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Abstract

A great deal of research on sanitizer placement, sanitizer
correctness, checking path validity, and policy inference, has
been done in the last five to ten years, involving type sys-
tems, static analysis and runtime monitoring and enforce-
ment. However, in pretty much all work thus far, the burden
on sanitizer placement has fallen on the developer. However,
sanitizer placement in large-scale applications is difficult,
and developers are likely to make errors, and thus create
security vulnerabilities.

This paper advocates a radically different approach: we
aim to fully automate the placement of sanitizers by ana-
lyzing the flow of tainted data in the program. We argue
that developers are better off leaving out sanitizers entirely
instead of trying to place them.

This paper proposes a fully automatic technique for san-
itizer placement. Placement is static whenever possible,
switching to run time when necessary. Run-time taint track-
ing techniques can be used to track the source of a value,
and thus apply appropriate sanitization. However, due to the
runtime overhead of run-time taint tracking, our technique
avoids it wherever possible.

1. Introduction

Tracking of explicit information flow has received a great
deal of attention in recent years. Two primary applications
for explicit information flow tracking stand out prominently:

e preventing injection attacks within web applications such
as cross-site scripting (XSS) and SQL injection; and

e preventing private data leaks, such as those recently
observed in a variety of popular mobile applications [9].

These attacks have motivated a great deal of research in
the last five to ten years on sanitizer placement, sanitizer
correctness [11, 38], checking path validity, and policy in-
ference [19, 34], involving type systems [28, 8], static anal-
ysis [18, 14, 40, 35, 13, 36], and run-time monitoring and
enforcement [10, 7, 6, 21]*.

Much academic work in this space has focused on finding
missing sanitizers and was performed on relatively small ap-
plications. Several projects have explored the use of run-time
technique, motivated in part by the scalability and precision
challenges that static analysis typically encounters. Addi-
tional motivation for exploring run-time techniques comes

1For simplicity, in the rest of this paper, we shall talk about
sanitizer placement (for integrity preservation). Please note that
our techniques apply equally well to the placement of declassifiers
(for confidentiality preservation)

Stephen Chong

Harvard University

from the complexity of large-scale web applications with
multiple, potentially nested sanitizers, which recent assess-
ments [33, 32] suggest is well beyond the ability of developers
to address using static reasoning and code reviews.

We also feel that the run-time approach is most practi-
cal in the long run, however, the overhead can be consider-
able. Prior work on sanitizer placement advocates dynamic
sanitizer placement through a combination of inline in-
strumentation [21] and library-based instrumentation [7, 6].
The main advantage of library-based instrumentation is re-
duced overhead: only library code (as opposed to applica-
tion code) needs to be instrumented. However, library-based
approaches do not deal well with information propagated
through non-library code such as char]], byte[], and custom
character-level sanitizers. Custom character-level sanitizers
are quite common, and sanitizers typically deal with string
data at the level of characters [11]. The overhead of these
approaches varies, but is generally between 1-20%, depend-
ing on the application. In the case of library-based instru-
mentation, the “depth” of the data propagation path largely
determines the overhead. In large enterprise applications, we
know that data can undergo a high number of transforma-
tions during its lifetime [24], resulting in higher overhead
than experiments with smaller applications would lead us to
believe. We feel that it is crucial to develop novel ways to
decrease the performance penalty for inline instrumentation
to make it practical.

Prior research has proposed the use of pointer analysis as
a way to reduce the number of instrumentation points [20, 2].
However, the number of objects that are deemed to be reach-
able from sources and may flow to sinks is still quite large in
practice, leading to a high number of instrumentation points.
Our approach proposes a secondary filter that, based on the
structure of the interprocedural dataflow graph, obviates the
need for instrumentation for many reachable nodes.

The approach this paper advocates is radically different:
we aim to fully automate the placement of sanitizers by an-
alyzing the flow of tainted data. A key observation is that,
given a policy, sources and sinks within the application in-
duce restrictions on the placement of sanitizers. It is diffi-
cult for developers to place sanitizers so as to satisfy all of
these restrictions, especially in large-scale applications [33].
In fact, we argue that developers are better off leaving out
sanitizers entirely, allowing them to be placed automatically.

In this paper we propose a fully automatic technique for
sanitizer placement. The goal is to minimize both run-time
overhead and code bloat due to instrumentation. Sanitizer
placement is static whenever possible, switching to run-
time techniques when necessary. We perform analyses on the
inter-procedural dataflow graph of the program to identify
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Figure 1. Motivating example of a small, but illustrative
flow graph. Sources are at the top; sinks are at the bottom.

where sanitizers can be placed, and where values must be
tracked at run-time in order to determine which sanitizer to
apply to a value. In order to reduce run-time overhead, we
resort to run-time tracking only when necessary.

1.1 Sanitization Policies

Large applications come with libraries of sanitizers. Devel-
opers are heavily discouraged from writing their own sanitiz-
ers. This is in part because most of the time, they get them
wrong [4, 11]. As a result, proper sanitizers are typically
pure functions, whose signature is String — String.

Policies can be given in the form of a table, that for every
type of data source and data sink provides the appropriate
sanitizer to values that flow from that source to that sink.
Policies are declarative specifications, and can both provide
developer guidance and simplify the code review process.
Section 2 gives examples of policies.

1.2 Dataflow Graphs and Policies

Figure 1 shows a dataflow

graph for a simple pro- ’ ‘ ® B A O ‘
gram that will be used Ol s S Si L
as an example through-

out this paper. The pol- Ojs S L1
icy for this example graph G S S S L
is shown in Figure 2. Al L L S 1L
Source types (O, O, <, oL L L 1

A) are shown in rows and
sink types (@, H, A)
are shown in columns. We
use @ as a special kind
of source type and sink
type, for data production
or consumption that is not relevant to security (such as con-
stant strings or other trusted sources of data). Thus, we
assume that every source and sink of data has a type that

Figure 2. Example policy.
Sources shown vertically;
sinks shown horizontally. L
means no sanitization re-
quired.

appears in the table. Entries in the table indicate which san-
itizer should be applied to data. We use metavariable P to
range over policies, I to range over source types, O to range
over sink types, and S to range over sanitizers. We write
P(I,0) for the entry in policy P for source I and sink O.
We assume that a node cannot be both a source and a sink,
and write 7(n) for the source type or sink type of node n.
For example, in Figure 1, where n; is the node labeled with
integer ¢ we have 7(n3) = & and 7(n19) = H. Since nq; is
neither a source nor a sink, 7(n11) is undefined.

For example, let P be the policy in Figure 2. Data
originating from a source of type [ and going to a sink of
type @ should have sanitizer S; applied to it. If P(1,0) = L
then no sanitization should be applied data flowing from
source type I to sink type O. This may indicate, for example,
that constant string data should not be sanitized before
being displayed to the user.

1.3 Contributions

This paper makes the following contributions:

e Fully Automatic sanitizer placement. We argue
that sanitizer (and declassifier) placement should be done
automatically, given a policy and an application, instead
of the current approach of the developer being responsi-
ble for getting it right.

e Node-based placement. We propose a simple node-

based placement strategy for static sanitizer placement

and show that, while simple to implement, it might not
be adequate for complex dataflow graphs.

Formalization of correctness. We introduce a theory

of source- and sink-independent edges and formally de-

fine the validity of sanitizer placement.

