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Abstract

Asynchrony has become an inherent element of JavaScript, because it is a mean for improv-
ing the scalability and performance of modern web applications. To this end, JavaScript
provides programmers with a wide range of constructs and features for developing code
that performs asynchronous computations, including but not limited to timers, promises and
non-blocking I/O. However, the data flow imposed by asynchrony is implicit, and is not al-
ways well-understood by the developers who introduce many asynchrony-related bugs to
their programs. Even worse, there are few tools and techniques available for analysing and
reasoning about such asynchronous applications. In this work, we address this issue by de-
signing and implementing one of the first static analysis schemes capable of dealing with
almost all the asynchronous primitives of JavaScript up to the 7th edition of the ECMAScript
specification. Specifically, we introduce callback graph, a representation for capturing data
flow between asynchronous code. We exploit callback graph for designing a more precise
analysis that respects the execution order between different asynchronous functions. We
parameterise our analysis with two novel context-sensitivity strategies and we end up with
multiple analysis variations for building callback graph. Then we perform a number of ex-
periments on a set of hand-written and real-world JavaScript programs. Our results show
that our analysis can be applied on medium-sized programs achieving 79% precision. The
findings further suggest that analysis sensitivity is able to improve accuracy up to 11,3% on
average, without highly sacrificing performance.
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Chapter 1

Introduction

JavaScript is an integral part of web development. Since its initial release in 1995, it has
evolved from a simple scripting language, which was primarily used for interacting with
web pages, into a complex and general-purpose programming language used for developing
both client- and server-side applications. The emergence of Web 2.0 along with the dynamic
features of JavaScript, which facilitate a flexible and rapid development, have led to the
undeniable increase of its popularity. Indeed, according to the annual statistics provided by
Github, which is the leading platform for hosting open source software, JavaScript is by far
the most popular and active programming language for 2017 (Github, 2017).

Although the dominance of JavaScript is impressive, it has been widely criticised, as it poses
a number of concerns as to the security and correctness of the programs (Richards et al.,
2010). JavaScript is a language with a lot of dynamic and metaprogramming features, in-
cluding but not limited to prototype-based inheritance, dynamic property lookups, implicit
type coercions, dynamic code loading, etc. Many developers often do not understand or
do not properly use these features, introducing errors to their programs, which are difficult
to debug, or baleful security vulnerabilities. In this context, JavaScript has attracted many
engineers and researchers over the past decade to: 1) study and reason about its peculiar
characteristics, and 2) develop new tools and techniques, such as type analysers (Jensen
et al., 2009; Lee et al., 2012; Kashyap et al., 2014), IDE and refactoring tools (Feldthaus
et al., 2011; Feldthaus and Møller, 2013; Feldthaus et al., 2013; Gallaba et al., 2017), or bug
and vulnerability detectors (Maffeis and Taly, 2009; Guarnieri and Livshits, 2009; Petrov
et al., 2012; Mutlu et al., 2015; Davis et al., 2017; Staicu et al., 2018), to assist developers
with the development and maintenance of their applications. Program analysis, and espe-
cially static analysis, which automatically computes facts about program’s behaviour without
actually running it, plays a crucial role in the design of such tools (Sun and Ryu, 2017).

Additionally, preserving the scalability of modern web applications has become more im-
portant than ever. To this end, in order to improve the throughput of web programs,
JavaScript has started to adopt an event-driven programming paradigm. In this context, code
is executed asynchronously in response to certain events. In recent years, this asynchrony
has become a salient and intrinsic element of JavaScript, as many asynchrony-related fea-
tures have been added to the language’s core specification (i.e. ECMAScript), most notably
promises (ECMA-262, 2015, 2018). Promises are special constructs which facilitate the de-
velopment and organisation of asynchronous code by forming chains of asynchronous com-
putation. Beyond that, many JavaScript applications are written to perform non-blocking
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1.1. CONTRIBUTIONS Chapter 1. Introduction

I/O operations. Unlike traditional statements, when we perform a non-blocking I/O opera-
tion, execution is not interrupted until that operation completes. For instance, a file system
operation is done in an asynchronous way, allowing other code to be executed, while I/O
takes place.

Like the other characteristics of JavaScript, asynchrony is not often well-understood by the
programmers, as the large number of asynchrony-related questions issued in popular sites
like stackoverflow.com1 (Madsen et al., 2015, 2017), or the number of bugs reported in
open source repositories (Wang et al., 2017; Davis et al., 2017) indicate. However, existing
tools and techniques have limited (and in many cases no) support for asynchronous pro-
grams. In particular, existing tools mainly focus on the event system of client-side JavaScript
application (Jensen et al., 2011; Park et al., 2016), and they lack support of the more recent
features added to the language like promises.

In this work we tackle this issue, by designing and implementing a static analysis that deals
with asynchronous JavaScript programs. For that purpose, we first define a model for under-
standing and expressing JavaScript’s asynchronous constructs, and then we extend an ex-
isting analyser, namely TAJS (Jensen et al., 2009, 2010, 2011), by incorporating our model
into the analyser. We propose a new representation, which we call callback graph, which
provides information about the execution order of asynchronous code. Previous attempts on
analysing asynchronous applications conservatively assumed that asynchronous functions
are executed in any order (Jensen et al., 2011; Park et al., 2016). Callback graph, which
is proposed in this report, tries to shed light on how data flow between asynchronous code
is propagated. Contrary to previous works, we leverage callback graph and devise a more
precise analysis which respects the execution order of asynchronous functions. Furthermore,
we parameterise our analysis with two new sensitivity policies (context-sensitivity) that are
specifically designed for asynchronous code. Specifically, asynchronous functions are distin-
guished based on the promise object on which they are registered or the next computation
to which execution proceeds.

The ultimate goal of this report is to end up with a generic technique which can be seen as
a stepping-stone to the analysis of asynchronous applications and facilitate the construction
of new tools and techniques for JavaScript’s asynchrony.

1.1 Contributions

This report makes the following five contributions:

• We propose a calculus, namely, λq for modelling asynchronous primitives in JavaScript
language, including timers, promises, and asynchronous I/O operations. Our calculus
is a variation of existing calculuses (Loring et al., 2017; Madsen et al., 2017), and
provides constructs and domains specifically targeted for our analysis.

• We design and implement a static analysis that is capable of handling asynchronous
JavaScript programs on the basis of λq. To the best of our knowledge, our analysis is
the first to deal with JavaScript promises. Our work extends TAJS, an existing type
analyser for JavaScript, and is designed as a data-flow inter-procedural analysis.

1https://stackoverflow.com/
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Chapter 1. Introduction 1.2. REPORT ORGANISATION

• We propose callback graph, a representation which illustrates the data flow between
asynchronous functions. Building on that, we propose a more analysis, namely, callback-
sensitive analysis which internally consults callback graph to retrieve information about
the temporal relations of asynchronous functions so that it propagates data flow ac-
cordingly.

• We design two novel context-sensitivity strategies which are specifically used for sepa-
rating asynchronous functions.

• We evaluate the performance and precision of our analysis on a set of hand-written
micro benchmarks and a set of real-word JavaScript modules. The evaluation includes
a number of experiments with different parameterisations of our analysis. For the
impatient reader, we find that our prototype can be applied on small and medium-
sized asynchronous programs, and the analysis sensitivity is beneficial for improving
analysis precision, as observed in both micro- and macro benchmarks.

1.2 Report Organisation

The rest of this report is organised as follows: we start in Chapter 2 with a brief overview of
the background and related work. We present our calculus and how we express JavaScript’s
asynchronous primitives in terms of λq in Chapter 3. In Chapter 4, we discuss the details
of our analysis: specifically, we summarise the necessary extensions made in TAJS, we in-
troduce the concept of callback graph, and finally, we give a description of our new analysis
sensitivities. In Chapter 5, we present the evaluation and the experimental results of our
work. We wrap up with our conclusions and discussion about future work in Chapter 6.
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Chapter 2

Background

In this chapter, we give a description of the background. In Section 2.1, we give a brief
introduction to JavaScript language, and the main kind of errors that arise from its intricate
features. In Section 2.2, we proceed to the material as to the static analysis techniques
developed for JavaScript. Finally, Section 2.3 gives an introduction about asynchrony in
JavaScript.

2.1 The JavaScript Language

JavaScript is a standardised language. Its specification, namely, ECMAScript (ECMA-262,
2018) informally describes JavaScript’s features and characteristics. Its current edition is
9th (ECMA-262, 2018) which was published in 2018.

2.1.1 Features

One of the most important characteristics of JavaScript is that it is a dynamically typed
language which means that the type of a program variable can change during execution.
JavaScript supports two different types: primitives and objects. Primitives describe numbers,
strings, booleans or symbols; everything else is an object. An object is expressed through
key-value pairs which denote the set of the object’s properties along with their values. De-
velopers can dynamically change the structure of an object by adding new properties or
removing existing ones. Beyond that, JavaScript heavily performs implicit type conversions
between operands, depending on the context on which they are evaluated. For instance,
when an object x is compared with a string, (e.g. x == ‘foo’), x is implicitly converted into
a string by calling function toString(). Another dynamic feature of JavaScript is dynamic
code generation via functions like eval or other constructs like Function. The use of such
functions has been widely criticised by the community as they have severe security impacts
and hinder the effectiveness of static analysis techniques (Richards et al., 2011).

Also, unlike other object-oriented languages like Java or C++, JavaScript supports prototype-
based instead of class-based inheritance. This means that objects inherit the structure and
state of other objects whose template can potentially change at runtime. On the contrary, in
a class-based model, objects are instantiated from classes which are static, i.e. their template
cannot change at runtime. All objects in JavaScript have an internal property (i.e. it is not
visible from developers1), which points to the prototype object from which they are derived.

1To be more precise, some implementations of JavaScript like those of Firefox or Microsoft provide methods
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This internal property is different from the property “prototype” which can be explicitly
found on constructor objects. The former is used to inspect the prototype chain during a
property lookup, whereas the latter denotes the prototype object used to build new objects
through keyword new.

Prototype-based model often leads to program behaviours that are not well-understood by
the developers who are more familiar with the class-based model (Lee et al., 2012). For
example, consider the following code:

1 function Foo() {

2 this.x = 1;

3 }

4 x = new Foo();

5 // we update the prototype of constructor.

6 Foo.prototype = {bar: 2};

7 y = new Foo();

8
9 y instanceof Foo //true

10 x instanceof Foo; // false

In this example, function Foo is used as a constructor to create two new objects, i.e. objects x
and y at line 4 and 7 respectively. During function declaration, a prototype object is created
at the background and is referenced by property prototype of object Foo. Since we change
the prototype of Foo at line 6, the resulting objects x and y have different object types (lines
8, 9), even though they come from the same constructor.

JavaScript also adopts an event-driven programming paradigm. which enables the develop-
ment of highly responsive applications (Zheng et al., 2011; Madsen et al., 2015; Davis et al.,
2017). That is, functions can be executed asynchronously in response to certain events.
At this point, we defer the discussion about event-driven and asynchronous JavaScript pro-
grams, as we will come back to it in a dedicated section (Section 2.3).

2.1.2 Bugs

Several prior studies (Ocariza Jr. et al., 2011, 2013) have examined various bugs occured in
web applications, analysing their root causes. According to these studies, the most frequent
bugs found in JavaScript code are property accesses of undefined or null variables, use of
undefined functions (i.e. functions that are not declared anywhere in the code) or incorrect
use of web APIs (e.g. built-in functions, DOM API, etc.) (Ocariza Jr. et al., 2011, 2013).
It has been shown that these categories of bugs are highly associated with many dynamic
features of JavaScript. For example, property accesses of undefined variables are correlated
with the dynamic deletion of object members (Ocariza Jr. et al., 2011). At the same time,
prototype-based inheritance seems to mislead developers who often access incorrect object
properties (Ocariza Jr. et al., 2011). Also, the lack of a type system along with the subtle
type coercions lead to surpising results for the programmers, e.g. adding "1" + 0 results in
a string with value "10" (Gao et al., 2017).

Another studies (Wang et al., 2017; Davis et al., 2017) have pointed out the lack of under-
standing that many developers have regarding the asynchrony-related features of JavaScript

to access this internal property.
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2.2. STATIC ANALYSIS FOR JAVASCRIPT Chapter 2. Background

which causes a lot of severe concurrency bugs. We will come back to these sutdies in Sec-
tion 2.3.3.

2.2 Static Analysis for JavaScript

In this section, we focus on static analysis techniques. First, we describe the required back-
ground about static analysis. Then, we present some of the static analysis techniques that
have been developed specifically for JavaScript programs along with their challenges.

2.2.1 Basics

The goal of static analysis is to automatically produce summaries about general properties
of a program without actually running it (Emanuelsson and Nilsson, 2008). Examples of
such properties are program points where a variable is used, the list of values that a variable
may hold, list of methods invoked by a particular caller method, etc. By taking advantage of
these summaries, a static analyser can detect various kinds of bugs. For instance, knowing
where a variable is used and written, a static analyser is able to decide, if there is a read of an
uninitialised variable. Beyond that, static analysis techniques have been adopted for program
optimisation such as those employed by the optimiser of modern compilers (Cooper and
Torczon, 2012). However, typically, static analysis is not able to reason about the functional
properties of a program (Emanuelsson and Nilsson, 2008). For example, it cannot determine
if there is a mistake in the implementation of an algorithm or not.

Abstractions

Since the program is not actually executed, analysis should be able to approximate the possi-
ble executions of the program in order to produce meaningful results. The are two different
types of approximations: 1) under-approximation, and 2) over-approximation. When analysis
under-approximates a program, it may miss some properties that exist in the real program,
e.g. it may fail to detect a bug, etc. In this case, the analysis is called complete. On the other
hand, when analysis over-approximates a program, it may capture some properties that are
not present in the initial program, e.g. it may mistakenly report a bug, etc. This analysis is
called sound. Depending on the context on which analysis is applied, someone may pursue
soundness instead of completeness and vice versa. For example, a bug detector used in a
safety-critical system should be sound, i.e. it should not miss any bug. On the other hand,
an autocompletion tool used in an IDE should be complete, that is, it should not produce
spurious suggestions to the developer.

A standard way to achieve such approximations is by abstracting the heap and executions
of a program. Specifically, concrete values that program variables may hold along with the
semantics of the operations applied on them are replaced with abstract ones. A typical
way to abstract possible values of a variable is through lattices (Kam and Ullman, 1977).
For instance, Figure 2.1 shows a lattice, which was inspired from the work of Jensen et al.
(2009). This lattice abstracts program variables that contain integer values. Specifically, ⊥
denotes that variable is not an integer, > describes that variable can be any integer, whereas
properties Negative, Zero and Positive are self-explanatory. Although this lattice contains
a large number of integers (i.e. all possible integers that can be represented by the program),
multiple values are abstracted via least upper bound operation (t), e.g. 1 t 14 = Positive.

6
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>

Negative Zero Positive

MIN INT . . . −1 0 1 . . . MAX INT

⊥

Figure 2.1: An example of a lattice used to abstract integers.

In this context, a simplified abstract heap of a program (whose variables contain only inte-
gers) is described by a map as follows:

Ĥeap = V ariable→ ̂Integer

The semantics of the operations is also abstracted in order to operate on the abstract val-
ues. For instance, the abstract multiplication between two Negative integers will produce a
Positive.

Precision & Sensitivities

A common issue that arises in static analysis is its precision. Recall that static analysis tech-
niques approximate the behaviour of the programs, meaning that they may capture proper-
ties that are not present during the actual execution or may miss properties that can appear.
For example, consider this code fragment:

1 if (x > 0) {

2 x = 1;

3 y = x;

4 } else {

5 x = 2;

6 }

Using the simplest form of analysis, we would conclude that x is either 1 or 2. In turn, we
would propagate this property to variable y after the assignment at line 3. Thus, we would
say that y is also either 1 or 2; something which is imprecise if we consider the actual flow
of the program. Indeed, y can be 1, but the analysis also reports that y may be 2 which is
impossible to happen. If the analysis infers properties that are not present in the actual pro-
gram (like in the example above), we say that the analysis produces false positives. Similarly,
if the analysis misses some of the existing properties (e.g. misses that x can be 2), we say
that the analysis reports false negatives. The number of false positives (or false negatives)
is an indicator of the precision of an analysis; the less false positives (or false negatives) an
analysis reports, the more precise it is.

7
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In the example above, we silently assumed a flow-insensitive analysis, i.e. an analysis that
does not take into account the order of program statements. To improve the precision of the
analysis of this example (i.e. to infer that y can be only 1), the control flow of the program
should be considered. In this case, the analysis is called flow-sensitive.

There are many different flavours of sensitivity which aim to enhance the precision of the
analysis. One common kind of sensitivity that is primarily used in inter-procedural analy-
ses (i.e. analyses that involve more than one functions) is context-sensitivity (Emanuelsson
and Nilsson, 2008). A context-sensitive analysis takes into account the context (e.g. local
variables, arguments, program point of invocation, etc.) on which a method invocation is
performed. For example, imagine the following code snippet:

1 function foo(x) {

2 if (x > 0) {

3 x = x + 1;

4 } else {

5 x = x - 1;

6 }

7 return x;

8 }

9
10 foo(1);

11 foo(-1);

A context-insensitive is not able to distinguish between the different invocations of function
foo(). In other words, function foo() is analysed only once and capture all possible execu-
tions coming from lines 10 and 11. Therefore, analysis cannot determine the exact value of
parameter x, leading to imprecision. A context-sensitive analysis, which uses call-sites (i.e.
function’s arguments) to distinguish information, inspects function foo() twice, i.e. one for
x = 1, and one for x = -1. In this way, analysis gets exact results from foo() depending on
the context of invocation.

There are many kinds of context-sensitivity. Depending on the characteristics of the program-
ming language on which static analysis is applied, some approaches may suit better than
others. For example, it has been shown that object-sensitivity (i.e. analysis separates invo-
cations based on the value of the receiver) performs better than a simple call-site-sensitivity
in object-oriented languages (Milanova et al., 2002; Lhoták and Hendren, 2008). Another
example comes from the work of Madsen et al. (2015) who designed context-sensitivities
specifically targeted for the analysis of event-driven Node.js applications.

Sensitivity is a crucial ingredient of an analysis, because it is a determining factor for the
precision and performance (Smaragdakis et al., 2011). Typically, there is a trade-off be-
tween performance and precision, i.e. the more precise an analysis is, the more expensive it
is (Emanuelsson and Nilsson, 2008). For instance, in our example above, context-sensitivity
comes with a cost; we have to analyze function foo() more times to get more accurate re-
sults. This may be prohibitive in larger and real-word programs. Therefore, it is important to
choose the right balance between them so that analysis is neither too imprecise (i.e. produces
too many false positives or false negatives) nor too expensive (i.e. does not terminate within
a reasonable time). However, it is important to note here that in higher-order programming
languages like JavaScript, imprecision may lead to the degradation of the performance (Park
et al., 2016). To illustrate this, consider the following code:

8
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1 function foo(x) {

2 x("arg");

3 }

4
5 function bar(x) { /* code */ }

6 function baz(x) { /* code */ }

7 function qux(x) { /* code */ }

8
9 // code

Imagine an imprecise analysis which reports that parameter x may be one of bar, baz,

qux when it analyses function foo(). In this case, the analysis should consider all possible
invocations arising from the value of x (i.e. bar, baz and qux), when it inspects the call at
line 2. A more precise analysis, which correctly determines that parameter x of function
foo() can be only bar, avoids the analysis of spurious function calls (i.e. baz and qux).

2.2.2 JavaScript-Specific Analysis

The dominance of JavaScript makes the development of reliable and robust programs more
vital than ever (Lee et al., 2012; Kashyap et al., 2014). As described in Section 2.1, JavaScript’s
dynamic nature such as dynamic update of objects’ structure, implicit type conversions,
prototype-based inheritance, dynamic code generation or event-driven programming often
confuse developers who introduce bugs and security vulnerabilities to their applications. As
an effort to provide developers with means, which aim to prevent such bugs, ensure the
correctness of the programs and assist developers in their debugging efforts, much work has
been done by the community recently, designing new types of analysis specifically targeted
for JavaScript (Guarnieri and Livshits, 2009; Jensen et al., 2009; Lee et al., 2012; Wei and
Ryder, 2014; Kashyap et al., 2014; Madsen et al., 2015; Davis et al., 2017).

Most notably, over the last ten years, significant progress in static analysis for JavaScript
has been made (Guarnieri and Livshits, 2009; Jensen et al., 2009; Lee et al., 2012; Kashyap
et al., 2014; Madsen et al., 2015), as new techniques have emerged which are able to handle
a wide spectrum of JavaScript’s features. As a result, static analysis is considered to be one of
the most prevalent techniques developed for analysing JavaScript programs (Sun and Ryu,
2017). Its applications vary from program optimisation and refactoring (Feldthaus et al.,
2011; Feldthaus and Møller, 2013) to bug detection and enforcement of security policies
(Guarnieri and Livshits, 2009; Jensen et al., 2009; Bae et al., 2014; Kashyap et al., 2014;
Madsen et al., 2015).

This advance is also facilitated by the recent attempts to formalise JavaScript. In particular,
many researchers have tried to capture the quirky semantics of JavaScript by proposing for-
mal models. For instance, Maffeis et al. (2008) presented one of the first formalisations of
JavaScript by designing small-step operational semantics for a subset of the 3rd version of
ECMAScript specification. In a subsequent work, Guha et al. (2010) expressed the semantics
of 3rd edition of ECMAScript (they omitted eval though) through a different approach; they
developed a lambda calculus called λJS , and provided a desugaring mechanism for convert-
ing JavaScript code into λJS . Later, Gardner et al. (2012) introduced a program logic for
reasoning about client-side JavaScript programs which support ECMAScript 3. They pre-
sented big-step operational semantics on the basis of that proposed by Maffeis et al. (2008),
and they introduced inference rules for program reasoning which are highly inspired from
separation logic (Reynolds, 2002); a logic that is able to reason about the heap of the pro-
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grams. Their rules are expressed through Hoare triples of the form: {P}e{Q}, meaning that
“if P holds before the evaluation of e, then e does not produce any errors, and if it termi-
nates, it will do the same when Q holds” (Gardner et al., 2012).

