
Dynamic Taint Tracking in Managed Runtimes

Benjamin Livshits

Microsoft Research

Microsoft Research Technical Report

MSR-TR-2012-114

Abstract

This paper provides a taxonomy of runtime taint

tracking approaches for managed code, such as code

written in Java, C#, PHP, Perl, or Ruby. It covers

main applications of data tainting such as prevent-

ing web application vulnerabilities including cross-

site scripting and SQL injection attacks, along with

disallowing privacy-sensitive data leaks. In addition

to giving an overview of related literature from the

last decade, this paper provides guidance and describes

the trade-offs of different instrumentation approaches.

Lastly, we provide a list of open problems whose solu-

tions would aid practical adaption of runtime tainting

on a wider scale.

2

Abstract—This paper provides a taxonomy of run-
time taint tracking approaches for managed code, such
as code written in Java, C#, PHP, Perl, or Ruby. It
covers main applications of data tainting such as pre-
venting web application vulnerabilities including cross-
site scripting and SQL injection attacks, along with
disallowing privacy-sensitive data leaks. In addition to
giving an overview of related literature from the last
decade, this paper provides guidance and describes
the trade-offs of different instrumentation approaches.
Lastly, we provide a list of open problems whose solu-
tions would aid practical adaption of runtime tainting
on a wider scale.

I. Introduction

Data tainting has a long history, going back to Denning’s
seminal work [14]. Much of the recent programming lan-
guage research has focused on language-based techniques
for managing both implicit and explicit information flow,
primarily using static, typing-based mechanisms [47]. In-
formation flow properties are usually formulated in terms
of non-interference, a property of two program executions
that expresses independence of (private) inputs. The focus
on this paper is different: here we primarily focus on track-
ing explicit forward flow of runtime data, in an effort to
monitor an easier to check and understand property of the
current program run. The term runtime tainting arguably
has its origins in the Perl language’s taint mode [61]. Since
then, a wide range of research has been done, on both
implementing tainting in various systems and also using
taint propagation as a building block for achieving other
goals, i.e., as part of a symbolic execution system [29, 49].

This paper represents an attempt to summarize the
last decade of research in runtime data tainting in man-
aged, or memory-safe runtimes, i.e. those associated with
Java/JVM, C#/.NET, JavaScript, PHP, Ruby, etc. A
previous survey by Schwartz et al. focuses on taint in
the native, binary context [53]. Binary-level tainting has
a number of significant differences with what is presented
in this paper.

In particular, granularity at which data can be ad-
dressed is generally lower, leading to the ability to reason
about data at the level of individual bits, but also creating
an impedance mismatch for programs written in languages
other than C and C++. Indeed, how does one express
the fact that sanitization function filter var has been
called with parameter FILTER VALIDATE INT? What com-
binations of EAX and EBX registers does that correspond
to? Tainting at the level of managed runtimes is generally
closer to how developers think about their code, in terms
of objects, methods, and variables, rather than in terms of
low-level hardware details.

Of course, the very problems that have sparked interest
in the area of runtime tainting have also been different.
While native taint propagation has focused on detect-
ing and preventing memory vulnerabilities such as buffer
overruns [9, 24], much of the interest between 2005–2010
has come from the need to track integrity violations in

web applications which lead to cross-site scripting at-
tacks (XSS) [11, 46, 55] and SQL injection attacks [1, 17,
30], as well as several other forms of injection attacks. More
recently, starting around 2010, confidentiality violations or
privacy leaks, especially in the context of mobile devices,
have generated renewed interest in data tainting [15].

While now firmly a part of the dynamic analysis
“toolkit”, unlike other runtime security technologies such
as stack canaries [2] or ASLR and DEP/NX [62], run-
time tainting has not seen wide deployment outside of
academia. In fact, we only know of one recent case of
commercial deployment, in the context of the Fortify
runtime security product; their technique is similar to the
library instrumentation technique of Chin et al. [12]. We
conjecture that this lack of wide commercial deployment is
in part because of various deployment challenges posed by
runtime tainting, combined with runtime overhead issues.

A. Contributions

This paper pursues the following broad goals:

• First, we attempt to pull together and classify most
of the research literature in this space, providing a
summary of work done thus far and assessing the state
of experimental practice.

• Second, this paper tries to provide prescriptive guid-
ance for someone trying to build a runtime taint
tracking system.

• Third, we formalize the essence of dynamic taint
tracking using an operational semantic, an approach
previously used for taint tracking in a native set-
ting [53].

• Fourth, we point out that performing dynamic taint-
ing efficiently and precisely is far from a solved prob-
lem. We outline some of the remaining challenges.

B. Paper Organization

Section II provides a basic overview of how runtime
tainting systems are built and summarizes some of the
main applications of these techniques. Section III provides
a formal definition of what many runtime taint tracking
systems try to accomplish in the form of an operational
semantics. Section IV proposes a taxonomy for classifying
runtime tainting approaches and proceeds to categorize 17
projects using this taxonomy. Despite the abundance of
research, practical deployment of runtime tainting has
been somewhat spotty. We describe some of the reasons
for this in Section V. Performance is a common stumbling
block in both building and deciding to deploy a runtime
tainting system; Section VI gives a broad performance
comparison of existing methods. Section VII talks about
optimizations designed to improve the overhead of in-
strumentation. Section VIII lists some of the major open
problems in this space. Finally, Section IX provides our
conclusions.

3

NODE 1 WPOBJ, WP_LOC 1938219150 System.Device.Location.GeoPosition‘1 52,34,16 266076234
NODE 2 WPOBJ, WP_LOC 354792480 System.Device.Location.GeoCoordinate 52,34,16 266076234
OBSV 2 [Param_CalleeSide:Void set_CurrentLocation(System.Device.Location.GeoCoordinate) 53,52,34,16 266076234]
OBSV 2 [FieldStore:STATIC-350-63464 53,52,34,16 266076234]
OBSV 2 [FieldLoad:STATIC-350-63464 202,201 266076234]
OBSV 2 [Return_CalleeSide 202,201 266076234]
OBSV 2 [FieldLoad:STATIC-350-63464 214,206,201 266076234]
OBSV 2 [Return_CalleeSide 214,206,201 266076234]
OBSV 2 [Param_CalleeSide:System.Uri GetListingRequest(System.Device.Location.GeoCoordinate, ...
OBSV 2 [Param_CalleeSide:System.Uri GetListingRequest(System.Device.Location.GeoCoordinate, ...
NODE 11 WPOBJ, WP_LOC -1973456913 System.Double 222,220,206,201 266076234
LINK 2 11 System.Device.Location.GeoCoordinate.get_Latitude
NODE 12 WPOBJ, WP_LOC -1619338289 System.Double 222,220,206,201 266076234
LINK 2 12 System.Device.Location.GeoCoordinate.get_Longitude
NODE 13 WPOBJ, WP_LOC -1578306455 System.String 222,220,206,201 266076234
LINK 11 13 System.String.Format
...
LINK 15 20 System.Object.ToString
NODE 21 WPOBJ, WP_LOC 2115030139 System.UriBuilder 222,220,206,201 266076234
LINK 20 21 System.UriBuilder.set_Query
NODE 22 WPOBJ, WP_LOC 2115030139 System.Uri 222,220,206,201 266076234
LINK 21 22 System.UriBuilder.get_Uri
OBSV 21 [Return_CalleeSide 222,220,206,201 266076234]
OBSV 21 [Return_CalleeSide 220,206,201 266076234]
OBSV 21 [Param_CallerSide:System.Net.WebClient.DownloadStringAsync 206,201 266076234] INTERNET

Fig. 1. Sample output of runtime instrumentation. For brevity, 14 records in the middle are omitted.

II. Overview

A. Constructing a Runtime Tainting System

In its most basic form, constructing a runtime tainting
system involves the following basic steps:

1) decide on the level of instrumentation such as source-
level, bytecode-level, runtime-level, etc.

2) identify relevant instrumentation points including
sources, sinks, sanitizers, and propagators within the
application to be instrumented and relevant libraries;

3) instrument at those points to record relevant infor-
mation such as the object IDs that pass through the
instrumentation point, thread ID, source type, etc.

By way of example, Figure 1 shows some sample output
from a runtime instrumentation system in the course of a
short run of a smartphone mobile app written in .NET.
There are three types of records being shown: NODE, LINK,
and OBSV records. NODE indicate the creation of relevant
tainted objects, which result from calls to methods such
as GeoCoordinate.get Latitude (this method acts as a
source because it surfaces privacy-sensitive data about
the user’s location to the rest of the application). LINK

nodes correspond to propagation of taint from one object
to another. Extra record fields show that they are often
a result of string concatenation or appending characters
to a StringBuilder object. Finally, OBSV records are
observed uses of objects in methods of interest, such
as sink calls. Figure 2 shows a graph representation
of taint propagation in a mobile apps, demonstrating
how GPS coordinates flow from the return of standard
library method System.Device.Location.GeoCoordinate
to a network sink.

