to a failure of the application to properly validate input data
prior to utilizing it in a memory copy operation.

In certain circumstances, malformed input data during
decompression may result in a memory buffer being overflowed.
This may result in denial of service conditions, or possibly remote
code executing in the context of applications that utilize the
affected library.

SecurityFocus.com Vulnerabilities...

© W I oUW N R

W N NDNNDMNNNNNNKRESRRBARAR R R R
O W O N o d WNKHFOW® N U BN WNKRO

PHPList Admin Page SQL Injection Vulnerability

Fetchmail POP3 Client Buffer Overflow Vulnerability

Zlib Compression Library Buffer Overflow Vulnerability

NetPBM PSToPNM Arbitrary Code Execution Vulnerability

OpenlDAP TLS Plaintext Password Vulnerability

Perl RMTree Local Race Condition Vulnerability

Perl Local Race Condition Privilege Escalation Vulnerability

Vim Modelines Further Variant Arbitrary Command Execution Vulnerability
Zlib Compression Library Decompression Buffer Overflow Vulnerability
Jabber Studio JabberD Multiple Remote Buffer Overflow Vulnerabilities
Netquery Multiple Remote Vulnerabilities

Multiple Vendor Telnet Client LINEMODE Sub-Options Remote Buffer Overflow Vulnerability

Apache mod_ssl SSLCipherSuite Restriction Bypass Vulnerability

Multiple Vendor Telnet Client Env_opt_add Heap-Based Buffer Overflow Vulnerability
MySQL Eventum Multiple Cross-Site Scripting Vulnerabilities

MySQL Eventum Multiple SQL Injection Vulnerabilities

AderSoftware CFBB Index.CFM Cross-Site Scripting Vulnerability

Cisco IOS IPv6 Processing Arbitrary Code Execution Vulnerability

ChurchInfo Multiple SQL Injection Vulnerabilities

PHPFreeNews Multiple Cross Site Scripting Vulnerabilities

Nullsoft Winamp Malformed ID3v2 Tag Buffer Overflow Vulnerability

PHPFreeNews Admin Login SQL Injection Vulnerability

Apple Mac OS X Font Book Font Collection Buffer Overflow Vulnerability

OpenBook Admin.PHP SQL Injection Vulnerability

PowerDNS LDAP Backend Query Escape Failure Vulnerability

PowerDNS Recursive Query Denial of Service Vulnerability

ProFTPD Shutdown Message Format String Vulnerability

ProFTPD SQLShowInfo SQL Output Format String Vulnerability

Info-ZIP UnZip Privilege Escalation Vulnerability

Trend Micro OfficeScan POP3 Module Shared Section Insecure Permissions Vulnerability

~

August 1st
2005

/

22/30=73% of
vulnerabilities are due
to input validation

Input Validation in Web Apps

m Lack of input validation:
#1 source of security errors

m Buffer overruns
One of the most notorious
Occurs in G/C++ programs
Common in server-side daemons

m Web applications are a common attack target
Easily accessible to attackers, especially on public sites
Java — common development language

Many large apps written in Java
s Modern language — no buffer overruns
m But can still have input validation vulnerabilities

" JEE—
Simple Web App

! B ﬂ e @ Show user details - Mozilla F... D 4

File Edit ‘Wiew Go Bookmarks Tools Help

%,ﬁ,ﬁ%mﬁq},@

Back Forward Prink Reload Stop Home

User ID: bob

P 45 S‘WDI‘d' W NN N

“ Submit)

Dione

m A Web form that allows the user to look up account details
m Underneath — a Java Web application serving the requests

SQL Injection Example

m Happy-go-lucky SQL statement:

String query = “SELECT Username, UserID, Password
FROM Users WHERE
username =" + user + “ AND
password =" + password;

m |eadsto SQL injection

One of the most common Web application vulnerabilities
caused by lack of input validation

m But how?

Typical way to construct a SQL query using string
concatenation

Looks benign on the surface
But let’s play with it a bit more...