A number of new tools and techniques emerged by exploiting this formal description of
JavaScript, including but not limited to analyses for detecting security vulnerabilities (Maf-
feis and Taly, 2009), techniques for verifying and reasoning about JavaScript programs (Fragoso
Santos et al., 2017, 2018), new analyses that are capable of handling a bigger subset of
the language (Madsen et al., 2015), etc. For instance, Madsen et al. (2015) extended
λJS to model the event system of server-side applications and designed a static analysis
to detect bugs in event-driven Node.js programs based on λJS . Beyond that, the seman-
tics has provided the foundations for understanding and modelling more recent features of
JavaScript (Loring et al., 2017; Madsen et al., 2017).

Techniques and Challenges

Despite its success, static analysis of JavaScript programs still faces a number of challenges
which prevent its massive industrial adoption:

Dynamic features and complicated semantics. Static analysis of dynamic languages like JavaScript
is not a trivial task. The bizarre features of JavaScript, which were described in previous sec-
tions, make the precise capture of the program behaviour extremely difficult (Guarnieri and
Livshits, 2009; Jensen et al., 2009; Kashyap et al., 2014). Imprecise modelling of this eccen-
tric semantics dooms analysis to producing meaningless results. On the other hand, attempts
to consider all possible executions yield to an analysis that does not terminate. Hence, it is
very important to devise the proper abstractions to handle these language features accu-
rately without sacrificing performance.

Many works proposed in recent years have managed to effectively model some of these
features. Specifically, Jensen et al. (2009) and Kashyap et al. (2014) abstract values using
a tuple of lattices to address the dynamic typing of variables. For example, consider a tuple
of lattices ̂Integer × ̂String × B̂ool to abstract variables that may hold integers, strings,
and booleans. An abstract value (Pos, “foo”,⊥) means that variable may be a positive
integer or a string “foo”, but it cannot be a boolean. Beyond that, Jensen et al. (2009)
models the dynamic update of object properties more precisely by exploiting a technique
called recency abstraction (Balakrishnan and Reps, 2006), which minimises the imprecision
coming from weak updates. A weak update is performed on statements of the form x.f =

v, when x points to multiple objects. In this case, the new value v is joined with the previous
values of f for all the objects to which x points. To address this issue, this technique keeps
track of the most recent allocated object on which it performs a strong update, whereas
it weakly updates the older objects. Another work of Wei and Ryder (2014) introduces a
state-sensitive analysis; a variation of object-sensitive analysis (Recall Section 2.2.1). State-
sensitivity is able to distinguish two function calls depending on the state of the receiver (i.e.
set of object properties along with their values). Therefore, it improves the precision of the
analysis, because every dynamic update, addition or deletion of object properties is tracked.
For instance, consider the following code snippet (Wei and Ryder, 2014):
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1 function Foo() { /* code */}

2 function Bar() { /* code */}

3
4 var x = {

5 baz: function(u, v) {

6 u.f = v;

7 },

8 f: new Foo()

9 }

10
11 x.bar(x.f , 10);

12 x.f = new Bar();

13 x.bar(x.f , 11);

Using a state-sensitive analysis, the two function calls at lines 11, 13 are separated, because
the state of receiver x is changed at line 12. As a result, the analysis performs a strong up-
date at line 6 for both calls, since property f points to a unique object when function bar is
invoked (lines 11, 13).

An alternative approach followed by many works such as those of Guarnieri and Livshits
(2009) and Kashyap et al. (2014) is to neglect features that are tricky to statically anal-
yse. This approach is closely related to an emerging term in static analysis called soundi-
ness (Livshits et al., 2015). Soundy analyses choose to purposely bypass some programming
features, (e.g. because they do not appear very often), but they soundly analyse the re-
mainder. Conceptually, they combine both soundness and unsoundness, aiming to perform
effectively on the subset of the language. For example, Guarnieri and Livshits (2009), who
proposed one of the first pointer analyses for JavaScript, precluded the use of eval-family
functions from their analysis. Their analysis focused on widgets where the use of eval is not
common, even though in other real-world applications, the use of such language constructs
is prevalent (Richards et al., 2011). Also, Guarnieri and Livshits (2009) illustrated that a
combination of dynamic features may harm the effectiveness of the analysis; therefore, extra
care should be given. For example, simply restricting the explicit use of eval function does
not prevent the dynamic use of it, as illustrated by the following piece of code (Guarnieri
and Livshits, 2009):

1 var foo = this["eval"];

2 foo("inject code here");

Here, this points to the global object, and through a dynamic property lookup, eval func-
tion is loaded to variable foo. To this end, they instrumented runtime code to prevent such
cases if the name of the property cannot be resolved statically.

Other works employed different approaches to handle such dynamic features. For instance,
Park et al. (2013) developed a mechanism for converting programs that use with statement
into with-free programs. Another example comes from the work of Jensen et al. (2012) who
proposed a semantics-preserving program transformation to eliminate calls of eval function.

Environment and Libraries. JavaScript applications reside in a complex environment and
they make a pervasive use of libraries and frameworks. For instance, client-side applications
interact with HTML document and browser using the DOM and BOM API respectively and
they receive inputs from user via events, e.g. mouse click, mouse move, etc. The code of
these APIs is not available to the analyser, as they have been implemented natively. At the
same time, applications often use complicated libraries like jQuery that hinder the perfor-
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mance of the analysis or analyser can reason about. A simple workaround to analyse such
applications is to create stubs for library and environment functions (Guarnieri and Livshits,
2009). These stubs reflect all possible results derived from the invocation of these functions,
but the problem with this approach is the high rate of inaccuracy.

The most widespread method to deal with these issues, which is employed by many static
analysers, is to provide models (Jensen et al., 2011; Kashyap et al., 2014; Park et al., 2016;
Madsen et al., 2015). In general, modelling is a demanding and error-prone task though,
which may harm the soundness of the analysis (Guarnieri and Livshits, 2009; Park et al.,
2016). For example, designers have to decode vague and difficult to understand specifi-
cations (e.g. ECMAScript, DOM specification, etc.) in order to implement models prop-
erly (Park et al., 2016). However, modelling has a positive impact on the precision and the
scalability of the analysis, if it is applied correctly (Park et al., 2016).

Much progress has been made for modelling the environment of client-side applications.
Jensen et al. (2011) models HTML DOM by creating an hierarchy of abstract states which
reflect the actual HTML object hierarchy. For instance, a HTMLFormEelement abstract object
contains properties like elements, action, method, etc., and derives other properties from
the hierarchy chain, e.g. from its parent HTMLElement and so forth. Before analysis begins,
an initial heap is constructed which contains the set of the abstract objects corresponding to
the HTML code of the page. Park et al. (2016) follow a similar approach for modelling HTML
DOM. They also provide a more precise model which respects the actual tree hierarchy of the
DOM. For example, their model distinguishes the two different div nodes at the following
case, as the one is nested to another.

1 <div>

2 <div></div>

3 </div>

A semi-automatic approach to model APIs is proposed by Bae et al. (2014). Specifically, they
automatically model libraries by taking advantage of APIs specification written in Web IDL2.
Their approach first analyses APIs specification, and extracts information about functions’
signature i.e. return type. Based on this specification, they model function calls by returning
an abstract object with regards to the return type pointed by the specification. For example,
if specification states that function foo returns a value of type Bar, their analysis generates
an abstract object whose structure follows that of Bar. Note that every type, that is, the
structure of the objects, (e.g. the set of properties that an object returned by the function
must contain), is also described in the specification.

Madsen et al. (2013) sacrifice soundness for scalability. They technique they propose is able
to analyse JavaScript applications even if they operate in complex environment and interact
with native or large libraries. They employ a combination of a pointer and a use analysis
for determining the values that an API call might return. Their analysis is flow- and context-
insensitive and is evaluated on benchmarks that consist of up to 30,000 lines of library code.
Their work demonstrate that soundness is not always a requirement for designing analysis
that is both scalable and precise.

2https://heycam.github.io/webidl/

12

https://heycam.github.io/webidl/


Chapter 2. Background 2.2. STATIC ANALYSIS FOR JAVASCRIPT

Tools

There are many static analysis frameworks developed for JavaScript. We discuss the most
notable ones.

TAJS (Jensen et al., 2009) is a static analyzer for JavaScript which implements a classical
dataflow analysis using monotone frameworks (Kam and Ullman, 1977) which is aimed to
be sound. It uses a special lattice designed for JavaScript which handles the vast majority
of JavaScript’s features and its complicated semantics. Analysis is both flow- and context-
sensitive. Initially, it begins on top of an approximated control-flow graph (CFG) which
describes the intra-procedural flow of the program. Gradually, the inter-procedural flow is
constructed on the fly when analysis encounters function calls or exception statements. Ev-
ery node of CFG corresponds to a transfer function which computes the next abstract state
resulted by the execution of this node. The aim of the analysis is to compute all reach-
able states given an initial state. By inspecting every state, TAJS is able to detect various
type errors such as, use of a non-function variable as a function, property access of null
or undefined variables, inconsistencies caused by implicit type conversions, and many oth-
ers (Jensen et al., 2009). At the end of the analysis, TAJS determines the call graph of the
program as well as an abstract representation of the heap.

TAJS has a good support for client-side JavaScript applications, as it provides complete mod-
els for DOM and BOM APIs (Jensen et al., 2011) and has been evaluated on many different
versions of jQuery (Andreasen and Møller, 2014); its support for Node.js applications is lim-
ited though.

SAFE (Lee et al., 2012) is static analysis framework, which provides three different repre-
sentations of JavaScript, that is, an AST, an IR and a CFG. This facilitates users to design and
implement client analyses on the right level of abstraction. For instance, a client analysis that
aims to find duplicate JavaScript code operates on AST (Lee et al., 2012). For this reason,
analysis is implemented in phases: parsing (source code to AST), compilation (AST to IR),
and building of CFG (IR to CFG). This modular architecture allows users to add extensions
at whichever phase they want. SAFE implements a default analysis phase which is plugged
after the construction of CFG. This analysis adopts a similar approach with that of TAJS, i.e.
a flow- and context-sensitive analysis which operates on top of CFG. Similar to TAJS, SAFE
provides models for DOM and BOM APIs (Park et al., 2016). It has been also used for de-
tecting API misuses of platform libraries (Bae et al., 2014).

JSAI (Kashyap et al., 2014) implements an analysis through abstract interpretation fram-
work (Cousot and Cousot, 1977). Specifically, it employs a different approach compared to
other existing tools. Unlike TAJS and SAFE, JSAI operates on top of AST rather than CFG;
it is flow-sensitive though. To achieve this, abstract semantics is specified on a CESK ab-
stract machine (Felleisen and Friedman, 1987), which provides small-step reduction rules
and an explicit data structure (i.e. continuation) which describes the rest of computation,
unwinding the flow of the program in this way. The rationale behind this design decision is
that CFG of a JavaScript program is not known apriori, and cannot be computed precisely,
leading to imprecision (Kashyap et al., 2014). JSAI also supports concrete semantics which
were tested against a large number of JavaScript applications and have been proven to be
sound (Kashyap et al., 2014). Analysis is configurable with different flavours of context-
sensitivity which are plugged into the analysis through widening operator used in the fix-
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point calculation (Hardekopf et al., 2014). Finally, JSAI provides partial models for DOM
and browser APIs, and presents a proof of concept client analysis which simply counts the
number of type errors in a program.

2.3 The Asynchronous JavaScript

Indisputably, the major domain of JavaScript is web applications (both client- and server-
side). One of the non-functional requirements of this kind of applications is that they should
be highly responsive in order to be able to serve a large number of requests and provide the
best possible experience to their users. This requires that time-consuming operations do not
block the execution of the main flow of the program. For example, when a JavaScript client-
side code issues an HTTP request to a server, web UI should not be blocked: it should operate
normally and allow user to perform other tasks. In programming languages like Java or C,
one standard way to improve throughput in an application and run multiple expensive tasks
in the background is using threads. However, JavaScript differs from these languages, as it
adopts a single-threaded execution model. JavaScript achieves high throughput by embrac-
ing an event-driven programming paradigm. Specifically, code, namely, callback, is executed
in response to events (e.g. mouse click, response arrived from a server, file read from disk,
etc.). Also, an expensive task like an I/O operation (e.g. request to a server, etc.) is asyn-
chronous, meaning that execution is not interrupted, waiting the operation to terminate. On
the contrary, execution proceeds to the next tasks and programmer registers callbacks which
are invoked later in the future when the expensive operation is complete. As we will see
later, this asynchrony is the source of many concurrency errors due to the non-deterministic
execution of asynchronous operations and event handling (Wang et al., 2017).

This section is dedicated to asynchrony of JavaScript applications. First, we present the main
sources of asynchrony in JavaScript applications. Then, we illustrate how JavaScript engines
like Node.js implements asynchrony. Finally, we discuss the various concurrency bugs which
stem from asynchrony and what kind of analyses have been developed to detect such bugs.

2.3.1 Sources of Asynchrony

JavaScript heavily relies on callbacks to achieve asynchrony. Callbacks are just functions
that are passed as arguments to other functions. According to a study of Gallaba et al.
(2015), more than half of the callbacks found in a program are executed asynchronously
which means that are not processed the time when they are passed to the callee function.
The main sources where this asynchronous execution occurs in JavaScript applications are
I/O operations, events, promises and timers.

I/O Operations

When a JavaScript program executes an I/O operation, it processes it asynchronously. Typi-
cal examples of I/O operations are network operations (e.g. HTTP requests to a server), or
file system operations (e.g. read and write to/from a file). A popular example comes from
client-side JavaScript as follows:

1 var request = new XMLHttpRequest ();

2 request.onreadystatechange = function () {

3 // Code is executed when we receive the response the from server.

4 };
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5 request.open("GET", "www.example.com");

6 request.send ();

7 // other code

In this example, we issue an AJAX GET request to ‘www.example.com’. When we submit this
request to the server (line 6), the execution is not interrupted, but it continues processing
the next code. For this reason, we register a callback function at line 2, which is called when
client receives the response from the server.

The same pattern is used when we read a file in a Node.js application as follows:

1 var fs = require("fs");

2
3 fs.readFile("myfile", function (err , data) {

4 // Code is executed when read of file is completed.

5 });

6 // other code

Again, program reads file ‘myfile’ asynchronously, and when read is complete, the callback
passed by the programmer at line 3 is executed.

Events

As it is already mentioned, developers can add callback functions in response to events
coming from the external environment, e.g. mouse clicks, keyboard typing, etc. In particular,
when an event is triggered from the interaction of a user with DOM, JavaScript engine
executes the corresponding callback asynchronously. For example, consider this code:

1 <script >

2 function foo() {

3 // code

4 }

5 </script >

6 <button id="bar" onclick="foo()">Foo</button >

If user clicks the button with id “bar”, callback foo() will be invoked asynchronously, i.e. at
some point later in the future.

However, note that triggering an event through dispatchEvent() of client-side JavaScript (MDN,
2018) or emit() of Node.js (v10.3.0 Documentation, 2018) results in the synchronous exe-
cution of the registered callbacks. For example, imagine the following code:

1 var emitter = require("events");

2
3 var foo = new emitter ();

4 foo.on("bar", function () {

5 // This code is executed synchronously

6 // when event ‘bar’ is triggered.

7 })

8 foo.emit("bar");

9 // other code

At line 4, we register a callback as a response to event “bar”. When we trigger event “bar”
at line 8, callback is executed synchronously, and thus, execution proceeds to the next code
only if callback terminates.
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Promises

The 6th edition of ECMAScript specification (ECMA-262, 2015) introduced a new language
construct which is inherently related to asynchronous computation (Madsen et al., 2017),
namely, promises. Promises are used to describe the state of (asynchronous) operations.
According to ECMAScript specification (ECMA-262, 2015), the state of a promise object can
be one of:

• fulfilled: the associated operation has been completed and the promise object tracks its
resulting value.

• rejected: the associated operation has failed and the promise object tracks its erroneous
value.

• pending: the associated operation has been neither completed nor failed.

Promises are particularly useful for asynchronous programming, because they facilitate the
creation of chains of asynchronous computation (Madsen et al., 2017). One problem that
arises with asynchronous operations and callbacks as presented previously is that it is not
intuitive to the programmer how to enforce a sequence of such operations. For instance,
imagine that we need to call an asynchronous function async1. After its completion we
need to call another asynchronous function async2, and so forth. The standard way to
enforce this order of computation is through nested callbacks as follows:

1 async1(function () {

2 // callback of async1

3 async2(function () {

4 // callback of async2

5 async3(function () {

6 // callback of async3

7 ..

8 })

9 })

10 });

However, this approach engenders a deep nesting which poses a number of maintainability
issues (i.e. callback hell) (Gallaba et al., 2015, 2017).

Programmer can intuitively create such sequence of operations by calling then() of a promise
object. This function receives two callbacks that are called asynchronously once the receiver
object has been either fulfilled or rejected. These callbacks get one argument which is the
value based on which promise is fulfilled or rejected. Also, then() allocates a new promise
whose value with which is fulfilled or rejected depends on the return value of the callback
registered during the invocation of then(). In this way, programmer enforces the order of
operation by constructing a chain of promises as shown in Figure ??.

The code snippet above illustrates how we achieve an execution order between multiple
asynchronous operations via promises. When an asynchronous operation finishes its job, it
resolves the promise using the function resolve() (lines 3, 10, 16). The resolved value is
propagated to the next operation through the argument of the callback passed to then() (i.e.
value in our example). It is guaranteed that async1 is executed before async2, and async2

before async3, because the callbacks passed to then() are called only when the promise is
fulfilled, i.e. the asynchronous operations associated with the promise is complete. Chaining
promises also facilitates error propagation and error handling; something that is extremely
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1 var promise = new Promise(function(resolve , reject) {

2 async1(function () {

3 resolve("async1 completed");

4 })

5 });

6
7 promise.then(function(value) {

8 return new Promise(function(resolve , reject) {

9 async2(function () {

10 resolve("async2 completed");

11 });

12 });

13 }).then(function(value) {

14 return new Promise(function(resolve , reject) {

15 async3(function () {

16 resolve("async3 completed");

17 });

18 });

19 });

Figure 2.2: An example of a promise chain.

difficult to be expressed through nested callbacks (Gallaba et al., 2017; Madsen et al., 2017).

A typical way to initialise a new promise is via promise constructor. The promise constructor
creates a fresh promise, and expects a function which is named promise executor. Promise
executors receive two internal functions as arguments, (i.e. they are not transparent to the
developers), which are used to fulfill and reject the created promise respectively.

Timers

JavaScript also provides some mechanisms to schedule the execution of some code at some
point later in the future. For example, function setTimeout() is used to schedule the ex-
ecution of a callback when some period of time elapses, whereas function setInterval()

executes a callback periodically. Note again that these callbacks are executed asynchronously,
therefore, in the following code, the callback of setTimeout() is called after someExpensiveJob()
finishes doing its work, even though it is scheduled for execution after 0 milliseconds.

1 setTimeout(function () {

2 // Code will be executed after

3 // someExpensiveJob () is complete

4 }, 0);

5 someExpensiveJob ();

2.3.2 Runtime Architecture

JavaScript executes all the asynchronous callbacks through the event loop. The high-level
idea of the event loop is that it is “perpetually” waiting for new events to come, and when
an event arrives, the event loop synchronously executes its callbacks via a single thread.
Figure 2.2 demonstrates the main architecture of the event loop. When the execution of all
top-level code is complete, event loop fires and waits for events to be triggered. When an
event takes place, JavaScript puts its associated callbacks (if any) into an event queue. In
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Figure 2.3: High-level architecture of the event loop (Wang et al., 2017; Davis et al., 2017).
Event loop fetches scheduled callbacks from event queue (1) and processes them sequentially.
Time consuming callbacks are assigned to a different queue (2) maintained by the worker pool.
In turn, worker pool executes them concurrently via multiple threads (3), and upon completion,
it notifies event loop via special events (4).

turn, event loop dequeues one callback at a time, and executes it using one single thread
in a synchronous manner. Note that the execution of every callback is atomic, therefore it
cannot be interleaved with other callbacks.

Since all callbacks in event loop are executed synchronously, there is an extra component in
this architecture to avoid blocking the event loop due to the execution of time-consuming
callbacks. Examples of such expensive callbacks are I/O operations (e.g. DNS queries,
filesystem operations), or CPU-bound operations (e.g. crypto modules) (Node.js, 2018a).
Specifically, when an expensive callback comes to place, the event loop defers its execu-
tion, and assigns it to a different queue (namely, task queue) maintained by the worker
pool. Unlike event loop, execution inside the worker pool is multi-threaded, consisting of k
threads (Node.js, 2018a). Thus, the worker pool fetches expensive tasks and executes them
concurrently. After their execution, the worker pool notifies the event loop of their comple-
tion, through special events whose callbacks are again placed in the event queue.

Note that different JavaScript execution engines may use different policies for processing
the scheduled callbacks at step (1). For example, client-side JavaScript processes load call-
backs before any other callback (Jensen et al., 2011). On the other hand, Node.js executes
callbacks through six different phases in a round robin fusion, e.g. it processes all callbacks
related to phase for a while, it then proceeds to the next phase, and so on (Loring et al.,
2017; Wang et al., 2017; Node.js, 2018b).

2.3.3 Concurrency Bugs

Although execution is single-threaded, concurrency issues still exist in JavaScript programs
because of the non-deterministic processing of callbacks from event loop (Wang et al., 2017;
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Davis et al., 2017). Specifically, even though some JavaScript engines support some sort
of scheduling policies (Loring et al., 2017; Wang et al., 2017; Node.js, 2018b), in general,
event loop processes callbacks non-deterministically (Davis et al., 2017). Also, recall from
Figure 2.2 that worker pool processes time-consuming tasks concurrently, thus, there is not
guarantee about the completion order of these tasks.

This non-determinism instigates a number of challenges to the developers. The misuse of the
asynchrony-related features of JavaScript and the wrong assumptions about the execution
order of callbacks can cause a number of concurrency bugs. Several previous studies (Zheng
et al., 2011; Hong et al., 2014; Wang et al., 2017; Davis et al., 2017) have classified these
bugs into two major categories based on their pattern: 1) order violation, and 2) atomicity
violation.