B. Applications of Dynamic Tainting

While in the 1990s the interest in dynamic tainting had
been primarily fueled by the desire to prevent memory
errors such as buffer-overruns that may be exploitable with
a carefully crafted input buffer, with managed languages
and runtimes, we have seen two primary applications for
runtime tainting, focusing on integrity and confidentiality
properties.

• Preventing injection attacks (integrity) involves
preventing SQL injections and cross-site scripting
attacks (XSS) in web application. At their core,
these vulnerabilities and their many variations in
web applications (such as command injection, path
injection, XSRF, etc. [43]) involve the propagating
untrusted (and unsanitized or not properly sanitized)
user data from a source to a sensitive sink within the
application or one of its libraries [20, 31, 37].

• Privacy leak prevention (confidentiality) is a
problem that has become especially relevant with the
recent popularity of smart phone apps. It involves
tracking sensitive user data (emanating from a source)
leaving the application through a network, file system,
or another similar sink [15, 22].

These two properties are in many ways duals of each other
and similar techniques are used to track both, although
we are not aware of projects that attempt to achieve
both of these goals at the same time, in part because
these properties largely pertain to different domains: web
applications and mobile apps.

It is important to note that frequently runtime data
tainting is used as a building block in the context of
another technique. A primary example of this is using
tainting as part of symbolic execution, a runtime path

4

AroundMe.App.GetCurrentCoordinates

GoogleServiceManager.GoogleSearchRequest.GetListingRequest

N6:System.Device.Location.GeoCoordinate

N18:System.Double

get_Latitude()

N19:System.Double

get_Longitude()

N20:System.String

Format() Format()

N21:System.String

Format()

N22:System.Text.StringBuilder

Append()

N23:System.String

ToString()

N24:System.UriBuilder

set_Query()

INTERNET

[AroundMe.ViewModels.ListingViewModel.LoadResults]

Fig. 2. Taint propagation in a mobile app showing flow from GPS
location acquisition to the network.

exploration technique [26, 29, 49]. Runtime data tainting
is used to determine which data is user-controlled and
is therefore dangerous in the context of injection attack
possibilities.

C. Motivating Examples

Several examples in this section provide intuition for
much of the rest of the paper.

Example 1 Basic instrumentation. As illustrated in
Figure 3, for a web application, typical sources include
return results of methods like HttpRequest.GetParameter
and HttpRequest.GetHeader in C# or
HttpServletRequest.getParameter in Java. In PHP,
returned $ GET array elements are treated as sources.

Two common application-level instrumentation ap-
proaches are common: source- and bytecode-level instru-
mentation. The simple C# code snippet in Figure 3 shows
the difference between source-level and bytecode-level in-
strumentation.

The disassembled version in Figure 4 tells a much clearer
story, effectively desugaring idioms like Params["name"]

1 void ProcessRequest(HttpRequest request ,
2 HttpResponse response)
3 {
4 string s1 = request.Params["name"];
5 string s2 = request.Params["encoding"];
6
7 response.Output.WriteLine("Parameter " + s1);
8 response.Output.WriteLine("Header " + s2);
9 }

Fig. 3. Simple reflective cross-site vulnerability.

and concatenation using the + operator. Indeed, Params
map references correspond to calls to get Item on lines 11
and 16. The + operator is desugared into String.Concat
calls on lines 22 and 29. At the bytecode level these calls
are in fact easy to match.

Example 2 PHP Taint. A taint mode for the PHP in-
terpreter proposed by Wietse Venema of IBM Reserch [60]
supports the following taint “flavors”: TC HTML, TC SHELL,
TC MYSQL, TC MYSQLI, TC PCRE, and TC SELF to represent
HTML output, shell command arguments, MYSQL query
parameters, MYSQLI query parameters, regular expres-
sion patterns, and eval parameters, respectively. A careful
read of the PHP taint proposal suggests the policy table
shown in Figure 5. Unfortunately, for many systems the
policy table is often implicit or is not fully specified. In this
case, no clear guidance is given for data from the database
being sent to eval.

Example 3 Encrypted cloud. While the discus-
sion so far has focused on integrity properties, sim-
ilar runtime instrumentation machinery can be em-
ployed for confidentiality. Indeed, consider a web ap-
plication using a public cloud provider for storage.

output cloud

input ⊥ encrypt

cloud decrypt ⊥

The web application may want to
use the cloud for scalability and
to reduce storage hardware costs,
but does not fully trust the cloud
to protect the confidentiality of
its data. The application therefore
will use encryption when serializing data to the database,
and decryption when deserializing.

In this scenario, the sources are of types input and cloud
and sinks are of types outside/browser and cloud. The
policy would encrypt data before it goes into the cloud
and decrypt it on the way out of the cloud. The correct
processing to apply (if any) depends on both the source
and sink type, as captured by the table above.

III. Formalization

This section aims to formalize the notion of a common
explicit taint propagation policy and then proceeds to give
an operational semantics capturing an implementation of
taint tracking.

5

1 .method private hidebysig instance void ProcessRequest(class System.Web.HttpRequest request ,
2 class System.Web.HttpResponse response) cil managed
3 {
4 .maxstack 3
5 .locals init (
6 [0] string s1,
7 [1] string s2)
8 L_0000: nop
9 L_0001: ldarg.1

10 L_0002: callvirt instance class NameValueCollection System.Web.HttpRequest :: get_Params ()
11 L_0007: ldstr "name"
12 L_000c: callvirt instance string NameValueCollection :: get_Item(string)
13 L_0011: stloc.0
14 L_0012: ldarg.1
15 L_0013: callvirt instance class NameValueCollection System.Web.HttpRequest :: get_Params ()
16 L_0018: ldstr "encoding"
17 L_001d: callvirt instance string NameValueCollection :: get_Item(string)
18 L_0022: stloc.1
19 L_0023: ldarg.2
20 L_0024: callvirt instance class System.IO.TextWriter System.Web.HttpResponse :: get_Output ()
21 L_0029: ldstr "Parameter "
22 L_002e: ldloc.0
23 L_002f: call string System.String :: Concat(string , string)
24 L_0034: callvirt instance void System.IO.TextWriter :: WriteLine(string)
25 L_0039: nop
26 L_003a: ldarg.2
27 L_003b: callvirt instance class System.IO.TextWriter System.Web.HttpResponse :: get_Output ()
28 L_0040: ldstr "Header "
29 L_0045: ldloc.1
30 L_0046: call string System.String :: Concat(string , string)
31 L_004b: callvirt instance void System.IO.TextWriter :: WriteLine(string)
32 L_0050: nop
33 L_0051: ret
34 }

Fig. 4. Disassembled C# code snippet explicitly showing relevant calls.

H
T
M

L
o
u
tp

u
t

sh
e
ll

c
o
m

-
m

a
n
d

a
r
-

g
u
m

e
n
ts

M
Y
S
Q
L

q
u
e
r
y

p
a
-

r
a
m

e
te

r
s

M
Y
S
Q
L
I

q
u
e
r
y

p
a
-

r
a
m

e
te

r
s

r
e
g
u
la
r

e
x
p
r
e
s-

si
o
n

p
a
tt
e
r
n
s

e
v
a
l

p
a
-

r
a
m

e
te

r
s

Web htmlspecialchars() escapeshellcmd() mysql escape string() mysqli escape string() preg quote() untaint($var, TC SELF)
Database htmlspecialchars() escapeshellcmd() mysql escape string() mysqli escape string() preg quote() ???

Fig. 5. PHP taint sanitization policy table.

〈program〉 ::= 〈statement〉*

〈statement〉 s ::=
| 〈var〉 ‘=’ 〈expr〉
| 〈var〉 ‘=’ 〈var〉.〈field〉
| 〈var〉.field ‘=’ 〈var〉
| 〈var〉 ‘=’ alloc
| 〈var〉 ‘=’ Ik
| 〈var〉 ‘=’ Pk(〈var〉)
| 〈var〉 ‘=’ Sk(〈var〉)
| Ok(〈var〉)
| ‘if’ 〈expr〉 ‘then’ 〈statement〉 ‘else’ 〈statement〉
| ‘while’ 〈expr〉 ‘do’ 〈statement〉
| skip

〈expr〉 e ::=
| 〈expr〉 � 〈expr〉
| 〈var〉
| 〈const〉 | true| false
| null

Fig. 6. BNF grammar for our language. � indicate typical binary
operators. const represent numeric and string constants.

A. Taint Propagation

Although this is not often made explicit, traditionally,
taint propagation policies have followed a certain shape, as

described in the examples above. While we shall talk about
sanitizers, it should be understood that for privacy-focused
applications, declassifiers may be used in their stead.
Definition 1: An explicit taint propagation problem Π
consists of the following five-tuple Π = 〈I,O,P,S, T 〉:
• Sources I = {〈m, t〉, . . .}
• Sinks O = {〈m, t, h〉, . . .}
• Propagators P = {〈m, t1, t2〉, . . .}
• Sanitizers S = {〈m, t1, t2〉, . . .}
• Policy table T = I × O 7→ 〈s1, s2, . . .〉

where m is a method (or function) and taint labels ti ∈ T ,
which is a semi-lattice with element > representing (fully)
untainted, are the taint labels used to distinguish between
different kinds of taint sources and sinks. We also allow
sink handlers that specify what to do in the case of a
violation, i.e. insufficiently sanitized flow from a source to
a sink; typically, these handlers will just print an error
message and terminate the program.