Edge-based placement. We propose an edge-based

placement strategy for sanitizer placement, which at-

tempts to place sanitizers statically and “spills over” into
runtime whenever necessary.

e Experiments. We present a extensive evaluation of how
our placement approach affects the number of instrumen-
tation points on both large applications (up to 1.8 mil-
lion lines of code) and synthetically generated dataflow
graphs. While the node-based approach only instruments
a fraction of all nodes (sometimes as little as 1-2% of
tainted nodes), in most cases it fails to provide saniti-
zation on all paths. The edge-based approach, while re-
quiring more instrumentation points, provides full sani-
tization, while reducing the number of instrumentation
points by as much as 2X or 4x in some cases. Our edge-
based technique works even better in the case of a pre-
cise underlying dataflow analysis: for sparser synthetic
graphs, the reduction in the number of instrumentation
points is as high as 27x.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2
presents examples that highlight the need for automated
sanitizer placement. Section 3 gives an overview to our ap-
proach for automatic sanitizer placement. Section 4 presents
dataflow analyses and algorithms to implement our ap-
proach. Section 5 describes our experimental evaluation. Fi-
nally, Sections 6 and 7 describe related work and conclude.

The companion technical report [17] contains more de-
tails.
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2. Motivating Examples

Our examination of large-scale applications has shown that
more often than not, data processing is performed via a fixed
set of sanitizers, whose proper selection depends on the kind
of source and sink and can be captured via a table like the
one shown in Figure 2.

Sanitization and declassification policies in this section
illustrate the complexity of real-world data manipulation
scenarios.

2.1 Web Applications
The OWASP En-

terprise Security ’ ‘ URL Css ‘
API (ESAPI) 15 an l input ‘ encodeForURL encodeForCSS ‘
open-source web-

application security library. The usage guidelines of the
ESAPI reveal that the correct sanitization to apply to
data depends on how the data will be used, that is, on
the sink context. To sanitize a user-provided URL, the
function ESAPI.encoder().encodeForURL(input) should be
used. By contrast, to sanitize user input that will be used
to construct a value for a CSS attribute, the function
ESAPI.encoder() .encodeForCsS (input) should be used.

2.2 Web Application Roles

In large-scale web applications, sanitization requirements of-
ten vary based on who is interacting with the application.
This is referred to as role-based sanitization. For example,
Wordpress allows authors to insert certain HTML tags in
their blog posts that commenters may not [39]. Similar ap-
proaches are taken by phpBB and Drupal. This complex-
ity is reflected in sanitization libraries like Anti-XSS [23]
or OWASP HTML Sanitizer Library [26], and HTML Puri-
fier [41], where the developer can select different policies for
sanitization of HTML.

This source-sensitivity arises because not all users are
created equal, and that authentication provides a degree of
trust (and increase of capabilities) that is not warranted for
non-authenticated users.

2.3 Encrypted Cloud

Consider a web application us-
ing a public cloud provider for ’
storage. The web application
wants to use the cloud for scal-
ability and to reduce storage
hardware costs, but does not
fully trust the cloud to protect the confidentiality of its data.
The application therefore will use encryption when serializ-
ing data to the database, and decryption when deserializing.

In this scenario, the sources are of types input and cloud
and sinks are of types outside/browser and cloud. The policy
would encrypt data before it goes into the cloud and decrypt
it on the way out of the cloud. The correct sanitization to
apply (if any) depends on both the source and sink of data.

‘ output cloud

input 1 encrypt

cloud | decrypt 1

2.4 Mobile App Privacy and Security

Multiple studies have shown that applications on Android
and other mobile platforms leak user data to untrusted par-
ties. The basic idea is that the developer needs to filter
out private data before it is allowed to go outside. How-
ever, the app often has legitimate reasons to send user in-
put and data outside. Consider a gmail app that needs to
communicate with its “parent” site, or its host, in this case,

mail.google.com. It is necessary to send information to that
hosting URL, including keystrokes, files on the local sys-
tem if those are to be attached to email, etc. There is per-
haps no compelling need to send user data to AdMob.com,
a third-party mobile ad provider whose library is embed-
ded in the app [9], and so data sent to a third-party should
be cleansed, i.e., should have sensitive information removed.
This highlights the need to treat the hosting site differently
from third-party sites.

The source types for this scenario are user input, data
from host, and data from third-party site. Sink types are
screen output, isolated app storage, send to host, and send
to third-party site. Data sent to a third party site that does
not originate from the third party site should be cleansed.
No other data cleansing is required, as shown below.

screen isolated to to 3rd-party
output app storage host site
user input 1 1 1 cleanse
host 1 1 1 cleanse
3rd-party site|ascii-sanitizer 1 1 1

There are a few variations on this policy. For example,
data that comes from a third-party and goes to the host
might need to be either completely removed or cleansed
to avoid untrusted and potentially maliciously crafted data
reaching the host. Also, third-party data being shown to
the screen might need to be pretty-printed or checked for
integrity in some way, what in the table we refer to as ascii-
sanitizer. Further, we assume that data from the host
reaching a third-party site should be cleansed or removed
entirely, because this data is user-specific.

2.5 Properties of the Placement Problem

Sink sensitivity: Sanitization is sink-sensitive: sanitization
to apply to data depends on how the data will be used.
Source sensitivity: Sanitization is source-sensitive: the
correct sanitizer to use on data depends on where the data
comes from. Source sensitivity also makes full automatic
sanitization (as advocated in Samuel et al. [32]) difficult.

Context-sensitivity: As elaborated in ScriptGard [33]
and by [39], sanitization is also context-sensitive: to
choose the proper sanitization strategy, the nested con-
text needs to be determined. Consider the follow-
ing snippet of HTML code, which displays a com-
ment (the value wuntrusted) when the element is clicked.
<div class=’comment-box’
onclick=’displayComment (untrusted, this)’>
... hidden comment ...
</div>

The untrusted comment is in two nested contexts: it is in
the onclick attribute of an HTML tag, and it is in a single-
quoted JavaScript string context. To properly sanitize the
untrusted comment, we must ensure that the untrusted com-
ment does not contain either JavaScript or HTML metachar-
acters. In general, more than one sanitizer may be needed
on a path between a given source and a sink. However, this
can be still modeled by saying that for a given source and
sink type, a single function representing the composition of
sanitizers is required.

Not idempotent or reversible: Note that sanitizers are
not guaranteed to be either idempotent or reversible, mean-
ing that we cannot apply them more than once. A recent
study [11] shows that out of 24 sanitizers considered, 19 are
idempotent, and that only 2 are reversible. Moreover, order
is important, as less than 30% of pairs of sanitizers commute.
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3. Overview

In this section we define the problem and present an
overview of two solutions: a completely static node-based
solution, and an edge-based solution that uses static analy-
sis and run-time taint tracking.

3.1 Valid Sanitizer Placement Problem

We formulate our placement solution around the following
correctness definition.

Definition 1. Given a dataflow graph G = (N, E), sani-
tization for the graph is valid for policy P if for all source
nodes s, and all sink nodes t:

o if P(r(s),7(t)) = S then every value that flows from s
to t has sanitizer S applied exactly once, and no other
sanitizer 1s applied.

o if P(1(s),7(t)) = L then every value that flows from s to
t has no sanitizer applied.

We require that a sanitizer be applied at most once
on any given path because sanitizers are not necessarily
idempotent [11]: applying it multiple times might result in
incorrect computation. Also, we require that sanitizers are
not applied needlessly. We also model multiple (potentially
nested) sanitizers as a single (composite) sanitizer.

