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Abstract

Security sanitizers have long been known to be very diffi-
cult to implement correctly. Moreover, with the rise of the
web, developers need string manipulating functions in both
“server” and “client” languages. Hand-writing these functions
separately is an open invitation to bugs. At the same time,
auto-generated code will not be accepted unless it is signif-
icantly faster than previous hand-written code. We address
this problem with two complementary approaches centered
around BEK, a domain-specific language for writing complex
string manipulation routines [8].

First, BEK compiles the input domain-specific program
into an intermediate format consisting of symbolic finite
state transducers, which extend classical transducers with
symbolic predicates. In this paper, we present a novel al-
gorithm that we call exploration which performs a symbolic
partial evaluation of these transducers to obtain simplified,
stateless versions of the original program. These simplified
versions can be lifted back to BEK, and from there compiled
to C#, C, or JavaScript. Second, we explore how SIMD in-
structions can be combined with BEK compilation to C and
C, enabling developers to access parallel features of modern
architectures without needing to tweak the C compiler or
hand-write assembly.

We have implemented our code generation pipeline for
BEK code corresponding to several real string sanitizers. We
use an automatic testing approach to compare our generated
code to the original C# implementations and found no
semantic deviations. Our generated C# code outperforms
the previous hand-tuned code by a factor of up to 2.5. For
C code with SIMD, we see speedups of 2.5 times compared
to native C code for the same sanitizer.

1. Introduction

Much of the motivation for this work comes from doing se-
curity analysis of large-scale modern web applications, both
manually and using a combination of static and runtime
analysis techniques. Improperly dealing with untrusted in-
put is at the core of many web application vulnerabilities,
as exemplified by cross-site scripting (XSS). These attacks
happen because the applications take data from untrusted
users, and then echo this data to other users of the appli-
cation. Because web pages mix markup and JavaScript, this
data may be interpreted as code by a browser, leading to
arbitrary code execution with the privileges of the victim.
The first line of defense against XSS is the practice of sani-
tization, where untrusted data is passed through a sanitizer,
a function that escapes or removes potentially dangerous
strings.

However, sanitizers are surprisingly difficult to get right
and are, therefore, often the Achilles heel of many a web ap-
plication. Anecdotally, in dozens of code reviews performed
across various industries, just about any custom-written san-
itizer was flawed with respect to security [19]. The recent
SANER work, for example, showed flaws in custom-written
sanitizers used by ten web applications [2]. Another exper-
iment solicited developers to implement sanitizers based on
a verbal description; pretty much all the resulting sanitizers
varied in subtle ways [8].

1.1 A Back-End for BEk

The problem of sanitize correctness becomes even more
complicated when considering that it is not unusual for
a complex web application today to be implemented in a
variety of languages, including Java, C#, JavaScript, PHP,
and C, spanning both the client and the server. As such, the
task of creating correct and consistent sanitizers that work
the same way across all languages is even more complex.
Sanitizers are typically small snippets of code, perhaps
tens of lines. Furthermore, application developers know
when they are writing a new, custom sanitizer or set of san-
itizers. Our key proposition is that if we are willing to spend
a little more time on this sanitizer code, we can obtain fast
and precise analyses of sanitizer behavior, along with actual
sanitizer code ready to be integrated into both server- and
client-side applications. Our approach is BEK, a language for
modeling string transformations. The language is designed
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to be (a) sufficiently expressive to model real-world code,
and (b) sufficiently restricted to allow fast, precise analysis,
without needing to approximate the behavior of the code.

This paper shows how programs written in BEK can be
compiled down to traditional server- and client-side lan-
guages such as C#, C, and JavaScript. This ensures that
the code analyzed and tested is functionally equivalent to
the code which is actually deployed for sanitization. The fo-
cus of this work is on producing an optimizing back-end for
BEK. Through a series of case studies, we demonstrate how
our compilation step generates faster code than manually
written sanitization routines. We also give developer a choice
of semantically equivalent programs in different languages,
with varying performance characteristics to pick from, ob-
serving that JavaScript output is usually the slowest, fol-
lowed by C#, followed by regular C, whereas C with SIMD
optimizations is typically the fastest.

1.2 Symbolic Branching Transducers

Key to our analysis is compilation from BEK programs to
symbolic branching transducers, an extension of standard fi-
nite transducers. Recall that a finite transducer is a gener-
alization of deterministic finite automaton that allows tran-
sitions from one state to another to be annotated with out-
puts: if the input character matches the transition, the au-
tomaton outputs a specified sequence of characters. In sym-
bolic finite transducers [17], transitions are annotated with
logical formulas instead of specific characters, and the trans-
ducer takes the transition on any input character that sat-
isfies the formula.

Our symbolic representation enables leveraging satisfia-
bility modulo theories (SMT) solvers, tools that take a for-
mula and attempt to find inputs satisfying the formula.
These solvers have become robust in the last several years
and are used to solve complicated formulas in a variety of
contexts. At the same time, our representation allows lever-
aging automata theoretic methods to reason about strings of
unbounded length, which is not possible via direct encoding
to SMT formulas. SMT solvers allow working with formulas
from any theory supported by the solver, while other previ-
ous approaches, such as using binary decision diagrams, are
specialized to specific types of inputs.

We extend symbolic transducers or STs with branching
rules and exception rules, called ST®s that allow us to be
faithful in code generation. At the same time, the extension
is a conservative extension of symbolic transducers (without
branching rules). For analysis tasks, such as domain equiv-
alence and partial equivalence, we reduce ST®s to STs and
apply the analysis techniques introduced in [17]. We intro-
duce a new algorithm for exploration of STPs that preserves
the branching structure of rules.