Order Violation. An order violation occurs when two operations are supposed to be ex-
ecuted in a specific order, but this order is not guaranteed by the runtime. For example,
consider a classical example already presented in the literature (Madsen et al., 2015):

1 var fs = require("fs");

2
3 fs.writeFile("myfile", "data", function(err , data) {

4 // Callback of writeFile ()

5 });

6 ..

7 fs.stat("myfile", function(err , stats) {

8 // Callback of stat()

9 });

In this code snippet, the intention of the programmer is to create a new file named ‘myfile’,
and at future point, they want to retrieve the stat information of this file using function
stat(). However, the functions writeFile(), and stat() are asynchronous, and their ex-
ecution order is not deterministic. If stat() is executed before writeFile(), programmer
will receive a “File not found” error. However, recall that programmers can enforce the right
sequence of operations, via nested callbacks or promises (Section 2.3.1).

Atomicity Violation. An atomicity violation happens when two operation are supposed to
be atomic, (i.e. the intention is to be processed together without the interleaving of any
other operation) but this atomicity is not enforced. An example of a code which is prone to
atomicity violation is the following:

1 var x;

2 var data = {};

3
4 function foo() {

5 x += 1;

6 someAsyncOperation(function(asyncData) {

7 data[x] = asyncData;

8 });

9 }

The program above maintains two global variables, that is, a counter x, and an object data.
The program also has a function foo(). When it is called, it fist increments the counter
by one (line 5), and then performs an asynchronous operation (line 6). When this asyn-
chronous operations terminates, its callback puts the resulting data to the global object data
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based on the value of the counter x (line 7). The callback of the asynchronous operation and
function foo() are not atomic though. Most notably, if we call function foo() twice, it can
be the case that the update of counter x performed by the second call at line 5 precedes the
execution of the callback of the first call. In other words, we have the following erroneous
sequence of operations: foo1 → foo2 → callback1 → callback2, whereas the indented order
is: foo1 → callback1 → foo2 → callback2. The consequence of the wrong order is that we
eventually miss the data coming from the first callback.

Notice that a notable difference between order and atomicity violations is that the former
need only one call to manifest themselves, while the latter require multiple calls (recall, we
assumed that function foo() is invoked twice) (Davis et al., 2017). Also, the recent studies
of Wang et al. (2017) and Davis et al. (2017) showed that atomicity violations is the most
prevalent bug pattern in Node.js applications.

Other bug patterns. (Wang et al., 2017) also identified one more bug pattern which is
caused by the scheduling policies implemented in Node.js event loop. The name of this bug
is starvation and it occurs when a callback or a task blocks the execution of other callbacks.
For instance, consider the following piece of code (Loring et al., 2017):

1 var fs = require("fs");

2
3 function foo() {

4 process.nextTick(foo);

5 }

6 fs.writeFile("myfile", "data", function () {

7 // Never executed.

8 });

9 foo();

When we execute foo(), process.nextTick() schedules its callback immediately regardless
of the presence of other callbacks in the event queue. Since we recursively re-schedule foo()
via process.nextTick(), callback of writeFile() will never be executed due to the high
priority of process.nextTick().

2.3.4 Detecting Concurrency Bugs

The consequences of such concurrency bugs are pernicious for the vast majority of appli-
cations (Wang et al., 2017; Davis et al., 2017). Specifically, these bugs can have a really
negative impact on the reliability of the software: they lead to software crashes, incorrect
outputs, and inconsistent states (Zheng et al., 2011; Wang et al., 2017; Davis et al., 2017).
Even client-side applications, where a large number of these bugs result in innocent UI er-
rors, are often negatively affected if these bugs concern browser storage (Mutlu et al., 2015).
Hence, many techniques have been developed as an effort to detect such bugs in JavaScript
programs.

Client-side JavaScript. The initial focus of researchers was on detecting concurrency bugs
on client-side JavaScript. Zheng et al. (2011) proposes one of the first bug detectors which
employs a static analysis for identifying concurrency issues in asynchronous AJAX calls. The
aim of their analysis is to detect data races between the code which pre-processes an AJAX
request and the callback invoked when the response of the server is received. In other words,
if there is an update of a global variable (or a variable which is dependent on a global) in
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the code which pre-processes the request, and the same variable is used in the response call-
back, their analysis reports a possible error. Their approach took advantage of call graphs
produced by other core analyses, and on top of that, they defined Datalog rules in order to
infer data races.

In a subsequent work, Petrov et al. (2012) have adopted a dynamic analysis to detect data
races in web applications. They first proposed a happens-before relation model, to capture
the order of execution between different operations that are present in a client-side appli-
cation. Example of such operations are load of HTML elements, execution of scripts, event
handling and callback of timers, i.e. setTimeout(), setInterval(). Their model defines
precise relations between those operations. For example, two inline scripts (i.e. their code
is inside the HTML page) are executed in the order they appear. Using this model, their
analyses reports data races, if two operations access the same variable (at least one of them
writes to it), and there is not any happens-before relation between them. However, their
approach introduced a lot of false positives, at the most data races did not lead to severe
concurrency bugs.

Mutlu et al. (2015) has combined both a dynamic and static analysis and primarily focused
on detecting data races that have severe consequences on the correctness of applications,
reporting data races that mainly affect browser storage. Initially, they collect the execution
traces of an application, and then, they apply a dataflow analysis on these traces which in-
spects different executions of event callbacks or asynchronous operations, targeting to find
data races. Their analysis keeps a state which is map of variables’ locations to their values.
The states derived from the multiple executions of a callback are merged. If a sensitive loca-
tion (e.g. cookie) contains multiple values, then their tools flags this location as a data race,
because its value is dependent on the schedule of the callback (i.e. different schedules pro-
duced different values). Their approach effectively managed to report a very small number
of false positives (Mutlu et al., 2015).

Server-side JavaScript. Little work has been done so far regarding the development of con-
currency bug detection tools for server-side applications (Wang, 2017). A very recent tool is
proposed by Davis et al. (2017), which builds Node.fz; a fuzzer for Node.js applications. The
key idea of their approach is to shuffle the callbacks located at the event and task queues of
event loop and worker pool respectively (Recall Figure 2.2). In this way, they emulate differ-
ent sequences of arrivals of events and they also explore different execution orders of tasks
assigned to the worker pool. Node.fz does not produce false positives, however, it may miss
possible bugs as its effectiveness is closely dependent on the input data of the application.

Building tools for detecting concurrency bugs in this kind of applications is a promising
area though, because recent studies pointed out the high severity of these bugs(Wang et al.,
2017; Davis et al., 2017). Beyond that, the works of Loring et al. (2017) and Madsen et al.
(2017), who presented new JavaScript semantics for modelling event loop and asynchronous
operations, give a lot of opportunities for better reasoning about JavaScript’s asynchrony and
building new analyses and tools on top of them.
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Chapter 3

Modelling Asynchrony

The focus of our work is to develop a static analysis technique which is able to handle and
reason about the asynchrony in JavaScript. As a starting point, we first need to define a
model for the asynchronous constructs found in JavaScript such as promises, timers and
asynchronous I/O. The goal of this model is to provide us with the foundations for gaining
a better understanding of these features and ease the design of a static analysis for asyn-
chronous JavaScript programs. This model is expressed through a calculus called λq; an
extension of the core calculus λjs for JavaScript developed by Guha et al. (2010). Note that
our model is inspired from the previous works of Loring et al. (2017); Madsen et al. (2017)
who also extended λjs to deal with asynchronous primitives and promises respectively. Con-
trary to their works, our model keeps track the effects of uncaught exceptions when they are
triggered in the execution of callbacks. The λq calculus is the touchstone of the analysis intro-
duced in Chapter 4, where we devise the domains and the semantics that over-approximates
our model. Note that our calculus λq is designed to model almost all asynchronous primitives
of JavaScript up to the 7th edition of the ECMAScript specification (i.e. promises, timers,
asynchronous I/O). However, we do not handle Promise.all() function, and async/await

keywords which were introduced in the 8th version of ECMAScript (ECMA-262, 2018).

In this chapter, we first introduce the λq calculus; a variation of λasync and λp (Loring et al.,
2017; Madsen et al., 2017). We present its syntax, its concrete domains, and its semantics
(Section 3.1). Then, we provide models for our asynchronous constructs in terms of λq
(Section 3.2). Finally, we highlight the main differences of λq with the existing models
(Section 3.3).

3.1 The λq calculus

Our calculus, as the previous works of Loring et al. (2017); Madsen et al. (2017), introduces
new special language elements for treating asynchrony. The key component of our model
is called queue object and it is closely related to JavaScript promises. Specifically, a queue
object (like a promise) tracks the state of an asynchronous job, and it can be in one of the
following states: 1) pending, 2) fulfilled or 3) rejected. A queue object may have registered
callbacks which are executed depending on its state, i.e. there are two distinct lists for stor-
ing callbacks: the first one holds the callbacks which are triggered once the queue object
is fulfilled, while the second list contains the callbacks which are called upon the rejection
of the queue object. Initially, a queue object is in a pending state. A pending queue object
can transition to a fulfilled or a rejected queue object. A queue object might be fulfilled or
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rejected with a given value which is later passed as argument in the registered callbacks.
Once a queue object is either fulfilled or rejected, its state is final and cannot be changed.
We keep the same terminology as promises, so if a queue object is either fulfilled or rejected,
we call it settled.

In the following sections, we first present the concrete domains and the syntax of λq which
introduces new expressions for dealing with the state of queue objects. In turn, we describe
the semantics of the new language constructs.

3.1.1 Syntax and Domains

v ∈ V al ::= ...
| ⊥

e ∈ Exp ::= ...
| newQ()

| e.fulfill(e)
| e.reject(e)
| e.registerFul(e, e, . . . )
| e.registerRej(e, e, . . . )
| append(e)
| pop()

| •

E ::= ...
| E.fullfill(e) | v.fulfill(E)
| E.reject(e) | v.reject(E)
| E.registerFul(e, e, . . . ) | v.registerFul(v, . . . , E, e, . . . )
| E.registerRej(e, e, . . . ) | v.registerRej(v, . . . , E, e, . . . )
| append(E)

u ∈ Fun = the set of functions

f ∈ F = Fun ∪ {defaultFulfill, defaultReject}

Figure 3.1: Syntax and evaluation contexts of λq.

Figure 3.1 illustrates the syntax of λq. For brevity, we present only the new constructs added
to the language. Specifically, we add eight new expressions:

• newQ(): This expression creates a new queue object in a pending state with no call-
backs associated with it.

• e1.fulfill(e2): This expression fulfills the receiver (i.e. expression e1) with the value
of e2.

• e1.reject(e2): This expression rejects the receiver (i.e. expression e1) with the value
of e2.
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• e1.registerFul(e2, e3, . . . ): This expression registers a new callback e2 to the receiver.
This callback is executed only when the receiver is fulfilled. This expression also expects
another queue object which is passed as the second argument, i.e. e3. This queue object
will be fulfilled with the return value of callback e2. This allows us to model chains of
promises where a promise is resolved with the return value of the callback of another
promise (Recall Section 2.3.1). This expression also expects optional parameters (i.e.
expressed through “. . . ”) with which e2 is called if the queue object is fulfilled but not
with a certain value.

• e1.registerRej(e2, e3, . . . ): The same as e.registerFul(. . . ) but this time the given
callback is executed once the receiver is rejected.

• append(e): This expression appends queue object e to the top of the current queue
chain. As we shall see later, the top element of a queue chain corresponds to the queue
object that is needed to be rejected if the execution encounters an uncaught exception.

• pop(): This expression pops the top element of the current queue chain.

• The last expression • stands for the event loop.

Observe that we use evaluation contexts (Felleisen et al., 2009; Guha et al., 2010; Madsen
et al., 2015; Loring et al., 2017; Madsen et al., 2017) to express how the evaluation of
an expression proceeds. The symbol E denotes which sub-expression is currently being
evaluated. For instance, E.fulfill(e) describes that we evaluate the receiver of fulfill,
whereas v.fulfill(E) implies that the receiver has been evaluated to a value v, and the
evaluation now lies on the argument of fulfill. Beyond those expressions, the syntax of λq
introduces two functions, namely, defaultFulfill and defaultReject. The semantics of
these functions is presented in the following section. Also, λq introduces a new value, that
is, ⊥. This value differs from null and undefined, and is used to express the absence of
value.

a ∈ Addr = {li | i ∈ Z∗} ∪ {ltime, lio}
π ∈ Queue = Addr ↪→ QueueObject

q ∈ QueueObject = QueueState× Callback∗ × Callback∗ ×Addr
s ∈ QueueState = {pending} ∪ ({fulfilled, rejected} × V al)
clb ∈ Callback = Addr × F × V al∗

κ ∈ ScheduledCallbacks = Callback∗

κ ∈ ScheduledT imerIO = Callback∗

φ ∈ QueueChain = Addr∗

Figure 3.2: Concrete domains of λq.

Figure 3.2 presents the domains introduced in the semantics of λq. In particular, a queue is
a partial map of addresses to queue objects. An address is indicated by symbol li, where i
is a positive integer. Notice that the set of the addresses also includes two special reserved
addresses, i.e. ltime, lio, which are used to store the queue objects responsible for keeping the
state of callbacks related to timers and asynchronous I/O respectively (Section 3.2 explains
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how these JavaScript features are modelled). A queue object is described by its state (re-
call that a queue object is either pending, fulfilled with a value or rejected with a value), a
sequence of callbacks which are executed on fulfillment, and a sequence of callbacks which
are called on rejection. The last element of a queue object is an address which corresponds
to another queue object which is dependent on the current, i.e. they are settled whenever
the current queue object is settled, and with exactly the same state. We create such depen-
dencies when we settle a queue object with another queue object. In this case, the receiver
is dependent on the queue object used as argument.

Moving to the domains of callbacks, we see that an element of that domain is a tuple of an
address, a function to be executed, and a list of values (i.e. arguments of function). Note
that the first component of this domain denotes the address of the queue object which is
going to be fulfilled with the return value of the function. In a list of callbacks, namely
κ ∈ ScheduledCallbacks, we keep the order in which callbacks are scheduled. Note that we
maintain one more list of callbacks (i.e. τ ∈ ScheduledT imerIO) where we store callbacks
registered in the queue objects located at the special addresses ltime, lio. We defer the discus-
sion about why we keep two separate lists until Section 3.1.3.

A queue chain φ ∈ QueueChain is a sequence of addresses. In a queue chain, we store the
queue object that is needed to be rejected if there is an uncaught exception in the current
execution. Specifically, when we encounter an uncaught exception, we inspect the top el-
ement of the queue chain, and we reject it. If the queue chain is empty, we propagate the
exception to the call stack as normal. Recall from Figure 3.1 that there is a special syntax for
adding and removing elements from the queue chain explicitly.

3.1.2 Semantics

Equipped with the appropriate definitions of the syntax and domains, in Figure 3.3, we
present the small-step semantics of λq which is an adaptation of (Loring et al., 2017; Mad-
sen et al., 2017). Note that we demonstrate the most representative rules of our semantics;
some rules are omitted for brevity. The reader is referred to Appendix A for the rest of the
rules of λq. For what follows, the binary operation denoted by symbol · means the addition
of an element to a list, while the operation indicated by :: stands for list concatenation.

The rules of our semantics adopt the following form:

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

That form expresses that a given queue π, a queue chain φ, two sequences of callbacks, (i.e.
κ, τ), and an expression e in evaluation context E lead to a new queue π′, a new queue chain
φ′, two new sequences of callbacks (i.e. κ′ and τ ′ respectively), and a new expression e′ in
the same evaluation context E, assuming that the expression e is reduced to e′ (i.e. e ↪→ e′).
This behaviour is described by the [e-context] rule.

The [newQ] rule creates a new queue object and adds it to the queue using a fresh address.
This new queue object is initialised in a pending state, and it does not have any callbacks
related to it.

The [fulfill-pending] rule demonstrates the case when we fulfill a pending queue object
with value v which is not the ⊥ element, and does not correspond to a queue object. In
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e ↪→ e′

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]
[e-context]

fresh α π′ = π[α 7→ (pending, [], [], ⊥)]
π, φ, κ, τ, E[newQ()]→ π′, φ, κ, τ, E[α]

[newQ]

v 6= ⊥ (pending, t, k, l) = π(p) v 6∈ dom(π) t′ = 〈(α, f, [v], r) | (α, f, a, r) ∈ t〉
κ′ = κ :: t′ χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], l)] p 6= ltime ∧ p 6= lio

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[l.fulfill(v)]
[fulfill-pending]

(pending, t, k, l) = π(p) v ∈ dom(π)
p(v) = (pending, t′, k′,⊥) π′ = π[v 7→ (pending, t′, k′, p)]

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ, τ, E[undef]
[fulfill-pend-pend]

(pending, t, k, l) = π(p) v ∈ dom(π) p(v) = ((fulfilled, v′), t′, k′,m)

π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[p.fulfill(v′)]
[fulfill-pend-ful]

v = ⊥ (pending, t, k, l) = π(p) κ′ = κ :: t
χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], l)]

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[l.fulfill(v)]
[fulfill-pending-⊥]

π(p) ↓1 6= pending

π, φ , κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[undef]
[fulfill-settled]

(pending , t , k, l) = π(p) t′ = t · (p′, f, [n1, n2, . . . , nn], r)
π′ = π[p 7→ (pending, t′, k, l)]

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerFul-pending]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= fulfilled

s ↓2 6= ⊥ κ′ = κ · (p′, f, [s ↓2], r)
π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]

[registerFul-fulfilled]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= fulfilled

s ↓2= ⊥ κ′ = κ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerFul-fulfilled-⊥]

p = ltime ∨ p = lio (s, t , k , χ) = π(p) s ↓1= fulfilled

s ↓2= ⊥ τ ′ = τ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerFul-timer-io-⊥]

p ∈ dom(π) φ′ = p · φ
π, φ, κ, τ, E[append(p)]→ π, φ′, κ, τ, E[undef]

[append]

π, p · φ, κ, τ, E[pop()]→ π, φ, κ, τ, E[undef]
[pop]

φ = p · φ′

π, φ, κ, τ, E[err v]→ π, φ′, κ, τ, E[p.reject(v)]
[error]

Figure 3.3: The semantics of λq
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π, φ, κ, τ, E[defaultFulfill(v)]→ π, φ, κ, E[v]
[defaultFulfill]

π, φ, κ, τ, E[defaultReject(v)]→ π, φ, κ, E[err v]
[defaultReject]

Figure 3.4: The semantics of defaultFulfill, defaultReject functions.

particular, we first change the state of the receiver object from “pending” to “fulfilled”. In
turn, we update the already registered callbacks (if any) by setting the value v as the only
argument of them. Then, we add the updated callbacks to the list of scheduled callbacks κ
(assuming that the receiver is neither ltime nor lio). Also observe that the initial expression
is reduced to l.fulfill(v), that is, if there is a dependent queue object l, we also fulfill that
queue object with the initial value v.

The [fulfill-pend-pend] describes the scenario of fulfilling a pending queue object p with
another pending queue object v. In this case, we update queue π by making queue object p
to be dependent on v. This means that whenever p is settled whenever v is settled, and with
exactly the same way. Notice that both both p and v remain pending.

The [fulfill-pend-ful] rule demonstrates the case when we try to fulfill a pending queue
object p with another queue object v which is in a fulfilled state. Then, p simply resolves
with the value with which v is fulfilled. This is expressed by the resulting expression
p.fulfill(v′).

The [fulfill-pending-⊥] rule captures the case when we fulfill a queue object with a ⊥
value. This rule is the same with [fulfill-pending] however, this time we do not update
the arguments of the already registered callbacks of the queue object (if any).

The [fulfill-settled] rule illustrates the case when we try to fulfill a settled queue object.
Notice that this rule neither affects the queue π nor the lists of scheduled callbacks κ and τ .

The [registerFul-pending] rule adds the given callback f to the list of callbacks that
should be executed once the queue object p is fulfilled. Note that this rule also associates
this callback with the queue object p′ given as the second argument that should be fulfilled
upon the termination of f . Also, this rule adds any extra arguments passed in registerFul

as arguments of f .

The [registerFul-fulfilled] rule adds the given callback f to the list κ (assuming that
the receiver is neither ltime nor lio). The value with which the receiver is fulfilled is used
as the only argument of the given function. As the previous rule, it relates the given queue
object p′ with the execution of the callback. Notice that this time we ignore any extra argu-
ments passed in registerFul, as the value with which the queue object p is fulfilled is not ⊥.

The [registerFul-fulfilled-⊥] rule describes the case where we register a callback f
on a queue object which is fulfilled with a ⊥ value. Unlike the [registerFul-fulfilled]

rule, this rule does not neglect any extra arguments passed in registerFul. In particular, it
sets those arguments as parameters of the given callback. This distinction allows us to pass
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κ = (q, f, a) · κ′ φ = [] φ′ = q · φ
π , φ, κ, τ, E[•]→ π, φ′, κ′, τ, q.fulfill(E[f(a)]); pop(); •

[event-loop]

pick (q, f, a) from τ τ ′ = 〈ρ | ∀ρ ∈ τ. ρ 6= (q, f, a)〉
φ = [] φ′ = q · φ

π , φ, [], E[•]→ π, φ′, [], τ ′, q.fulfill(E[f(a)]); pop(); •
[event-loop-timers-io]

Figure 3.5: The semantics of the event loop

arguments explicitly to a callback. Most notably, these arguments are not dependent on the
value with which a queue object is fulfilled or rejected.

The [registerFul-timer-io-⊥] rule is exactly the same as the previous one, but this time
we deal with queue objects located either at ltime or at lio. Thus, we add the given callback
f to the list τ instead of κ.

The [append] rule appends an element p to the front of the current queue chain. Note that
this rule requires the element p to be a queue object (i.e. p ∈ dom(π)). On the other hand,
the [pop] rule simply removes the top element of the queue chain.

The [error] rule demonstrates the case when we encounter an uncaught exception and the
queue chain is not empty. In that case, we do not propagate the exception to the caller, but
we pop the queue chain and get the top element. In turn, we reject the queue object p which
is specified in that top element. In this way, we capture the concrete behaviour of uncaught
exceptions when they are triggered during the execution of an asynchronous callback or a
promise executor.