We assume that aside from the specified side-effect on
taint labels, functions m in sources, sanitizers, propaga-
tors, and sink do not have the ability to change taint labels.

6

Σ ` e ⇓ 〈v, t〉 Σ.∆′ = Σ.∆[x← v] Σ.τ ′∆ = Σ.τ∆[x← t]

(Σ, x = e) (Σ′, skip)
Assign

Σ ` χ[〈y, f〉] ⇓ 〈v, t〉 Σ.∆′ = Σ.∆[x← v] Σ.τ ′∆ = Σ.τ∆[x← t]

(Σ, x = y.f) (Σ′, skip)
Load

χ′ = χ[〈x, f〉 ← Σ.∆[y]] τ ′χ = τχ[〈x, f〉 ← Σ.τ∆[y]]

(Σ, x.f = y) (Σ′, skip)
Store

Σ.∆′ = Σ.∆[x← null] Σ.τ ′∆ = Σ.τ∆[x← >]

(Σ, x = alloc) (Σ′, skip)
Alloc

Ik = 〈m, l〉 Σ.∆′ = Σ.∆[x← Σ.∆[m()]] Σ.τ ′∆ = Σ.τ∆[x← l]

(Σ, x = Ik()) (Σ′, skip)
Source

Ok = 〈m, l, h〉 Σ.τ∆[x] = >
(Σ,Ok(x)) (Σ′, skip)

Sink
Ok = 〈m, l, h〉 Σ.τ∆[x] 6= >

(Σ,Ok(x)) (Σ′, h)
Sink-Fail

Sk = 〈m, t1, t2〉 t1 = Σ.τ∆[y] Σ.∆′ = Σ.∆[x← m(Σ.∆[y])] Σ.τ ′∆ = Σ.τ∆[x← t2]

(Σ, x = Sk(y)) (Σ′, skip)
Sanitizer

Pk = 〈m, t1, t2〉 t1 = Σ.τ∆[y] Σ.∆′ = Σ.∆[x← m(Σ.∆[y])] Σ.τ ′∆ = Σ.τ∆[x← t2]

(Σ, x = Pk(y)) (Σ′, skip)
Propagator

(Σ, skip; S) (Σ, S)
Skip

(Σ, S1) (Σ′, S′
1)

(Σ, S1; S2) (Σ′, S′
1; S2)

Sequence

Σ ` e ⇓ 〈true, t〉
(Σ, if e then S1 else S2) (Σ, S1)

If-T
Σ ` e ⇓ 〈false, t〉

(Σ, if e then S1 else S2) (Σ, S2)
If-F

Σ ` e ⇓ 〈true, t〉
(Σ, while e do S) (Σ, while e do S)

While-T
Σ ` e ⇓ 〈false, t〉

(Σ, while e do S) (Σ, skip)
While-F

Σ ` e1 ⇓ 〈v1, t1〉 Σ ` e2 ⇓ 〈v2, t2〉 e = v1 � v2 t = t1 u t2
Σ ` e1 � e2 ⇓ 〈v, t〉

BinOp
Σ ⇓ 〈Σ.∆[var],Σ.τ∆[var]〉

Var

Σ ` v ⇓ 〈v,>〉
Const

Σ ` v ⇓ 〈null,>〉
Null

Σ ` v ⇓ 〈true,>〉
True

Σ ` v ⇓ 〈false,>〉
False

Fig. 7. Operational semantics.

We assume that handlers do not change taint labels either.
However, as discussed in Section V-E, it is possible to do
more aggressive kind of recovery. Finally, the policy table
provides the appropriate list of sanitizers to apply for each
source/sink pair, as shown the the example in Figure 8.

B. Operational Semantics for a Small Language

Figure 6 gives a BNF grammar for a small
Java-like language that captures the essence of
what is needed to explain the tracking of taint.

O1 O2 O3

I1 S1 S1 S4

I2 S1 S2 S2

I3 S2 S1 S3

Fig. 8. Example pol-
icy. Sources shown verti-
cally; sinks shown hori-
zontally.

Note that we have explicit state-
ments for reading input from a
source, and also invoking sani-
tizer, propagator, and sink meth-
ods with parameters. Note that
we assume that temporaries have
been inserted to use variables
where expression would typically
be used otherwise.

In a manner similar to that of
Schwarts et al. [53], we proceed
to define an operational semantics for dynamic explicit
taint tracking. The execution context is described by the
following parameters contained within Σ: ∆, which maps
a variable name to its value; τ∆, which maps a variable
name to its taint label; χ, which maps a heap object
field to its value; τχ, which maps a heap object field to
its taint label. We do not assume anything about how
labels are represented or stored: they can be contained
within object headers or be stored completely on the side.
Moreover, the level of detail contained in labels can vary
from being a one-bit tainted/untainted representation to
a more elaborate lattice that distinguishes different kinds
of taint sources.

Furthermore, we shall use x, y, z to denote variables
〈var〉, and f to denote fields 〈field〉. Here are a few
examples: Σ.∆[x] gives the current value of variable x;
Σ.χ[〈x, f〉] gives the current value of variable x.f . Map

7

updates are denoted with←: for instance, Σ.∆[x← hello]
represents an updated Σ.∆ map with x set to string
"hello".

Figure 7 shows operational semantic inference rules for a
typical implementation of dynamic taint tracking. Several
rules in particular require a discussion.

• Sanitizer: This rule acts to transform taint labels
from t1 to t2 as long as the input label matches the
label expected by sanitizer Sk.

• Sink: Expects the label of its argument to be >.
• Sink-Fail: Calls the sink handler h if its argument

does not have label >.
• Const: We initialize the taint label of constants to >

or “not tainted.” Same is true of the results of alloc
calls.

• BinOp: We apply the lattice meet operator u to
combine two labels from the left and right hand sides.

Property 1 (sound taint tracking): for every runtime
value v = 〈e, t〉:
• p is fully untainted, i.e. t = >; or
• p is returned from a call to m of source of the form
Ik = 〈m, t〉; or

• the last sanitizer/propagator returning v applied was
of the form 〈m, t0, t〉.

Intuitively, this property captures correctness of taint
tracking. This property holds since the only inference rules
that change the taint labels on values are Sanitizer and
Propagator rules and it is not possible to manufacture
of forge labels in our semantics.

IV. Taxonomy

This section proposes a taxonomy of choices for a
runtime taint propagation system. Figure 11 classifies 17
projects according to this taxonomy.

A. Level of Instrumentation

Runtime taint tracking can be implemented at several
levels, affecting the instrumentation precision, overhead,
and level of implementation difficulty. At a high level,
we distinguish between application-level and system-level
instrumentation. Below we outline some of the trade-offs.
Figure 9 provides more prescriptive guidance as to which
method to choose.

Source-level instrumentation: is an attractive possi-
bility because it requires relatively little infrastructure
support other than a language parser. This option is
frequently used for scripting languages such as JavaScript,
where the source code is readily available [25, 27, 39].
Programs instrumented at the source level are easier to
debug and understand. Some shortcomings involve the
need to capture all syntactic constructs that correspond to
a particular semantic operation. For instance, if we would
like to instrument all variable assignments, we will need
to consider simple syntactic forms such as x = y, but also
interprocedural assignments of actual arguments to formal

ones, as well as less obvious assignments resulting, for
instance, from having to properly instrument loop initial-
ization constructs of the form for(i = 0; i < 100; i + +).

Bytecode-level instrumentation: is similar to source-
level instrumentation but often is more challenging in
practice [15, 37]. Part of the problem is the need to produce
instrumented code that is deemed to be valid, typically
according to a bytecode verifier such as those found in
Java and C#.

This might require worrying about balancing the stack,
creating parameters of the right type, etc. Other challenges
include instrumenting built-in core types such as Object

in Java or System.Type in .NET. Just like with source-
level rewriting, another challenge with this technique is the
difficulty of instrumenting dynamically-loaded code. Some
of the runtime instrumentation frameworks overcome this
by allowing the user to register a callback invoked each
time a library is loaded dynamically or a new piece of
code is fetched in the source form (to be passed to eval,
for instance).

Other difficulties not present with source-level instru-
mentation involve the need to potentially re-sign the byte-
code and repackage it into a JAR file, a DLL, etc.

Of course, bytecode-level instrumentation is often the
only option is there is not access to source code, which is
frequently true for large projects that rely on libraries.

Library-level instrumentation: is a useful alternative
to bytecode-level instrumentation, especially for JVM and
.NET, assuming one can rewrite and re-deploy (standard)
libraries. This is the the approach chosen in Chin [12]
and the Fortify runtime analysis tool [16]. Indeed, in the
extreme case, if all sources, sinks, sanitizers, and propaga-
tors are library methods, we can perform the majority of
instrumentation within the library, without touching the
application code at all.