Figure 1 shows an example of a symbolic branching trans-
ducer. This transducer represents the CSSEncode sanitizer
from the Microsoft AntiXSS library, version 4. The purpose
of this sanitizer is to prevent JavaScript injection in the CSS
(cascading style sheet) context. The original version, con-
sisting of 206 lines of C# has been translated by us into 28
lines of BEK code. This sanitize features nested conditionals
as well as exception handling, requiring the use of branching
transducers. This transducer has two register, one a Boolean,
the other a character. This is a fairly typical sanitizer found
in libraries such as AntiXSS and others.

1.3 Paper Contributions

This paper has the following contributions.

e We show how to extend symbolic transducers with
branching rules. These branching rules enable us to carry
information about exceptions through transformations of
the underlying transducers, allowing for a faithful rep-
resentation of the original code. In Section 4 we de-
scribe how these branching rules allow us to automat-
ically refactor an implementation of the CSSEncode san-
itizer while preserving its exception behavior. We also
show how the formula simplification feature of our SMT
solver can produce more efficient predicates for evalua-
tion of these transducers.

We show how to compile from BEK into C#, JavaScript,
and C. In particular we show how to check the result-
ing code for semantic differences from the original code.
We present a transformation from BEK to C# that out-
performs production hand-written versions of the same
function by as much as 2.5x.

e Previous work on BEK introduced an extension to sym-
bolic transducers called registers [17]. Registers remem-
ber small amounts of state and turn out to be essen-
tial for modeling real sanitizers. However, the presence of
state complicates code parallelization. In this paper, we
present a novel algorithm for state space exploration. The
result of the exploration is a stateless program, which is
advantageous for parallelism, as we effectively get rid of
the state introduced by registers.

We develop methods for integrating architectural SIMD
instructions with compilation of BEK to C code. Explored
transducers lend themselves more naturally to paral-
lelization with SIMD, which results in additional time
savings, as illustrated with our case study of a CSSEn-
code transducer in Section 5.3. Note that existing de-
pendencies in both hand-written and pre-explored BEK
programs make it very difficult for a compiler to generate
SIMD code.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 in-
troduces symbolic branching transducers (SBTs). Section 3
presents algorithms for transducer exploration. Section 4 de-
scribes the BEK back-end, focusing on the translation pro-
cess for C#, C++, and JavaScript. Section 5 provides our
experiment evaluation. Finally, Sections 6 and 7 describe
related work and conclude.

2. Symbolic Branching Transducers

We now formally introduce symbolic branching transducers
or STPs and give examples of how STPs capture behavior
of programs. We assume a background structure that has
an effectively enumerable background universe U, and is
equipped with a language of function and relation symbols
with fixed interpretations.

We use 7, o and v to denote types, and we write U™ for
the corresponding sub-universe of elements of type 7. The
Boolean type is bool, with 2/°°° = {t, f}, the integer type is
int, and the type of k-bit bit-vectors is bvk. The Cartesian
product type of types o and 7 is o X 7. The type o™ is the
type for finite sequences of elements of type . The universe
U is the Kleene closure (U%)* of the universe U°. We
also write type o® as a semantic subtype of ¢* of sequences
of elements of length at most k > 0.

Terms and formulas are defined by induction over the
background language and are assumed to be well-typed. The
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Figure 1. CSSEncode: an example of a symbolic branching transducer.

type 7 of a term t is indicated by ¢: 7. Terms of type bool, or
Boolean terms, are treated as formulas, i.e., no distinction
is made between formulas and Boolean terms. All elements
in U are also assumed to have corresponding constants in
the background language and we use elements in U also as
constants. The set of free variables in a term t is denoted
by FV(t), t is closed when FV(t) = 0, and closed terms
t have Tarski semantics [t] over the background structure.
Substitution of a variable z : 7 in ¢ by a term w: 7 is denoted
by t[z/u].

A X-term f is an expression of the form A\z.t, where z: o
is a variable, and ¢:~ is a term such that FV(t) C {z}; the
type of f is ¢ — ~; [f] denotes the function that maps
a € ¥ to [t[z/a]] € T. As a convention, we use f and g to
stand for A-terms. A A-term of type o — bool is called a o-
predicate. We write ¢ and v for o-predicates and, for a € X,
we write a € [¢] for [p](a) = t. We often treat [¢] as a
subset of ¥. Given a A-term f = (Az.t):0 — 7 and a term
u:o, f(u) stands for t[z/u]. A predicate ¢ is unsatisfiable
when [¢] = 0; satisfiable, otherwise.

The main building block of an ST is a rule. A rule is
an expression that denotes a partial function corresponding
to a straight-line conditional statement of a program that
may yield outputs, produce updates and raise exceptions.
We first provide an inductive definition of rules that omits
type annotations. We then define additional well-formedness
criteria and the semantics for rules.

e | is the exception rule.
o If f is a A-term then br(f) is a basic rule.

o If ¢ is a predicate and ri, 2 are rules then ite(p,71,72)
is an if-then-else (ite) rule.

We say that a rule r is well-formed with respect to the type
o — 7, denoted 7 : ¢ — 7, when one of the following
conditions holds:

e 1 is the rule L.
e risarule br(f:0 — 7).
e ris arule ite(p:0 — bool,r1:0 = v,r2:0 = 7).

A rule r:0 — «y represents a function [r] from U to Z(U")
For all a € U°:

[L](a) = 0
[br(Nl@) = {[/1(a)}
[ite(o, 71, 72)](a) def {[[7'1]](@), 1fa€[[.<p]];

[r2](a), otherwise.

We now introduce the central definition of a symbolic
branching transducer that uses the definition of rules.