Finally, Figure 3.4 illustrates the semantics of the special functions defaultFulfill, and
defaultReject. It is easy to see that the rules are fairly simple: the defaultFulfill(v) is
reduced to v, while defaultReject(v) evaluates to err v. Both functions do not have any
side-effects to the queue, queue chain, or the lists of scheduled callbacks κ and τ .

3.1.3 Modelling the Event Loop

A reader might wonder why do we keep two separate lists, i.e. list τ for holding callbacks
coming from ltime or lio queue objects, and list κ for callbacks of any other queue object. The
intuition behind this design choice is that it is actually convenient for us to correctly model
the concrete semantics of the event loop. In particular, the implementation of the event
loop assigns different priorities to the callbacks depending on their kind (Loring et al., 2017;
Node.js, 2018b). For example, a callback of a promise object is executed before any callback
of a timer or an asynchronous I/O operation. The following code illustrates that scenario:

1 setTimeout(function foo() {

2 // executed after callback qux()

3 });

4
5 fs.readFile("file", function bar() {

6 // executed after callback qux()

7 })

8
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9 Promise.resolve("foo").then(function baz() {

10 // This callback is executed first.

11 }).then(function qux() {

12 // This callback is executed second.

13 })

Initially, (assuming that the I/O operation is complete) we have three callbacks ready for
execution (i.e. foo(), bar(), and baz()). The event loop deterministically picks baz(), be-
cause callbacks coming from promises have a higher priority than any other callbacks. After
the execution of baz(), we schedule callback qux(). In turn, the next iteration of the event
loop selects qux() for execution, even though it was scheduled much more after callbacks
foo() and bar(). The reason for that is again the same: the event loop favours callbacks of
promises over callbacks of timers and asynchronous I/O.

Note that in the next iteration of the event loop, i.e. after the termination of qux(), we do
not know which callback (i.e. foo() or bar()) the event loop is going to execute. Specifi-
cally, the Node.js implementation of the event loop schedules the non-promises callbacks in
different phases, where each phase is executed preemptively (Loring et al., 2017; Node.js,
2018b). For example, there is a phase, where the event loop executes callbacks associated
with timers, whereas there is a similar phase for I/O related callbacks.

In this context, Figure 3.5 demonstrates the semantics of the event loop. The [event-loop]

rule simply pops the first scheduled callback from list κ. Then, we get the queue object
specified in that callback and we attach it to the front of the queue chain. Adding the queue
object q to the top of the queue chain allows us to reject that queue object, if there is an
uncaught exception during the execution of f . In this case, the evaluation of fulfill will
not have any effect on the already rejected queue object q. Observe how the event loop is
evaluated (i.e. q.fulfill(f(a)); pop(); •). Specifically, once we execute callback f and fulfill
the dependent queue object q with the return value of that callback, we evaluate pop(), that
is, we pop the top element of the queue chain before we evaluate the event loop again. This
is an invariant of the semantics of the event loop: every time we evaluate the event loop, the
queue chain is always empty.

The [event-loop-timers-io] rule handles the case when the list κ is empty. In other
words, that rule simply states that if there are not any callbacks, which come from com-
mon queue objects (i.e. queue objects which are not located at any of the special addresses
ltime, lio), inspect list τ , which holds scheduled callbacks coming from the queue objects
located at ltime and lio, and pick non-deterministically one of those. Selecting a callback non-
deterministically allows us to over-approximate the concrete behaviour of the event loop
regarding the different execution phases (Loring et al., 2017). Overall, that rule describes
the scheduling policy presented in the work of Loring et al. (2017), where initially we look
for any callbacks of promises, and if there exist, we select one of those. Otherwise, we choose
any callback associated with timers and asynchronous I/O at random.

3.2 Modelling Asynchronous Primitives

In this section, we present how promises, timers, and asynchronous I/O can be expressed
through our calculus λq.
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3.2.1 Promises

The queue objects and their operations introduced in λq are very closely related to promises
of the ECMAScript specification (ECMA-262, 2018). Therefore, the translation of promises
operations into λq is straightforward. We model every property and method except for
Promise.all().

Promise Constructor

A model for the promise constructor is presented in the following code fragment:
1 function Promise(f) {

2 var promise = newQ();

3 append(promise);

4 f(p.resolve , p.reject);

5 pop();

6 return promise;

7 }

The promise constructor expects a function f, and it creates a new queue object via newQ

construct. According to the ECMAScript (ECMA-262, 2018), the promise constructor gets
the given function f and executes it synchronously by passing a pair of resolving functions
as argument. Note that previous models (Loring et al., 2017) mistakenly assumed that f is
executed asynchronously. Also, any uncaught exception that is triggered by the execution of
f is not propagated to the call stack. In contrast, the constructor rejects the created promise
with the uncaught exception. For that purpose, before we invoke function f, we append the
created promise to the queue chain via append(promise) expression. After the execution
of f, we pop that element through pop() at line 5. Also observe that we pass the resolving
functions p.fulfill and p.reject as arguments in f as the ECMAScript states (ECMA-262,
2018).

Promise.resolve

The JavaScript Promise.resolve() function creates a new promise, and resolves it with the
given value. This can be expressed via the following code:

1 Promise.resolve = function(value) {

2 var promise = newQ();

3 if (typeof value.then === "function") {

4 var t = newQ();

5 t.fulfill(⊥);
6 t.registerFul(value.then , t, promise.fulfill , promise.reject);

7 } else

8 promise.fulfill(value);

9 return promise;

10 }

According to the ECMAScript (ECMA-262, 2018), if the given value is a thenable, (i.e. an ob-
ject which has a property named “then” and that property is a callable), the created promise
resolves asynchronously. Specifically, the value.then is executed asynchronously, by passing
functions promise.fulfill and promise.reject as arguments. Observe how the expres-
siveness of λq can model this source of asynchrony (lines 4–6). First, we create a fresh queue
object t, and we fulfill it with ⊥ value (lines 4, 5). Then, at line 6, we schedule function
value.then by registering it on the newly created queue object. Notice that we also pass
promise.fulfill and promise.reject as extra arguments. That means that those functions
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will be the actual arguments of value.then, when it is called. On the other hand, if value
is not a thenable, we synchronously resolve the created promise using promise.fulfill at
line 8.

Promise.reject

The Promise.reject() function is similar to Promise.resolve(), however, this time we
reject the freshly created promise.

1 Promise.reject = function(value) {

2 var promise = newQ();

3 promise.reject(value);

4 return promise;

5 }

Promise.prototype.then

1 Promise.prototype.then = function(f1 , f2) {

2 if (typeof f1 !== "function")

3 f1 = defaultFulfill;

4 if (typeof f2 !== "function")

5 f2 = defaultReject;

6 var promise = newQ();

7 this.registerFul(f1 , promise);

8 this.registerRej(f2 , promise);

9 return promise;

10 }

The JavaScript method then() expects two optional callbacks: the first callback is executed
when the receiver is fulfilled, and the second one is invoked when the receiver is rejected.
If any of the given callbacks is not a function, then() registers the corresponding default
resolving function (i.e. either defaultFulfill() or defaultReject()) on the receiver. In
turn, it creates a fresh promise, and registers the given callbacks on the receiver (lines 6, 7).
Observe that the newly created promise is settled based on the return value of the given call-
backs (i.e. promise is the second argument of the registerFul and registerRej contructs).

Promise.prototype.catch

The Promise.prototype.catch() can be written as:

1 Promise.prototype.catch = function(f) {

2 return this.then(undefined , f);

3 }

Promise.race

Promise.race() gets an iterable of promises, and creates a new promise which resolves
asynchronously according to the promise included in the given iterable which is firstly ful-
filled or rejected. This is modelled as follows:
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1 Promise.race = function(iter) {

2 var promise = newQ();

3
4 function race() {

5 for (elem in iterable) {

6 promise.fulfill(elem);

7 }

8 }

9
10 var t = newQ();

11 t.fulfill(⊥);
12 t.registerFul(race , t);

13 return promise;

14 }

As before, we create a fresh queue object at line 10 to asynchronously execute function
race() (line 4) which is responsible for iterating over the sequence of promises and fulfilling
the promise allocated at line 2 with the promise which is firstly fulfilled or rejected.

3.2.2 Timers

To model timers we follow similar approach to the work of Loring et al. (2017). Specifically,
we start with a queue π, which contains a queue object qtime which is located at address
ltime. The queue object qtime corresponds to ((fulfilled, ⊥), [], [], ⊥). Besides that, we
extend the syntax of λq by adding one more expression as follows:

e ∈ Exp ::= ...
| addTimerCallback(e1, e2, e3, . . . )

E ::= ..
| addTimerCallbackCallback(E, e, . . . ) | addTimerCallback(v, . . . , E, e, . . . )

The new expression adds a new callback e1 to the queue object located at address ltime.
That callback should be called with any optional parameters passed in addTimerCallback,
namely, e2, e3, and so on. The exact semantics is presented below:

q = π(ltime)

π, φ, κ, τ, addTimerCallback(f, n1, . . . )→ π, φ, κ, q.registerFul(f, q, n1, . . . )
[addTimerCallback]

The rule above retrieves the queue object q corresponding to the address ltime (Recall again
that ltime can be found in the initial queue). Then, the given expression is reduced to
q.registerFul(f, q, n1, . . . ). In particular, we add a new callback f to the queue object
found at ltime. Observe that we pass the same queue object (i.e. q) as the second argu-
ment of registerFul. That means that the execution of f does not affect any queue object
since q is already settled. Recall that according to the [fulfill-settled] rule (Figure 3.3),
trying to fulfill (and similarly to reject) a settled queue object does not have any effect. Be-
yond that, since q is fulfilled with ⊥, the extra arguments (i.e. n1,. . . ) are also passed as of f .

The code snippet below demonstrates how we can model a timer, e.g. setTimeout() using
the new language construct.
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1 function setTimeout(f, t, n1 ,...) {

2 after t milliseconds elapses;

3 addTimerCallback(f, n1 ,...);

4 }

3.2.3 Asynchronous I/O

Modelling of asynchronous I/O has a high correspondence to that of timers. Specifically, the
initial queue contains one more queue object qio = ((fulfilled, ⊥), [], []) located at address
lio which is specifically targeted for asynchronous I/O operations. We then extend the syntax
of λq as follows:

e ∈ Exp ::= ...
| addIOCallback(e1, e2, e3, . . . )

E ::= ..
| addIOCallback(E, e, . . . ) | addIOCallback(v, . . . , E, e, . . . )

The semantics of addIOCallback is exactly the same with that of addTimerCallback, how-
ever, this time, the queue object located at lio is used by the reduced expression. Namely,

q = π(lio)

π, φ, κ, τ, addIOCallback(f, n1, . . . )→ π, φ, κ, q.registerFul(f, q, n1, . . . )
[addIOCallback]

To this end, an asynchronous I/O can be expressed as:

1 function asyncIO(f) {

2 data = ... // perform async I/O

3 addIOCallback(f, data);

4 }

3.3 Comparison with Existing Models

Our λq calculus has a lot of similarities with other existing models, namely, λasync, and
λp (Loring et al., 2017; Madsen et al., 2017) which we use as a base. However, there are
two points where our model distinguishes from the existing works:

• The λq calculus models the effects of uncaught exceptions in the execution of call-
backs and promise executors via the queue chain. Specifically, any uncaught exception
occurred in the event loop is not propagated to the caller, so, the program does not
terminate abnormally. Also, when we deal with promises, any uncaught exception is
used to reject the next promise of the chain. Similarly, an uncaught exception in the
execution of a promise executor leads to the rejection of the created promise.

• The λq calculus as λasync (Loring et al., 2017) is designed to model not only promises
but also timers and asynchronous I/O operations. However, contrary to our model,
λasync does not capture the case when we pass arguments to a callback explicitly. In
other words, the arguments of a callback are independent of the value with which a
queue object is fulfilled or rejected, like the example below:

setTimeout(callback , 0, "foo", "bar")
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Our model covers this case, by inspecting the value with which queue objects are set-
tled: if it is ⊥, we allow explicit arguments to be passed in a given callback. (Recall the
difference between [registerFul-fulfilled] and [registerFul-fulfilled-⊥] rules).

Overall, our modifications enable us to model almost all the sources of asynchrony; some of
them are not handled by the existing models. For instance, as presented in Section 3.2.1,
λq is capable of modelling the case when we fulfill a promise with a thenable. Our calculus
allows to express the fact that thenable is called asynchronously with arguments that are
explicitly passed (i.e. promise.fulfill, promise.reject).
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Chapter 4

The Core Analysis

We introduce a static analysis for asynchronous JavaScript programs by exploiting the λq cal-
culus described in Chapter 3. The analysis is designed to be sound, thus, we devise abstract
domains and semantics that over-approximate the behaviour of λq. Currently, there are few
implementations for effectively dealing with all the asynchronous features of JavaScript,
and previous efforts mainly focus on modelling the event system of client-side applica-
tions (Jensen et al., 2011; Park et al., 2016). To the best of our knowledge, there is not any
implementation of a static analysis technique which is capable of handling promises which
were introduced in the 6th edition of the ECMAScript specification (ECMA-262, 2015). Our
work builds on top of an existing static analyser, namely, TAJS (Recall Section 2.2.2), which
we extend with the abstract version of λq. To better understand how asynchronous callbacks
are scheduled and finally executed by the event loop, our analysis introduces the notion of
callback graph; a graph that captures the execution order between callbacks. By exploiting
callback graph, we devise a more precise analysis that respects the execution order of call-
backs along with three different flavours of context-sensitivity which are specifically targeted
for the abstract model of λq.

In this chapter, we give an overview of the analysis adopted by TAJS (Section 4.1). In turn,
we highlight all the necessary extensions made in TAJS so that it can analyse asynchronous
programs (Section 4.2). Then, we introduce the definition of callback graph; we describe
how the analysis computes it (Section 4.3), and we finally present different kinds of anal-
ysis sensitivity by leveraging callback graph and other characteristics of the analysis model
(Section 4.4).

4.1 Introduction to TAJS

TAJS (Jensen et al., 2009) is a static analyzer which implements a classical inter-procedural
analysis using monotone frameworks (Kam and Ullman, 1977). The main goal of TAJS is to
detect various kinds of errors found in JavaScript programs, including, but not limited to, ac-
cessing a property of a null or undefined variable, calling a non-function variable, reading
an absent variable, detecting intricate and error-prone type conversions, etc. (Jensen et al.,
2009). In addition to bug detection, TAJS also computes call graph and all reachable states
from a given initial state (Jensen et al., 2009).

A key question that arises is: why did we choose TAJS as a base of our approach? Our
available options were TAJS, JSAI, and SAFE which are briefly described in Section 2.2.2.
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We chose TAJS to extend, and there are many reasons for that. First, TAJS is a more mature
project as it is a product of almost 10 years of development (Jensen et al., 2009). On the
other hand, SAFE and JSAI are more recent tools. In this context, TAJS implements some
important optimisations which enhance the performance (Jensen et al., 2010) and preci-
sion (Jensen et al., 2009) of the analysis, e.g. JSAI seems to produce more false positives
compared to TAJS when they are evaluated on the same benchmarks (Kashyap et al., 2014).
Also, TAJS has partial models for more recent features of JavaScript, and it provides the base
for modelling Node.js modules and libraries as it supports require mechanism for import-
ing other JavaScript files. TAJS also comes with an Apache Licence 2.0; a permissive licence
which allows us to incorporate our modifications to the tool for private use.

In this section, we describe the core analysis employed by TAJS, providing the foundations
for designing and presenting our extensions in future sections. This section does not include
any new contribution and the presentation is mainly based on the previous existing works
of Jensen et al. (2009, 2010). Note that we only present the material which is relevant to
the context of our extensions. Therefore, we might omit some details of TAJS, which are not
applicable to our analysis.

4.1.1 Control-Flow Graph

TAJS analysis is a flow-sensitive inter-procedural analysis, meaning that it operates on top
of the control-flow graph (CFG) of the programs. The CFG representation is specifically
designed for TAJS analysis (Jensen et al., 2009), and unsurprisingly, each node in the CFG
represents program points, and edges stand for possible flow between different program
points. The CFG representation organises code into functions, and each function consists
of a set of basic blocks; every basic block is a set of CFG nodes where every node propa-
gates flow to exactly one successor sequentially. Unlike nodes inside a basic block, the exit
point of a basic block might propagate flow to zero or more basic blocks. Beyond that, each
function has two different exit points: 1) a normal exit, and 2) an exceptional exit in order
for analysis to distinguish flow that is triggered by exceptions. Also note that the top-level
code is placed inside a special function called <main> and the entry point of this function
corresponds to the program entry.

CFG defines two different kinds of edges: 1) intra-procedural edges which represent flow be-
tween nodes of the same function, and 2) inter-procedural edges which denote flow between
functions exit points and call nodes (i.e. nodes which represent call statements). Note that
intra-procedural edges are created during CFG construction, while inter-procedural edges
are constructed during the course of the analysis (Jensen et al., 2009).

4.1.2 The Analysis Framework

The analysis of TAJS is based on monotone frameworks (Kam and Ullman, 1977). Given a
program P , represented by a CFG as P = N × E, where N is the set of nodes, and E is the
set of edges, the instance of the analysis monotone framework is defined as follows (Jensen
et al., 2010):

A = (P, F, C, V alue, n0, c0, T )

where F is the set of all functions found in the program, C is the set of contexts derived
from the context-sensitivity strategy adopted by the analysis, V alue is the basic lattice for
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α ∈ AnalysisLattice = (C ×N ↪→ State)× CallGraph
g ∈ CallGraph = P(C ×N × C × F )

l ∈ L = {li | i is an allocation site}
σ ∈ State = Heap× Stack
h ∈ Heap = L ↪→ Object

o ∈ Object = (Pr ↪→ V alue×Absent×Attrs)× P(ScopeChain)
attr ∈ Attrs = ReadOnly ×DontDelete×DontEnum
s ∈ Stack = (V → V alue)× P(ExecutionContext)

ctx ∈ ExecutionContext = ScopeChain× L× L
c ∈ ScopeChain = L∗

v ∈ V alue = Undef ×Null ×Bool ×Num× Str × P(L)
p ∈ Pr = set of properties

Figure 4.1: Abstract Domains of TAJS analysis (Jensen et al., 2009, 2010).

modelling values of program variables, n0 stands for the CFG node of the program entry, c0
is the context corresponding to the initial program point n0 and T is the transfer function
that is applied on every program location. Transfer function T is defined as (Jensen et al.,
2010):

T = C ×N → AnalysisLattice→ AnalysisLattice

Note that every pair (c, n) ∈ C×N represents a unique program point. Therefore, the trans-
fer function T operates on every such pair, it takes as input an element α ∈ AnalysisLattice
and produces a new element α ∈ AnalysisisLattice. In other words, the analysis can be
seen as a transition system, where the transfer function T modifies the element α according
to the semantics of node n ∈ N in context c ∈ C.

Figure 4.1 fully describes the domains of the TAJS analysis. Every element α ∈ AnalysisLattice
consists of a map of every reachable program point (c, n) ∈ C × N to an abstract state
σ ∈ State, and a call graph g ∈ CallGraph. A call graph is an element g of the powerset
P(C × N × C × F ). Every tuple (c1, n, c2, f) ∈ g means that there might be an invocation
from node n in context c1 to the function f in context c2 (Jensen et al., 2010).

An abstract state consists of a heap h ∈ Heap and a stack s ∈ Stack. An abstract heap is just
a map of abstract addresses to objects. Note that the set of abstract addresses is simply de-
fined as the set of allocation sites (i.e. the set of CFG nodes that may allocate a new object).
An object o ∈ Object is described as a partial map of property names to values along with
two extra components (i.e. Absent, Attrs) which model metadata associated with a prop-
erty. Specifically, Absent is a lattice which is used to model whether the property may be
absent or not, whereas an element attr ∈ Attrsmodels the attributes of a property according
to the ECMAScript specification (Jensen et al., 2009; ECMA-262, 2018). Also, every object
o ∈ Object contains an element of a powerset P(ScopeChain) to model the internal prop-
erty [[Scope]] (Jensen et al., 2009; ECMA-262, 2018). A stack consists of a map, which
associates every temporary variable with a value, along with an extra component to model
the execution context on which the current function operates. The execution context follows
the ECMAScript specification (Jensen et al., 2009; ECMA-262, 2018), thus, it is described by
a scope chain (i.e. a sequence of addresses), an address corresponding to this object and an
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address corresponding to the variable object.

Finally, V alue is a finite lattice which is composed by a number of other lattices; each of them
models a different JavaScript type i.e. null, undefined, number, string, boolean or object
reference. In this way, the analysis is able to abstract the dynamic typing of JavaScript. For
example, the element (⊥, null, >, ⊥, ⊥, {l1, l15}) ∈ V alue denotes that the variable may be
null, any boolean (described by the third element which is >) or an object coming from the
allocation sites l1 or l15 (Jensen et al., 2009).

4.1.3 Computing the Solution

Algorithm 1 The fixpoint iteration algorithm implemented in TAJS
Input: A = (P, F, C, V alue, n0, c0, T )
Output: α ∈ AnalysisLattice
1: α = ⊥
2: W = {c0, n0}
3: while W 6= ∅ do
4: pop a program point (c, n) from W
5: α = T (c, n)(α)
6: σ = a ↓1 (c, n)
7: for all n′ ∈ nextNodes(P, n) do
8: c′ = getContext(n′, σ)
9: if (c′, n′) /∈ α ↓1 then

10: W =W ∪ {(c′, n′)}
11: α ↓1 (c′, n′) = σ
12: else
13: σold = α ↓1 (c′, n′)
14: σnew = σold t σ
15: if σnew 6v σold then
16: W =W ∪ {(c′, n′)}
17: α ↓1 (c′, n′) = σnew
18: end if
19: end if
20: end for
21: end while

The output of the analysis is the set of all reachable states from a given initial state along
with a call graph. This is represented by the final element α ∈ AnalysisLattice, upon the
termination of the analysis. More formally, the solution α ∈ AnalysisLattice of the analysis
must satisfy the constraints of the following formula (Jensen et al., 2010):

∀c ∈ C, n ∈ N : T (n, c)(α) v α (4.1)

where v stands for the partial order relation between two elements.