"

Injecting Malicious Data (1)

.‘

[e 6 a @ Show user details - Mozilla F... O

File Edit Miew Go Bookmarks Tools Help

G, 2 o0 @ K Wy it

Back Forward Print Reload Stop Home

User ID: biok

Password; o

{ Submit |

Done >

query = “SELECT Username,
UserlD, Password
FROM Users WHERE
Username = 'bob’
AND Password = “***x*xxxe

[e 6 a @ User details - Mo... O]

File
]

L

= B.2.5 88
Fack Forward Print Reload Stop Home

Edit View Go Bookmarks Tools Help

First name: Eob

Last name: arith

Day phone: 6o0-234-2324
Esening phone: 650-235-3341
Etnail: bobi@acm. org

Done

"

Injecting Malicious Data (2)

-

f e 6 6 @ Show user details - Mozilla F... O

File Edit Miew Go Bookmarks Tools Help

{:: v ::'} w Q% % @ E
Back Forward Print Reload Stop Home | b | @

User ID: biok'--

Password: | 8 O O) user details - Mo... O
- File Edit ‘Miew Go Bookmarks Tools Help
(Submit |

c. 282 %8R
Fack Forward Print Reload Stop Home

Rl First name: Bob
Last name: Srmith

Day phone: 6o0-234-2324

query = “SELECT Username, i:;mg poes :Eé:; :;
UserlD, Password
FROM Users WHERE

Username = 'bob’--
> AND Password = ““”

"
Injecting Malicious Data (3)

[e 6 a @ Show user details - Mozilla F... O]

File Edit Miew Go Bookmarks Tools Help

G, 2 o0 @ K Wy it

Back Forward Print Reload Stop Home

User ID: bob'; DROP Users—'

Password:

{ Submit |

Done >

query = “SELECT Username,
UserlD, Password
FROM Users WHERE
Username = 'bob’; DROP Users--
> AND Password = ““”

"

Heart of the Issue: Tainted Input Data

SQL injections

= appl|cat|on database
Q

N
hacker % N |
Yy eVI t Web App
inpu
output
(f
browser
& ¥

cross-site
scripting

—

a—u

Insert input checking!

Attacks Techniques
1. Inject (taint 2. Exploit (taint sinks)
sources)
m SQL injections
= Parameter manipulation m Cross-site scripting
= Hidden field manipulation m HTTP request splitting
m Header manipulation m Pathtraversal
m Cookie poisoning s Command injection

H 1. Header manipulation + 2. HTTP splitting = vulnerability “

m See the paper for more information on these

Related Work: Runtime Techniques

m Client-5side vahdation
Done usixg . JavaScript in the browser
Can b€ easilycircumvented!

m Runtime te% (application firewalls)
Input filters < verydifficult to make complete

Don’t work for many types of vulnerabillities

Related Work: Static Techniques

m Manual code reviews
Effective — find errors before they manifest
Very labor-intensive and time-consuming

“ Automate code review process with static analysis “

m Automatic technigques
Metal by Dawson Engler’s group at Stanford
PreFix used within Microsoft
m Unsound!
May miss potential vulnerabilities
Can never guarantee full security

“ Develop a sound analysis “

" JEE
Summary of Contributions

Unification:
Formalize existing vulnerabilities within a unified framework

Extensibility:
Users can specify their own new vulnerabilities

Soundness:
Guaranteed to find all vulnerabilities captured by the specification

Precision:
Introduce static analysis improvements to further reduce false positives

Results:
Finds many bugs, few false positives

Why Pointer Analysis?
YN

Can these variables
refer to the same object?

m Imagine manually auditing an application
m [wo statements somewhere in the program

// get Web form parameter
String param = request.getParameter(...);

Question answered by
pointer analysis

// execute query
con.executeQuery(query);

=
Pointers in Java?

m Yes, remember the
NullPointerException 7

m Java references are pointers in disguise
Stack Heap

@
<;///f§:{%ﬁ S
N

> @ ®

"
What Does Pointer Analysis Do for Us?

m Statically, the same object can be passed
around in the program:

Passed in as parameters
Returned from functions
Deposited to and retrieved from data structures
All along it is referred to by different variables

m Pointer analysis “summarizes” these operations:
Doesn’t matter what variables refer to it
We can follow the object throughout the program

Pointer Analysis Background

m Question:
Determine what objects a given variable may refer to
A classic compiler problem for over 20 years
m Qur goal is to have a sound approach
If there is a vulnerability at runtime, it will be detected statically
No false negatives
m Until recently, sound analysis implied lack of precision
We want to have both soundness and precision
m Context-sensitive inclusion-based analysis by Whaley and Lam
[PLDI'04]
Recent breakthrough in pointer analysis technology
An analysis that is both scalable and precise
Context sensitivity greatly contributes to the precision

" JEEE——

Importance of Context Sensitivity (1)

tainted

untainted

" N

Importance of Context Sensitivity (2)

tainted

untainted

Excessive
tainting!!