Definition 1: A Symbolic Branching Transducer or ST® A
with input type o, output type v and state type 7 is a tuple
(¢°, R, F), where

o ¢° € U7 is the initial state;

® R is a finite set of rules of type (¢ x 7) — (v* x 7), for
some k > 0, rules in R are called the input rules of A;

e F is a finite set of rules of type 7 — ¥, for some k > 0,
rules in F' are called the final rules of A.

For a basic subrule r = br(A(z,y).(f(z,y),g(x,y))) of an
input rule, f is called the yield and g the update of r. A
basic subrule of a final rule is called a final yield. X

We write p a—/bm q for a concrete transition of A: there
exists 7 € Ra such that [r](a,p) = {(b,q)}. Similarly, we

write g /—b>A for a final output of A: there exist r € Fa
such that [r](q) {b}. Intuitively, a final output is a
special case of an input-epsilon move of a classical finite state
transducer into a final state, but it is algorithmically useful
to keep final rules separate from general input-epsilon moves.
Unlike input-epsilon moves in general, final rules do not
affect the core algorithms, while providing a very convenient
mechanism to yield additional outputs upon reaching the
end of the input tape.

We write A°/77 to indicate the input/output types o /v
and the state type 7 of an ST A. In the following we use
the abbreviations X =U, ' =U" and Q =U".
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program DecodeDigitPairs(input) {
return iter(x in input) [y := 0;]1 {
case (y == 0): //mo previous digit was recorded
if ((x>=5’)&&(x<="9))
{y:=x;} //store the digit in register y
else
{yield(x);} //output directly
case (true): // y '= 0 so y is the previous digit
if ((x>=5’)&&(x<="9))
{yield((10%(y-48))+(x-48)); //decode the letter

y:=0;}
else
{yield(x);} //output directly
} end {
case (y !'= 0):
yield (y); //there was a digit at the end
};
}

Figure 2. Sample BEK program.

Figure 3. Depiction of the ST? in Figure 2. Dashed arrows
correspond to final rules. Oval nodes correspond to branch
conditions and rectangular nodes correspond to basic rules.

b
The reachability relation p i»A gforae X bel"
and p,q € @Q is defined through the closure under the
following conditions, where -’ is concatenation of sequences:

0Forallq€Q7q€—/€»Aq.

oIfp LA A p ale, A q then p aalbe A (.

Definition 2: The transduction of an ST® A, 9, is the
following function from ¥* to Z(I'").

e a/b c
Ta(@) E{b-c|3g€ Qgh B g La))
X
We say that A is single-valued when |7 (a)| < 1 for
all @ € X*. A is deterministic when |R4| = 1 and

|F'a| = 1. Note that determinism immediately implies single-
valuedness. In this paper we will only consider deterministic
ST"s and we will identify Ra (resp. Fa) with the rule it
contains.

The following example illustrates the use of ST®s on a

typical string transformation scenario and introduces the
concrete language BEK that we use for defining STPs in this
paper.
Example 1 Let the input type, output type, and state type
be bv7. (Intuitively U™ corresponds to the set of ASCII
characters). The BEK program in Figure 2 corresponds to
an ST® that decodes certain occurrences of pairs of digits
between 5 and 9 by their corresponding ASCII letters. For
example DecodeDigitPairs("a77") is "aM".

The initial state is 0 that corresponds to the initial value
of y. Let f be the A-term A(z,y).((10%(y—48))+(z—48)) and
let ¢ be the predicate A(z,y).(‘5’> <z < ‘9?). The case and
if-then-else statements map directly to the following input
rule where we lift the A-prefix to be in the front:

Az, y).ite(y = 0, ite(p(x,y), br([l, z), br([z], y)),
ite(p(x,y), br([f(2,)],0), br([z], v)))

Similarly, the final rule corresponds to the case statement
after the end-construct:

Ay.ite(y 7 0, [y], [])

Observe that, in this case there are no exception rules. The
ST” is defined for all input strings. Use of exception rules
is illustrated in our main case studies below. The graphical
illustration of the ST® for DecodeDigitPairs is shown in
Figure 3. All graphs in the paper are produced automatically
from our analysis framework. B

3. Exploration of STs

In this section we develop an algorithm that allows us to
eliminate either all or some of the state registers used in a
deterministic ST® A. In particular, we focus on two, most
prominent cases:

e [yll exploration.
® Boolean exploration.

For the purpose of explaining the exploration algorithm,
we extend A = (¢°, R, F) with a component P that is a finite
set of control states and an initial control state p° € P. The
sets R and F' are extended to be maps from P to rules, and
each basic subrule on an input rule in R has an additional
control state component p € P. With this extension in mind,
we write a basic rule as br(yield, update, p). We say that A
is stateless when the register type 7 is the unit type TO
U™ = {()}), i.e., registers are not used in a stateless ST”,
and thus R has the equivalent form

,PIR| F TR}

where each rule r; corresponds to a conditional statement
that may yield outputs and transition to new control states
but does not make use of registers by storing intermediate
results in registers. This extension is useful for separation
of concerns, it helps to keep the control state separate from
the data state.

For example, the ST® is Example 1 is not stateless be-
cause the rules depend on the register y.

By full exploration of A, we mean a construction of a
stateless STP Af such that J; = e, le., A and Af are
equivalent. Full exploration is not always possible, because
equivalence of stateless STPs reduces to equivalence of sym-
bolic finite transducers (SFTs), and equivalence of SFTs is
decidable [17] modulo a decidable label theory, while equiv-
alence of STPs is undecidable already for very restricted de-
cidable label theories. Even when full exploration is possible,
Af may still be exponentially larger than A.