This solution of Formula 4.1 is computed via a fixpoint iteration algorithm, which is shown
in Algorithm 1 (Jensen et al., 2010)1. Specifically, this algorithm uses a worklist W which
contains all program points (i.e. pairs (c, n) ∈ C × N) that should be analysed. Initially,

1We slightly change the presentation of the fixpoint algorithm which was initially presented in the work
of (Jensen et al., 2010). Specifically, we put more details to the pseudocode to better understand the inner
workings of the analysis.
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W holds only the location which corresponds to the program entry (Algorithm 1, line 2).
In turn, the algorithms extracts a program point (c, n) from W , and applies the transfer
function on it, producing a new analysis lattice element α (Algorithm 1, line 5). Recall that
the transfer function produces a new element α ∈ AnalysisLattice according to the abstract
semantics of node n in context c. After that, the algorithm propagates the resulting state σ
of the fresh α ∈ AnalysisLattice (Algorithm 1, line 6) to the successor nodes of the current
node n with regards to the given CFG P (Algorithm 1, lines 7–18). In particular, as a starting
point, the algorithm computes the context c′ to form the next program location points where
the state should be propagated (i.e. pairs (c′, n′), where n′ is one of the successor nodes of
n). Note that the context c′ is produced based on the node n′, the context-sensitivity strategy
with which the analysis is parameterised, and the state σ. As the algorithm progresses, there
are two possible scenarios. First, the next program point (c′, n′) is not part of α ↓1, meaning
that the analysis reaches a new program location. Then, the algorithm updates the map of
reachable states and the worklist accordingly (Algorithm 1, line 9–11). Second, the next
program point (c′, n′) is in the set of reachable points, so the algorithm inspects the current
state corresponding to (c′, n′) (i.e. σold), and propagates the resulting state σ to σold via the
least upper bound operation (t) at line 14, producing σnew which is the merge of σ and σold.
If there is a change (i.e. σnew 6v σold), the algorithm puts the program point (c′, n′) to W
in order to analyse it again, and updates α ↓1 with the new state σnew (Algorithm 1, lines
13–17). This procedure repeats until convergence, that is, W is empty.

4.2 Extending TAJS

l ∈ Lasync = L ∪ {ltime, lio}

π ∈ ̂Queue = Lasync ↪→ P( ̂QueueObject)

q ∈ ̂QueueObject = ̂QueueState× P( ̂Callback)× P( ̂Callback)× P(Lasync)

qs ∈ ̂QueueState = {pending} ∪ ({fulfilled, rejected} × V alue)

clb ∈ ̂Callback = Lasync × Lasync × F × V alue∗

κ ∈ ̂ScheduledCallbacks = (P( ̂Callback))∗

τ ∈ ̂ScheduledT imerIO = (P( ̂Callback))∗

φ ∈ ̂QueueChain = (P(Lasync))
∗

σ ∈ State = Heap× Stack × ̂Queue× ̂ScheduledCallbacks× ̂ScheduledT imerIO × ̂QueueChain

Figure 4.2: Abstract domains of TAJS analysis that deal with asynchrony.

We extend TAJS analysis by introducing the abstract domains that deal with the asynchrony.
These domains are adapted from Figure 3.2 so that they over-approximate the semantics of
λq. The new domains are shown in Figure 4.2. Note that the domains not shown in that
figure remain the same as Figure 4.1.

Abstract Queue
As a starting point, we extend the domain of abstract addresses; the new domain reflects the
union of set Lwith the set which contains two internal addresses, i.e. ltime, lio, corresponding
to the addresses of the queue objects responsible for timers and asynchronous I/O respec-
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tively. An abstract queue is defined as the partial map of abstract addresses to an element
of the power set of queue objects. Therefore, an address may correspond to multiple queue
objects. This abstraction over-approximates the behaviour of λq and allows us to capture all
possible program behaviours that deal with queue objects. As a motivating example for this
design choice, consider the following code fragment:

1 var x = new Promise(function(resolve , reject) {

2 if (AnyBool)

3 resolve("foo")

4 else

5 reject("bar")

6 })

In this example we create a new promise via the promise constructor. This promise may be
either fulfilled with “foo” or rejected with “bar” depending on the value of variable AnyBool

inside the if condition (line 2). If the exact value of AnyBool is unknown to the analysis
(i.e. evaluates to >), both paths should be taken into account (since the analysis is aimed
to be sound). Therefore, the state of the analysis, and more specifically, the abstract queue
needs to store the side-effects coming from both paths, i.e. the allocated address points to a
fulfilled and a rejected queue object.

Abstract Queue Objects
An abstract queue object is represented by a tuple consisting of a queue state (observe that an
abstract queue state has the same definition as λq), two sets of abstract callbacks (executed
on fulfillment and on rejection respectively), and a set of abstract addresses (used to store
the queue objects that are dependent on the current one). Notice how this definition differs
from that of λq:

• First, we do not keep the registration order of callbacks, therefore, we convert the two
lists of callbacks into two sets. The programming pattern related to promises underpins
our design decision. Specifically, promises are commonly used as a chain; registering
two callbacks on the same promise object is quite uncommon. Similar observations
have been made for the event-driven programs by Madsen et al. (2015). That ab-
straction can negatively affect precision only when we register multiple callbacks on
a pending queue objects. Recall from the semantics of λq (Figure 3.3) that when we
register a callback on a settled queue object, we are able to precisely track its execution
order since we add it to the list of scheduled callbacks.

• Second, we define the last component as a set of address; something that enables us
to soundly track all possible dependent queue objects.

Abstract Callback
An abstract callback comprises two abstract addresses, one function, and a list of values
which stands for the arguments with which the function is called. Note that the first address
corresponds to this object, while the second one is the queue object that is fulfilled with the
return value of the function.

Abstract List of Scheduled Callbacks
The abstract domains responsible for maintaining the callbacks which are scheduled for exe-
cution by the event loop, i.e. ̂ScheduledCallbacks, and ̂ScheduledT imerIO, are represented
by a list of sets of callbacks. The ith element of a list denotes the set of callbacks that are
executed after those placed at the (i − 1)th position and before the callbacks located at the
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(i + 1)th position of the lists. The execution of callbacks of the same set is not known to
the analysis; they can be called in any order. For example, consider the following sequence
[{x}, {y, z}, {w}], where x, y, z, w ∈ ̂Callback. We presume that the execution of elements
y, z succeeds that of x, and precedes that of w, but we cannot compare y with z, since they
are elements of the same set; thus, y might be executed before z, and vice versa.

Note that a key requirement of the definition of those domains is that they should be finite
so that the analysis is guaranteed to terminate. Keeping the lists of scheduled callbacks
bound is tricky, because the same callback may be scheduled for execution multiple times,
and therefore, it may be added to the list more than one time. As a motivating example,
imagine the following code:

1 function foo() {

2 return Promise.resolve("foo")

3 .then(function bar(value) {

4 return value;

5 });

6 }

7
8 foo();

9 schedule a callback y

10 ...

11 foo();

12 schedule two callbacks z, w

13 ...

14 foo();

The first time we call function foo(), we schedule callback bar() through the invocation of
then() at line 3. If we call function foo() again (line 11), the same callback is registered on
the list; (i.e. the analysis is not able to distinguish them) because the function and its argu-
ments remain the same, and the same queue object is fulfilled (as it originates from the same
allocation site, that is, then() at line 3) when callback terminates. Calling function foo()

n times results in the addition of the same callback n times. To guarantee the termination
of the analysis, those lists compute the execution order of callbacks up to a certain limit n.
The execution order of callbacks scheduled after that limit is not preserved, thus, they are
all placed at the same set.

Now assume that in between the first and the second invocation of foo() at lines 8, 11,
we schedule one more callback, i.e. y ∈ ̂Callback, and in between the second and the third
call of foo() at lines 11, 14, we schedule two callbacks, namely, z, w ∈ ̂Callback where z
precedes w. The list of scheduled callbacks κ would be:

κ = [{x}, {y}, {x}, {z}, {w}, {x}]

Knowing the first and the last occurrence of a callback in that sequence allows to determine
the set of callbacks whose execution order is not known relatively to that callback. We ex-
ploit that information is Section 4.3, where we build a callback graph from a given list of
scheduled callbacks.

Back to our example, since callback x can be found both before and after callbacks {y, z, w},
we presume that the execution order between pairs {(x, y), (x, z), (x,w)} cannot be deter-
mined by the analysis. In other words, the analysis assumes that those pairs of callbacks are

41



4.2. EXTENDING TAJS Chapter 4. The Core Analysis

executed in any order.

Abstract Queue Chain
The last component of our abstract domains is used to capture the effects of uncaught excep-
tions during the execution of callbacks and promise executors. It is defined as a sequence of
sets of addresses. Based on the abstract translation of the semantics of λq, when the analysis
reaches an uncaught exception, it inspects the top element of the abstract queue chain and
rejects all the queue objects found in that element. If the abstract queue chain is empty, the
analysis proceeds to the exceptional exit point of the current function as usual (Recall from
Section 4.1.1 that every function has an exceptional exit point to propagate flow triggered
by uncaught exceptions). Note that the queue chain is guaranteed to be bound. In particular,
during the execution of a callback, the size of the abstract queue chain is always 1, because
only one callback is executed at a time by the event loop. The only case when the size of the
abstract queue chain is greater than 1 is when we have nested promise executors like the
following scenario:

1 var x = new Promise(function () {

2 var y = new Promise(function () {

3 var z = new Promise(function () {

4 ...

5 })

6 })

7 });

However, since we cannot have an unbound number of nested promise executors, the size of
the abstract queue chain is always finite.

Finally, we extend the definition of the abstract state which now consists of a heap, a stack,
a queue, two sequences for storing the execution order of callbacks, (one for promises, and
one for timers and asynchronous I/O), and a queue chain.

4.2.1 Tracking Execution Order

Promises

Estimating the order in which callbacks of promises are scheduled is straightforward, be-
cause it is a direct translation of the corresponding semantics of λq. In particular, there are
two possible cases:

• Settle a promise which has registered callbacks: When we settle (i.e. either resolve or
reject) a promise object which has registered callbacks, we schedule those callbacks
associated with the next state of the promise by putting them on the tail of list κ.
For instance, if we fulfill a promise, we append all the callbacks that are triggered
on fulfillment on list κ. A reader might observe that if there are multiple callbacks
registered on the promise object, we put them on the same set which is the element
that is finally added to κ, since an abstract queue object does not keep the registration
order of callbacks.

• Register a callback on an already settled promise: When we encounter a statement of
the form x.then(f1, f2), where x is a settled promise, we schedule either callback f1

or f2 (i.e. we add it to list κ) depending on the state of that promise, i.e. we schedule
callback f1 if x is fulfilled and f2 if it is rejected.
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Timers & Asynchronous I/O

A static analysis is not able to reason about the external environment. For instance, it cannot
decide when an operation on a file system or a request to a server is complete. Similarly, it is
not able to deal with time. For that purpose, we adopt a conservative approach for tracking
the execution order between callbacks related to timers and asynchronous I/O. In particular,
we assume that the execution order between those callbacks is unspecified, and thus, they
are executed in any order. However, we do keep track the execution order between nested
callbacks. For example, in the following code, the analysis knows that baz() is called after
bar(), but it considers that pairs of foo(), bar(), and foo(), baz(), are invoked in any
order.

1
2 setTimeout(function foo() {

3 // ...

4 });

5 setTimeout(function bar() {

6 setTimeout(function baz() {

7 // ...

8 });

9 });

4.3 Callback Graph

In this section, we introduce the concept of callback graph; an important component of our
analysis that captures how data flow is propagated between different asynchronous call-
backs. In Section 4.3.1, we formally define the notion of callback graph and then, we
present how TAJS analysis is extended to construct callback graph for a given program.
(Section 4.3.2)

4.3.1 Definition

A callback graph is defined as an element of the following power set2:

cg ∈ CallbackGraph = P(Node×Node)

where n ∈ Node = C × F is a node of a callback graph. Every element of a callback graph
(c1, f1, c2, f2) ∈ cg, where cg ∈ CallbackGraph, means that function f1 in context c1 is
executed immediately before function f2 in context c2. The above statement can be treated
as the following expression: f1(); f2();

Definition 1 Given a callback graph cg ∈ CallbackGraph, we define the binary relation →cg

on nodes of callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ (n1, n2) ∈ cg

Definition 2 Given a callback graph cg ∈ CallbackGraph, we define the binary relation →∗cg
on nodes of callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ n1 →∗cg n2
n1 →∗cg n2 ∧ n2 →∗cg n3 ⇒ n1 →∗cg n3, where n3 ∈ Node

2We stick to the same notation as the definition of call graph.
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Definition 1 and Definition 2 simply introduce the concept of path between two nodes in
callback graph cg ∈ CallbackGraph. In particular, the relation →cg denotes that there is
path of length 1 between two nodes n1, n2, that is, (n1, n2) ∈ cg. On the other hand, the
relation→∗cg describes that there is a path of unknown length between two nodes. Relation
→∗cg is very important as it allows us to identify the happens-before relation between two
nodes n1, n2, even if n2 is executed long after n1, that is (n1, n2) 6∈ cg. A significant property
of a callback graph is that it does not have any cycles, i.e.

∀n1, n2 ∈ Node. n1 →∗cg n2 ⇒ n2 6→∗cg n1
Notice that if n1 6→∗cg n2, and n2 6→∗cg n1 hold, the execution order between n1 and n2 cannot
be determined by the given callback graph, and therefore, we presume that n1 and n2 can
be executed in any order.

4.3.2 Computing Callback Graph

Constructing Callback Graph

Algorithm 2 Algorithm for constructing a callback graph

Input: γ ∈ (P( ̂Callback))∗

Output: cg ∈ CallbackGraph
1: function BUILDCALLBACKGRAPH(γ)
2: cg = ∅
3: p = ∅
4: for all i ∈ (1, . . . , n− 1) do
5: µ = ∅
6: for all z ∈ γi do
7: s = getFunctionAndContext(z)
8: for all w ∈ γi+1 do
9: t = getFunctionAndContext(w)

10: if 6 ∃n ∈ Node. t→∗cg n ∧ 6 ∃n′ ∈ Node. n′ →∗cg t then
11: cg = cg ∪ {(s, t)}
12: if p 6= ∅ then
13: cg = cg ∪ {(n, t) | n ∈ p}
14: p = ∅
15: end if
16: else
17: S = {n | ∀n ∈ Node. n→cg t}
18: T = {n | ∀n ∈ Node. t→cg n}
19: cg = cg\{(t, n) | ∀n ∈ T}
20: cg = cg ∪ (S × T )
21: µ = µ ∪ {t}
22: end if
23: end for
24: end for
25: p = p ∪ µ
26: end for
27: end function

A callback graph is constructed from a list of scheduled callbacks as shown in Algorithm 2.
In particular, the algorithm expects a list of sets of abstract callbacks γ ∈ (P( ̂Callback))∗,
and produces a callback graph cg ∈ CallbackGraph. Initially, the algorithm iterates over
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every element of sequence γ and inspects the set of callbacks located at the ith and (i+ 1)th

position respectively. Recall from Section 4.2 that according to the abstract semantics of
γ ∈ (P( ̂Callback))∗, γi is the set of callbacks that are called before γi+1. Therefore, this
information is reflected on the callback graph, by creating edges from every element of γi to
every element of γi+1 (in other words, we form →cg relations). For that purpose, the algo-
rithm iterates over every element of set γi and tries to connect it with every element of γi+1

(Algorithm 2, lines 6–24). Specifically, firstly, the algorithm retrieves the function and the
context s, t ∈ Node from every abstract callback of γi, and γi+1 respectively (Algorithm 2,
lines 7, 9). Then, there are two possible cases:

Case 1 (lines 10–16): The target node t does not form any happens-before with any other
node in the graph i.e. 6 ∃n ∈ Node. t →∗cg n, and 6 ∃n′ ∈ Node. n′ →∗cg t This means that it is
the first time we encounter target node t in list γ. Therefore, we simply add element {(s, t)}
to the current callback graph (Algorithm 2, line 11).

Case 2 (lines 16–22): The target node t is already found in the callback graph, and forms
→cg relations with other nodes In this case, we cannot add element (s, t) to the current
callback graph, because such an addition creates a cycle. The presence of t implies that it
has been previously processed in a position k, where k < i. In other words, the execution
order between s and t is unspecified. Then, we first compute the set of nodes S (line 17)
which have outgoing edges to t, i.e. n →cg t. After that, we compute the set of nodes T
(line 18) with which t is directly connected, i.e. t →cg n. Using those sets, we perform two
updates on callback graph:

• First, we remove all outgoing edges of target node t (Algorithm 2, line 19). Note that
after that deletion, the following property holds: ∀n ∈ Node. t 6→∗cg n.

• Second, we create →cg relations between every node of S, with every node of T (Al-
gorithm 2, line 20). The reason for that update is that since all the elements of T have
lost their predecessor which was t, (recall that we removed all the outgoing edges from
t), we have to form happens-before relations with the predecessors of t, by connecting
every predecessor of t (set S) with every element of successor of t (set T ).

Also notice that we put node t to a separate set µ (Algorithm 2, line 21). The elements of
this set are joint with that of p at line 25. Set p contains the nodes that we need to connect
with the target nodes of the next iteration (Algorithm 2, lines 12–15) Since we remove all
outgoing edges of node t at line 17, we have to form new→cg relations with the next target
nodes, i.e. those nodes located at the (i+ 2)th position of γ.

Example. Consider the following list of scheduled callbacks: [{x}, {y}, {t}, {p}, {x}, {t}, {z}],
where x, y, t, p, z ∈ ̂Callback. The steps that demonstrate the building process of a callback
graph from that list (with regards to Algorithm 2) are shown in Figure 4.33. Each sub-figure
illustrates the resulting callback graph after connecting the elements of γi with those of γi+1.
First, observe the callback graph of Figure 4.3d, i.e. the callback graph computed after try-
ing to connect γ4 with γ5. At that point, we want to connect callback p with x. However, by
inspecting the graph of Figure 4.3c (which is the current graph of that step), we notice that
x is already in the graph, therefore, we presume that the execution order between x and p

3For the purposes of demonstration, we label each node in the graph using the identifier of each abstract
callback.
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Figure 4.3: Steps demonstrating the building process of a callback graph from list
[{x}, {y}, {t}, {p}, {x}, {t}, {z}]. Each sub-figure illustrates the resulting callback graph
after connecting the elements of γi with those of γi+1.

is not known. Therefore, we remove all the outgoing edges of x. Using the same reasoning,
we remove all the outgoing edges of t at the next step, where we try to connect node x with
t. Also, we connect node y, which is the predecessor of t, with p (this update corresponds
to line 20 of Algorithm 2). After those modifications, we end up with the callback graph of
Figure 4.3e. Note that at both cases, nodes t and x are stored to a special set in order to be
connected with the next possible target nodes. In our case that target node is z: all nodes of
set γ6 along with x and t are connected with z, leading to the final graph of Figure 4.3f.

Figure 4.3f presents the final callback graph after processing all elements of list γ. By in-
specting that graph, we make a lot of observations. First, we observe that there is not any
path between the following pairs {(x, t), (t, p), (x, p), (y, x)}, thus, their execution order can-
not be determined; in other words, they might be executed in any order. Indeed, this is also
reflected on the given list, e.g. x appears both before and after callback y. Similar observa-
tions can be made for the rest of the pairs. Second, the graph correctly captures the temporal
relation between nodes y, t, p, z, that is, t and p are called before z, and y is executed before
t and p. Third, we also conclude that z is the last node that is invoked, because it does not
have any outgoing edges and there is a path from any other node in the graph to z.

Extending Analysis Output

Callback graph (like call graph) is computed on the fly. To this end, the definition of
AnalysisLattice domain presented in Figure 4.1 is extended as follows:

α ∈ AnalysisLattice = (C ×N ↪→ State)× CallGraph× CallbackGraph

In other words, the output of the analysis is now a triple consisting of a map of all reachable
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Algorithm 3 Updating callback graph during the analysis of the event loop.
Input: α ∈ AnalysisLattice, σnew ∈ State, n ∈ N, c ∈ C
1: κnew = σnew ↓4
2: τnew = σnew ↓5
3: σ = α ↓1 (c, n)
4: κ = σ ↓4
5: τ = σ ↓5
6: cg = α ↓3
7: κd = diff(κ, κnew)
8: if κd 6= [] then
9: cg′ = BUILDCALLBACKGRAPH(κd)

10: cg = append(cg, cg′)
11: else
12: τd = diff(τ, τnew)
13: if τd 6= [] then
14: cg′ = BUILDCALLBACKGRAPH(τd)
15: cg = append(cg, cg′)
16: end if
17: end if

program points to their states, a call graph, and a callback graph. In this way, the computed
callback graph can be used by other client analyses as we shall discuss in Section 6.2.2.

Callback graph is built gradually as the analysis of the event loop progresses. In particular,
during the analysis of the event loop, we update the current callback graph with regards to
any new callbacks. Algorithm 3 explains how callback graph is incrementally constructed4.
Specifically, when we analyze the event loop in a particular state σnew, we get the corre-
sponding lists of scheduled callbacks κnew, τnew from that state. Then by inspecting the
element α ∈ AnalysisLattice, we retrieve the current state of the event loop and its respec-
tive lists of callbacks (Algorithm 3, lines 3–5). Initially, the algorithm compares the elements
κnew, κ at line 7, getting the difference of those lists. If there is a change, (i.e. κd 6= []), it
means that there are new scheduled callbacks since the last time when the event loop was
analysed. For that reason, we build a callback graph from list κd by exploiting the Algo-
rithm 2 (Recall Section 4.3.2), and then we append the resulting graph cg′ to the current
one at line 10 (i.e. append function connects all the sink nodes5 of cg, with all the source
nodes6 of cg′)

If the condition at line 8 does not hold, the algorithm follows the same procedure as be-
fore, but this time it uses lists τnew, τ which hold callbacks associated with timers and asyn-
chronous I/O (Algorithm 2, lines 11–16). Again, if there is any difference between τnew and
τ , the algorithm builds a callback graph from their difference and appends to it the current
callback graph (Algorithm 3, lines 13–15). Notice that the behaviour of this algorithm cor-
rectly follows the semantics of λq, i.e. the promise-related callbacks are executed before the
callbacks associated with timers and non-blocking I/O.