The main advantage of this techniques is a frequently
observed reduction in the runtime overhead. The disad-
vantage is that tweaking with standard libraries often
reduces the stability of application execution, as it violates
unstated invariants that the runtime expects. One has to
be particularly careful when rewriting Object in Java or
System.Type in .NET, but even slight modification to some
methods of the String class can lead to surprising failures
at runtime. There is generally no way to determine this
ahead of time, other than testing for compatibility with the
different runtimes and its versions, such as the many ver-
sions of JVM from Oracle, IBM, and other vendors, .NET
runtimes on different platforms and operating systems, etc.
The cost of better performance with this approach is its
lesser compatibility.

Another issue is the inability to completely restrict
instrumentation exclusively to library code only. For in-
stance, Halfond et al. report the need to instrument con-
stant string creation within the application [21], which
obviously creates fewer instrumentation points than full

8

no

Bytecode available?

Source-level

instrumentation

no

Can modify libraries?

no

Library-level

instrumentation

Bytecode-level

instrumentation

yes

Debugger API available?

no

Use debugger APIs

yes

yesCan modify runtime?

Runtime-level

 instrumentation

yes

Fig. 9. Where to instrument?

bytecode-based instrumentation, but still perturbs appli-
cation code, which might be undesirable for deployment
because this increases code size, etc.

Debugging APIs: while this option is not always avail-
able, widely-used runtimes such as JVM (JavaTM Virtual
Machine Tool Interface) and .NET (.NET Framework
debugging and profiling APIs) provide useful facilities
for monitoring and controlling program execution. The
advantage of this approach is its ostensible simplicity: we
get access to low-level runtime internals without having
to rebuild the runtime or having access to its sources.
The disadvantage is the fragility of this approach and the
limitations of debugging APIs. Moreover, these APIs can
vary based on the version of the runtime, its vendor, and
the operating system.

Runtime-level instrumentation: is often desirable be-
cause it providers the most complete insight into ap-
plication execution, assuming one has access to runtime
internals. A significant advantage of this approach is the
low memory overhead: extra taint bits can frequently be
stored in the object header, eliminating the need for extra
lookup taint maps. For example, consider the Rubinius
runtime for Ruby. The first 32-bit integer at the start of
the object header contains flags about the object. Along
with Pinned, Frozen, and other flags maintained by the
runtime and the garbage collector, Tainted is the tainted
bit for the object.

Note that deploying instrumented runtimes is not al-
ways desirable: they might conflict with the “default”
runtime installed on the machine, buggy instrumentation
will compromise the ability to run other applications,
etc. Several runtimes have adopted built-in taint tracking,
including Perl [61], PHP [60], Ruby, and JavaScript. How-
ever, JavaScript quickly rolled back their taint support,

which used to be part of JS1.1 in Netscape 3 in 1996.

Summary: Loosely, we can describe source- and
bytecode-level instrumentation as application-level instru-
mentation and other approaches as system-level instru-
mentation. While it is often desirable, it is not always
possible to restrict ourselves to system-level instrumenta-
tion only. Positive tainting mentioned above is one reason.
Another is the fact that it is frequently desirable to
track taint as it passes through local primitive values. For
example, to track GPS location provenance in .NET, we
need to instrument primitive numeric value manipulation
at the level of a method. To summarize the trade-offs
above, Figure 9 provides a decision diagram for choosing
the level of instrumentation for a tool one intends to build.

B. Tracking Granularity

Tracking strings: Much attention in building runtime
tainting systems has been given to tracking string data as
it passes through the application. The level at which taint
is propagated through the application varies depending on
the approach. Note that unlike instrumentation in native
applications, byte-level tainting is too low-level and is
consequently uncommon. Several alternative approaches
have been proposed.

• character-level: given that taint propagation involves
following strings around much of the time, maintain-
ing taint data at the level of individual characters has
the advantage of enabling more precise analysis.

• modeling strings: it has been proposed that taint can
be tracked through sanitizers and that strings can be
modeled more accurately [19, 49, 50].

• object-level: a more coarse-grained approach is to taint
individual (string) object.

Tracking (other) primitive types: While generally
a non-issue for injection attacks such as XSS, tracking
primitive types becomes important when dealing with
confidential (numeric) data such as GPS location coordi-
nates or the user’s annual income. Because runtimes typ-
ically manipulate primitive data differently from strings
or objects, tracking the propagation of this type of data
is considerably more involved. For example, in .NET,
C# statements int x = 43; int y = x; result in the
following instructions, where the .locals block mentions
two locals at offsets 0 and 1 corresponding to x and y.
These locals can be manipulated using instructions such
as stloc and ldloc.

.locals init ([0] int32 x, [1] int32 y)
L_0000: nop
L_0001: ldc.i4.s 0x2b
L_0003: stloc.0
L_0004: ldloc.0
L_0005: stloc.1

Tracking collections: The granularity with which data
placed in collections (which includes arrays and maps)

9

public class GeoLocation {
double lattitude;
double longitude;

public GeoLocation(double lattitude, double longitude){
this.lattitude = lattitude; this.longitude = longitude;

}

public void setLattitude(double lattitude) {
this.lattitude = lattitude;

}
public void setLongitude(double longitude) {

this.longitude = longitude;
}

}

Fig. 10. GeoLocation example.

should be tracked requires careful consideration. The com-
mon approach of tainting the entire collection suffers from
the loss of precision is introduces: anything subsequently
retrieved from that collection will be marked as tainted.
Luckily, objects placed in collections can be tracked indi-
vidually without any loss of precision or need to taint the
collection; the same is not true of, for example, an array
of potentially tainted floating point values. A more precise
approach involves keeping array indices of tainted array
elements. In the case of languages interacting with the web
document DOM such as JavaScript, tracking taint within
DOM elements represents a particularly acute problem. A
potential solution involves preventing tainted data from
reaching the DOM, i.e. treating write access to the DOM
as a sink.

Tracking (other) objects: Another challenge comes
from having to track non-collection objects that may have
tainted data as their fields. A common example is shown
in Figure 10. Should we treat GeoLocation as tainted if
either double parameter to the constructor is tainted?
While this is probably the right thing to do, correct-
ing propagating taint to GeoLocation objects requiring
adding the constructor as both setter methods to the
list of taint propagators. Having to deal with objects
such as this that have multiple tainted fields adds further
complications in terms of representation of taint labels.

C. Form of Tainting

The most common form of tainting is negative tainting,
which involves tainting untrusted sources and propagating
this data to sinks for integrity and sensitive data as sources
and data release points for confidentiality. An alterna-
tive approach is positive tainting, which taints trusted
data, typically (string) constants and other application-
controlled data. An example of positive tainting use comes
from a paper by Halfond et al., which proposes a method
for preventing SQL injection attacks [21].

The key difference is that positive tainting effectively
white-lists sources of safe data instead of black-listing safe
data, which Halfond et al. perceive as a plus because it
favors false positive over false negatives. Oddly, despite

this challenge, we see relatively little work on positive
tainting systems. This highlights the difficulty of coming
up with a comprehensive policy for dynamic taint tracking,
which is further described in Section V-A.

Focus on negative tainting can also be explained by
the fact that negative tainting is generally useful “out of
the box” — while it might not find every violation, it
will not overwhelm the user with false positives, either.
Developers and security engineers can refine the policy
over time, whereas having to wade through dozens or
hundreds of false positive alarms is virtually guaranteed
to limit adaption.

D. Explicit vs. Implicit Flow

A useful distinction is between explicit or direct infor-
mation flow, which occurs through copying values through
the program and implicit flow, which commonly happens
when the outcome of conditionals that depend on tainted
data in the program can be discerned through the state of
other values, as shown in the commonly used code snippet
below.

1 if (confidential == 1) {
2 public = 42
3 } else {
4 public = 17;
5 public = 0;
6 }

A great deal of work has been done on information flow
tracking [47], especially in the static context, with some
notable exceptions in the dynamic space [3, 4, 13]. Unfor-
tunately, much work in the static space requires specialized
static type systems and does not usually directly translate
into runtime implementations that can apply to large
legacy systems.

When it comes to practical runtime analysis of large,
complex benign programs, explicit taint tracking is em-
ployed. Note that implicit flow is considerably more impor-
tant for analyzing malware or untrusted third-party code,
which can be easily rewritten by the attacker to conceal
malicious taint transfer. We are only aware of one project
that uses runtime analysis for tracking implicit flow [3].
Because of this, much of the rest of this paper focuses on
tracking explicit flow.

V. Deployment Challenges

While the basic principles of taint propagation instru-
mentation and runtime tracking are easy to understand,
there is a wide range of significant deployment challenges,
some of which explain the dearth of commercially available
systems in this space.