By Boolean exploration of A, we mean a construction of
an ST® AP such that 7 = Z,» where all Boolean registers
of A have been eliminated. For example, if the state type
of A is (bool x bool) x int then the the state type of AP is
int, i.e., the two Boolean registers have been eliminated by
adding new control states.

Note that, in order to completely eliminate the symbolic
update of a rule br([], A(z,y).o(x)), where ¢ is a o-predicate,

{p1 = T1,p2 > T2,. ..
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Figure 5. ST after full exploration of DecodeDigitPairs in Figure 2.

i.e., to replace ¢ by Az.t (resp. Az.f) we would need to decide
if Yz p(z) holds, i.e., - is unsatisfiable, (resp. if Vz —p(z)
holds, i.e., ¢ is unsatisfiable).

Algorithm. The generic exploration algorithm of STPs
is described in figure 4. The algorithm takes as its input an
ST A, and assumes a projection of the state type 7 of A into
two parts 71 and m2. We assume, without loss of generality,
that 7 = 71 X 72. The algorithm uses an SMT solver to solve
satisfiability and to generate models for formulas.

The algorithm generates a new ST by exploring the rules
with respect to 71, effectively eliminating 71, i.e. turning it
into an explicit state. In order to avoid special cases, we
may always assume that either 7 or 72 can be unit types
TO (U™ = {()}). Now, full exploration of A corresponds
to the case when 7 is unit type, and Boolean exploration
corresponds to the case when 71 is a Cartesian combination
of Boolean registers and 7> is a Cartesian combination of all
the non Boolean registers.

Inst(p,r,p) creates an instance of the rule r with the path
condition ¢ with respect to the fixed register values given
by p. For the exception rule this is a noop. For a basic rule
this is a partial instantiation of the yield and update with re-
spect to p, where Ay.f(p,y) instantiates the first projection
of the state register with the value p. An important point for
the rules is that unreachable rule instances are incrementally
eliminated by deciding satisfiability of corresponding accu-
mulated path conditions.

Ezpl(p,r,add); is a form of partial exploration of r the
with respect to 71 or the projection projection function. For
the exception rule the operation is a noop. For an ite rule,
the step is a direct propagation of the concretizations of the
branches. The core of the computation takes place during
the concretization of basic rules.

Theorem 1: Let A be a deterministic ST® with state type
T1 X T2. If Explore(A) terminates then the result is an STb
that is equivalent to A and whose state type is T2.

We omit the formal proof of the theorem but note that
termination of the algorithm depends on two factors: de-
cidability of the background theory, and finiteness of the
reachable subset of U™ . The first point is already needed
in the Inst procedure that eliminates unsatisfiable branches.
The second point is needed both, for termination of con-
struction of r in Fapl, as well as for guaranteeing that the

search stack is bounded in size. A sufficient condition for
the second point is when the functions used for computing
the first state projection have the finite-range property, i.e.,
when U™ can be assumed to be finite.

Example 2 The STP after full exploration of
DecodeDigitPairs from Figure 2, is illustrated in Figure 5.
The unexplored ST (in Figure 3) has a single control state
0, while the fully explored ST® has 6 control states. m

4. Translation

Now that we have described how to refactor ST®s to expose
parallelism in BEK programs, we turn to the question of
optimizing BEK programs at the symbolic transducer level,
then translating BEK to other languages. Our motivation
is to “optimize once, analyze once, run everywhere,” in
contrast to current practice where each language has an
independently implemented version of the “same” sanitizer.
First, we discuss the question of exceptions : we want our
generated code to throw exceptions on all the same inputs
where the original code threw exceptions. We describe how
the branching rules in STPs allow us to carry information
through the exploration algorithm. Next, we describe how
we employ an SMT solver to simplify formulas that arise
inside the STPs. Finally, we discuss how STPs can be lifted
back to BEK abstract syntax trees, and how we can compile
to languages such as C# and JavaScript.

4.1 Exceptions and Branching Rules

Exceptions are common in string manipulating functions,
such as web sanitizers. Different error conditions may require
different exceptions. For example, the CSSEncode function
that ships with the Microsoft AntiXSS library checks for
two error conditions: first, input strings that have invalid
Unicode values, and second, for invalid “surrogate pairs” of
characters. Unfortunately, traditional symbolic transducers
do not have an explicit way to express exception behavior.
This leaves us with one of two options when modeling the
behavior of such functions on inputs that cause exceptions.
Either we sacrifice our precise modeling of the behavior of
the original program, or we must encode exceptions in an ad
hoc way into finite transducers. The first option sacrifices
our promise of precision. The second may not be robust
to algorithms that manipulate the transducer structure, or
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E:cplore(A"/“ﬁTl XT2) def

po = first(q%);
qo := second(q%);
S = stack(q®);
P={p’}
Add ' Xp. if p ¢ P then P := P U {p}; Push(S,p);
R:={—}
Fi=A{=}k
while 5 # 0
p := Pop(S);
R(p) := Expl(\y: 72.t, Inst(Ay : 12.t, Ra,p), Add);
F(p) := Expl(\y: m2.t, Inst(A\y : 72.t, Fa,p), Add);
return (p°,¢°%, R, F);

Inst(p, L, p) 2f return 1;

Inst(p, br(f,9),p) = return br(\y.f(p,y), \y.g(p, v));

def

Inst(p, ite(¢,t, f),p) =
et = Ay-p(y) AP(p, y);

er = Ay-p(y) A (P, y);

if IsUnsatisfiable(pt) return Inst(¢y, f,p);
else if IsUnsatisfiable(ps) return Inst(pt,t,p);

else return ite(A\y.¢(p, y), Inst(pt, t, p), Inst(ey, f,p));

Expl(p, L, Add) 2f return 1;
Eapl(p, ite(¥,t, f), A) =
return ite(p, Ezpl(p A, t, Add), Expl(e A -, f, Add);

Eapl(p, br(f,g), A) =
Y=y z.poy) A (z = first(g(y)));
ri=_1;
while 3M = ¢
= ite(Ay.p = first(g(y)), br(f, Ay.second(g(y)), p), );
Y= Adyz.(y,z) Az # 2N
Add(zM);

return r;

Figure 4. Exploration algorithm of STPs.