Pointer Analysis Object Naming

m Need to do some approximation
Unbounded number of dynamic objects
Finite number of static entities for analysis

m Allocation-site object naming

Dynamic objects are represented by the line
of code that allocates them

Can be imprecise — two dynamic objects
allocated at the same site have the same
static representation

" N

Imprecision with Default Object Naming

foo.java:45 String.java: 725’

— @

String.java:725

—@p

bar.java:30 String.java: 7252

Improved Object Naming

m We introduced an enhanced object naming
Containers — HashMap, Vector, LinkedList, etc.
Factory functions

m Very effective at increasing precision
Avoids false positives in all apps but one

All false positives caused by a single factory method
Improving naming further gets rid of all false positives

"
Specifying Vulnerabilities

m Many kinds of input validation vulnerabilities
Lots of ways to inject data and perform exploits
New ones are emerging

m Give the power to the user:
Allow the user to specify vulnerabilities
Use a query language PQL [OOPSLA’'05]

m User is responsible for specifying

Sources — cookies, parameters, URL strings, etc.
Sinks — SQL injection, HTTP splitting, etc.

" A
SQL Injections in PQL

m Simple example query simpleSQLInjection

SQL injections caused =~ "M

object String param, derived;
by parameter uses.)

mampulation object HttpServletRequest req;
- object Connection con;
LO.O ks like a code object StringBuffer temp;
snippet matches {
m Automatically translated into param = req.getParameter(_);
static analysis , ()
, emp.append(param);
m Real queries are longer and derived = temp.toString();
more involved
m Please refer to the paper con.executeQuery(derived);

¥

"

System Overview

Java bytecode

Pointer analysis

User-provided
PQL queries

’ expressed in Datalog

Datalog

bddbddb
Datalog
solver

Vulnerability
warnings

Benchmarks for Our Experiments

m Benchmark suite: Stanford SecuriBench

We made them publicly available:
» Google for Stanford SecuriBench

Suite of nine large open-source Java
benchmark applications

Reused the same J2EE PQL query for all

m Widely used programs
Most are blogging/bulletin board applications
Installed at a variety of Web sites
Thousands of users combined

"

Classification of Errors

Sinks SQL HTTP Cross-site Path Total
Sources injection splitting scripting traversal
Header
manipulation 0 6 4 0 10
Parameter
manipulation 6 3 0 2 13
Cookie
poisoning 1 0 0 0 1
Non-Web
inputs 2 0 0 3 5
Total 9 11 4 5 29

" N

Classification of Errors

Sinks SQL HTTP Cross-site Path Total
Sources injection splitting scripting traversal
Header I
manipulation 1) 6 4 0 10
Parameter
manipulation < 6 3) 0 2 13
Cookie
Poisoning 1 0 0 0 1
Non-Web
inputs 2 0 0 3 5
Total 9 11 4 5 29

Classification of Errors

Sinks SQL HTTP Cross-site Path Total
Sources injection splitting scripting traversal
Header
manipulation 0 6 4 0 10
Parameter
manipulation 6 3 0 2 13
Cookie
poisoning 1 0 0 0 1
Non-Web
inputs 2 0 0 3 5
Total 9 11 4 5 29

m Total of 29 vulnerabilities found
m We're are sound: all analysis versions report them
m Refer to the paper for more details

"
Validating the Vulnerabilities

m Reported issues back to program maintainers
Most of them responded
Most reported vulnerabilities confirmed as exploitable

m More that a dozen code fixes

m Often difficult to convince that a statically
detected vulnerability is exploitable
Had to convince some people by writing exploits

Library maintainers blamed application writers for the
vulnerabilities

" JEE—
Analysis Version Compared

- —— - >
Default object | Improved object
naming naming

Context-insensitive
Least precise

Context-sensitive

Most precise

€——————— e

False Positives

480

Remaining 12
false positives for
the most precise
analysis version

380 -

280 -

Least precise

Most precise

180

80

-20

Conclusions

A static technique based on a CS pointer
analysis

for finding input validation vulnerabilities
iIn Web-based Java applications

m Results:
Found 29 security violations
Most reported vulnerabilities confirmed by maintainers
Only 12 false positives with most precise analysis version

Project Status

m For more details, we have a TR
http://suif.stanford.edu/~livshits/tr/webappsec tr.pdf

m Stanford SecuriBench recently released

http://suif.stanford.edu/~livshits/securibench

m SecuriFly: preventing vulnerabilities on the fly

Runtime prevention of vulnerabilities in Web apps
See Martin, Livshits, and Lam [OOPSLA’'05]