We consider two methods for finding a suitable placement
of sanitizers in a program: a node-based formulation (Sec-
tion 3.2) that is efficient, but may fail to produce a correct
sanitization in all situations; and an edge-based formulation
(Section 3.3) that always provides correct sanitization, but
may require run-time taint tracking in order to determine
the correct sanitizer to apply.

We assume that the dataflow graph G = (N, E) does not
contain any node that has both multiple in-coming edges and
multiple out-going edges. This assumption is without loss of
generality, since if a graph does not satisfy this requirement,
it can easily be transformed to one that does by the insertion
of a synthetic node. This assumption is required for the
correctness of the edge-based formulation, and is analogous
to assumptions in control-flow graph analysis of the absence
of critical edges: edges that go from a node with multiple
successors to a node with multiple predecessors.

3.2 Node-based Formulation

We say that a node n is S;-possible if it is on a path from
a source node s to a sink node t that requires sanitizer S;,
that is, P(7(s),7(t)) = S;. Thus, if n is S;-possible, then
at least some of the data passing through node n requires
application of S;. We say a node n is S;-exclusive if all data
passing n requires application of S;. In other words, node n
is S;-exclusive if it is S;-possible, and for all j # 4, it is not
Sj-possible.

Definition 2. Node n € N is S;-possible if there is a source
node s and sink node t such that n is on a path from s to t
and P(7(s), 7(t)) = Si.

Definition 3. Noden € N is S;-exclusive if it is S;-possible
and for all source nodes s and sink nodes t, if n is on a path
from s to t then P(7(s), 7(t)) = S;.

Figure 3 shows possible and exclusive nodes for sanitiz-
ers S1, S2, S3, and L. Note that while possible nodes are
plentiful, exclusive nodes are much more difficult to come by.
In fact, S2 and L have no exclusive nodes associated with
them at all. Note that node 13 is on a path both from node 3
to 21, and from node 4 to 21. However, it are Ss-exclusive

because both 7(3) = & and 7(4) = A require the same
sanitizer when going to sink A: P(<O, A) =P(A, A) = Ss.
For sparser

dataflow graphs, Possible Exclusive
exclusive nodes ‘Wlll St 1.2.610.18.19 1
be more plentiful. Sy 2.3.6.7,810,11,12
Exclusive nodes are o ’14’717571’772’0 ’
good candidates at S3 3,4,7,8,11,13,16,21 13
which to apply a S4 5,9,16,21 5,9

sanitizer to all data 1 4,8,11,12,14,15,17,20

passing through
the node. However,
exclusive nodes are
not necessarily unique: there may be multiple S;-exclusive
nodes on a single path from a source to a sink. If there are
multiple S;-exclusive nodes on a path, we need to choose
just one of them at which to apply sanitizer S;. Since in
many common applications of data sanitization, a sanitized
value is larger than the unsanitized value (e.g., escaping
special characters in a string will increase the length of
the string), we prefer to perform sanitization as late as
possible. We say that node n is S;i-latest-exclusive if it
is S;-exclusive, and for every path going through n, it is the
last S;-exclusive node on that path.

Figure 3. S;-possible and S;-
exclusive nodes for Figure 1.

Definition 4. Node n € N is S;-latest-exclusive if n is S;-
exclusive and for every source node s and sink node t, and
for every path from s to t, if n is on that path, then n is the
last S; exclusive node on the path.

By this definition, we see that in Figure 1 nodes 1, 9,
and 13 are latest exclusive nodes (for sanitizers Si, S4 and
Ss3 respectively). Node 5 is not an Ss-latest exclusive node,
since there is another S; exclusive node later on a path
from node 5. Indeed, it is easy to see from the definition
that for any path from source node s to sink node ¢t with
P(r(s),7(t)) = S;, there is at most one S;-latest-exclusive
node on that path. There may, however, be no S;-latest-
exclusive node on a path, meaning that the node-based
placement may fail to correctly sanitize all values.

3.3 Edge-based Formulation

We consider instead an edge-based formulation that is able
to always find a correct placement of sanitizers in a dataflow
graph, although it may be necessary to record and track at
run time some information about the path that a value has
taken in the graph in order to determine the correct sanitizer
(if any) to apply to the value.

Figure 4 summarizes the key concepts used in our edge-
based solution. We provide full definitions and intuition for
each of these terms below.

We say that an edge e is source-dependent if the sani-
tization to apply to values traversing e depends on which
source produced the value. Similarly, we say an edge is sink-
dependent if the sanitization to apply to values traversing it
depends on which sink the value will go to.

Definition 5. An edge e is source-dependent if there exists
sources so and s1 and sinks to and t1 such that e is on
a path from so to to and on a path from t1 to t1 and
cither P(r(s0), 7(to)) # P(r(s1), 7(t0)) or P(r(s0), 7(11)) #
P(r(s1),7(t1)). (That is, for at least one of sink to or ti,
the sanitizer to use depends on the source.)

Definition 6. An edge e is sink-dependent if there exists
sources so and s1 and sinks to and t1 such that e is on
a path from so to to and on a path from s1 to t1 and
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Term

Brief description

Source-dependent edge
Sink-dependent edge
In-trigger edge
Out-trigger edge
Sanitization edge
Tag edge
Untag edge

tagging of values.
Carry edge

Sanitizer to apply to values traversing the edge depends on which source type the value came from.
Sanitizer to apply to values traversing the edge depends on which sink type the value will go to.
Source-independent edge with a source-dependent successor.

Source-independent edge with a source-dependent predecessor.

Earliest sink-independent edge on some path from a source to a sink.

In-trigger edge that isn’t dominated by sanitization edges. Start runtime tagging of values.

Either a sanitization edge, or an out-trigger edge that isn’t dominated by sanitization edges. Stop runtime

Edge that (a) is reachable from a tag edge without an intervening untag edge, and (b) can reach an

untag edge, and (c) is neither a tag nor an untag edge. Instrument to propagate runtime taint values.

Figure 4. Summary of terms for edge-based placement.

either P(7(so), 7(to)) # P(7(s0), T(t1)) or P(7(s1),7(t0)) #
P(r(s1),7(t1)). (That is, for at least one of source so or s1,
the sanitizer to use depends on the sink.)

Intuitively, if an edge is sink-dependent, then when a
value traverses the edge, we do not yet know which sanitizer
to apply. By contrast, if an edge is source-dependent, we do
not know which sanitizer to apply to values traversing the
edge unless we know from which source the value originated.
If an edge is neither source-dependent nor sink-dependent,
then all values traversing the edge are meant to have the
same sanitizer applied.

We say that edge e is source (sink) independent if it is
not source (sink) dependent.

In Figure 1, the edge from node ng to node nig is both
source dependent and sink dependent. It is sink dependent
because it is on a path from n; to both nis and nig, but
P(r(n1),7(n1s)) = S1 # S2 = P(r(n1),7(n19)). It is source
dependent since it is on a path from both n; and na to nig
and P(7(n1),7(n19)) = S1 # Sz = P(7(n2), 7(n19)).

The edge from node n7 ng is source independent (since
only one source node can reach it), but is sink dependent.