// Calculate the combined code point
long ccP =
0x10000 + ((ccP - 0xD800) * 0x400)+ (ncP - 0xDCO0) ;
char[] encodedCharacter =
SafeList.SlashThenSixDigitHexValueGenerator (ccP);
for (int j = 0; j < encodedCharacter.Length; j++)
{
encodedInput [outputLength++] = encodedCharacter[j];
}

Figure 6. Code snippet from hand-written CSSEncode im-
plementation. This code makes use of a computed hash ta-
ble to map characters to their safe encoded equivalents. The
hash table obscures the parallel assignment structure that is
possible with CSSEncode.

may have difficulty distinguishing between different types of
exceptions.

if (... {2}
else if (r0) {
if (((56320 > c) || (c > 57343))) {
throw new Exception("InvalidSurrogatePair");
} else {
output [pos++] = ((char) (((((c >> 8) & 3) |
(r1 << 2)) & OxF) +
((((c >> 8) &3) |
(r1 << 2)) & OxF) <= 9 ? 48 : 55)));
output [pos++] = ((char) (((c >> 4) & OxF)
+ (((c > 4) & 0xF) <= 9 ? 48 : 55)));
output [pos++] = ((char) ((c & OxF)
+ ((c & 0xF) <= 9 7 48 : 55)));
r0 = false; rl1 = 0;
}

Figure 7. Code snippet from unexplored BEK CSSEncode
implementation. While this code makes explicit the parallel
assignment structure, it also has a nested if statement that
depends on the value of the register rl. Because rl may
change, such a dependency is difficult to encode using SIMD
instructions.

if (((56320 <= c) && (c <= 57343)))
{
throw new Exception("InvalidSurrogatePair");
} else {
if (((55296 <= c) && (c <= 56319)))
{
if ((1(1 == ((c > 0) & 1)) &&
1(1 == ((c >> 1) & 1))))
{
output [pos++] = ((char)92);
output [pos++] = ((char) (! (1 ==
(((c >> 6) > 0) & 1))
I 11 == (((c > 6) > 1) & 1))
I 11 == (((c > 6) > 2) & 1))
[ 11 == (((c > 6) > 3) & 1)) 7 48 : 49));
output [pos++] = ((char) (((1 + (c >> 6)) & OxF) +
(((1 + (c > 6)) & OxF) <= 9 ? 48 : 55)));

Figure 8. Code snippet from explored BEk CSSEncode
implementation. The dependence on register rl has been
removed through the exploration algorithm. While there are
more nested if statements, each of them depend only on
the individual character. This code therefore lends itself to
SIMD instructions.

Our solution is to encode exceptions as branching rules
in an ST®. Because STPs treat branching rules as an explicit
part of the formalism, algorithms on STPs will preserve ex-
ception semantics. For example, Figure 9 shows an ST for
the CSSEncode sanitizer after applying the exploration al-
gorithm of the previous section. We can see that the ST® in-
cludes rules for both kinds of exceptions. This enables an im-
plementation that is exception-compatible with the original
hand-written CSSEncode. In the concrete implementation
of the ST® exploration algorithm, the exception rules carry
an additional label (e.g. InvalidSurrogatePairException),
although the formal definition indicates exception rules by
1 and does not distinguish them explicitly.

4.2 Formula Simplification

In addition to expressing exception behavior, our use of
branching rules makes it easier to apply formula simplifi-
cation by breaking up formulas into smaller pieces. Again
in Figure 9 we see that different predicates evaluated on the
input are placed in different branching rules. In a traditional
symbolic finite state transducer, this structure would have
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(c<=57343))

[((((r<<2)|((C>
8)&3))&0xF)+
te((((r<<2)|
((c>>8)&3))&0

5

c&0OxF)+ite((c
&0xF)<=9, 48,
55))]
r:=0

Figure 9. ST® after Boolean exploration of CssEncode
(register r0 has been eliminated). Information about differ-
ent types of exceptions has been preserved even though the
structure of the ST® has changed.

been encoded into the formula itself. Our implementation
uses recent formula simplification features built into the Z3
solver; we recursively apply this simplification to each for-
mula in a rule.

States

Sanitizer ST STB STF
UTF8Encode 1 2 5
CssEncode 1 2 5
HtmlDecode 1 5 113

Figure 10. Input statistics. Number of control states. ST:
unexplored, ST_B: post-Boolean exploration; ST_F: post-
Full exploration. HtmlDecode is limited to decimal numeric
encodings of < 2 digits.

(((((56320>¢)(c>57343))&&
((55296>)(c>56319))&8(c>255))|...

(((A==((c>>0)& 1)&&
1(1=((c>>1)&1))&&
1(65534=—=0)&&...

(((1(65534==c)&&:(65535==c)&&
(56320<=c)&&(c<=57343))|...

Figure 13. SFA for generating inputs for correctness test-
ing.

Language Implementation Runtime
C# AntiXSS hand-written 18.174
C# Bek default 6.864
C# Bek B 7.020
C# Bek_F 7.239
C original 1.497
C Bek B 1.872
C Bek F 1.919

Figure 14. CSSEncode implementations compared.