A. Policy Specification Difficulties

At the core of a dynamic taint propagation system is the
task of selecting an appropriate policy. In fact, selecting
the right policy is often as difficult if not more so than
designing the instrumentation itself. The Merlin project
provides statistics for a tool whose policy contains 27

10

P
r
o
je
c
t

Y
e
a
r

R
u
n
t
im

e

R
u
n
t
im

e
m

e
c
h
a
n
is
m

G
r
a
n
u
la
r
it
y

P
o
s
it
iv

e
v
s
.

n
e
g
a
t
iv

e

Im
p
li
c
it

v
s
.

e
x
p
li
c
it

[42] 2005 PHP runtime character negative explicit

[18] 2006 Java library object negative explicit

[37] 2006 Java bytecode object negative explicit

[20] 2006 Java library character positive explicit

[21] 2006 Java library character positive explicit

[40] 2007 JavaScript runtime object negative explicit

[6] 2008 PHP runtime character negative explicit

[35] 2008 Java bytecode object negative explicit

[54] 2009 PHP library character negative explicit

[26] 2009 PHP runtime object negative explicit

[12] 2009 Java library character negative explicit

[3] 2009 λinfo runtime object negative implicit

[15] 2010 Java runtime object negative explicit

[49] 2010 JavaScript runtime character negative explicit

[50] 2010 JavaScript runtime character negative explicit

[8] 2011 PHP runtime character negative explicit

[7] 2012 Python library object negative explicit

Fig. 11. Projects employing dynamic tainting in managed languages
and runtimes: a summary.

sources, 77 sinks, and 7 sanitizers [33]. “Tuning” the policy
is a challenging task: for negative tainting, failing to
include relevant sources will lead to missed flows.

Omitting sanitizers will lead to incorrectly unterminated
flows. Missing sinks will lead to failing to flag erroneous
flows. Of course, having too many sources, for example,
is also a problem, as it will lead to the problem of
taint spread, where too many objects are deemed tainted,
typically leading to too many warnings, rendering resulting
tools useless in practice. Policy selection can dramatically
affect the performance overhead measurements as well: if
the policy is too“sparse”, the overheads will be predictably,
but deceptively low.

Alas, it very difficult to formulate the “correct” policy in
general, even with having in-depth knowledge of the under-
lying application. Anecdotally, commercial static analysis
tools such as Fortify and Coverity take a considerable
amount of effort to deploy of large legacy code bases;
much of this effort goes into refining the policy. This
fundamental challenge we think in part explains the lack
of adoption: developing a useful policy can be both time-
consuming but necessary before taint propagation yields
any useful results. In practice, we often see developers
or security engineers editing source and sink specification
files. However, if it takes a great deal of customer efforts
to deploy such a system, who can really afford to do so?

Relying on frameworks: One saving grace is that
the policy is generally not entirely application-specific:
there usually is a sensible general policy that is fitting

for the underlying application framework. For instance,
policies have been developed for J2EE servlets as well as
more declarative web frameworks such as JSP, PHP, and
ASP.NET. Methods in these frameworks can be used as
sources and sinks. Built-in system methods can be used
as propagators. Finally, some of these platforms provide
built-in sanitizer libraries.

Recently, the idea of automatic sanitization has been
advocated and in fact introduced in a range of widely-
used frameworks. For instance, ASP.NET supports the
concept of input validators, which can be attached to
web page controls to limit possible inputs and report an
error otherwise. The out-of-the-box validators are shown in
Figure 12. Custom validators may be introduced through
a <asp:CustomValidator> tag supported via developer-
provided logic. While generally a boon for the developer,
these validators, because they generally set a boolean
IsValid flag, require additional challenges when tracking
taint, as the control flow conditions of the program are
now of crucial importance.

Interestingly, while validators are used for preventing
integrity vulnerabilities, we are not aware of such attempts
to introduce built-in easily supported declassifiers. Even
simple declassification tasks such as hashing-out the digits
of a social security number other than the last four have
to be done by the developer.

Application-specific analysis parametrization:

ReadData1

Prop1 Prop2

Cleanse

WriteData

ReadData2

Fig. 13. Inferring sources, sinks, prop-
agators and sanitizers with belief infer-
ence.

While relying
on framework
specifications is a
helpful approach
which provides an
easy way to get
started, in practice,
one eventually
discovers that a
more detailed and
accurate application-
specific specification
is often needed for the
best results, both in
terms of finding errors
and avoiding false
positives.

At the core of the
approach advocated in the Merlin project [33] is the idea
of belief inference: relying on the developer behaving cor-
rectly most of the time. Consider the example in Figure 13,
showing interpredural data flow between different methods
in the program.

Suppose we know for a fact that ReadData1 is a source,
WriteData is a sanitizer, Prop1 and Prop2 are propaga-
tors, and Cleanse is a sanitizer. We can then conclude
with a high probability that ReadData2 is another source.
Indeed, why else would the developer sanitize the flow from
ReadData2 to WriteData? Suppose now that ReadData1

11

Rule to enforce Validator Description

Required entry RequiredFieldValidator Ensures that the user does not skip an entry.

Comparison to a value CompareValidator Compares a user’s entry against a constant value, against the value of another control (using
a comparison operator such as less than, equal, or greater than), or for a specific data type.

Range checking RangeValidator Checks that a user’s entry is between specified lower and upper boundaries. You can check
ranges within pairs of numbers, alphabetic characters, and dates.

Pattern matching RegularExpressionValidator Checks that the entry matches a pattern defined by a regular expression. This type of
validation enables you to check for predictable sequences of characters, such as those in
e-mail addresses, telephone numbers, postal codes, and so on.

User-defined CustomValidator Checks the user’s entry using validation logic that you write yourself. This type of validation
enables you to check for values derived at run time.

Fig. 12. ASP.NET validators.

HE1 HE2 HE3 HE4 OS1 OS2 OS3

HTMLEncode1 X X X 0 − X 0

HTMLEncode2 X X X 0 − X 0

HTMLEncode3 X X X 0 − X ′

HTMLEncode4 0 0 0 X 0 0 0

Outsourced1 − − − 0 X − 0

Outsourced2 X X X 0 − X 0

Outsourced3 0 0 ′ 0 0 0 X

Fig. 14. Equivalence matrix for seven implementations of HTML
encoding. A X indicates the implementations are equivalent. For
implementations that are not equivalent, we show an example charac-
ter that exhibits different behavior in the two implementations. The
symbol 0 refers to the null character.

and ReadData2 are sources, WriteData is a sanitizer, and
Prop1 and Prop2 are propagators. We can then conclude
with a high probability that Cleanse is a sanitizer. The
chances of this are enhanced by the fact that there are
not one, but two source-to-sink paths that pass through
method Cleanse.

Applying Merlin to 10 large business-critical Web ap-
plications that have been analyzed with CAT.NET, a
state-of-the-art static analysis tool for .NET results in
expanding the existing specification. A total of 167 new
confirmed specifications were found, which result in a total
of 322 additional detected vulnerabilities across the 10
benchmarks. More accurate specifications also reduce the
false positive rate: Merlin-inferred specifications result
in 13 false positives being removed, which constitutes
a 15% reduction in the CAT.NET false positive rate.

B. Sanitizer Correctness

Much of the time, dynamic taint tracking assumes cor-
rect implementation of sanitizers (or declassifiers), effec-
tively treating them like black boxes. Sanitizers are gen-
erally very difficult to implement correctly. Just like when
it comes to home-crafted encryption routines, it is not
recommended that application programmers implement
sanitizers, because the chances of getting them wrong are
exceedingly high. Much of the time, large development
teams resort to using off-the-shelf sanitization libraries,
either built into the underlying runtime, as is the case for
basic sanitizers in JVM and .NET, or provided through a
separate library such as AntiXSS now known as Microsoft
Web Protection Library [38] or OWASP’s ESAPI [44].

private static string EncodeHtml(string t)
{

if (t == null) { return null; }
if (t.Length == 0) { return string.Empty; }
StringBuilder builder =

new StringBuilder("", t.Length * 2);
foreach (char c in t)
{

if ((((c > ’‘’) && (c < ’{’)) ||
((c > ’@’) && (c < ’[’))) || (((c == ’ ’) ||
((c > ’/’) && (c < ’:’))) || (((c == ’.’) ||
(c == ’,’)) || ((c == ’-’) || (c == ’_’))))){

builder.Append(c);
} else {

builder.Append("&#" +
((int) c).ToString() + ";");

}
}
return builder.ToString();

}

Fig. 15. Code for AntiXSS.EncodeHtml version 2.0.

The problem of sanitizer correctness has been explored
in the Bek project [57, 58]. Veanes et al. conduct an
experiment asking developers to implement an HTML
encoder based on an English description [58]. They then
proceeded to compare these outsourced implementations
Outsourced1–Outsourced3 to off-the-shelf HTML en-
coders, summarizing the results in Figure 14. We dis-
covered that Outsourced1 escapes the - character, while
Outsourced2 does not. We also found that one of the
HTMLEncode implementations does not encode the single
quote character.