4 This algorithm is part of the transfer function related to the event loop.
5nodes with only incoming edges.
6nodes with only outgoing edges.
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1 var z = undefined;

2 var x = Promise.resolve ()

3 .then(function bar() {

4 z = {foo: 1};

5 return 2;

6 })

7 .then(function baz(value) {

8 return value + z.foo;

9 });

Figure 4.4: Example which illustrates the importance of keeping track of the correct execution
order between callbacks.

4.4 Analysis Sensitivity

4.4.1 Callback-Sensitivity

Knowing the temporal relations between asynchronous callbacks is an important fact of the
analysis, as it enables us to correctly capture how data flow is propagated. Typically, a naive
flow-sensitive analysis that exploits the CFG represents the event loop as as single program
point with only one context corresponding to it; therefore, unlike traditional function calls,
the analysis misses the happens-before relation between callbacks because they are triggered
by the same program location (i.e. the event loop). Indeed, many previous works stuck to
that and conservatively considered that all registered asynchronous callbacks can be exe-
cuted in any order (Jensen et al., 2011; Park et al., 2016; Kashyap et al., 2014). However,
such an approach may lead to imprecision and false positives.

Motivating Examples

Starting with a simple example, consider the code fragment of Figure 4.4. Initially, we sched-
ule asynchronous callback bar() (line 3). While bar() executes, we initialise global variable
z as z = {foo: 1} (line 4), and then, function returns with an integer (line 5). Upon exit
of bar(), callback baz() is scheduled for execution. Observe that baz() accesses the prop-
erty foo of global variable z at line 8. An analysis that misses the temporal relation between
bar() and baz() will report a type error at line 8, because it assumes that baz() may be
executed first, and thus, a property access of an undefined variable may occur at that line.

The second example comes from honoka7, a real-world JavaScript module. Figure 4.5 shows
a code snippet where a naive analysis reports a false positive (we omit irrelevant code for
brevity). Line 1 performs an asynchronous request. In particular, function asyncRequest()

returns a promise which is fulfilled when the asynchronous request succeeds. At lines 2–21,
we create a promise chain. The first callback of this chain (lines 5–14) clones the response of
the request, and assigns it to property response of object honoka (line 3). Then, it parses the
body of response according to the specified type and returns it to the next callback (lines 5–
12). The second callback (lines 15–21) retrieves the headers of the response which has been
previously assigned to honoka.response and if the content type is “application/json”, it con-
verts the data of response into a JSON object (lines 17–20). It is easy to see that an analysis,
which does not respect the execution order between the first and the second callback, will

7https://github.com/kokororin/honoka
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1 asyncRequest(url , options)

2 .then(function (response) {

3 honoka.response = response.clone ();

4
5 switch (options.dataType.toLowerCase ()) {

6 case "arraybuffer":

7 return honoka.response.arrayBuffer ();

8 case "json":

9 return honoka.response.json ();

10 ...

11 default:

12 return honoka.response.text ();

13 }

14 })

15 .then(function (responseData) {

16 if (options.dataType === "" || options.dataType === "auto") {

17 const contentType = honoka.response.headers.get("Content -Type");

18 if (contentType && contentType.match("/application \/json/i")) {

19 responseData = JSON.parse(responseData);

20 }

21 }

22 ...

23 });

Figure 4.5: Real-world example taken from honoka.

report a type error at line 17. Specifically, the analysis assumes that the callback defined at
lines 15–21 might be executed first; therefore, honoka.response, which is assigned at line
3, might be uninitialised.

Leveraging Callback Graph

To address those issues, we exploit callback graph to devise a more precise analysis, which
we call callback-sensitive analysis. The callback-sensitive analysis propagates state with re-
gards to the→cg and→∗cg relations found in a graph cg ∈ CallbackGraph. Specifically, when
the analysis needs to propagate a resulting state from the exit point of a callback x, instead
of propagating that state to the caller (note that the caller of a callback is the event loop),
it propagates it to the entry points of the next callbacks (i.e. all callbacks y that x →cg y
holds). In other words, the edges of callback graph reflect how state is propagated from the
exit point of a callback x to the entry point of a callback y. Obviously, if there is not any
path between two nodes in the graph, that is, x 6→∗cg y, and y 6→∗cg x, we propagate the state
coming from the exit point of x to the entry point of y and vice versa. In other words, we
assume that functions can be executed in any order.

Note that the callback-sensitive analysis also plays an important role on the precision of the
computed callback graph. We define the precision of callback graph as the quotient between
the number of callback pairs whose execution order is determined, and the total number
of callback pairs. As a motivating example, which illustrates the positive influence of the
callback-sensitive analysis on the precise callback graph construction, consider the following
code snippet:

Listing 4.1: An example program which creates two promise chains.
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bar quuxbaz corgequxfoo

(a) Callback graph produced by the callback-sensitive analysis

bar quux

baz

corge

qux

foo

(b) Callback graph produced by the callback-insensitive analysis

Figure 4.6: Callback graph of program of Listing 4.1 produced by the callback-sensitive and the
callback-insensitive analysis respectively.

1 var x = Promise.resolve ().then(function foo() {

2 return "value";

3 }).then(function baz() {

4 return "value";

5 }).then(function quux() {

6 return "value";

7 }).then(function corge(value) {

8 ...

9 });

10
11
12 var y = Promise.resolve ().then(function bar() {

13 return "value";

14 }).then(function qux(value){

15 ...

16 });

In this example, we create two chains of promises. According to the concrete execution
of that program, the callbacks are invoked in the following order: (foo() → bar()) →
(baz() → qux()) → (quux()) → (corge()). Note that we use brackets to denote callbacks
that are called in the same iteration of the event loop. Figure 4.6 presents the callback
graphs of Listing 4.1 produced by the callback-sensitive and callback-insensitive analysis.
Note that the callback-insensitive analysis is the naive analysis which considers that all call-
backs can be executed in any order. By examining Figure 4.6, we immediately observe that
the callback-sensitive analysis (Figure 4.6a) produces a callback graph that accurately cap-
tures the execution order of callbacks. On the other hand, the callback-insensitive analysis
(Figure 4.6b) is not able to determine the precise execution order between callbacks baz()
and qux(). The cause of this inaccuracy is that the analysis assumes that all callbacks are
executed in any order. Therefore, when we analyse callbacks foo(), and bar(), all data
flow is merged, since their relative execution order is unspecified. As a result, we end up
with an inaccurate list κ ∈ ̂ScheduledCallbacks, which cannot decide the exact execution
order between baz() and qux(), which are scheduled by the side-effects of foo() and bar().

Remark: Callback-sensitivity does not work with contexts to improve the precision of the
analysis, therefore the event loop is still represented as a single program point. As a result,
the state produced by the last executed callbacks is propagated to the event loop, leading to
the join of this state with the initial one. The join of those states is then again propagated
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across the nodes of the callback graph until convergence. Therefore, there still some kind of
imprecision. However, callback-sensitivity minimises the number of those joins, as they stem
only from the callbacks invoked last.

4.4.2 Sources of Imprecision

Since callback graph is constructed from the lists of scheduled callbacks κ ∈ ̂ScheduledCallbacks
and τ ∈ ̂ScheduledT imerIO, the way we abstract the order in which callbacks are scheduled
highly affects the precision of callback graph. We identify two major sources of imprecision
during callback graph construction:

Timers and Asynchronous I/O: Our analysis loses the happens-before relations between
callbacks related to timers and asynchronous I/O. However, this source of imprecision is
sensible and inevitable to some extent. Since a static analysis like ours cannot reason about
time and external environment, we have to follow a conservative approach. Recall from Sec-
tion 4.2.1, however, that our analysis correctly captures the execution order between nested
callbacks.

Programming Patterns: Different programming patterns may harm the effectiveness of
the analysis, leading to imprecise callback graphs. We provide three code fragments as
motivating examples in Figure 4.7. In Listing 4.2, we have a function foo() that expects
a promise object as argument, and then registers a new callback on it at line 2. If we call
function foo() multiple times, we lose the execution order between foo() and any other
callback scheduled in between the invocations of foo(), since the analysis is not able to
separate the first registration from the second one. Listing 4.3 presents a similar scenario to
that of Listing 4.2. This time function foo() creates a new promise during its execution. For
the same reason as before, we might lose the execution order between the callback scheduled
by the two calls of foo() and any other callback scheduled in the meantime. Listing 4.4 is
an example of scheduling the same callback multiple times in a promise chain. In that case,
we cannot determine the temporal relation between foo(), and bar(), because foo() is
scheduled both before and after bar() (Listing 4.4, lines 6, 10).

4.4.3 Context-Sensitivity Strategies

Recall from Section 4.3.1 that a callback graph is defined as P(Node × Node), where n ∈
Node = C × F . So, it is possible to increase the precision of callback graph (and therefore
the precision of the analysis) by distinguishing callbacks based on the context in which they
are scheduled. A reader might notice that existing context-sensitivity strategies are not so
effective in differentiating callbacks from each other. For instance, object-sensitivity is not
fruitful at all, because in most cases, this object corresponds to the global object. On the
other hand, creating context according to the arguments of a function (i.e. parameter sensi-
tivity) might not be applicable in some cases. For example, in Listing 4.4, callback foo() is
called without any arguments. Thus, a parameter-sensitivity strategy cannot distinguish the
first invocation of foo() from the second one, as the context remains the same.

To address those issues, and enhance the accuracy of the analysis for some of the program-
ming patterns shown in Figure 4.7, we introduce two novel context-sensitivity strategies
that are specifically targeted for our analysis: R-sensitivity, and Q-sensitivity. Also, we define
QR-sensitivity, which is the combination of those two.
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Listing 4.2: Example 1

1 function foo(promise) {

2 return promise.then(

function () {

3 ...

4 })

5 }

6
7 var x = Promise.resolve ();

8 foo(x);

9 ...

10 var y = Promise.resolve ();

11 foo(y);

Listing 4.3: Example 2

1 function foo() {

2 return Promise.resolve ()

3 .then(function () {

4 ...

5 });

6 }

7
8 foo();

9 ...

10 foo();

Listing 4.4: Example 3

1 function foo() {

2 ...

3 }

4
5 var x = Promise.resolve ()

6 .then(foo)

7 .then(function bar() {

8 ...

9 })

10 .then(foo)

Figure 4.7: Examples of different programming patterns that might lead to an imprecise callback
graph.

R-Sensitivity

The R-sensitivity (R from return) separates callbacks according to the queue object that their
return value fulfills or rejects. The domain of context of this strategy is defined as:

c ∈ C = Lasync

Notice that this domain is finite, thus, the analysis is guaranteed to terminate. This strategy
is effective in cases where we schedule the same callback at different program locations. For
instance, the R-sensitivity analysis produces precise results for the program of Listing 4.4.
Specifically, the analysis is able to distinguish the first call of foo() from the second one, as
the former fulfills the queue object allocated at line 6 (i.e. allocated by then() function),
whereas the latter settles the object coming from line 10.

Q-Sensitivity

The Q-sensitivity (Q from queue) separates callbacks based on the queue object to which
they are added. The domain of contexts is given by the following power set:

c ∈ C = Lasync

Notice that the Q-sensitivity strategy also ensures the termination of the analysis, because
the domain of contexts remains bound. The Q-sensitivity strategy produces good results
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when it is applied on callbacks which are registered on different queue objects. For example,
the Q-sensitivity leads to a more precise analysis, when it is applied on the programs of
Listing 4.2 and Listing 4.4. In both programs, we schedule the same callback multiple times;
we add it to different queue objects each time though.

QR-sensitivity

The QR-sensitivity strategy combines both the R- and Q-sensitivity strategies. It distinguishes
every function using pairs of that form: (lq, lr), where lq stands for the allocation site that
the queue object on which they are registered, may point to, and lr is the abstract address of
the queue object they fulfill. Therefore, the finite domain of contexts is defined as follows:

c ∈ C = Lasync × Lasync

This strategy has all the advantages of the R- and Q-sensitivity, so, it is effective in cases
where at least one of the R- or Q-sensitivity strategy is. For example, consider the following
program:

1 function bar() {

2 ...

3 }

4
5 function foo(promise) {

6 return promise.then(function baz() {

7 ...

8 })

9 }

10
11 var z = Promise.resolve ();

12 var x = Promise.resolve ();

13 var y = Promise.resolve ();

14
15 foo(x);

16 z.then(bar);

17 foo(y);

18 z.then(bar);

The QR-sensitivity is capable of producing precise results, because it is able to separate the
different calls of callback baz() (line 6), because it is registered on different queue objects.
At the same time, it can distinguish the different calls of callback baz() (lines 16, 18) from
each other, as each invocation fulfills a different queue object. Applying R- and Q-sensitivity
strategy individually results in less accurate analysis, as they can distinguish the invocations
of one callback only.

However, observe that there are still cases when all these context-sensitivity strategies fail to
separate data flow. For example, they cannot positively affect the accuracy of the analysis of
Listing 4.3; every time we schedule the callback at line 3, it corresponds to and fulfills the
same queue object.

4.5 Implementation Details

Prior to our extensions, TAJS consisted of approximately 83,500 lines of Java code. The size
of our additions is roughly 6,000 lines of Java code. Our implementation is straightforward
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1 function open(filename , flags , mode , callback) {

2 TAJS_makeContextSensitive(open , 3);

3 var err = TAJS_join(TAJS_make("Undef"), TAJS_makeGenericError ());

4 var fd = TAJS_join(TAJS_make("Undef"), TAJS_make("AnyNum"));

5 TAJS_addAsyncIOCallback(callback , err , fd);

6 }

7
8 var fs = {

9 open: open

10 ...

11 }

Figure 4.8: A model for fs.open function.

and is guided by the design of our analysis. Specifically, we first extend the definition of state
by implementing and adding the definitions of our domains that deal with asynchrony. Then,
we provide models for promises written in Java by faithfully following the ECMAScript spec-
ification (ECMA-262, 2015). Note that our models exploit the abstract domains presented
in Table 4.2 and they produce side-effects that over-approximate the behaviour of promises
specified in ECMAScript. Beyond that, we implement models for the special constructs of λq,
i.e. addTimerCallback, addIOCallback (Recall Section 3.2), which are used for adding call-
backs to queue objects which are responsible for timers and asynchronous I/O respectively.
The models for timers are implemented in Java. However, we write JavaScript models for
asynchronous I/O operations, when it is necessary.

For example, Figure 4.8 shows the JavaScript code that models function open() from Node.js
module fs. In particular, fs asynchronously opens a given file. When I/O operation com-
pletes, the callback provided by the developer is called with two arguments: 1) err which
is not undefined if there is an error during I/O, 2) fd which is an integer indicating the file
descriptor of the opened file. Note that fd is undefined, if any error occurs. Our model first
makes open() parameter-sensitive on the third argument which corresponds to the callback
provided by the programmer. Then, at lines 3,4, it initialises the arguments of the callback,
i.e. err, fd. Observe that we initialise those arguments so that they capture all the possible
execution scenarios, i.e. err might be undefined or point to an error object, and fd might
be undefined or any integer reflecting all possible file descriptors. Finally, at line 5, we call
special function TAJS addAsyncIOCallback(), which registers the given callback on the
queue object responsible for I/O operations, implementing the semantics of addIOCallback
of our λq calculus.

Remark: All functions starting with TAJS are special functions whose body does not corre-
spond to any node in the CFG. They are just hooks for producing side-effects to the state
or evaluating to some value, and their models are implemented in Java. For instance,
TAJS make("AnyStr") evaluates to a value that can be any string.

Also, we implement the transfer function for the event loop. This transfer function inspects
the lists of scheduled callbacks from the current state and it updates callback graph on the
basis of them. Then, it propagates the current state to the entries of the functions that should
be executed first according to the current callback graph. If callback-sensitivity is disabled,
the event loop simply propagates the current state to the entries of all registered callbacks
until convergence.
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Chapter 5

Empirical Evaluation

In this chapter we evaluate our static analysis on a set of hand-written micro benchmarks
and a set of real-world JavaScript modules. Then, we experiment with different parameteri-
sations of the analysis and report precision and performance metrics.

5.1 Experimental Setup

To test that our technique behaves as expected we first wrote a number of micro benchmarks.
Each of those programs consists of approximately 20–50 lines of code and examines certain
parts of the analysis. For instance, Figure 5.1 shows the code of a micro benchmark used in
our evaluation process. That program demonstrates a complex scenario; specifically, at line
24, we create a promise chain. The callback registered on the first promise calls function
foo() (line 25). If we examine the body of foo(), we immediately notice that the return
value of foo() is a promise object, meaning that the promise allocated by the call of then()
at line 24 is settled whenever the returned promise of foo() is settled. Observe that we have
created imprecision on purpose. In particular, at line 4, function TAJS make("AnyBool")

evaluates to > (i.e. evaluates to any boolean), thus, a sound analysis should take both
branches into account. The if branch (lines 5–12) returns a promise chain, whereas the
else branch (lines 14–19) creates a promise which is fulfilled with a thenable object; there-
fore, according to the semantics of the ECMAScript (ECMA-262, 2018), it is fulfilled asyn-
chronously.

Beyond micro benchmarks, we evaluate our analysis on 6 real-world JavaScript modules,
using both hand-written and real test cases. The most common macro benchmarks used in
literature are those provided by JetStream1, and V8 engine2 (Jensen et al., 2009; Kashyap
et al., 2014; Ko et al., 2016). However, those benchmarks are not asynchronous; thus, they
are not suitable for evaluating our analysis. In order to find interesting benchmarks, we
developed an automatic mechanism for collecting and analyzing Github repositories. Specif-
ically, first, we collected a large number of Github repositories using two different options.
The first option extracted the Github repositories of the most depended upon npm packages3

by using a web scraper developed by us. The second option employed Github API4 to find

1https://browserbench.org/JetStream/
2http://www.netchain.com/Tools/v8/
3https://www.npmjs.com/browse/depended
4https://developer.github.com/v3/
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1 var t;

2
3 function foo() {

4 if (TAJS_make("AnyBool")) {

5 return Promise.resolve("foo").then(

6 function fun2() {

7 t = {bar: 1};

8 return "foo";

9 }

10 ).then(function fun3(value) {

11 throw "baz";

12 });

13 } else {

14 return Promise.resolve ({

15 then: function fun4(res) {

16 t = {bar : 1};

17 res("bar");

18 }

19 });

20 }

21 }

22
23 var x = Promise.resolve("bar");

24 x.then(function fun1(value) {

25 return foo();

26 }).then(function fun5(value) {

27 t.bar; // no error;

28 }).catch(function fun6(value) {

29 // This error is propagated from fun3.

30 });

Figure 5.1: An example of a micro benchmark used in our experiments.

JavaScript repositories which are related to promises.

We further investigated the Github repositories which we collected at the first phase by
computing various metrics such as lines of code, number of promise-, timer- and asyn-
chronous IO-related statements. In turn, by inspecting those metrics, we manually selected
the 6 JavaScript modules presented in Table 5.1. Most of them are libraries for perform-
ing HTTP requests or file system operations in an asynchronous manner. Each bench-
mark is described by its lines of code (LOC), its lines of code including its dependencies
(ELOC), number of files, number of dependencies, number of promise-related statements
(e.g. Promise.resolve(), Promise.reject(), then(), etc.), and number of statements as-
sociated with timers (e.g. setTimeout(), setImmediate(), etc.) or asynchronous I/O (e.g.
asynchronous file system or network operations etc. ).

We evaluate the accuracy of the analysis in terms of number of analysed callbacks, precision
of computed callback graph, and number of reported type errors. Recall from 4.4 that the
precision of callback graph is the quotient between the number of callback pairs whose
execution order is determined and the total number of callback pairs. Also, we embrace
a client-based precision metric, namely, the number of reported type errors as in the work
of Kashyap et al. (2014). The fewer type errors an analysis reports, the more precise it is. The
same applies to the number of callbacks inspected by the analysis; less callbacks indicates
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Benchmark LOC ELOC Files Dependencies Promises Timers/Async I/O

controlled-promise 225 225 1 0 4 1
fetch 517 1,118 1 1 26 2
honoka 324 1,643 6 6 4 1
axios 1,733 1,733 26 0 7 2
pixiv-client 1,031 3,469 1 2 64 2
node-glob 1,519 6,131 3 6 0 5

Table 5.1: List of selected macro benchmarks and their description.

a more accurate analysis. To compute the performance characteristics of every analysis, we
re-run every experiment ten times in order to get reliable measurements. All the experiments
were run on a machine with an Intel i7 2.4GHz quad core processor and 8GB of RAM.

5.2 Micro Benchmarks

For micro benchmarks, we experiment with 8 different analyses that compute callback graph.
Specifically, we first turn off callback-sensitivity and then we consider every possible combi-
nation of our new context-sensitivity strategies, that is, a context-insensitive analysis (No), a
R-sensitive analysis (R), a Q-sensitive analysis (Q), a both R- and Q-sensitive analysis (QR).
We repeat the same procedure, namely, we test every possible context-sensitivity strategy,
but this time, with callback-sensitivity enabled.

Table 5.2 and Table 5.3 show how every context-sensitivity policy performs on a callback-
insensitive and callback-sensitive analysis respectively. Starting with Table 5.2, we observe
that context-sensitivity improves the precision of callback graph. In particular, R- and Q-
sensitivity increase the average accuracy by 2,3% and 3,6% respectively, indicating that Q-
sensitivity is more effective than R-sensitivity for micro benchmarks. That small boost of
context-sensitivity is explained by the fact that only 3 out of 29 micro benchmarks invoke
the same callback multiple times. Recall from Section 4.4 that context-sensitivity is used
to distinguish different calls of the same callback. Therefore, if one program do not use a
certain callback multiple times, context-sensitivity does not make any difference. However,
if we focus on the results of the micro benchmarks where we encounter such behaviours,
i.e. micro18, micro19, and micro29, we get a significant divergence of the precision of call-
back graph. Specifically, context-sensitivity improves precision by 20,5%, 27,4% and 100%
in micro18, micro19 and micro29 respectively. Besides that, in micro19, there is a striking
increase of the number of analysed callbacks: a context-insensitive analysis inspects 14 call-
backs compared to the context-sensitive analyses which examine only 7. The results regard-
ing the number of type errors are almost identical for every analysis: a context-insensitive
analysis reports 42 type errors in total, whereas all the other context-sensitive analyses pro-
duce warnings for 41 cases.