4.3 Lifting To AST and Compilation

Finally, we lift from STPs to BEK abstract syntax trees.
We express the state of the ST as a BEK variable inside
an iteration block. A series of if statements in BEK checks
the current state, then evaluates the appropriate formulas.
Once we have a BEK abstract syntax tree, we compile to C#
and JavaScript. The key observation is that the structure of
a BEK program corresponds to a foreach loop carried out
over each character in an input string. We then define a
visitor over the BEK abstract syntax tree which translates
to the appropriate syntax for the target language.

As an example, Figure 6 shows a piece of the origi-
nal hand-written CSSEncode sanitizer, which uses a table
lookup to map potentially dangerous characters to their safe
equivalents. Because BEK does not allow table lookups, we
represent the actual character ranges in the translated code.
Figure 7 shows an snippet of the resulting compilation to C#
before any exploration. This code shows the dependence on
a register variable r0. Finally in Figure 8 we see an example
of the code after exploration is complete compiled to C#;
the register variable dependence has been eliminated.

5. Evaluation

Exploration overhead: First we discuss the cost of our
exploration algorithm in terms of the speed to perform ex-
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Figure 11. CSS encoder timing comparison over a range of input sizes.
Language Implementation Runtime C SIMD Ratio
C+# NET 3.682 All 202 110 1.84
C+# Bek F 2.496 ASCII-only 156 46 3.39
C Bek explored 0.343
Figure 15. UTF8Encode implementations compared. Figure 17. Table showing speed in ms of C and C/SIMD

implementations of fully explored BEK UTF8Encode. The
first line shows running on 100-character inputs from a vari-
C SIMD Ratio ety of Unicode character sets. The second line shows running
time for inputs restricted to ASCII values. Unlike CSSEn-

Full All 1,124 967 1.16 code, the UTF8Encode function does not require exten-
Full A.SCH_Only 718 671 1.07 sive checks on each character, which removes an obstacle
Promise ASCIIT 188 15 12.53 t d f SIMD
Promise HighChar 889 344 258 © speedups from :

Figure 16. Table showing speed in ms of C and C/SIMD
implementations of fully explored BEK CSSEncode. The first Input UTF8 CSSEncode

two lines refer to running the “full” implementations on size PHP WebTK BEKk OWASP Bek
inputs consisting of all valid characters and inputs restricted

to ASCII characters. The next two lines reflect optimizations 10 2.01 1.66 3.50 13.64  10.71
. . . . 20 3.43 2.64 6.50 19.48 18.19
that are possible if we can be sure that the inputs consist
; A h e 30 4.90 3.65  9.70 24.85  25.79
only of specific characters. While such a “promise” is not 40 6.46 469 12.70 30.64 33.97
reasonable in general, these numbers demonstrate that in 50 7.96 6.59 15.80 32.61  40.06
settings that can restrict characters a priori, SIMD offers a 100 17.27 10.76  31.60 59.93  72.45

major advantage.
Figure 18. JavaScript running times.

ploration and the number of states added. Figure 10 shows
the number of states in three representative sanitizers before ration. The speed of the exploration algorithms depends on
exploration, with Boolean exploration, and with full explo- the size of the reachable state space. For our examples, this
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.NET UTF8

UTF8Encode_F

Utf8Encode_F-CPP

2.5

1.5

0.5 —

1 3 5 7 9 1 13 15 17 19 21 23

25 27 29 31 33 35 37 39 41 43 45 47 49

Figure 12. UTFS8 encoder timing comparison over a range of input sizes.

Name Version Routine Language LOC
AntiXSS 2.4 CSSEncode C# 206
OWASP 0.1.3 CSSEncode JavaScript 2,953
PHP.JS 1109.2015 UTF8Encode  JavaScript 42
WebTK NA UTF8Encode  JavaScript 68

Figure 19. Pre-existing sanitizers used for comparison.

is small due to restricted range of the values stored in the
registers. In the given experiments the time to do the full ex-
ploration is less than 2 seconds for HtmlDecode and around
.1 second for the other cases.

In terms of states, STPs provide an exponential reduction,
in terms of the size of the alphabet, compared to classical
finite state transducers. Classical transducers would need
in the order of 2'¢ transitions in all cases. This enables
us to perform additional analysis on ST®s, by reduction
to STs, that would not scale on the corresponding classical
transducers. In this section, we use the suffix _B to refer to
boolean exploration applied to a basic ST®, while the suffix
_F refers to full exploration.

5.1 Semantic Checking

Our approach to checking the consistency of the BEK-
generated sanitizers with the original versions relies on large-
scale testing. We generate a set of 1,000 strings and evaluate
both the original sanitizer and the generated code on each
input. The strings are chosen randomly and then checked to

ensure that they are accepted by the finite state automaton
in Figure 13. This ensures the inputs are legal. We found
no differences in behavior between the original sanitizer and
our generated code.

5.2 Speed Comparison

BEK compiled C# code is faster than hand-written:
We first focus on server-side implementations of encoders
in C# and C. Figure 11 shows a speed comparison of the
different ways to compute CSS encoding. To obtain the data
in the figure we start with a set of 1,000 strings and then
compute successively longer substrings, ranging from 1 to 50
characters in length. To address timer resolution issues, we
execute each routine 1,000 times and report the arithmetic
mean.