Because the single quote character can close HTML
contexts, failure to encode it could cause unexpected be-
havior for a web developer who uses this implementation.
For example, a recent attack on the Google Analytics
dashboard was enabled by failure to sanitize a single
quote [52].

Bek has been used to produce robust sanitizers with
equivalent implementations in C, C#, and JavaScript,
for both server- and client-side programming [59]. The
current industrial practice involves a collection of libraries
in different languages, which are at best loosely connected
and encouraging developers to use these libraries to the
best of their ability. There are, however, significant advan-
tages to achieving parity in terms of sanitizers of different

12

runtimes such as Java vs. JavaScript: code can be ported
or migrated at runtime more easily, developers have clear
guidance when they move from one platform to another.

C. Achieving Complete Mediation

One of the fundamental challenges to building a runtime
tainting system is its soundness: how can we ensure that
everything that requires instrumentation is indeed prop-
erly instrumented? Even if we believe the specification to
be “complete”, how to we ensure that we are not missing
some relevant instrumentation points?

Fundamentally, instrumenting to achieve complete me-
diation is a more difficult goal that one might imagine
because it requires statically matching runtime conditions.
To see the difficulty, consider a call to obj.toString().
Must we instrument this call site? If this call may resolve
to String.toString() or StringBuilder.toString(),
then the answer is yes, as these are well-known propagator
methods relevant for instrumenting Java programs. But
how do we know what obj.toString may refer to? To
answer this question, we would need to statically constrain
the type of obj. But what if obj has been obtained from
a collection, as illustrated by the Java code below.

StringBuffer buf = new StringBuffer();
for (Iterator iter = objects.iterator(); iter.hasNext();) {

Object administrator = iter.next();
buf.Append(obj.toString());
buf.Append(’ ’);

}

Tracking the type and provenance of obj requires under-
standing where collection objects comes from and what
objects might be put into it. This is general requires a
whole-program pointer analysis or some other concrete
type inference technique. This, however, is rarely done
in practice, yielding an instrumentation approach that is
either unsound, i.e., missing some relevant instrumenta-
tion points, or conservative. However, instrumenting every
Object.toString call is likely to yield a very high number
of instrumentation points and creates runtime overhead
that is likely to be unacceptably high.

To evaluate the frequency of Object.toString calls,
we took a 900 KB .NET DLL. We found 1 reference to
Object.toString and 1 references to String.toString
and 31 references to StringBuilder.toString. While not
a common occurrence, this still represents about 3% of
instrumentation points. The take-away here is similar to
that in the case of static optimizations: completely sound
instrumentation is very difficult to build.

D. Imprecision and Label Creep

Even runtime analysis, while generally considerably
more precise than static analysis, is subject to precision
challenges. Somewhat infamously, excessive taint label
creep was the reason for the Netscape browser removing
its support for taint within the JavaScript 1.1 runtime

in 1996 [56], Chapter 34. Admittedly, Netscape attempted
to support implicit taint by marking the PC as tainted,
in an effort to enable cross-origin access to data with
confidentiality support.

However, even explicit taint can suffer from a number
of precision challenges. For object-oriented runtimes, it is
possible to associate taint with a runtime object with a
particular unique runtime identity. These unique identi-
fiers might not be easy to establish; for example, object
hash codes are not guaranteed to be unique. JVM, for
example, offers the method Object.hashCode(). Typical
implementations of Object.hashCode() involve computing
a function of the allocated address of the object in memory,
though this is not mandated by the standard. While
the garbage collector can relocate the object, the value
remains the same. While no uniqueness properties are
provided, this method may be a good practical way to
compute object identity, with hash collision for negative
tainting leading to imprecision. For positive tainting, we
can optimistically mark objects as safe, however, losing
soundness.

Another common source of precision loss is interactions
with external systems outside of the main runtime. For
instance, the following code sets an attribute of a DIV

DOM element to a tainted string tainted. Subsequently, a
different portion of the code retrieves this attribute. Note

var tainted = ...; // tainted string
var div = document.getElementById(’id’);
div.setAttribute(’attr’, tainted);
...
var elt = document.getElementByClassName(’div’);
var attr = div.getAttribute(’attr’);

that while getElementById is used for attribute setting,
a different DOM API, getElementByClassName is used
for retrieving the attribute. This example represents the
common tension between loss of precision (mark every
object coming out of the DOM as potentially tainted) and
loss of soundness (mark every object coming out of the
DOM as safe). How does the analysis resolve this tension?

Two common solutions include (1) treating “escaping”
into the DOM as a sink, i.e. report runtime attempts
to store tainted data into the DOM as warnings or er-
rors; (2) creating and maintaining a finer-grained mapping
at the DOM boundary, i.e. record that there’s tainted
data stored in attribute attr of element with ID id.
Whenever a new attribute value is obtained from the DOM
for attribute attr, check the ID of the underlying DOM
element to see if there is a match, and proceed to mark it
as tainted.

E. Automatic Sanitization

A key observation is that in large, complex code
bases with non-trivial interprocedural flows, understand-
ing whether a particular variable is tainted is a really
complex task for the developer, even if they are familiar

13

5%
25%

50%+

runtime-level library-level instruction-level

Fig. 16. Performance comparison.

with the code base. A series of recent efforts have focused
on getting the developer out of the loop and automating
the problem of sanitizer (or declassifier) placement.

SecuriFly project has proposed the idea of runtime
compensation for injection flaws [37]. Instead of letting
tainted data flow to a sink, it can be simply sanitized just
before that happens. Of course, to do so, one needs to
know what kind of sanitization to perform, which can be
decided on the basis of the policy specification table P in
Section III.

The challenges of manually performing proper saniti-
zation are even more severe in large complex web ap-
plications that produce highly structured HTML output,
such as, say, webmail systems. Saxena et al. explore the
idea of runtime monitoring for avoiding injection-style
security vulnerabilities in large and complex server-side
applications [48, 51]. Key challenges emanate from the
notion of sanitization context.

VI. Performance

Poor performance is the Achilles heel of runtime taint
propagation. By way of providing general guidance, Fig-
ure 16 gives a rough estimate of performance overhead
achieved with different approaches reported in the litera-
ture. Below we give several examples of reported overhead
numbers.

Bytecode-level instrumentation: Martin et al. present
the result of instrumenting sizable server-side Java appli-
cations to prevent SQL injection attacks. Their overhead
numbers vary considerably, from 9–125% for unoptimized
overhead and from less than 1% to 37% for when static
analysis is used to eliminate unnecessary instrumentation
points. However, the time to run static analysis is also
quite considerable, despite the fact that it can be done
offline and once, ranging from a little over a minute to
about half an hour for the biggest application consisting
of about 50,000 lines of Java code.

Library-level instrumentation: Chin et al. [12] provide
an evaluation of this approach. Their overhead numbers
range between 2 and 14%, however, these overheads are for
small and potentially unrepresentative tasks. Their paper
also reports throughput numbers, both for the original
application and one instrumented with various levels of
taint tracking.

Runtime-level instrumentation: Nguyen-Tuong et
al. [42] describe a modified PHP interpreter designed

Android TaintDroid Overhead

App Load Time 63 65 3%
Address Book (create) 348 367 5%

Address Book (read) 101 119 18%
Phone Call 96 106 10%

Take Picture 1,718 2,216 29%

Fig. 17. TaintDroid overhead from [15].

to prevent injection attacks, reporting an overhead of
less than 10%. In a related technical report [41] they
provide micro-benchmark measurements by running indi-
vidual PHP functions in a loop for 10,000 iterations. The
highest measured overhead is 77% for the sql.php micro-
benchmark which isolates the SQL injection checking. It
creates a partially tainted string and passes it to the
function that checks SQL commands. We believe that
this is not representative of real performance and, indeed,
overall performance numbers for three tasks (processing a
login, entering a message and generating an output page
from the contents of a database table) result in overheads
of less that 5%.

TaintDroid reports a combination of overhead, both
memory and time, for both micro-benchmark and real
workloads. As mentioned before, the overhead ranges
quite significantly depending on the task, to 29% on the
high end. The absolute overhead for picture taking is
about 0.5 seconds, which is certainly noticable by the end-
user. The memory overhead tends to be considerably less
pronounced.

Can we do better: While the papers mentioned above
provide useful guidance, somewhat perplexingly, consis-
tent and comprehensive reports describing performance
of runtime tainting are hard to come by. We see several
reasons for this.

• Part of the problem is the fact that especially for
application-level instrumentation, overheads are very
workload-specific. Indeed, the same web application
may have a path that involves tainted data from a
source quickly “dying off” resulting with very little
overhead, and another path resulting in tainted data
from a source traveling through the application and
resulting in long and complex propagation chains.
It is infrequent for runtime coverage numbers to be
reported, so it is difficult to say whether reported
overheads fall into the first or second category.

• In many cases, applications that benefit from runtime
taint tracking are interactive ones, such as web-based
applications and mobile phone apps. As such, tra-
ditional metrics of latency for a particular task are
not very representative, indeed, the user is unlikely
to notice a 10 ms slowdown.