Moving to Table 5.3 the results of callback-sensitive analyses indicate clear differences. First,
the naive callback-sensitive analysis (i.e. when all context-sensitivity strategies are disabled)
reports only 16 type errors in total, and amplifies the average accuracy of callback graph
from 0.85 to 0.91. As before, context-sensitive analyses boost the precision of callback graph
by 20.4%, 35.1%, and 100% in micro18, micro19, and micro29 respectively. Recall again
that only in those micro benchmarks, we register the same callback more than one time.
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Analysed Callbacks Callback Graph Precision Type Errors

Benchmark No R Q QR No R Q QR No R Q QR
micro01 5 5 5 5 0.8 0.8 0.8 0.8 2 2 2 2
micro02 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro03 2 2 2 2 1.0 1.0 1.0 1.0 1 1 1 1
micro04 4 4 4 4 0.5 0.5 0.5 0.5 1 1 1 1
micro05 8 8 8 8 0.96 0.96 0.96 0.96 3 3 3 3
micro06 11 11 11 11 1.0 1.0 1.0 1.0 3 3 3 3
micro07 14 14 14 14 0.86 0.86 0.86 0.87 1 1 1 1
micro08 5 5 5 5 0.8 0.8 0.8 0.8 1 1 1 1
micro09 5 5 5 5 0.9 0.9 0.9 0.9 1 1 1 1
micro10 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro11 4 4 4 4 0.83 0.83 0.83 0.83 5 5 5 5
micro12 5 5 5 5 0.9 0.9 0.9 0.9 2 2 2 2
micro13 4 4 4 4 0.83 0.83 0.83 0.83 1 1 1 1
micro14 6 6 6 6 0.8 0.8 0.8 0.8 2 2 2 2
micro15 6 6 6 6 0.8 0.8 0.8 0.8 0 0 0 0
micro16 6 6 6 6 1.0 1.0 1.0 1.0 1 1 1 1
micro17 3 3 3 3 0.67 0.67 0.67 0.67 2 2 2 2
micro18 4 3 3 3 0.83 1.0 1.0 1.0 1 0 0 0
micro19 14 7 7 7 0.73 0.93 0.93 0.93 0 0 0 0
micro20 6 6 6 6 0.93 0.93 0.93 0.93 0 0 0 0
micro21 5 5 5 5 0.9 0.9 0.9 0.9 1 1 1 1
micro22 6 6 6 6 0.87 0.87 0.87 0.87 1 1 1 1
micro23 6 6 6 6 0.87 0.87 0.87 0.87 3 3 3 3
micro24 3 3 3 3 1.0 1.0 1.0 1.0 2 2 2 2
micro25 8 8 8 8 0.79 0.79 0.79 0.79 1 1 1 1
micro26 9 9 9 9 0.89 0.89 0.89 0.89 3 3 3 3
micro27 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro28 7 7 7 7 0.81 0.81 0.81 0.81 1 1 1 1
micro29 4 4 4 4 0.5 0.5 1.0 1.0 0 0 0 0
Average 5.83 5.55 5.55 5.55 0.85 0.87 0.88 0.88 1.45 1.41 1.41 1.41

Total 169 161 161 161 42 41 41 41

Table 5.2: Precision on micro benchmarks when callback-sensitivity is disabled.
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Analysed Callbacks Callback Graph Precision Type Errors

Benchmark No R Q QR No R Q QR No R Q QR
micro01 4 4 4 4 1.0 1.0 1.0 1.0 0 0 0 0
micro02 3 3 3 3 1.0 1.0 1.0 1.0 0 0 0 0
micro03 2 2 2 2 1.0 1.0 1.0 1.0 0 0 0 0
micro04 4 4 4 4 0.5 0.5 0.5 0.5 1 1 1 1
micro05 7 7 7 7 1.0 1.0 1.0 1.0 0 0 0 0
micro06 11 11 11 11 1.0 1.0 1.0 1.0 1 1 1 1
micro07 13 13 13 13 1.0 1.0 1.0 1.0 0 0 0 0
micro08 5 5 5 5 0.8 0.8 0.8 0.8 0 0 0 0
micro09 4 4 4 4 1.0 1.0 1.0 1.0 0 0 0 0
micro10 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro11 4 4 4 4 0.83 0.83 0.83 0.83 5 5 5 5
micro12 5 5 5 5 1.0 1.0 1.0 1.0 0 0 0 0
micro13 3 3 3 3 1.0 1.0 1.0 1.0 0 0 0 0
micro14 5 5 5 5 1.0 1.0 1.0 1.0 0 0 0 0
micro15 6 6 6 6 1.0 1.0 1.0 1.0 0 0 0 0
micro16 6 6 6 6 1.0 1.0 1.0 1.0 0 0 0 0
micro17 3 3 3 3 0.67 0.67 0.67 0.67 2 2 2 2
micro18 4 3 3 3 0.83 1.0 1.0 1.0 1 0 0 0
micro19 14 7 7 7 0.74 1.0 1.0 1.0 0 0 0 0
micro20 6 6 6 6 1.0 1.0 1.0 1.0 0 0 0 0
micro21 4 4 4 4 1.0 1.0 1.0 1.0 0 0 0 0
micro22 5 5 5 5 0.9 0.9 0.9 0.9 0 0 0 0
micro23 5 5 5 5 1.0 1.0 1.0 1.0 1 1 1 1
micro24 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro25 8 8 8 8 0.79 0.79 0.79 0.79 0 0 0 0
micro26 7 7 7 7 1.0 1.0 1.0 1.0 1 1 1 1
micro27 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro28 7 7 7 7 0.81 0.81 0.81 0.81 1 1 1 1
micro29 4 4 4 4 0.5 0.5 1.0 1.0 0 0 0 0
Average 5.45 5.17 5.17 5.17 0.91 0.92 0.94 0.94 0.55 0.52 0.52 0.52

Total 158 150 150 150 16 15 15 15

Table 5.3: Precision on micro benchmarks when callback-sensitivity is enabled.
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Analysed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 6 6 6 6 0.866 0.905 0.866 0.905 3 3 2 2
fetch 22 22 19 19 0.829 0.956 0.822 0.972 10 10 8 8
honoka 8 8 6 6 0.929 0.929 1.0 1.0 2 2 1 1
axios 15 15 14 14 0.678 0.83 0.686 0.871 2 2 1 1
pixiv-client 18 18 17 15 0.771 0.803 0.794 0.863 15 15 15 14
node-glob 3 3 3 3 0.667 0.667 0.667 0.667 21 21 21 21
Average 12 12 10.8 10.5 0.79 0.848 0.805 0.88 8 8 7.3 7.3

Total 72 72 65 63 53 53 48 47

Table 5.4: Precision on macro benchmarks.

Finally, a naive callback-sensitive analysis decreases the total number of analysed callbacks
from 169 to 158. Notice that if callback-sensitivity and context-sensitivity are combined to-
gether, the total number of callbacks is reduced by 11,2%.

Since micro benchmarks are pretty small programs, we did not observe significant differ-
ences between their running times, so, we omit a discussion on the performance of micro-
benchmarks. However, an reader interested in those metrics is referred to Appendix B.

5.3 Macro Benchmarks

For macro benchmarks, we consider 4 different analyses: 1) an analysis which is neither
callback- nor context-sensitive (NC-No), 2) a callback-insensitive but QR-sensitive analy-
sis (NC-QR), 3) a callback-sensitive but context-insensitive analysis (C-No), and 4) a both
callback- and QR-sensitive analysis (C-QR). Table 5.4 reports the accuracy metrics of every
analysis and every benchmark. First, we make similar observations as micro benchmarks: in
general, context-sensitivity leads to a more precise callback graph for 4 out of 6 benchmarks.
The improvement ranges from 4,6% to 26,9%. On the other hand, callback-sensitive analy-
ses contribute to fewer type errors for 5 out of 6 benchmarks reporting 47–48 type errors in
total instead of 53. This small variation is justified by the fact that in practise only a small
number of type errors are caused due to ordering violation of callbacks.

By examining the results for node-glob benchmark, we see that every analysis produces
identical results. Recall from Table 5.1 that node-glob uses only timers and asynchronous
I/O operations. Neither callback- nor context-sensitivity are effective for that kind of bench-
marks, because we follow a conservative approach for modelling timers and asynchronous
I/O, regardless of how callbacks are scheduled; we assume that a callback x and y are exe-
cuted in any order, even if x might be registered before y. Therefore, keeping a more precise
state does not lead to a more precise callback graph. Similarly, since every callback is reg-
istered on the same queue object (i.e. queue object responsible for timers or asynchronous
I/O), context-sensitivity is not able to separate two calls of the same callback (Recall Sec-
tion 4.4).

Table 5.5 gives the running times of every analysis on every macro benchmark. We notice
that in some benchmarks (such as fetch) a more precise analysis may decrease the running
times by 3%-18%. This is explained by the fact that a more precise analysis might compress
state faster than an inaccurate analysis. For instance, in fetch, an imprecise analysis led to
the analysis of 3 spurious callbacks, yielding to a greater analysis time. The results appears
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Average Time Median

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 2.3 2.22 2.27 2.28 2.29 2.26 2.25 2.31
fetch 8.53 7.97 7.07 6.98 8.52 8.26 7.46 7.22
honoka 4.14 4.05 3.86 3.94 4.12 4.0 3.61 3.81
axios 6.99 7.86 6.74 8.32 7.02 8.0 6.94 8.37
pixiv-client 22.11 24.92 24.77 28.89 22.19 25.16 24.65 29.2
node-glob 15.55 16.71 15.46 14.47 16.62 16.71 16.17 15.74

Table 5.5: Times of different analyses in seconds.

fun5

fun4 fun6

fun1

fun3

fun2 deFul

deRej

Figure 5.2: Callback graph corresponding to the micro benchmark of Figure 5.1

to be consistent with those of the recent literature which suggests that precision might lead
to a faster analysis in some cases (Park et al., 2016). On the other hand, we also notice that
analysis sensitivity increased the running times of pixiv-client by 12%-30,6%. However,
such an increase seems to be acceptable.

5.4 Case Studies

In this section, we describe some case studies coming from both micro- and macro bench-
marks.

micro25. Starting with micro benchmarks, Figure 5.2 presents the callback graph computed
by the analysis of program of Figure 5.1. Function fun1() is the first callback executed by
the event loop. Subsequently, either function fun2() or fun4() is invoked, corresponding
to the callbacks scheduled at the if and else branches of function foo() respectively (Fig-
ure 5.1, lines 5, 14). Recall that we have injected inaccuracy on purpose (through function
TAJS make("AnyBool")); that is why both paths are considered. After those callbacks, we
either schedule callback fun5() (triggered by the resolution of promise object allocated at
line 14) or callback fun3() (triggered by fun2()). Callback fun3() (Figure 5.1, line 10)
raises an exception, so, it schedules function defaultReject() (deRej) upon exit. Recall
from Section 3.2 that if the second argument of then() is undefined, the defaultReject()

function is provided instead. Also, note that since fun3() raises an exception, function
fun5() cannot be executed after fun3(); fun5() is triggered only when the promise allo-
cated at line 24 is fulfilled. That behaviour is correctly captured by the computed callback
graph, since there is not any edge from fun5() to deRej(). Beyond that, after fun5(), we
call defaultFulfill() (deFul) which is implicitly scheduled by the invocation of catch()
at line 28 (Recall that catch(f) is syntactic sugar for then(undefined, f)). At the same
time, defaultReject() triggers the execution of fun6(). It is easy to see that the resulting
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1 function foo(promise) {

2 TAJS_makeContextSensitive(foo , 0);

3 promise.then(function bar() {

4 ...

5 });

6 }

7
8 var x = Promise.resolve ();

9 foo(Promise.resolve ());

10 x.then(function baz() {

11 ...

12 });

13
14 Promise.resolve ().then(function qux() {

15 ...

16 });

17 foo(Promise.resolve ());

18
19 Promise.resolve ().then(function quux() {

20 ...

21 });

22 foo(Promise.resolve ());

Figure 5.3: Program corresponding to micro29.

callback graph of Figure 5.2 is the join of two execution scenarios stemming from the impre-
cision of function foo().

micro29. Figure 5.3 shows the code of micro benchmark 29. Function foo() expects
a promise as parameter, and registers callback bar() on it (line 3). By examining the
top level code, we observe that we invoke foo() three times by passing three different
promises as a parameter each time (Figure 5.3, lines 9, 17, 22). Note that at line 2, function
TAJS makeContextSensitive() makes function foo() parameter-sensitive on the first pa-
rameter (i.e. parameter promise). Between every call of foo(), we schedule other callbacks,
i.e. callbacks baz(), qux(), and quux().

Figure 5.4a and Figure 5.4b present the callback graphs computed by a context-insensitive
and a Q-sensitive analysis respectively. A context-insensitive analysis misses the execution
order between bar() and the rest of callbacks, as it is not able to separate the first call of
bar() from the second one, and so on. On the other hand, a Q-sensitive analysis distin-
guishes every invocation of bar() by creating a context based on the queue object on which
that callback is registered. Since we add callback bar() to three different promises (queue
objects), we create three different contexts (i.e. c1, c2, and c3); thus, we end up with a fully
precicse callback graph.

fetch. Figure 5.5 shows a code fragment taken from fetch5. Note that we omit irrelevant
code for brevity. Function Body() binds a couple of methods (e.g. text(), formData()) for
manipulating the body of of response. Observe that those methods are registered on the
prototype of Response using function Function.prototype.call() at line 42. Note that
Body also contains a method, namely, initBody() for initialising the body of a response

5https://github.com/github/fetch
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quuxbaz

bar

qux

(a) Callback graph produced by context-
insensitive analysis

bar[c2] bar[c3]bar[c1] quuxbaz qux

(b) Callback graph produced by Q-sensitive analysis

Figure 5.4: Callback graph of program of Figure 5.3 produced by context-insensitive and Q-
sensitive analysis respectively.

according to the type of the input. To this end, the Response constructors takes a body as
parameter and initialises it through initBody() (line 50). Function text() reads the body
of a response in a text format through promises (lines 29-37). If the body of the response has
been already read, text() returns a rejected promise (lines 4, 25-26). Otherwise, it marks
bodyUsed of the response object as true (line 6), and then it returns a fulfilled promise de-
pending on the type of the given body (lines 29-37). Function formData() (lines 42-44)
asynchronously reads the body of a response in a text format, and then it parses it into
a FormData object6 through function decode(). Function fetch() (lines 55-63) makes a
new asynchronous request. When the request completes successfully, a callback onLoad()

is executed asynchronously (line 59). That callbacks finally fulfills the promise returned by
fetch() with a new response object initialised with the response of the server (line 61).

Case 1

Listing 5.1: Case 1: Using fetch API

1 fetch("/helloWorld").then(function foo(value) {

2 var formData = value.formData ();

3 // Do something with form data.

4 })

In Listing 5.1, we make an asynchronous request to endpoint “/helloWorld” using fetch API.
Upon success, we schedule callback foo(). Recall that the parameter value of foo() corre-
sponds to the response object coming from line 61 (Figure 5.5). In foo(), we convert the
response of the server into a FormData object (line 2).

A callback-insensitive analysis, which considers that all callbacks are scheduled in any order,
merges the data flow of all callbacks. At this point, recall that the event loop is repre-
sented as single program point. For that reason, the side effects of onLoad() and foo()

are propagated to the event loop. In turn, the event loop propagates again the resulting
state to those callbacks. This is repeated until convergence. Specifically, callback foo() calls
value.formData(), which updates the property bodyUsed of response object to true (Fig-
ure 5.5, line 6). The resulting state is propagated to the event loop where is joined with the
state which stems from callback onLoad(). Notice that the state of onLoad() indicates that

6https://developer.mozilla.org/en-US/docs/Web/API/FormData
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1 ...

2 function consumed(body) {

3 if (body.bodyUsed) {

4 return Promise.reject(new TypeError("Already read"));

5 }

6 body.bodyUsed = true;

7 }

8 ...

9
10 function Body() {

11 ...

12
13 this.bodyUsed = false;

14 this._bodyInit = function () {

15 ...

16 if (typeof body === "string") {

17 this._bodyText = body;

18 } else if (Blob.prototype.isPrototypeOf(body)) {

19 this._bodyBlob = body;

20 }

21 ...

22 }

23 this.text = function text() {

24 var rejected = consumed(this);

25 if (rejected) {

26 return rejected;

27 }

28
29 if (this._bodyBlob) {

30 return readBlobAsText(this._bodyBlob);

31 } else if (this._bodyArrayBuffer) {

32 return Promise.resolve(readArrayBufferAsText(this._bodyArrayBuffer));

33 } else if (this._bodyFormData) {

34 throw new Error("could not read FormData body as text");

35 } else {

36 return Promise.resolve(this._bodyText);

37 }

38 };

39
40 ...

41
42 this.formData = function formData () {

43 return this.text ().then(decode);

44 }

45 }

46 ...

47
48 function Response(body) {

49 ...

50 this._bodyInit(body);

51 }

52 Body.call(Response.prototype);

53 ...

54
55 function fetch(input , init) {

56 return new Promise(function (resolve , reject) {

57 ...

58 var xhr = new XMLHttpRequest ();

59 xhr.onload = function onLoad () {

60 ...

61 resolve(new Response(xhr.response));

62 }

63 });

64 }

Figure 5.5: Code fragment taken from fetch.
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bodyUsed is false, because a fresh response object is initialised with property bodyUsed as
false (Figure 5.5, line 13). The join of those states changes the abstract value of bodyUsed
to >. That change is propagated again to foo().

This imprecision makes analysis to consider both if and else branches at lines 3-6. Thus,
the analysis allocates a rejected promise at line 4, as it mistakenly considers that the body
has been already consumed. This makes consumed() return a value that is either undefined
or a rejected promise (line 26). The value returned by consumed() is finally propagated to
formData() at line 43, where the analysis reports a false positive; a property access of an
undefined variable (access of property “then”), because text() might return an undefined
variable due to the return statement at line 26. A callback-sensitive analysis neither reports
a type error at line 43 nor creates a rejected promise at line 4. It respects the execution
order of callbacks, that is, callback foo() is executed after callback onLoad(). Therefore,
the analysis propagates a more precise state to the entry of foo(), that is, a state resulted by
the execution of onLoad(), where a new response object is initialised with field bodyUsed as
false. In other words, the side effects of foo() are not taken into account.

Case 2.

Listing 5.2: Case 2: Using fetch API

1 ...

2 var response = new Response("foo=bar");

3 var formData = response.formData ();

4 ...

5
6 var response2 = new Response(new Blob("foo=bar"));

7 var formData2 = response2.formData ();

In Listing 5.2, we initialise a response object with a body of string type (line 2). In turn,
by calling formData() method, we first read the body of the response in text format, and
then we decode it into a FormData object by asynchronously calling decode() function (Fig-
ure 5.5, line 43). Since the body of the response is already in a text format, text() returns a
fulfilled promise (Figure 5.5, line 36). At the same time, at line 5 of Listing 5.2, we allocate
a fresh response object, whose body is an instance of Blob7. Therefore, calling formData()

schedules function decode() again. However this time, callback decode() is registered on a
different promise, because text() returns a promise created by function readBlobAsText()

(Figure 5.5, line 30). A context-sensitive analysis (which creates context according to the
queue object on which a callback is registered, such as Q-sensitivity or QR-sensitivity) is
capable of separating the two invocations of decode(), because the first call of decode()
is registered on the promise object which comes from line 36, whereas the second call of
decode() is added to the promise created by readBlobAsText() at line 30.

honoka. We return back to Figure 4.5. Recall that a callback-insensitive analysis reports a
spurious type error at line 17 when we try to access property headers of honoka.response,
because it considers the case when the callback defined at lines 15–21 might be executed
before the callback defined at lines 2–14; thus, honoka.response might be uninitialised
(Recall that honoka.response is initialised during the execution of the first callback at line
3). On the other hand, a callback-sensitive analysis consults callback graph when it is time
to propagate the state from the exit point of a callback to the entry point of another. In

7https://developer.mozilla.org/en-US/docs/Web/API/Blob
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particular, when the exit node of the first callback is analysed, we propagate the current
state to the second callback. Therefore, the entry point of the second function has a state
which contains a precise value for honoka.response, that is, the object coming from the
assignment at line 3.

5.5 Conclusions

We test our prototype against a set of micro- and macro benchmarks. We show that our
analysis is able to handle small and medium sized JavaScript programs, and reason about
the execution of their asynchronous functions. Below we summarize some of the main ob-
servations. We mark the observations as stemming from micro benchmarks, and macro
benchmarks,

Overall, callback sensitivity and context sensitivity improve the precision of the analysis, as
observed in both micro- and macro benchmarks.

Callback graph:

• Micro: Callback-sensitivity boosts the average accuracy of micro benchmarks by 7%.
In certain micro benchmarks, callback-sensitivity enhances callback graph precision up
to 25%. On the other hand, the improvement of our new context-sensitivity strategies
ranges from 20,4% to 100%. Combining callback-sensitivity and context-sensitivity
leads to the highest average score, i.e. 0.94; the divergence rises by 10,6%

• Macro: Callback sensitivity, as observed in macro benchmarks, improves the average
precision of callback graph up to 3,8%. However, context-sensitivity appears to be
more effective than callback-sensitivity: it increases the average accuracy by 9,3%,
while in specific benchmarks it boosts precision by 26,9%. The percentage increase
of the average improvement resulted by the combination of callback- and context-
sensitivity reaches 11,3%.

Type errors:

• Micro: Callback-sensitive analyses report 26 less type errors than callback-insensitive
analyses. The decrease of the total number of type errors is 61,9%. Context-sensitivity
is less effective though; it reduces the number of type errors only by one.