First, we consider CSSEncode implementations. The
AntiXSS-provided version of a CSSEncode is consider-
ably slower than the BEK generated implementation. At
length 50, the BEK-generated C# version is about 2.5 times
faster and the C version is over 5 times faster compared to
the AntiXSS routine. Different variants of BEK-generated
routines in C# take about the same amount of time and
are difficult to distinguish in terms of performance. Our ex-
ploration algorithm, despite creating more states, does not
appreciably slow down the generated code. We will see in the
next subsection the effects of exploration on vectorization.

Next, we consider UTF8Encode. Figure 12 shows a simi-
lar comparison of different UTF8 encoder implementations.
The base line is the UTF8 encoder found in the standard

2011/11/11



libraries of the .NET framework. We can see that the .NET
version (.NET UTF8) is generally the slowest of the three, con-
sistently underperforming the BEK-generated UTF8Encode F.
For longer inputs, the C version of the BEK-generated code
is as much as twice as fast as the C# version of the same
code. These increases in execution time are consistent with
the overall speed of a managed runtime such as .NET com-
pared to a C version. We hypothesize that in our case, for
small inputs, length 20 or less, the overhead of explicit mem-
ory allocation calls to malloc and free dominates the ex-
ecution time. At length 50, the built-in .NET version is
about 50% slower than the BEK-generated version and is
about 2.5 times slower than the C version.

BEK JavaScript Comparable to Existing Sanitiz-
ers: We then look at client-side Javascript implementa-
tions of UTF8Encode and CSSEncode. We evaluated speed
on Google Chrome version 15.0.874.106, build 107270, us-
ing the JavaScript V8 engine version 3.5.10.22. We com-
pared the BEK generated CSSEncode to the OWASP ESAPI
JavaScript library. For UTF8Encode, we compared against
two independent implementations, one from the PHP.JS
project, the other from the WebToolkit demonstration site.
In each case, we run for 10 iterations each on a library
of 1,000 test strings. We then run with varying sizes of
strings. The results are shown in Figure 18.

For CSSEncode, the BEK generated implementation is
faster than the OWASP implementation until 30 byte strings
are reached. At 100 byte strings, the BEK implementation
is only 80% as fast as the OWASP implementation. For
UTF8Encode, the situation is more interesting. Our BEK
program was created directly from the UTF8 specification.
While our JavaScript performance falls behind both PHPJS
and WebToolKit by a factor of 2, we find during our test-
ing that the sanitizers are not equivalent. Specifically our
implementation disagrees with PHPJS and WebToolkit’s
UTF8Encode’s implementations on 19 out of 1,000 inputs.
We believe part of our speed difference may arise from edge
case checks performed by our BEK program that are not
in the other implementations. Overall, our code is close in
performance and comes with a guarantee the other imple-
mentations do not have: that it has the same semantics as
the server side sanitization.

5.3 Exploration and SIMD

Next, we evaluate the effectiveness of our ST exploration al-
gorithm from Section 3. We focus on two key questions: first,
is code produced by the algorithm easier to vectorize than
code that has been either hand-written or has been gener-
ated from an unexplored STP? Second, does vectorization
improve speed, and if so under what conditions?

Exploration Unlocks Vectorization: For the first ques-
tion, we focus on the case study of CSSEncode. We compared
three implementations of CSSEncode. First, we looked at a
hand-written implementation that is part of the Microsoft
AntiXSS Library. Second, we looked at an C# implemen-
tation auto-generated from a BEK program for CSSEncode,
without applying any exploration. This BEK program makes
use of register variables. Finally, we applied the exploration
algorithm from Section 3 to obtain an implementation in C#
that removes dependence on registers. For vectorization, we
focused on the Intel SSE 4.2 instruction set, which is a set
of SIMD instructions found in recent Intel CPUs.

We found that both the hand-written and the unexplored
implementations of CSSEncode contain obstacles to apply-
ing SSE instructions. Figure 6 is an excerpt from the hand-
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written CSSEncode implementation, which shows the array
lookup technique used to map potentially unsafe characters
to their encodings. This table lookup, while fast, is difficult
to translate to SSE instructions. Our BEK implementation
shows that underneath, what is “really” going on in CSSEn-
code is a sequence of bit-shifts for each character in the
string, conditional on whether the character falls into cer-
tain ranges. Figure 7 shows an excerpt with this parallel as-
signment structure. Unfortunately, this implementation also
contains a nested if statement that depends on the register
r0. This register may change during processing in an unpre-
dictable way, which makes it difficult to translate into SSE
instructions.

In contrast, the post-exploration version shown in Fig-
ure 8 has removed the dependence on the register r0 from the
nested if statements. While the explored version has more
nested if statements, their conditions depend only on the
individual character to be processed. Therefore these condi-
tions can be easily encoded using SSE instructions. While
the explored version does include an explicit state variable
as part of a top level switch statement (not shown), we can
optimize each state as a large piece of straight line code.

Vectorization Yields Speedups: We then manually con-
verted the post-exploration C# code to C. Then we rewrote
the C code to use SSE instructions. The results are shown
in Figure 18. We looked at four different conditions. In the
first, we generated test strings that were a mix of ASCII and
non-ASCII characters. In the second, we used test strings
limited to ASCII values. Each test string had 100 charac-
ters. We then ran 1,000 runs on each test string, over 1,000
test strings and report the average time in milliseconds. The
gains in this case are 16% and 7% respectively.

Upon closer examination, we found that most of the time
in the SIMD implementation is spent determining whether
each character falls into one of several pre-specified char-
acter classes. Therefore we also evaluated speed of both C
and SIMD versions under a “promise” that the input would
contain only certain characters. We find that if characters
are restricted to ASCII alone, then employing SSE yields
a speedup of 12.53 times. If the characters are restricted
to a specific high character range where CSSEncode still
performs checks, we see a 2.5 times speedup. While not re-
alistic in general, this experiment shows that there is sig-
nificant vectorization inside CSSEncode. This could be un-
locked through systems that can make guarantees about pre-
conditions for on the input strings seen by the CSSEncode
implementation. Alternatively, future work could focus on
fast ways to filter strings so they fit only into a single char-
acter bucket.