Measuring performance differently: In this paper, we
advocate a different way of both thinking about and re-
porting runtime overheads. Ultimately, we as a community

14

would like to get to a point where runtime taint tracking
can be always on. Four metrics that really matter:

1) reduction of throughput of large applications de-
ployed in the cloud when the taint mode is on;

2) increase in the memory footprint as a result of extra
“book-keeping” required for taint tracking;

3) increase in power consumption both on back-end
servers and mobile devices;

4) increase in the code size, as more code means longer
times to ship code (updates) to clients and worse
code cache performance.

Currently, we are not aware of current large-scale deployed
systems that provide this kind of evaluation.

VII. Optimizations

Using static analysis to reduce the amount of runtime
instrumentation is a fairly tradition pairing of these analy-
sis techniques. Of course, this approach suffers from sound-
ness challenges: we want the underlying static technique
to be sound to avoid removing relevant instrumentation
point. However, designing a fully sound technique is tricky
for most real languages. Indeed, it is almost impossible for
a language as dynamic as JavaScript and is surprisingly
tough even for a “well-behaved” language like Java, given
reflection and dynamic code loading [10].

The problem of instrumentation overhead is hardly
new when it comes to runtime taint tracking. A popular
approach involves applying static analysis to minimize the
amount of tracking that needs to occur at runtime. If
we wish to maintain soundness of runtime tracking —
a formidable challenge in the first place for a number of
reasons described in Section V, we need to utilize a sound
static analysis to perform this filtering. Below we outline
several filtering approaches.

Type-based filtering: The simplest form of filtering
involves using statically available or computed type in-
formation to minimize the number of instrumentation
points. An example of this is the + binary operator used
in many languages to indicate either numeric addition or
string concatenation, depending on the type of the (first)
argument. In a strongly-typed environment such as those
provided by Java or .NET, there is no ambiguity between
the numeric and string versions of the + operator; however,
in dynamic languages such as JavaScript, further analysis
of parameters is needed. RATA [34] provides an example
of such an analysis, although the main focus is on the
different numeric types and not as much on objects.

Forward and backward data slicing: A common ap-
proach to reducing the number of instrumentation points
with application-based instrumentation involves only con-
sidering points that may both be reached from a source
and may reach a sink [5, 23, 36]. Finding such points
involves static interprocedural dataflow analysis, which
for a language with pointers or references, arrays, and
other data structures is both difficult to perform precisely

if(isSafe(input)){ string input2 = encode(input);
stream.write(input); stream.write(input2);

}

Fig. 18. Two ways to process untrusted inputs: checking (left) and
rewriting (right).

and is also time-consuming. The PQL project applied
this approach to reducing the taint tracking overhead
for Java web applications [36]. The simple observation is
that, given a policy specification, only certain parts of the
program are relevant for taint propagation. This is similar
to performing data slicing to minimize the relevant portion
of the code.

Other techniques: A project by Livshits et al. [32]
proposes a fully automatic sanitizer placement, which is
done statically, whenever this is possible, “spilling” into
runtime as infrequently as required. Of course, for complex
real-life dataflow graphs, fully static sanitization is not
always possible. The approach in that case is to auto-
matically insert points where data is tagged and untagged.
As an optimization goal, the duration of data tagging
is minimized by starting to tag as late as possible and
untagging the data as early as possible.

King et al. tackle a similar problem with a different
approach [28]. They construct a graph representation of
information flow in a program, such that source nodes
are high-security inputs, and sink nodes are low-security
outputs. A min-cut in this graph corresponds to a minimal
set of program points that would allow the program to
type-check.

VIII. Open Problems

The goal of this section is to highlight some of the open
problems we see, both in terms of theoretical understand-
ing of the problem and practical implementation issues.

Predictable performance: Historically, runtime mech-
anisms for security have received a lot of attention, but
relatively few have been actually adopted in practice.
“Lucky” cases include stack canaries [2] and the ASLR,
DEP/NX suite of memory randomization and protection
techniques [62]. The feature that distinguishes these tech-
nologies is their low and predictable performance overhead.
An upper bound is perhaps even more desirable; in other
words, a mean runtime overhead of 2% is often not good
enough: a maximum of 5% is in fact considerably better.

Control flow tracking: The way we have been describing
runtime taint tracking amounts to creating a dataflow
propagation chain within a particular run. A propagation
chain, however, is frequently not sufficient to establish a
violation. The issue of control dependence comes up in
the context of sanitization as well. Figure 18 shows two
ways in which untrusted inputs can be manipulated. Our
formulation in Section III supports the second approach of
rewriting the tainted input. To support the first approach
of input checking, we would need to be able to least

15

partially track control dependencies. It is not entirely clear
how to do so efficiently, as näıvely carrying the entire
interprocedural control dependence around at runtime is
bound to be costly.

Value tracking: What if we know that the particular
data that is currently passed to a sink is safe, even if
it deemed as potentially tainted by the runtime? For
instance, it is possible to have an empty string that is
tainted under our formulation. Should this be reported as
a violation? How do we avoid doing so?

Declassifiers: While several widely-used encoder and san-
itizer libraries exist, there is a lack of similar understanding
of how declassifiers should be written. Is it not entirely
clear whether there is room for standardized declassifier
libraries or if the very task of declassification is funda-
mentally application-specific. If there is indeed room for
such libraries, what functionality should be supported? Is
writing (correct) declassifiers as difficult and error-prone as
writing sanitizers? What are some of the correctness prop-
erties that are desirable? How can they be formulated?

Specification inference at runtime: While specifi-
cation inference has been attempted in the static con-
text [33], a system that continuously infers and enriches
the specification as the application is executing would be
very valuable. The advantage is the precision of runtime
monitoring, combined with the lack of need to “train” the
system beforehand.

Of course, the results of specification inference may
be used in both a static and dynamic analysis context.
Moreover, specifications inferred in the static context can
be applied in a runtime taint propagation tool. We are
not aware of attempts to perform specification inference
based on runtime monitoring. Doing so would remove the
imprecision inherent in a statically computed representa-
tion. To adopt the intuition from Merlin explained above,
a natural approach would consider taint-carrying dataflow
paths that have been sanitized that do not lead to a sink
to discover candidate sinks or propagators.

Configurable runtime support for taint: While Perl
and other scripting languages in many ways were ahead of
the wave in natively supporting taint propagation systems,
there is a lack of support for even basic forms of tainting
for the popular JVM and .NET runtimes. While a great
deal of research has gone into security of JavaScript within
popular browsers, none of them currently support taint
tracking. We feel that there is much to be done here to
push these runtimes forward.

There is fact an interesting historical precedent for this
kind of work influencing runtimes: research performed by
Michael Ernst and his group [45] on type qualifier support
for Java has eventually lead to Type Annotations language
extension (JSR 308), which will be part of Java 8. He
was the first non-Sun-employee to be the specification lead
for a Java language change. This JSR was awarded “most
innovative JSR” by Sun. Perhaps now is a good time for

What level instrumentation of instrumentation to use (see Figure 9)?
Is implicit tainting required?
What is the proper policy? Is the policy complete?
Does taint tracking need to be sound?
How to filter out the false positives? What kind of runtime overhead
is acceptable?
Is static analysis possible for reducing the overhead?
What to do in the case of an observed taint violation?

Fig. 19. A list of questions to address before implementing a runtime
taint tracking system.

a similar effort for customizable runtime taint support.

IX. Conclusions

While one key goal is to provide a comprehensive
overview of research on dynamic taint tracking in man-
aged runtimes, we attempt to go beyond being merely a
survey of related academic literature, by accomplishing
the following goals. First, we aim to provide guidance
for both researchers and practitioners implementing a
runtime taint tracking system. To summarize the practical
recommendations of this paper, Figure 19 shows a list of
questions that someone needs to answer before trying to
build a runtime tainting system. Second, we provide a
formal foundation for most common forms of runtime taint
tracking, captured in the form of an operational semantics.
Third, we give a list of open problems solving which we
hope will increase the level of adaption.

References

[1] Chris Anley. Advanced SQL injection in SQL Server ap-
plications. http://www.nextgenss.com/papers/advanced sql
injection.pdf, 2002.

[2] Anonymous. StackShield. http://www.angelfire.com/sk/
stackshield, 2002.

[3] Thomas H. Austin and Cormac Flanagan. Efficient purely-
dynamic information flow analysis. In Proceedings of the ACM
SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security, PLAS ’09, pages 113–124, 2009.

[4] Thomas H. Austin and Cormac Flanagan. Permissive dynamic
information flow analysis. In Proceedings of the Workshop on
Programming Languages and Analysis for Security, pages 3:1–
3:12, 2010.

[5] Dzintars Avots, Michael Dalton, Benjamin Livshits, and Mon-
ica S. Lam. Improving software security with a C pointer
analysis. In Proceedings of the International Conference on
Software Engineering, May 2005.

[6] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dy-
namic analysis to validate sanitization in web applications. In
Proceedings of the IEEE Symposium on Security and Privacy,
May 2008.