3.3.1 Trigger Edges

To apply a sanitizer at a source-dependent edge, we must
know from which source a value originated. We can use run-
time tracking to “taint” a value so that we can determine its
source. However, run-time taint tracking can be expensive,
and we do not need to track all values manipulated by the
system, just those for which we need to know the source in
order to determine which sanitizer to apply.

We identify edges where it is necessary to start run-time
tracking of values, and edges where, if we were tracking, if
suffices to stop tracking. Edge e is an in-trigger edge if it
is a source-independent edge but has an edge after it that
is source-dependent. In-trigger edges are the edges where
we have sufficient information to know where a value came
from, and need to start run-time tracking because the origin
of a value affects which sanitizer to apply.

Definition 7. Fdge e is an in-trigger edge if it is a source-
independent edge from node ni to node n2 such that there
exists a source-dependent edge na — ng.

Edge e is an out-trigger edge if it is a source independent
edge that is preceded by a source-dependent edge €’. If we
were tracking run-time values as they traverse edge €', then
we no longer need to track them when they traverse edge e.

Definition 8. FEdge e is an out-trigger edge if it is a source-
independent edge from node ni to node n2 such that there
exists a source-dependent edge no — mni.

Once we have sanitized a value, we will not need to
perform run-time tracking for the value. (This is an invariant

that our run-time discipline will enforce: only values that
require sanitization and have not yet been sanitized will be
tagged at run time.) Because run-time tracking of values can
be expensive, we typically want to perform sanitization as
early as possible. We can only perform sanitization at sink-
independent edges (because at sink-dependent edges, the
sanitization to apply depends on the future use of the value).
Sanitization edges are the earliest possible edges at which we
can perform sanitization: they are sink-independent edges
that are the earliest sink-independent edge for some path
from a source to a sink. That is, if e is a sanitization edge,
then for at least one path from a source to a sink, it is the
earliest sink-independent edge.

Definition 9. FEdge e is a sanitization edge if it is a sink-
independent edge and there is a source node s and sink node
t such that e is the earliest sink-independent edge on a path
from s to t.

Figure 5 shows the source and sink dependent edges,
in-trigger edges, out-trigger edges, and sanitization edges
for our running example from Figure 1. For example, edge
n4 — ng is an in-trigger edge, since it is source independent,
but has a successor edge ng — n11 that is source dependent.
Edge nio — nig is a sanitization edge as it is the earliest
sink-independent edge on the path from not nas to nig.
Note that edge mizs — nie is not a sanitization edge, even
though it is sink independent. This is because any path that
goes through ni3 — nie must first go through the sink
independent edge ni1 — nis3.

In addition, for each edge e in the graph, Figure 5 shows
the policy table at e. This is simply the policy table P
restricted to the source types I and sink types O such that e
is on a path from a source node of type I to a sink node
of type O. Policy tables at edges are a useful concept for
computing an appropriate placement, and will be used in
Section 4.

Definition 10. The edge policy at edge e is the restriction
of the (global) policy P to only include source types I and
sink types O such that e is on a path from a source node of
type I to a sink node of type O. We write P. for the edge
policy at edge e.

3.3.2 Tag, Untag, and Carry edges

In-trigger edges and out-trigger edges help us identify where
we may need to start, and can stop, run-time tracking of
values. However, we can refine these notions to reduce the
amount of run-time tracking we must perform.

Intuitively, run-time tracking is necessary only when a
sanitization edge needs to distinguish values coming from
different sources. These are exactly the sanitization edges
that are source dependent. We need to propagate taint
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information only along source-dependent edges, and only
until we sanitize the value.

This also means that we only need to start taint tracking
(which we refer to as “tagging” data) when data values move
from a source-independent edge to a source-dependent edge
and the data is not yet sanitized (and will need sanitization
in the future). Similarly, we can stop taint tracking (which we
refer to as “untagging” data) when tagged data is sanitized,
or when it moves from a source-dependent edge to a source-
independent edge.

Specifically, a tag edge (where we tag values at run time,
and start the run-time traint tracking) are in-trigger edges
such that a value traversing the edge might be unsanitized
and require sanitization in the future. A value is unsanitized
if it has not gone through a sanitization edge, and thus
the tag edges are in-trigger edges that are not dominated
by a sanitization edge. Note that we assume that an edge
dominates itself, and thus a tag edge cannot also be a
sanitization edge.

Definition 11. Edge e is a tag edge if e is an in-trigger
edge that is not dominated by sanitization edges.

An untag edge is an edge such that a tagged value can
reach it (i.e., it is not dominated by sanitization edges), and
we no longer need to track the tagged values. It is either a
sanitization edge (since after sanitization we no longer need
to track taint), or an out-trigger edge.

Definition 12. An untag edge is either

® an out-trigger edge that is not dominated by a sanitiza-
tion edge or
® a sanitization edge.

At tag edges we tag values and start taint tracking, and
continue taint tracking the value until the value reaches an
untag edge: if the untag edge is an out-trigger edge then we
can stop taint tracking; if the untag edge is a sanitization
edge, we apply the appropriate sanitizer. (Note that if we
stop taint-tracking a value at an untag edge, we may poten-
tially resume taint tracking if the value later encounter an-
other in-trigger edge not dominated by sanitization edges.)
Edges between tag edges and untag edges will need to prop-
agate tag values. We refer to these edges as carry edges.

Definition 13. Edge e is a carry edge if e is on a path
from a tag edge to an untag edge such that the path does not
contain an untag edge. That is, if edges eq, . . ., en are a path
where eg is a tag edge, ey 1S an untag edge, and ey, ..., en—1
are not tag edges, then edges e1,...,en—1 are carry edges.

In Figure 5, edge ny — ng is a tag edge: it is an in-
trigger edge (since it is source independent and successor
edge ne — nip is source dependent) that is not dominated
by sanitizer edges. By contrast, edge ni3 — nie is an in-
trigger edge, but it is not a tag edge, since it is dominated
by sanitizer edge n11 — mi3. This means that any values
traversing ni3 — nie will already be sanitized, and so there
is no need to track their source type in order to determine
which sanitizer to apply. In Figure 5, all untag edges are
sanitization edges.

Edge ne — ni1o is a carry edge, as it is on a path from
tag edge n1 — ng to untag edge nip — nig without an
intervening untag edge. Edge ng¢ — m1o will propagate the
tags that tag edges n1 — ne, n2 — ng, and ny — ng create,
enable sanitization edges nig — nis and nig — nis to apply
the appropriate sanitization.
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Figure 5. Policy tables are shown at every node and trigger
edges are marked.

3.3.3 Run-Time Taint Tracking for Sanitization

We have defined several different kinds of edges that are
relevant to the run-time discipline for applying correct sani-
tization to values: sanitization edges, tag edges, untag edges,
and carry edges. We summarize what the instrumentation
for these edges is required to do at run time:

* tag edge: when a value passes through a tag edge, if the
value is not tagged then tag the value with one of the
source types reaching it. A reaching source node, and its
type, can be statically determined by examining the edge
policy.

e untag edge: when a tagged value passes through an
untag edge, untag it.

sanitization edge: If the sanitization edge is not pre-
ceded by a carry edge, then no tagged values can reach
this edge, and all values traversing this edge should have
the same sanitizer applied. Otherwise, apply sanitization
only if the value is tagged by looking up the tag (which
is a source type) in the edge’s policy table to find the ap-
propriate sanitizer to apply (which might be L, in which
case no sanitization is applied).

carry edge: when a value passes through a carry edge,
any taint on the value must be propagated.