Our results for UTF8Encode, in Figure 17 also show
substantial speed gains from use of SIMD. In the case
where inputs are only ASCII characters, we see a 3.3 times
speedup. For a mix of ASCII and other Unicode characters,
we see an 80% improvement over the C implementation. In
part, this is because UTF8Encode performs fewer checks on
character ranges than CSSEncode; most of the UTF8Encode
function can be easily expressed as vizable bit-shifts and
assignments.

6. Related Work

Symbolic finite transducers (SFTs) and BEK were originally
introduced in [8] with a focus on security analysis of san-
itizers. The key properties that are studied in [8] from a
practical point of view are idempotence, commutativity and
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equivalence checking of sanitizers. The formal foundations
and the theoretical analysis of the underlying SFT algo-
rithms, in particular, an algorithm for deciding equivalence
of SFTs, modulo a decidable background theory is studied
in [17], including a more general I-equality algorithm that
factors out the decision problem for single-valuedness, and
allows non-determinism without violating single-valuedness.
The formalism of SFTs is also extended in [17] to Symbolic
Transducers (STs) that allow the use of registers. The fo-
cus of the current paper and the motivation is code gener-
ation. The two extensions of STs that we introduce in the
current paper are conditional branching and exception han-
dling. From the point of view of analysis, such as equivalence
checking, the branching rules do not offer more expressive-
ness, because the branching rules can be flattened, however
the branching rules maintain the evaluation order of con-
ditions, and, more importantly, maintain the semantics of
exception handling that is essential for correct code gen-
eration. Exploration algorithms for STs are not studied or
analyzed in [8, 17].

In recent years there has been considerable interest in au-
tomata over infinite languages [16], starting with the work on
finite memory automata [10], also called register automata.
Finite words over an infinite alphabet are often called data
words in the literature. Other automata models over data
words are pebble automata [13] and data automata [4]. Sev-
eral characterizations of logics with respect to different mod-
els of data word automata are studied in [3]. This line of
work focuses on fundamental questions about definability,
decidability, complexity, and expressiveness on classes of au-
tomata on one hand and fragments of logic on the other
hand. A different line of work on automata with infinite al-
phabets introduces lattice automata [6] that are finite state
automata whose transitions are labeled by elements of an
atomic lattice with motivation coming from verification of
symbolic communicating machines. To the best of our knowl-
edge, we do not know of prior work that has investigated the
use of extensions of transducers for code generation.

Streaming transducers [1] provide another recent sym-
bolic extension of finite transducers where the label theories
are restricted to be total orders, in order to maintain de-
cidability of equivalence. Streaming transducers are largely
orthogonal to SFTs or the extension of STs with branch-
ing rules, as presented in the current paper. For example,
streaming transducers allow reversing the input, which is
not possible with STs, while arithmetic is not allowed in
streaming transducers but plays a central role in our ap-
plications of STPs to string encoders. The work in [14] in-
troduces a different symbolic extension to finite state trans-
ducers called predicate-augmented finite state transducers.
Besides identities, it is not possible to establish functional
dependencies from input to output that are needed for ex-
ample to encode transformations such as UTF8Encode.

We use the SMT solver Z3 [5] for incrementally solv-
ing label constraints that arise during the exploration al-
gorithm. Similar applications of SMT techniques have been
introduced in the context of symbolic execution of programs
by using path conditions to represent under and over approx-
imations of reachable states [7]. The distinguishing feature
of our exploration algorithm is that it computes a precise
transformation that is symbolic with respect to input labels,
while allowing different levels of concretization with respect
to the state variables. The resulting ST is not an under
or over approximation, but functionally equivalent to the
original ST®. This is important for correct code generation,
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as opposed to other applications such as test case genera-
tion, where under approximations are used, or verification
of safety properties, where over approximations are used.

Finite state transducers have been used for dynamic and
static analysis to validate sanitization functions in web ap-
plications in [2], by an over-approximation of the strings
accepted by the sanitizer using static analysis of exist-
ing PHP code. Other security analysis of PHP code, e.g.,
SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context free grammars) of the
HTML output by a server [12, 18]. Yu et.al. show how mul-
tiple automata can be composed to model looping code [20].
Our work is complementary to previous efforts in using SMT
solvers to solve problems related to list transformations.
HAMPI [11] and Kaluza [15] extend the STP solver to han-
dle equations over strings and equations with multiple vari-
ables. The work in [9] shows how to solve subset constraints
on regular languages. We are not aware of previous work
investigating the use of finite transducers for efficient code
generation. One obvious explanation for this is that classical
finite transducers are not directly suited for this purpose; as
we have demonstrated, finite state STs can be exponen-
tially more succinct than classical finite transducers with
respect to alphabet size.

7. Conclusions

In this paper, we have advocated the use of a domain-specific
language called BEK to produce consistent and fast sanitizers
across a range of languages, some server- and others client-
based. At the core of BEK is a novel representation called
symbolic branching transducers. SBTs allow for a faithful
representation of complex string sanitizers, string manipu-
lation routines that are used to protect applications from
untrusted inputs. We have demonstrated how BEK can be
used as an optimizing compiler, resulting in significant run-
time improvements: our generated C# code outperforms the
previous hand-tuned code by a factor of up to 2.5. For C code
with SIMD, we see speedups of 2.5 times compared to native
C code for the same sanitizer.
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