[7] Luciano Bello and Alejandro Russo. Towards a taint mode
for cloud computing web applications. In Proceedings of the
Workshop on Programming Languages and Analysis for Secu-
rity, 2012.

16

[8] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N.
Venkatakrishnan. Waptec: whitebox analysis of web applica-
tions for parameter tampering exploit construction. In Pro-
ceedings of the Conference on Computer and Communications
Security, pages 575–586, 2011.

[9] Erik Bosman, Asia Slowinska, and Herbert Bos. Minemu:
The world’s fastest taint tracker. In Robin Sommer, Davide
Balzarotti, and Gregor Maier, editors, Recent Advances in In-
trusion Detection, volume 6961 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin Heidelberg, 2011.

[10] Mathias Braux and Jacques Noyé. Towards partially evaluating
reflection in Java. In Proceedings of the Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages
2–11, January 1999.

[11] CGI Security. The cross-site scripting FAQ. http://www.
cgisecurity.net/articles/xss-faq.shtml.

[12] Erika Chin and David Wagner. Efficient character-level taint
tracking for Java. In Proceedings of the ACM workshop on
Secure web services, SWS ’09, pages 3–12, 2009.

[13] Andrey Chudnov and David A. Naumann. Information flow
monitor inlining. In Proceedings of the 2010 23rd IEEE Com-
puter Security Foundations Symposium, pages 200–214, 2010.

[14] Dorothy E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: an information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation,
pages 1–6, 2010.

[16] Fortify, Inc. Fortify SCA. http://www.fortifysoftware.com/
products/sca/, 2006.

[17] Steve Friedl. SQL injection attacks by example. http://www.
unixwiz.net/techtips/sql-injection.html, 2004.

[18] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic
taint propagation for Java. In Proceedings of the Annual
Computer Security Applications Conference, December 2005.

[19] William G. J. Halfond and Alessandro Orso. AMNESIA:
analysis and monitoring for neutralizing SQL-injection attacks.
In Proceedings of the International Conference on Automated
Software Engineering, pages 174–183, November 2005.

[20] William G. J. Halfond and Alessandro Orso. Preventing SQL
injection attacks using AMNESIA. In Proceedings of the In-
ternational Conference on Software Engineering (formal demo
track), May 2006.

[21] William G. J. Halfond, Alessandro Orso, and Panagiotis Mano-
lios. Using positive tainting and syntax-aware evaluation to
counter SQL injection attacks. In Proceedings of the Inter-
national Symposium on Foundations of Software Engineering,
pages 175–185, 2006.

[22] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM conference on
Computer and communications security, CCS ’11, pages 639–
652, New York, NY, USA, 2011. ACM.

[23] Richard W. M. Jones and Paul H. J. Kelly. Backwards-

compatible bounds checking for arrays and pointers in C pro-
grams. In Proceedings of the International Workshop on Auto-
matic Debugging, pages 13–26, May 1997.

[24] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee,
and Angelos D. Keromytis. libdft: practical dynamic data
flow tracking for commodity systems. In Proceedings of the
8th ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments, VEE ’12, pages 121–132, 2012.

[25] Emre Kıcıman and Benjamin Livshits. AjaxScope: a platform
for remotely monitoring the client-side behavior of Web 2.0
applications. In Proceedings of ACM Symposium on Operating
Systems Principles, October 2007.

[26] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and
Michael D. Ernst. Automatic creation of SQL injection and
cross-site scripting attacks. In Proceedings of the International
Conference on Software Engineering, pages 199–209, 2009.

[27] Haruka Kikuchi, Dachuan Yu, Ajay Chander, Hiroshi Inamura,
and Igor Serikov. JavaScript instrumentation in practice. In
Proceedings of the Asian Symposium on Programming Lan-
guages and Systems, 2008.

[28] Dave King, Susmit Jha, Divya Muthukumaran, Trent Jaeger,
Somesh Jha, and Sanjit A. Seshia. Automating security media-
tion placement. In Proceedings of the European Conference on
Programming Languages and Systems, pages 327–344, 2010.

[29] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and
Christian Seifert. Rozzle: De-cloaking internet malware. In
IEEE Symposium on Security and Privacy, May 2012.

[30] David Litchfield. SQL Server Security. McGraw-Hill Osborne
Media, 2003.

[31] Benjamin Livshits. Improving Software Security with Precise
Static and Runtime Analysis. PhD thesis, Stanford University,
Stanford, California, 2006.

[32] Benjamin Livshits and Stephen Chong. Towards fully automatic
placement of security sanitizers and declassifiers. In Proceedings
of the Sympolisium on Principles of Programming Languages,
January 2013.

[33] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and
Anindya Banerjee. Merlin: Specification inference for explicit
information flow problems. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2009.

[34] Francesco Logozzo and Herman Venter. Rata: Rapid atomic
type analysis by abstract interpretation – application to
JavaScript optimization. In Proceedings of the Conference on
Compiler Construction, 2010.

[35] Michael Martin and Monica S. Lam. Automatic generation
of XSS and SQL injection attacks with goal-directed model
checking. In Proceedings of the 17th conference on Security
symposium, 2008.

[36] Michael Martin, Benjamin Livshits, and Monica S. Lam. Find-
ing application errors and security vulnerabilities using PQL: a
program query language. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations, October 2005.

[37] Michael Martin, Benjamin Livshits, and Monica S. Lam. Se-
curiFly: Runtime vulnerability protection for Web applications.
Technical report, Stanford University, October 2006.

[38] Microsoft Corporation. Microsoft web protection library. http:

17

//wpl.codeplex.com, 2012.

[39] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja - safe active content in sanitized JavaScript, October
2007. http://google-caja.googlecode.com/files/caja-spec-2007-
10-11.pdf.

[40] Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross-site scripting prevention
with dynamic data tainting and static analysis. In In Proceeding
of the Network and Distributed System Security Symposium,
2007.

[41] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, and
David Evans. Automatically hardening web applications using
precise tainting. Technical Report CS-2004-36, University of
Virginia, 2004.

[42] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff
Shirley, and David Evans. Automatically hardening Web ap-
plications using precise tainting. In Proceedings of the IFIP
International Information Security Conference, 2005.

[43] Open Web Application Security Project. The ten most critical
Web application security vulnerabilities. http://umn.dl.
sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf,
2004.

[44] OWASP. OWASP enterprise security API. https://www.owasp.
org/index.php/Category:OWASP Enterprise Security API,
2012.

[45] Matthew M. Papi and Michael D. Ernst. Improving Java
annotations to enable custom type qualifiers. http://pag.csail.
mit.edu/javari/java-annotation-design.pdf, July 2006.

[46] RSnake. XSS cheat sheet for filter evasion. http://ha.ckers.org/
xss.html.

[47] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1), 2003.

[48] Mike Samuel, Prateek Saxena, and Dawn Song. Context-
sensitive auto-sanitization in web templating languages using
type qualifiers. In Proceedings of the Conference on Computer
and Communications security, 2011.

[49] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao,
Stephen McCamant, and Dawn Song. A symbolic execution
framework for JavaScript.

[50] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn
Song. Flax: Systematic discovery of client-side validation vul-
nerabilities in rich web applications. In NDSS, 2010.

[51] Prateek Saxena, David Molnar, and Benjamin Livshits. Script-
Gard: Automatic context-sensitive sanitization for large-scale
legacy web applications. In Proceedings of the Conference on
Computer and Communications Security, October 2011.

[52] Ben Schmidt. Google analytics XSS vulnerability,
2011. http://spareclockcycles.org/2011/02/03/
google-analytics-xss-vulnerability/.

[53] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
All you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to ask).
In Proceedings of the IEEE Symposium on Security and Privacy,
2010.

[54] R. Sekar. An efficient black-box technique for defeating web
application attacks. In NDSS, 2009.

[55] Chris Shiflett. Foiling cross-site attacks. http://www.phparch.
com/issuedata/articles/article 66.pdf, 2004.

[56] Yehuda Shiran and Tomer Shiran. Learn Advanced JavaScript
Programming. Wordware, 1998.

[57] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David
Molnar, and Nikolaj Bjorner. Symbolic finite state transducers:
Algorithms and applications. In Proceedings of the Symposium
on Principles of Programming Languages, January 2012.

[58] Margus Veanes, Benjamin Livshits, and David Molnar. Fast
and precise sanitizer analysis with BEK. In Proceedings of the
Usenix Security Symposium, August 2011.

[59] Margus Veanes, David Molnar, Todd Mytkowicz, and Benjamin
Livshits. Data-parallel string-manipulating programs. Technical
Report MSR-TR-2012-72, Microsoft Research, July 2012.

[60] Wietse Venema. Taint support for PHP. https://wiki.php.net/
rfc/taint, 2008.

[61] Larry Wall. Perl security and taint mode. http://perldoc.perl.
org/perlsec.html.

[62] Wikipedia. Address space layout randomization. http://en.
wikipedia.org/wiki/Address space layout randomization, 2012.

18