• Macro: Callback-sensitivity produces fewer warnings for 5 out 6 benchmarks, leading
to 5–6 less type errors in total; the percentage drop of type errors is up to 11,3%.

Analysed Callbacks:

• Micro: Analysis sensitivity reduces the total number of analysed callbacks by 11,2%.
In certain benchmarks, though, the number of inspected callbacks is reduced by half,
implying that an imprecise analysis might contribute to a notable increase of spurious
asynchronous callbacks.

• Macro: A both callback- and context-sensitive analysis decreases the total number of
examined callbacks by 12,5%.
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5.6 Threats to Validity

Below we pinpoint the main threats to validity:

• Our analysis is an extension of an existing analysis, namely, that of TAJS, thus, the
precision and performance of TAJS play an important role on the results of our work.

• Even though our analysis is designed to be sound, it models some functions of the
native API unsoundly. For instance, native function Object.freeze(), which is used
to prevent an object from being updated, is modelled unsoundly, i.e. the evaluation of
Object.freeze() simply returns the passed object.

• We provide manual models for some built-in Node.js modules like fs, http, etc. or
other APIs used in client-side applications such as XMLHttpRequest, Blob, etc. How-
ever, manual modelling might neglect some of the side-effects which stem from the
interaction with those APIs, leading to unsoundness (Guarnieri and Livshits, 2009;
Park et al., 2016). It is worth noting that we assumed that an HTTP request, which is
issued to a server, always succeeds. Therefore, our models did not trigger any callbacks
which are called in case of failure (e.g. on timeout, on network failure, etc.).

• Our macro benchmarks consist of JavaScript libraries, therefore we needed to write
some test cases that invoke the API functions of those benchmarks. We provided both
hand-written test cases and test cases or examples taken from their documentation,
trying to test the main APIs that exercise asynchrony in JavaScript.
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Chapter 6

Conclusions & Future Work

In this chapter, we first make a summary of the main achievements of our work (Section 6.1),
and then we discuss the future work that arises from this report (Section 6.2).

6.1 Summary

Building upon previous works, we presented a calculus, namely, λq, for modelling asyn-
chrony in JavaScript. Our calculus λq is flexible enough so that we can express almost every
asynchronous primitive in the JavaScript language, up to the 7th edition of the ECMAScript
(including promises, timers, and non-blocking I/O) in terms of λq.

We then presented an abstract version of λq which over-approximates the semantics of our
calculus. By exploiting that abstract version, we designed and implemented what is, to
the best of our knowledge, the first static analysis for dealing with promises; an important
element of asynchronous programming. Our analysis significantly extends previous works
which mostly focused on modelling the event system of client-side JavaScript programs. In
the belief that there is not any implementation of a static analysis for supporting promises,
a feature which have been widely embraced by the community for developing asynchronous
programs (Gallaba et al., 2017), we argue that our work is a base for constructing new tools
and techniques for asynchronous JavaScript.

At the same time, we introduced the concept of callback graph; a directed acyclic graph
which represents the temporal relations between the execution of asynchronous callbacks.
Each node in the graph denotes a callback, whereas a directed edge between two nodes
indicates data flow being propagated from the source node to the target. We then designed
a more precise analysis, that is, callback-sensitivity. Unlike existing static analyses which as-
sume that asynchronous callbacks are not called in a certain order, our approach propagates
state from one callback to another with regards to callback graph, respecting its execution
order.

We parameterised our analysis with new context-sensitivity approaches that are specifi-
cally used for distinguishing the invocation of asynchronous callbacks. Traditional context-
sensitivity policies like object-sensitivity and parameter-sensitivity are not always effective
in the context of asynchronous callbacks, therefore, we leveraged the abstract model of our
analysis to create context domains depending on they way that callbacks are scheduled.
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1 if (TAJS_make("AnyBool")) {

2 Promise.resolve ().then(function foo() {

3
4 }).then(function baz() {

5
6 });

7 } else {

8 Promise.resolve ().then(function bar() {

9
10 }).then(function qux() {

11
12 });

13 }

baz

foo

bar

qux

Figure 6.1: An example program and its resulting callback graph.

We evaluated the precision and performance of our analysis and the different parameterisa-
tions of it on a set of hand-written and real-world programs. The results showed that our
approach can be applied on small and medium sized JavaScript programs, while analysis
sensitivity (i.e. both callback- and context-sensitivity) modestly ameliorates the accuracy of
the analysis results without sacrificing performance.

6.2 Future Work

We discuss a number of limitations and optimisations that emerge in the context of our
analysis and describe how they can be addressed in the future (Section 6.2.1). We wrap up
with a discussion on how our work can be leveraged for building new tools in the areas of
bug detection and debugging (Section 6.2.2).

6.2.1 Limitations & Optimisations

We identify the main areas of our work that could benefit from further improvements.

Modelling: The λq calculus proposed in this report is not capable of expressing function
Promise.all(). That function is often used by the developers to defer a computation until a
number of requirements is fist met. Similarly, our model does not support async/await key-
words which were introduced in the 8th version of ECMAScript released in 2017 as a mean
for facilitating the use of promises. In particular, the async keyword declares a function as
asynchronous which always returns a promise, while await x defers the execution of the
asynchronous function in which is placed, until x is settled. Those language constructs are
tightly coupled with promises, thus, we believe that our analysis model would be extended
with a small number of modifications.

Precision: There are a few sources of imprecision that could be potentially addressed in
the future via a number of optimisations. As discussed in Section 4.4.1, callback-sensitivity
might lead to inaccuracy, because the event loop remains context-insensitive, and therefore,
the state of the last executed callbacks is still propagated across the functions of the callback
graph. One workaround for this issue is to make the event loop context-sensitive as pro-
posed by the work (Madsen et al., 2015). In this context, the event loop is represented with
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multiple program points that try to imitate the different iterations of it. The drawback of
this approach is that it might introduce a significant overhead to the analysis (Madsen et al.,
2015). However, it is worth seeing if such an alternative could be fruitful in the context of
our work, by estimating the performance Vs. precision trade-off.

Another kind of imprecision is associated with the construction of callback graph. As a mo-
tivating example, consider an example program and its callback graph shown in Figure 6.1.
Callback graph correctly states that baz() operates before foo(), and qux() before bar(),
but it also contains edges from foo() to qux() and from bar() to baz(). Although it does
not violate the ordering precision between those callbacks, it can potentially lead to an im-
precise state at entry points of functions baz() and qux(), because their resulting state will
be the join of the states coming from foo() and baz(). This means that foo() (bar()) prop-
agates its state to qux() (baz()), even if their execution is mutual exclusive. To handle this
shortcoming, our analysis could connect a callback x only with the function y that triggered
its execution, excluding all the other functions which are mutual exclusive with y.

Applicability: We evaluated our analysis on a set of small and medium sized programs.
Can our analysis be applied on larger benchmarks? This goal requires a lot more work
beyond the context of our work, at it applies on flow-sensitive analyses in general. Specifi-
cally, we faced two major obstacles that prevented the evaluation of our prototype on larger
benchmarks. First, many real-world applications might operate in a complex setting, where
modelling is extremely challenging, e.g. many applications are built on top of frameworks
like react1 or angular2, or they heavily use intricate libraries like mongodb3. Our static
analysis should reason about the interactions with those libraries in scalable manner or sac-
rifice soundness for scalability (Madsen et al., 2013). Second, many programming patterns
adopted in JavaScript degrade the analysis precision which in turn significantly hinders the
performance (Andreasen and Møller, 2014). This is indicated by the fact that known flow-
sensitive analyses face a number of scalability challenges on analysing large JavaScript pro-
grams (Jensen et al., 2009; Kashyap et al., 2014; Madsen et al., 2015; Park et al., 2016).
Even though much progress has been made for other programming languages like C or
Java (Gharat et al., 2016; Li et al., 2018), improving scalability in JavaScript seems like
a tall order. In this context we need to identify the main bottlenecks of the analysis and
provide workarounds and mechanisms for boosting scalability.

6.2.2 Further Research

The analysis proposed in this report constitutes one of the first steps for building new tools
and techniques for asynchronous programming in JavaScript. Our work is a generic tech-
nique that can be exploited by other works in different aspects of software reliability. Below
we highlight two of them:

Detecting Concurrency Bugs: Recall that in JavaScript concurrency bugs are caused due
to asynchrony (Wang et al., 2017; Davis et al., 2017). Since we now have a technique for
dealing with asynchronous programs, we could design a client analysis on top of it so that
it statically detects data races in JavaScript programs. Such a client analysis will report a
data race, if there is a read-write or write-write conflict between the program variables or

1https://reactjs.org/
2https://angular.io/
3https://github.com/mongodb/node-mongodb-native

70

https://reactjs.org/
https://angular.io/
https://github.com/mongodb/node-mongodb-native


Chapter 6. Conclusions & Future Work 6.2. FUTURE WORK

1 var z;

2 var x = new Promise(function (resolve) {

3 asyncIO1(function foo(data) {

4 resolve(data);

5 })

6 });

7 x.then(function baz() {

8 z = someOperation ();

9 });

10 ...

11 var y = new Promise(function (resolve) {

12 asyncIO2(function bar(data) {

13 resolve(data);

14 })

15 });

16 y.then(function baz() {

17 z = someOperation ();

18 });

baz

foo

bar

qux

Figure 6.2: A simple program with a data race.

even resources (e.g. a file, a database, etc.) that two functions access and the execution of
those functions is not deterministic. Our callback graph might be an essential element for
such an analysis, because we can inspect it for identifying callbacks with a potential non-
deterministic execution, i.e. we need to find callbacks where there is not any connection to
each other in callback graph. Since the execution of a callback is non-preemptive, we will
need to examine call graph to propagate the information about the fact that execution is not
deterministic to the callees of an asynchronous callback. In this context, given a callback
graph and a call graph, all we need to do is to formulate the exact rules for detecting data
races.

As a case study, consider the simple scenario of Figure 6.2. The program creates two
promises which are resolved asynchronously once the asynchronous operations asyncIO1()
and asyncIO2() complete (lines 3, 12). Since the resolution of promises depends on the
order in which the IO operations terminate, it is not known which promise is resolved first,
meaning that the execution of their callbacks (i.e. baz(), and qux()) is not deterministic.
The callback graph of the program captures this fact as there is not any path between baz()

and qux(). Therefore, a race detector would take advantage of it and report a bug, because
there is a write-write conflict in the body of baz() and qux(), i.e. variable z (lines 8, 17).

Debugging: Asynchrony in JavaScript is one of the main causes why developers introduce
bugs to their programs. Many programmers do not seem to understand how flow is prop-
agated in asynchronous applications; something that is indicated by the large number of
asynchrony-related questions issued in forums like stackoverflow.com4 (Madsen et al., 2015,
2017) or concurrency bugs reported in popular repositories (Wang et al., 2017; Davis et al.,
2017). Therefore, on the basis of our work, we could develop a debugging tool that al-
lows developers to visualise, review, and understand the data flow of their asynchronous
programs. To this end, in such a scenario, we might need to extend the definition of our
callback graph by enriching it with more information such as causal relations between call-

4https://stackoverflow.com/
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backs. Also we would need to investigate whether such a debugging tool is indeed beneficial
to developers for finding and fixing bugs. Note that there are some existing proposals for
designing debugging tools for asynchrony, but as far as we know, there is not any imple-
mentation available (Madsen et al., 2017; Loring et al., 2017). Existing efforts and im-
plementations focused on the debugging of reactive programs; a subset of asynchronous
programming (Banken et al., 2018).
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Chapter A. Semantics of λq

v 6= ⊥ (pending, t, k, l) = π(p) v 6∈ dom(π) k′ = 〈(α, f, [v], r) | (α, f, a, r) ∈ t〉
κ′ = κ :: k′ χ = (rejected, v) π′ = π[p 7→ (χ, [], [], l)] p 6= ltime ∧ p 6= lio

π, φ, κ, τ, E[p.reject(v)]→ π′, φ, κ′, τ, E[l.reject(v)]
[reject-pending]

(pending, t, k, l) = π(p) v ∈ dom(π)
p(v) = (pending, t′, k′,⊥) π′ = π[v 7→ (pending, t′, k′, p)]

π, φ, κ, τ, E[p.reject(v)]→ π′, φ, κ′, τ, E[undef]
[reject-pend-pend]

(pending, t, k, l) = π(p) v ∈ dom(π) p(v) = ((rejected, v′), t′, k′,m)

π, φ, κ, τ, E[p.reject(v)]→ π, φ, κ, τ, E[p.reject(v′)]
[reject-pend-ful]

v = ⊥ (pending, t, k, l) = π(p) κ′ = κ :: k
χ = (rejected, v) π′ = π[p 7→ (χ, [], [], l)]

π, φ, κ, τ, E[p.reject(v)]→ π′, φ, κ′, τ, E[l.reject(v)]
[reject-pending-⊥]

π(p) ↓1 6= pending

π, φ , κ, τ, E[p.reject(v)]→ π, φ, κ, τ, E[undef]
[reject-settled]

(pending , t , k, l) = π(p) k′ = k · (p′, f, [n1, n2, . . . , nn], r)
π′ = π[p 7→ (pending, t, k′)]

π, φ, κ, τ, E[p.registerRej(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerRej-pending]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= rejected

s ↓2 6= ⊥ κ′ = κ · (p′, f, [s ↓2], r)
π, φ, κ, τ, E[p.registerRej(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]

[registerRej-rejected]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= rejected

s ↓2= ⊥ κ′ = κ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerRej(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerRej-rejected-⊥]

p = ltime ∨ p = lio (s, t , k , χ) = π(p) s ↓1= rejected

s ↓2= ⊥ τ ′ = τ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerRej(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerRej-timer-io-⊥]

(s, t , k , χ) = π(p) s ↓1= rejected

π, φ, κ, τ, E[p.registerRes(f, p′, r, n1, n2, . . . , nn)]→ π, φ, κ, τ, E[undef]
[registerRes-rejected]

(s, t , k , χ) = π(p) s ↓1= fulfilled

π, φ, κ, τ, E[p.registerRej(f, p′, r, n1, n2, . . . , nn)]→ π, φ, κ, τ, E[undef]
[registerRej-fulfilled]

Figure A.1: The semantics of λq
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Appendix B

Performance of Micro Benchmarks

Average Time Median

Benchmark NC-No NC-R NC-Q NC-QR C-No C-R C-Q C-QR NC-No NC-R NC-Q NC-QR C-No C-R C-Q C-QR
micro01 0.49 0.5 0.52 0.48 0.38 0.35 0.35 0.34 0.44 0.43 0.45 0.45 0.33 0.33 0.33 0.33
micro02 0.4 0.41 0.4 0.4 0.37 0.37 0.38 0.37 0.41 0.4 0.4 0.4 0.37 0.37 0.38 0.38
micro03 0.37 0.36 0.34 0.35 0.3 0.3 0.32 0.32 0.34 0.34 0.34 0.35 0.29 0.29 0.3 0.3
micro04 0.34 0.36 0.34 0.36 0.36 0.35 0.32 0.31 0.32 0.32 0.31 0.31 0.33 0.33 0.31 0.31
micro05 0.79 0.83 0.86 0.92 0.7 0.67 0.69 0.64 0.81 0.75 0.89 0.96 0.69 0.67 0.65 0.62
micro06 1.26 1.23 1.24 1.23 1.04 1.04 1.05 1.04 1.26 1.23 1.23 1.22 1.03 1.03 1.04 1.02
micro07 1.25 1.21 1.25 1.23 0.86 0.87 0.88 0.86 1.23 1.23 1.26 1.2 0.86 0.86 0.86 0.85
micro08 0.71 0.75 0.71 0.71 0.73 0.73 0.78 0.75 0.72 0.76 0.7 0.69 0.73 0.73 0.76 0.75
micro09 0.67 0.68 0.66 0.68 0.59 0.59 0.61 0.59 0.68 0.68 0.65 0.66 0.58 0.59 0.59 0.58
micro10 0.53 0.53 0.52 0.51 0.43 0.42 0.42 0.45 0.56 0.57 0.56 0.57 0.47 0.46 0.46 0.5
micro11 0.91 0.92 0.9 0.92 0.83 0.79 0.77 0.79 0.91 0.93 0.9 0.92 0.81 0.79 0.75 0.81
micro12 0.91 0.9 0.9 0.92 0.71 0.7 0.7 0.71 0.91 0.89 0.9 0.93 0.71 0.7 0.7 0.72
micro13 0.64 0.63 0.61 0.62 0.49 0.5 0.51 0.51 0.63 0.62 0.62 0.62 0.49 0.5 0.51 0.51
micro14 0.9 0.92 0.91 0.91 0.73 0.72 0.77 0.71 0.9 0.92 0.9 0.9 0.72 0.72 0.75 0.7
micro15 0.4 0.39 0.39 0.39 0.38 0.36 0.36 0.37 0.4 0.39 0.39 0.39 0.38 0.36 0.36 0.37
micro16 1.19 1.16 1.18 1.14 0.9 0.91 0.94 0.93 1.19 1.15 1.17 1.15 0.9 0.93 0.94 0.94
micro17 2.04 2.18 1.95 2.11 2.11 2.27 2.08 2.11 2.14 2.24 1.96 2.13 2.05 2.44 2.16 2.1
micro18 0.39 0.34 0.31 0.31 0.37 0.31 0.32 0.33 0.36 0.31 0.3 0.3 0.36 0.31 0.3 0.3
micro19 1.54 1.14 1.1 1.15 1.81 1.04 1.03 1.04 1.52 1.14 1.1 1.14 1.79 1.05 1.05 1.06
micro20 0.77 0.72 0.75 0.7 0.72 0.71 0.68 0.68 0.77 0.72 0.75 0.73 0.74 0.71 0.7 0.68
micro21 0.68 0.69 0.61 0.66 0.59 0.61 0.61 0.58 0.66 0.73 0.56 0.71 0.6 0.63 0.65 0.63
micro22 0.89 0.97 1.02 0.92 1.0 0.95 0.97 0.98 0.93 0.99 1.01 0.91 0.99 0.91 0.99 0.98
micro23 0.68 0.65 0.65 0.68 0.54 0.54 0.53 0.54 0.78 0.52 0.48 0.78 0.61 0.62 0.6 0.61
micro24 0.59 0.58 0.57 0.62 0.45 0.42 0.45 0.44 0.63 0.59 0.63 0.61 0.46 0.37 0.47 0.46
micro25 0.76 0.74 0.71 0.8 0.85 0.88 0.87 0.88 0.65 0.66 0.63 0.72 0.74 0.78 0.72 0.82
micro26 1.41 1.38 1.4 1.42 0.96 0.95 0.89 0.94 1.45 1.4 1.39 1.46 0.96 0.96 0.94 0.97
micro27 0.51 0.47 0.46 0.5 0.48 0.43 0.43 0.46 0.55 0.47 0.41 0.5 0.5 0.48 0.43 0.49
micro28 0.73 0.72 0.75 0.76 0.9 0.87 0.89 0.91 0.8 0.77 0.8 0.79 0.99 0.9 0.93 0.95
micro29 0.65 0.61 0.66 0.65 0.63 0.61 0.61 0.65 0.65 0.64 0.67 0.65 0.64 0.62 0.62 0.66

Table B.1: Times of different analyses in seconds
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Appendix C

Ethics Checklist

Table C.1 shows the complete ethics checklist.
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Chapter C. Ethics Checklist

Table C.1: Complete ethics checklist

Yes No

Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human
foetal tissues / cells?

X

Section 2: HUMANS
Does your project involve human participants? X
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human Embryos/Foetuses” i.e. Section 1)? X
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? X
Does it involve the collection and/or processing of sensitive personal data (e.g. health, sexual lifestyle,
ethnicity, political opinion, religious or philosophical conviction)?

X

Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? It should be noted that this issue is not
limited to surveillance or localization data. It also applies to Wan data such as IP address, MACs, cookies etc.

X

Does your project involve further processing of previously collected personal data (secondary use)?
For example Does your project involve merging existing data sets?

X

Section 5: ANIMALS
Does your project involve animals? X
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? X
If your project involves low and/or lower-middle income countries, are any benefit-sharing actions
planned?

X

Could the situation in the country put the individuals taking part in the project at risk? X
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the environment, animals or plants? X
Does your project deal with endangered fauna and/or flora /protected areas? X
Does your project involve the use of elements that may cause harm to humans, including project staff? X
Does your project involve other harmful materials or equipment, e.g. high-powered laser systems? X
Section 8: DUAL USE
Does your project have the potential for military applications? X
Does your project have an exclusive civilian application focus? X
Will your project use or produce goods or information that will require export licenses in accordance with
legislation on dual use items?

X

Does your project affect current standards in military ethics – e.g., global ban on weapons of mass destruction,
issues of proportionality, discrimination of combatants and accountability in drone and autonomous robotics developments,
incendiary or laser weapons?

X

Section 9: MISUSE
Does your project have the potential for malevolent/criminal/terrorist abuse? X
Does your project involve information on/or the use of biological-, chemical-, nuclear/radiological-security
sensitive materials and explosives, and means of their delivery?

X

Does your project involve the development of technologies or the creation of information that could have severe negative
impacts on human rights standards (e.g. privacy, stigmatization, discrimination), if misapplied?

X

Does your project have the potential for terrorist or criminal abuse e.g. infrastructural vulnerability studies, cybersecurity
related project?

X

SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copyright licensing implications? X
Will your project use or produce goods or information for which there are data protection, or other legal implications? X
SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into consideration? X
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Appendix D

Ethical and Professional
Considerations

Our project is related to a program analysis technique which is used during the development
and maintance of JavaScript applications. Therefore, it does not involve any ethical consid-
erations for the most of the categories. The justification is self-explanatory.

Our work is not related to human embryos, foetuses, human cells, tissues, or animals. Our
work neither involves human participants nor collects or processes any personal data. Sim-
ilarly, our project is not relevant with developing countries. Our work does not have any
negative impacts on the environment or other individuals. Beyond that, the software we
use for our work comes with an Apache Licence 2.0, a permissive licence that allows us
to make our modifications for private use; therefore, they are not any license implications.
However, the analysis we implemented can be potentially used during the development and
maintanance of military applications, if they are written in JavaScript.
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