
Ben Livshits and Weidong Cui
Microsoft Research

Redmond, WA

 Web application vulnerabilities are everywhere

 Cross-site scripting (XSS)

 Dominates the charts

 “Buffer overruns of this decade”

 Key enabler of JavaScript worms

2

Worm name Type of site Release date

Samy/MySpace Social networking Oct-05

xanga.com Social networking Dec-05

SpaceFlash/MySpace Social networking Jul-06

Yamanner/Yahoo! Mail Email service Jun-06

QSpace/MySpace Social networking Nov-06

adultspace.com Social networking Dec-06

gaiaonline.com Online gaming Jan-07

u-dominion.com Online gaming Jan-07

 Unleashed by Samy as a proof-of-

concept in October 2005

3

 Samy took down MySpace (October 2005)

 Site couldn’t cope: down for two days

 Came down after 13 hours

 Cleanup costs

 Yamanner (Yahoo mail) worm (June 2006)

 Sent malicious HTML mail to users in the current
user’s address book

 Affected 200,000 users, emails used for spamming

4

 Initial infection:

 Samy’s MySpace page

 Injected JavaScript payload

exploits a XSS hole

 Propagation step:

 User views an infected page

 Payload executes

▪ Adds Samy as friend

▪ Add payload to user’s page

5

 Worms of the previous decade enabled by buffer overruns

 JavaScript worms are enabled by cross-site scripting (XSS)

 Fixing XSS holes is best, but some vulnerabilities remain

 The month of MySpace bugs

 Database of XSS vulnerabilities: xssed.com

6

 Existing solutions rely on signatures

 Ineffective: obfuscated and polymorphic JavaScript worms are

very easy to write

 Most real-life worms are obfuscated

 Fundamental difficulties

 Server can’t tell a user request from worm activity

 Browser doesn’t know where JavaScript comes from

7

9

 u1 uploads to his page
 u2 downloads page of u1

 u2 uploads to his page
 u3 downloads page of u2

 u3 uploads to his page
 …

u1

u2

u3

Propagation chain

payload

1. Preserve causality of uploads, store as a graph

2. Detect long propagation chains

3. Report them as potential worm outbreaks

tag1 -> tag2

Se
rv

er
-s

id
e

ap
p

lic
at

io
n

Spectator proxy

U2requestrequest

C
lie

n
t-

si
d

e
tr

ac
ki

n
g

p
ag

e

p
ag

e
11

tag

tag

U1

 Tagging of uploaded input

<div>
<b onclick="javascript:alert(’...’)">...

</div>

 Client-side request tracking
 Injected JavaScript and response headers

 Propagates causality information through cookies
on the client side

<div spectator_tag=56>

12

 Propagation graph G:

 Records causality between tags (content uploads)

 Records IP address (approximation of user) with each

 Worm: Diameter(G) > threshold d

<t0, ip0> <t1, ip1><t2, ip0>

<t3, ip0>

<t4, ip2>

<t5, ip0>

<t6, ip0>

<t7, ip0>
<t8, ip0>

<t9, ip0>

13

Precise algorithm Approximate algorithm

Upload insertion time O(2n) O(1) on average

Upload insertion space O(n) O(n)

Worm containment time O(n) O(n)
14

 Determining diameter precisely is exponential
 Scalability is crucial

 Thousands of users
 Millions of uploads

 Use greedy approximation of the diameter instead

15

 Large-scale simulation with OurSpace:

 Mimics a social networking site like MySpace

 Experimented with various patterns of site access

 Looked at the scalability

 Real-life case study:

 Uses Siteframe, a third-party social networking app

 Developed a JavaScript worm for it similar to real-life ones

16

 Test-bed: OurSpace

 Every user has their own page

 At any point, a user can read or write to a page
 Write(U1, “hello”); Write(U1, Read(U2)); Write(U3, Read(U1));

 Various access scenarios:

 Scenario 1: Worm outbreak (random topology)

 Scenario 2: A single long blog entry

 Scenario 3: A power law model of worm propagation

17

 Tag addition overhead pretty much constant

18

 Approximate worm detection works well

19

 Real-life worm experimentation is difficult

 Used Siteframe, open-source blogging system

 Found an exploitable XSS

 Developed a worm for it

 Scripted user behavior

 Spectator flags the worm

20

 First defense against JavaScript worms

 Fast and slow, mono- and polymorphic worms

 Scales well with low overhead

 Essence of the approach

 Perform distributed data tainting

 Look for long propagation chains

 Demonstrated scalability and effectiveness

21