For example, in Figure 5, consider a value flowing from
source node n3 to sink node nog. At tag edge ny — ns,
the value will be tagged with it’s originating source type
7(n3) = <. The value with it’s tag will be propagated
over carry edge ng — mn11. Upon reaching sanitization edge
ni1 — N1z, its tag will be examined, and the appropriate
sanitizer (S3) applied. Note that the tag was needed for
n11 — ni2 to determine which sanitizer to apply, since value
from source node n4 could also traverse that edge, requiring
no santization (L).
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3.3.4 Correctness of Edge-based Placement

The edge-based placement produces a valid placement (Def-
inition 1). We present here the key lemma that proves this.

Lemma 1. For every path from a source node s to a sink
node t, the following conditions hold for values flowing along
that path.

1. There is at least one sanitization edge on the path.

2. If P(1(s), 7(t)) = L then no sanitization will be applied.

3. If P(7(s),7(t)) # L then sanitizer P(7(s),7(t)) will be
applied at the first sanitization edge.

4. No sanitization will be applied at the second or subsequent
sanitization edges.

Proof: Condition (1) holds from the definition of sanitization
edges, and because an edge whose target is a sink node is
sink-independent.

Let eg,...,e, be a path from a source node to a sink
node, and let e; be the first sanitization edge. Conditions
(2) and (3) hold by the following argument. If e; is source
independent then all values passing e; will have the same
sanitization applied (either sanitizer S if P(7(s),7(t)) = S,
or no sanitization if P(7(s),7(t)) = L). Suppose that e; is
source dependent. Then there must be some other source s’
such that there is a path from s’ to e; and some output #’
reachable from e; such that P(7(s),7(t')) # P(r(s"), 7(t")).
Since eg is source independent and e; is source dependent
and the first sanitizer edge, there must be some edge e; on
the path eg,...e;—1 such that e; is a tag edge, and all edges
€j+1,...,€i—1 are carry edges. Thus, at e;, the value will
be tagged with source type 7(s) (or some other source type
I such that P(7(s),7(t)) = P(I,7(t))), the carry edges will
propagate this tag, and so at sanitization edge e;, the correct
sanitization will be applied.

Suppose that condition (4) doesn’t hold. Then there is
some edge ey in path e;+1,...,e, such that e; is a saniti-
zation edge, and ey applies sanitization to values traversing
path eo, ..., e,. Since e is a sanitizatio edge, it is the ear-
liest sink-independent edge on some path from source to a
sink, and so there must be some other source node s’ that
can reach eg. Since ey, is the first sink-independent edge on a
path from s’; there must be another edge leaving source(ex,)
(where source(e) denotes the source node of edge e) such
that on that edge, some sink node ¢’ is reachable that is
not reachable from ex, and P(7(s"), 7(t)) # P(r(s"), 7(t")).
More over, since source(ey) has multiple edges coming from
it, by assumption that the dataflow graph has no nodes
with both multiple successors and multiple predecessors,
node source(er) has a single predecessor, edge er—1, and
S0 ex_1 is also on the path from s’ to ey. Therefore, edge
ex—1 must be source dependent: since e; can reach t’, and
e; is sink-independent, it means that either P(7(s), 7(t')) #
Pr(s), 7(t) or P(r(s), 7(t) # P(r(s'), 7(1)).

Now consider whether ex_; is a carry edge.

e Suppose e,_1 is a carry edge.. We will show that none of
the edges on e;,...,e;_1 can be a tag edge, and thus, a
value coming from e; cannot be tagged, and so at sani-
tizer ey, no sanitization will be applied. This contradicts
the assumption that condition (4) doesn’t hold.

Note that e; is not a tag edge, as it is a sanitization
edge. Then there must be some tag edge e, between e;
and er_1. Since it is not dominated by sanitizer edges,
there must be a path from a source node so (such that
7(s0) # 7(8)) to source(en) without a sanitization edge.

Since e,, is an in-trigger edge, it is source independent.
That means that for all sink types O reachable from
em, and all source types I that can reach e,,, we have
Pe,, (7(s),0) = Pe,,(I,0). But any sink type O reach-
able from e, is also reachable from e;, and e; is sink inde-
pendent. That means that for any sink types O; and O,
we have Pe,, (7(s),01) = Pe,, (7(s), Oz2). Together these
imply that e,, is sink-independent , since for any source
I that can reach e,, and sinks O; and Os that can be
reached from e,, we have:

Pe,, (I,01) = Pe,, (7(s),01)
=P, (7(s),01)
=P, (7(s),02)

and O- is reachable from e;

= Pe,,. (7(s), 02)
= Pe,,(1,02)
But then e,, is the first sink-independent edge on the

path from Iy to e, and so it is a sanitization edge. This
is a contradiction, as e,, is a tag edge.

Suppose er_1 is not a carry edge. Edge ey is an untag
edge (since it is a sanitization edge). Note that ex_1 is
not a tag edge, since it is source dependent. But since
ex—1 is source dependent, and ey is the first sanitization
edge on the path from s’ to ey, then there must be a tag
edge on the path from s’ to ey without any intervening
untag edges between it and e. Therefore ex_; is a carry
edge, which is a contradiction.

The correctness of the edge-based placement follows triv-
ially from Lemma 1 and the fact that no edge other than a
sanitizer edge applies sanitization.

3.3.5 Optimizations

There are several opportunities for optimization in the edge-
based placement approach described above.

Remove un-needed sanitization edges: For simplicity
of the presentation and the proof, we have defined the
behavior of tag edges and sanitization edges treating “no
sanitization” | as if it were a sanitizer. If a sanitizer is
not preceded by a carry edge, and the policy dictates that
no sanitization should be applied, then the sanitization
edge does not perform any computation, and should not be
instrumented. Similarly, if a tag edge is tagging a value with
a source type that will never require sanitization, then the
tag edge can be removed, and the value never tagged. This
optimization is valid because a sanitization edge that may
receive tagged values will never sanitize an untagged value.

Sanitization edges preceeded by carry edges: For
simplicity we required that any sanitization edge preceeded
by a carry edge needed to check the runtime tag before
applying sanitization. There are some situations (statically
determinable) where a sanitization edge will be preceeded
by a carry edge, yet all values going through it should have
the same sanitization applied. In Figure 5 edge ni1 — nis
is an example of this: the preceeding edge ns — nii is
a carry edge, but n11 — ni3 is source independent, and
(importantly) is the first sanitization edge on any path that
goes through it. Thus, all values traversing nii1 — ni3 will
have sanitizer Ss applied, and there is no need to examine
the tag.
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Attaching tags to run-time values: We envision the run-
time taint tracking being implemented simply by attaching
tags to run-time values. This is a strategy that works well for
dynamic languages such as Java, PHP, or JavaScript. The
tags can be quite compact: we have described it above as
tagging a value with the source that it originated from (or a
source that has equivalent sanitization requirements), but it
would suffice use bit strings that uniquely identify a source
type. The number of sources depends on the policy, but
will typically be small, meaning that a tag of 3—4 bit would
suffice. There are opportunities for efficient implementation
of taint-tracking when the tags are this small, such as placing
the tag within the value header at run time.

With the tagging approach, the instrumentation for carry
edges becomes trivial, since tags will be copied if they exist.
Thus, the only instrumentation required will be to tag values
as they pass through tag edges, untag them as they pass
through untag edges, and apply appropriate sanitization at
sanitization edges.

Efficient lookup for sanitization: Since the number of
possible tags that can reach a given sanitization edge is small
and known statically, we can pre-compute a lookup table
for each sanitization edge that maps the tag number to the
required sanitizer, thus minimizing run-time calculations.

4. Placement Algorithms

In this section, we propose concrete algorithms for comput-
ing the sets and relations described in Section 3. At the
core of these computations, we have dataflow analysis, as
described in Aho et al. [1]. As we will see, we can often
stage our computation and break it town into a series of two
or three analyses, one after another. As Knoop et al. [15] ob-
serve, this is often advantageous compared to a more com-
plex equation-based approach, because each analysis stage
completes fast.

4.1 Node-based Placement

Section 3.2 suggests a node-based placement approach. We
will proceed to compute the set of nodes that are S;-possible
and S;-exclusive, with respect to each sanitizer S; for 4
ranging from 1 to k. To combine the computation of these
properties for different sanitizers S;, we use bitvectors as
our representation. Generally, a 1 at position i for a value
at node n € N means that the property (either possiblity or
exclusiveness) holds for S;.

First, we compute available source types and anticipated
sink types at every node using a dataflow analysis, as shown
in Figure 6. We specify dataflow analyses by giving the semi-
lattice of dataflow facts, the initial values of source nodes,
the transfer function for nodes, and the direction of the
dataflow analysis. This is a complete specification of the
dataflow analyses.

We then combine the awailable sources and anticipated
sinks information as described in Algorithm 1, to deter-
mine for each node which sanitizers are possible at ev-
ery node. This is done by projecting the policy table to
only the available source types and anticipated sink types.
We write Project(P,S,T) for the policy table that con-
tains only the rows of policy table P for sink types S,
and only the columns of P for sink types 7. If at
node n, sanitizer S; appears in the projected policy ta-
ble Project(P, available(n), anticipated(n)), then n is on a
path from a source to a sink that requires n is S;-possible.

Algorithm 1. Possible nodes.

Semi-lattice L set of sources

Top T 0

Initial value init(n) 0

Transfer function TF(n) add T(n) toset if nis a source
identity otherwise

Meet operator M(z,y) unionzUy

Direction forward

(a) Available source types.

Semi-lattice L set of sinks

Top T 0

Initial value init(n) 0

Transfer function TF(n) E.%dd T(n) toset if n is a sink
identity otherwise

Meet operator M(z,y) union zUy

Direction backward

(b) Anticipated sink types.

Figure 6. Available source types and anticipated sink

types.
Semi-lattice L bitvector of length k
Top T 0
Initial value init(n) 0
. bit i =1 if n is S;-exclusive
Transfer function TF(n) { identity  otherwise
Meet operator M(z,y)  bitwise or z|y
Direction backward

Figure 7. Computes exclusive_anticipated(z).

for all n € N do
sanitizers = Project(P, available(n), anticipated(n))
for all s € sanitizers do
possible(s) = possible(s) U {n}

The nodes that are S;-exclusive are a subset of nodes
that are S;-possible. Computing S;-exclusive nodes is a
simple matter of removing from the set of S;-possible nodes
any node that is Sj-possible, for any i # j, as shown in
Algorithm 2.

Algorithm 2. Exclusive nodes.

for all ¢ € [1..k] do
exclusive(z) = possible(7)
for all j € [1..k] do
if i # j then
for all n € possible(i) do
if n € possible(j) then
exclusive(i) = exclusive(s) \ {n}

The last step is to compute latest-exclusive nodes. Recall
that those are S;-exclusive nodes that for some path from
a source to a sink are the last S;-exclusive node on that
path. The idea for computing these nodes is to perform a
backward dataflow analysis (Figure 7) that identifies, for
each S;, which nodes can reach an S;-exclusive node. We
write exclusive_anticipated (i) for the set of nodes that can
reach a S;-exclusive node.

Latest-exclusive nodes are simply the set of exclusive
nodes, minus the set of anticipated-exclusive nodes (Algo-
rithm 3)

Algorithm 3. Latest-exclusive nodes

for all ¢ € [1..k] do
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Semi-lattice L true or false Semi-lattice L Bool x Bool
Top T true Top T (true, true)
Initial value init(n)  true Initial value init(e) (false, false)
Transfer function  TF(n) true if 3. ne latest_exclusive(¢) Tyansfer function TF(e) (f1(e), f2(e))
identity otherwise true  if e is sink-
M.eet operator M(z,y) conjunction z Ay file)(a,b) = independent
Direction forward a otherwise
true if f1(e) =true and
Figure 8. Detect whether static placement is valid. fa(e)(a,b) = a = false
false  otherwise
latest_exclusive(i) = exclusive(s) Meet operator N(z,y) pointwise A
for all n € exclusive_anticipated(i) do Direction forward
latest_exclusive(i) = latest_exclusive(i) \ {n}
We place sanitizer S; at all nodes that are S;-latest- Figure 9. Computes sanitization(e).
exclusive. Latest-exclusive nodes are generally somewhat - -
rare, especially in dense graphs. For the graph in Figure 1, Semi-lattice L true or false
this algorithm will place sanitizers only at nodes ni, nis Top T true
’ : Initial value init(e)  false

and ng. However, this is clearly insufficient, because not all
values traversing the graph will be sanitized, such as values
flowing from source node n3 to sink node nag.

It is simple to perform a dataflow analysis to detect
whether all paths from sources to sinks go through a latest-
exclusive node. Figure 8 describes such an analysis. The
dataflow facts are booleans, indicating whether all paths
to the node have gone through a latest-exclusive node. (By
construction, a path can have at most one latest-exclusive
node, so there is no need to count the number of latest-
exclusive nodes on a path.) The static placement is valid if
and only if the dataflow analysis produces a value of true at
all sink nodes.

4.2 Edge-based Placement

In the rest of this section, we describe how to implement
the edge-based solution, as advocated in Section 3.3. There
are several different sets of edges that need to be identified,
summarized in Figure 4. We present algorithms to compute
each of these sets of edges.

Source- and sink-dependent edges: First, we compute
the available source types and anticipated sink types for
every edge, in a manner similar to the dataflow analyses
in Figure 6. However, whereas Figure 6 is an analysis that
computes dataflow facts for nodes, we need to compute
dataflow facts for edges.

Next, for each edge e we compute the edge policy P.
of the policy table P: it is policy table P restricted to the
available source types and anticipated sink types of edge e.
We use the edge projections to identify source-dependent
and sink-dependent edges. Edge e is source-dependent iff
edge policy P. has more than one unique sanitizer in any
column. Edge e is sink-dependent iff edge policy Pe has more
than one unique sanitizer in any row.

In-trigger and out-trigger edges: Recall that in-trigger
edges are source-independent edges with a source-dependent
successor edge, and out-trigger edges are source-independent
edges with a source-dependent predecessor edge. We can
compute these edges efficiently purely by inspection of the
dataflow graph. Let in_trigger denote the set of in-trigger
edges, and out_trigger denote the set of out-trigger edges.

Sanitization edges: Sanitization edges are sink-
independent edges that are the earliest sink-independent
edge on some path from a source to a sink. They are
the edges at which sanitization will be performed: at
sink-independent edges the sanitization to apply to a value
does not depend on which sink the value will go to.

true ifeis a
sanitization edge
identity otherwise
N(z,y) @Ay
forward

Transfer function TF(e)

Meet operator
Direction

Figure 10. Computes dom_sani(e): whether edge e is dom-
inated by sanitization edges.

Figure 9 presents a dataflow algorithm for computing san-
itization edges. Note that the analysis computes dataflow
facts for edges. Dataflow facts are pairs of boolean values.
The first value is true for an edge if and only if all paths to
the edge go through a sink-independent edge. The second
boolean value is true for sanitization edges: edges that are
the first sink-independent edge on some path, which is ex-
actly the edges that are sink independent and have at least
one path to it that doesn’t go through a sink-independent
edge. Note that the transfer function for edge e is given as a
pair of functions, fi(e) and f2(e), each of which is a function
from the input dataflow fact (a pair of boolean values, (a, b))
to a boolean value, which forms part of the output dataflow
fact.

Tag and untag edges: Tag and untag edges are where
we, respectively, start and stop run-time tracking of values.
Definitions of tag and untag edges rely on dominance, which
is easily computed by flowing availability values forward,
and using intersection as the meet operator.

The definition of both tag and untag edges relies on
identifying edges that are dominated by a sanitization edge,
for which we use the dataflow analysis in Figure 10. We write
dom_sani(e) if edge e is dominated by sanitization edges.
Note that if e is a sanitization edge, then dom_sani(e) is
true.

The following algorithm computes the set of tag and un-
tag edges. Tag edges are in-trigger edges that are not domi-
nated by sanitization edges. Untag edges are either sanitiza-
tion edges, or out-trigger edges that are not dominated by
sanitization edges.

Algorithm 4. Tag and untag edges.

for all e € E do
if e € in_trigger A ~dom_sani(e) then
tag = tag U {e}
if (e € out_trigger A—~dom_sani(e))Ve € sanitization then
untag = untag U {e}
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Semi-lattice L true or false
Top T false
Initial value init(e)  false

true if e € tag
Transfer function T F(e) false if e € untag
identity otherwise

Meet operator
Direction

N(z,y) zVvy
forward

(a) Computes tag-available: reachable from tag edge without in-
tervening untag edge.

Semi-lattice L true or false
Top T false
Initial value init(e)  false
. true if e € untag
Transfer function T F(e) { identity otherwise

Meet operator
Direction

backward

(b) Computes untag-anticipated: can reach untag edge.

Figure 11. Dataflow analyses for carry edge computation.

’ Benchmark DLLs DLL (KB) LOC
Alias Management 3 65 10,812
Chat Application 3 543 6,783
Bicycle Club App 3 62 14,529
Software 15 118 11,941
Sporting Field Management 3 290 15,803
Commitment Management 7 369 25,602
New Hire 11 565 5,595
Expense Report Approval 4 421 78,914
Customer Support Portal 14 2,447 66,385
Relationship Management 5 3,345 1,810,585

Figure 12. Benchmark applications, sorted by code size.

Carry edges: Finally, carry edges are those on a path
from a tag to an untag edge that does not pass through
an untag edge. The set of carry edges cab be computed by
first performing a forward dataflow analysis to compute tag-
available—the set of edges that are reachable from a tag edge
without an intervening untag edge—and then performing a
backward dataflow analysis to compute untag-anticipated,
the set of edges that can reach an untag edge. These dataflow
analyses are shown in Figure 11. Carry edges are the non-
tag, non-untag edges that are in both the tag-available and
untag-anticipated sets, as defined in the following algorithm.

Algorithm 5. Carry edges.
for all e € E do
if e € tag-available N\ e € untag-anticipated then
if e & tag A e &€ untag then
carry = carry U {e}

5. Experimental Evaluation

Our experimental evaluation focuses on showing how our al-
gorithms achieve automatic sanitizer placement and reduce
the number of instrumentation points needed compared to a
baseline implementation that performs dynamic taint track-
ing between all sources and sinks. Our target class of appli-
cations is long-running server applications. Runtime over-
head of taint tracking is generally very workload-specific
(e.g., [9]), so we choose not to evaluate runtime overhead
directly. Reducing the number of instrumentation points
is a valuable goal, because long-running applications with

10

diverse workloads will have very high code coverage over
time, hitting increasingly many instrumentation points. Sec-
tion 5.1 presents the results of applying our techniques to
large C# web applications written in ASP.NET. Section 5.2
provides results of applying our approach to large, synthet-
ically constructed graphs.

5.1 Large Applications

Figure 12 contains a summary of information about our
macro-benchmarks. These are relatively large business web
applications written on top of the ASP.NET framework,
consisting of several separate DLLs, as shown in column 2.
Not all code contained within the application source tree
is actually deployed to the Web server. Most of the time,
the number and size of deployed DLLs primarily consisting
of .NET bytecode is a good measure of the application
size, as shown in column 3. Note that in a several cases,
libraries supplied in the form of DLLs without the source
code constitute the biggest part of an application. Finally,
to provide another measure of the application size, column 4
shows the traditional line-of-code metric for all the code
within the application.

Policy: There are applications ranging from tens of
thousands of lines of code to over a million in
the case of the Relationship Management application.
We classified sources

and sinks into the ’ normal file @
three categories: normal, normal 5 5, L
flle,. resource, bgsed on resource S5 s, L
their functionality (i.e. ) 1 11

TextWriter.Write is a

file-related sink). We used the policy shown to the right
for these applications. Finally, we completely disregarded
existing sanitizers, fully automating sanitizer placement.

5.1.1 Node-based Placement

Figure 13 contains the results of applying node-based anal-
ysis described in Figure 3.2. Applications are represented as
graphs, some nodes of which are marked as sources or sinks.
We are operating on a fairly sparse graph representation of
the program computed by the CAT.NET tool [22]. Nodes of
the graph are parameters and return results of individual
methods in the application or its libraries. Edges represent
data flow as inferred by CAT.NET. A different static analysis
tool could also be used to construct these graphs; the preci-
sion and soundness of CAT.NET results is orthogonal to our
approach. The number of nodes (column 2) as well as sources
and sinks (3—4) ranges from dozens to lower thousands.

Columns 5-8 summarize information about tainted nodes
in the graph. Column 5 is forward-tainted nodes (avail-
able). Column 6 is backward-tainted nodes (anticipated).
Column 7 is both forward- and backward-tainted nodes and
column 8 is the fraction of these nodes compared to all nodes
in the graph. We can see that for a well-connected graph,
the percentage of such nodes can be quite high, going higher
than 60%. The implication is that a very high fraction of
nodes needs to be instrumented to propagate the taint for-
ward at runtime.

Columns 9-11 capture our exclusive node computation.
Column 9 is the number of exclusive nodes and column 10
is the number of latest exclusive nodes. Column 11 is the
fraction of latest exclusive nodes within the nodes of the
graph. Finally, column 12 shows the coverage, which is the
fraction of all source-sink paths that are properly sanitized
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Graph Taint Tainted nodes Exclusive nodes Sanitization
Application nodes | sources sinks | forward backward both ratio all l.e. ratio coverage
Terralever 156 64 69 140 140 76 48% 122 50 32% 82%
Alias Management 59 11 12 22 21 11 18% 19 9 15% 86%
Contoso Bicycle Club 161 50 54 145 133 87 54% 94 40 24% 50%
Windows Experience Catalog 204 47 83 186 160 101 49% 120 49 24% 93%
Commitment Management 356 135 132 299 296 183 51% 221 86 24% 79%
New Hire 502 142 183 401 409 229 45% 275 110 21% 70%
Expense Report Approval 805 214 322 722 637 408 50% 389 170 21% 82%
Customer Support Portal 3,881 967 1,219 3,488 3,263 2,266 58% | 1,721 770 19% —
Relationship Management 3,639 1,054 982 3,321 3,104 2,241 61% | 1,565 637 17% —
Figure 13. Node-based analysis and its effectiveness.
Total Taint Tainted Dependent Triggers Edge count Instr
=
) 9]
8 9 N
8l & g = 8 F = A < B T
s 3 E§ z & g% & 3 E 5 5@ E E 85 %
Application 5] 0 ‘@ & o) 2 = @ ‘@ = o w| + 3 3 8 =
Terralever 142 96 89 140 137 136 95% 3 1 8 0 97 1 5 0 6 22.66
Alias Management 962 11 10 13 14 13 1% 0 0 0 0 11 0 2 0 2 6.5
Contoso Bicycle Club 182 80 70 170 174 164 90% 32 27 29 9 84| 2 6 7 15 10.93
Windows Experience 430 68 162 386 364 358 83% 133 125 14 117 193] 2 31 123 156  2.29
Commitment Management 461 177 188 420 409 386 83% 110 114 45 41 215 6 30 108 144  2.68
New Hire 873| 258 347 680 771 652 74% 181 192| 108 75 342| 27 67 126 220  2.96
Expense Report Approval | 1,389| 367 503| 1,286 1,296 1,208 86% 189 197| 131 143 577| 23 99 144 266 4.54
Customer Support Portal 8,985(1,505 2,167| 8,534 8,469 8,069 89%| 4,315 4,364| 901 1,331 2,875[232 541 3,917| 4,690 1.72
Relationship Management [17,7322,376 2,594|17,227 17,358 16,888 95% (11,227 11,585|2,057 2,020 4,407 |428 533 10,725|11,686 1.44

Figure 14. Edge-based analysis and its effectiveness. Reduction in number of instrumented edges is shown in last column.

with latest exclusive nodes.? Two key take-aways from this
table are as follows:

e node-based instrumentation is very expensive, with as
many as 60+% of nodes needing to be instrumented; and

e the obtained coverage is significantly less than 100%, the
static node-based approach is generally unacceptable for
sanitizer placement.

5.1.2 Edge-based Placement

Figure 14 shows the results of edge-based analysis. Column 2
shows the number of edges in the graph. Columns 3—4 show
the number of sources and sinks, respectively. Columns 5—
7 show the number of forward and backward-tainted edges
and edges tainted in both directions. Column 8 shows the
percentage of edges tainted in both directions as a fraction
of the number of edges in the graph.

Columns 9-10 show the number of source- and sink-
dependent edges. Columns 11-13 show the number of in-
and reverse trigger edges and sanitizer edges. Columns 14-16
show the counts for the other kinds of edges computed by the
edge-based formulation. Finally, columns 17 and 18 show the
number of edges needing instrumentation and the savings
compared to the naive approach of instrumenting edges that
are both forward- and backward-tainted. (As described in
Section 3.3.5, we do not count unneeded sanitization edges
when counting edges that require instrumentation.) Two key
take-aways from this table are as follows:

e We see that for most applications, the percentage of
edges that are forward- and backward-tainted is quite
high, indicating that the underlying dataflow analysis of
CAT.NET is quite imprecise, leading to a great deal of
connectivity within the dataflow graph.

2Coverage numbers are not available for the largest two ap-
plication; the large number of paths in the dataflow graph cannot
be enumerated in reasonable time.
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Figure 15. Synthetic graph results.

e In general, our analysis is not as effective at reducing the
number of instrumentation points for densely-connected
graphs (the last several rows) as it is for the sparser
graphs (the first several rows).

5.2 Synthetic Graphs

Finally, we evaluate our (edge-based) algorithm on some
synthetically constructed graphs. To build such graphs, we
start with 100 sources, 100 sinks, and 1,000 regular nodes.
We randomize the type of the sources with equal probability
between @, 1, O, <, and A, and the type of sinks between
@, @, B and A, using the policy in Figure 2 for proper san-
itizer placement. We connect sources to sinks by performing
a random walk of length 10 starting at a random source and
ending at a random sink through the graph, creating edges
as we pass from node to node. We use a density parame-
ter d to vary how many such walks we perform, affecting
the number of edges.

Figure 15 shows the improvements with edge-based in-
strumentation compared to naive, taint-based instrumenta-
tion as the number of edges grows. We can see that for sparse
graphs, the improvements are most noticeable, peaking at
over 27x, gradually becoming less pronounced (only 48% im-

2012/7/16



provement for 550 edges). This suggests that sparser graphs
constructed with the help of a precise analysis are likely to
benefit the most, whereas graphs that are overly connected
as a result of analysis imprecision benefit less. This observa-
tion further justifies investement in precise static tainting.

6. Related Work

Because of space limitations, we only provide a brief sum-
mary of related work.

Software security analysis of web applications: Pro-
gram analysis has a long history of being used for finding se-
curity bugs in web applications. Static analysis has been ad-
vocated for PHP, Java, and other languages [18, 40, 14, 13].
Multiple runtime analysis systems for information flow
tracking have also been proposed [21, 10, 25, 27].

Automating placement: Most recently, we have seen in-
creased interest in automating security-critical decisions for
the developer [32, 39]. The use of security type system for
enforcing correctness is another case of cooperating with
the developer to achieve better code quality and correctness
guarantees [29].

Sanitizer correctness: Balzarotti et al. show that custom
sanitizer routines are often incorrectly implemented [3]. Our
concerns in this paper are complimentary to sanitizer cor-
rectness. The Cross-Site Scripting Cheat Sheet shows over
two hundred examples of strings that exercise common cor-
ner cases of web sanitizers [30]. The BEK project proposes a
systematic domain-specific languages for writing and check-
ing sanitizers [11, 38].

Specification inference: Livshits et al. propose an ap-
proach to inferring information flow specifications (sources,
sanitizers, and sinks) using factor graphs [19]. Kremenek et
al. [16] propose belief inference as a way to infer specifica-
tions for static analysis checkers. Vaughan et al. propose pol-
icy inference to discover correct declassification policies [37].

Graph algorithms: LCM and PRE: A range of graph-
theoretical algorithms from compiler literature is relevant for
our work. In particular, Knoop et al. [15] describe lazy code
motion. Riithing et al. describe a variant of it called sparse
code motion [31]. Partial redundancy elimination of PRE is
described in Hosking et al. [12, 5].

7. Conclusions

Despite years of research in explicit information flow (or
tainting), practical deployment has been scarce. One of
the obstacles is the overhead that taint tracking induces
at runtime. In this paper, we propose a set of algorithms
that drastically reduce the need to track taint throughout
the application. Our algorithms are graph-theoretical, run
fast, and readily integrate with other approaches to tracking
explicit information flow.

We discover that while node-based taint tracking is eas-
ier to implement, it both requires too many nodes to be
instrumented and does not generally provide full sanitiza-
tion coverage. Edge-based placement is an alternative that
provides full sanitization, resulting in a reduction of nodes
needing instrumentation, sometimes as significant as 27x,
compared to the naive, tainting-based strategy.
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