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Abstract

We introduce a tree manipulation language, Fast, that over-
comes technical limitations of previous tree manipulation
languages, such as XPath and XSLT which do not support
precise program analysis, or TTT and Tiburon which only
support trees over finite alphabets. At the heart of Fast is a
combination of SMT solvers and tree transducers, enabling
it to model programs whose input and output can range
over any decidable theory. The language can express mul-
tiple applications. We write an HTML “sanitizer” in Fast
and obtain results comparable to leading libraries but with
smaller code. Next we show how augmented reality “tag-
ging” applications can be checked for potential overlap in
milliseconds using Fast type checking. We show how trans-
ducer composition enables deforestation for improved per-
formance. Overall, we strike a balance between expressive-
ness and precise analysis that works for a large class of im-
portant tree-manipulating programs.

1. Introduction

Tree manipulations are common, found in XML process-
ing, compiler optimization, and natural language process-
ing. As a result, multiple domain-specific languages exist
for manipulating trees, including XPath, XSLT, TTT, and
Tiburon [13, 14, 21, 22]. Unfortunately, these languages are
either (1) limited in expressiveness, such as restricted to
finite alphabets, or (2) too expressive for precise analysis.
For example, even though used in modern browsers, XSLT
is Turing-complete, and analysis of general XSLT programs
must be approximate.

We thread the needle between these two issues with a
domain-specific language, Fast, whose semantics is given by
Symbolic Tree Transducers with Regular look-ahead (STTR).
These are generalizations of classic tree transducers that
take advantage of Satisfiability Modulo Theories (SMT)
solvers. STTRs enjoy several closure properties and are
able to compute the output corresponding to a given input
tree in a single pass and without producing intermediate
results. We use STTRs in place of their variant without
regular look-ahead (STT) for two reasons: 1) most classes of
STTRs are closed under composition, while this is not the
the case for STTs, and 2) STTRs can model more complex
programs than STTs without sacrificing precise analysis. All
the properties of STTRs are inherited by Fast. In particular,
the input and output alphabets of Fast programs can range
over any decidable theory. To the best of our knowledge,
Fast is the first language for tree manipulations that is able
to model programs over infinite alphabets while preserving
decidable properties.

To support our analyses, we extend the classical results
on tree transducers. We make use of Z3, a state-of-the-art
SMT solver, and implement our framework. Our chosen ap-
proach is fully abstract : if the solver adds support for new
theories, no changes to our algorithms are required. Un-
like general-purpose programs in a language such as Java
or C, in Fast certain important safety properties are de-
cidable. For example, program equivalence is undecidable in

Composition Intersection Pre-image

Augmented reality X X X
HTML sanitization X X
Deforestation X

Decision trees X X
Compiler optimization X

Figure 1: Representative applications of Fast. For each application
we show which analyses of Fast are needed. Section 5 discusses this
in more detail.

the general case, but advanced forms of type-checking are de-
cidable. We have implemented our analyses and found that
they run quickly in practice. After completing the analyses,
Fast compiles to C# and can be used in multiple practical
scenarios.

Our work combines theoretical foundations with solu-
tions to pragmatic problems. Our fundamental results en-
able powerful applications, both in the short and long term.
We demonstrate applications to security, interference check-
ing of augmented reality applications submitted to an app
store, and deforestation in functional language compilation.
In all such cases, the use of symbolic input and output alpha-
bets is needed to model real programs. Additionally, Fast
can be used to capture string-manipulating programs, as
previously described in the Bek project [8]. We also sketch
how Fast captures classic techniques in machine learning
and compiler optimization. Figure 1 summarizes our appli-
cations and the analyses enabling each one. We are not aware
of another domain-specific language for tree manipulations
able to represent programs in such different domains. Cur-
rent domain-specific languages for tree manipulations are
suited either to XML processing [21, 22] or to natural lan-
guage processing [13, 14].

In summary we offer the following contributions:

• STTRs: We introduce symbolic tree transducers with
regular lookahead (STTRs) as a natural extension of top-
down tree transducers with regular lookahead (Section 3)
and develop the theory for closure under composition
(Section 4). We prove that natural extensions of the
theorems to the symbolic case still hold.

• FAST: We introduce Fast (Section 3), a domain-specific
language for tree manipulations based on STTRs. Fast
has the following properties:

it can express a broad class of tree-manipulating pro-
grams (like HTML sanitizers);

it allows static checking of program properties, such
as whether a given program can produce a particular
output tree;

it allows the use of any theory supported by the SMT
solver Z3. This way Fast can be extended whenever
a new theory is introduced;

it allows complex programs to be written in a modular
way without worrying about efficiency (i.e. how many
times the input tree needs to be traversed): a compo-
sition of Fast programs can be efficiently transformed
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into a single Fast program that traverses the input
tree only once without producing intermediate results;
and

Fast programs can be compiled into efficient C#
code.

• Evaluation: We experimentally evaluate Fast in three
settings (Section 5): (1) HTML sanitization: to show
how complex real-world applications can be modeled in
Fast; (2) AR app store:to show how Fast can efficiently
check program properties statically; (3) Deforestation: to
show how Fast enables efficient code generation in the
presence of modular programs.

Finally, we describe related work (Section 6) and conclude
(Section 7).

2. Motivating Example

We introduce the language Fast (Functional Abstraction of
Symbolic Transducers) through a simple example and then
illustrate the advantages of the language.

We start by showing a simple Fast implementation of a
basic HTML sanitizer. The main purpose of an HTML sani-
tizer is removal of malicious active code from an HTML doc-
ument. Another possible goal is modifying the input HTML
to make it standards compliant. To achieve these goals, a san-
itizer traverses the HTML document and removes or mod-
ifies nodes, attributes and values that can cause malicious
code to be executed. Every HTML sanitizer works in a dif-
ferent way, but the general structure is usually the following:

1. the input HTML is parsed into a DOM (Document Ob-
ject Model);

2. the DOM is modified by a sequence of sanitization func-
tions f1, . . . , fn;

3. the modified DOM is transformed back into an HTML
document.

Some sanitizers do not compute the DOM and process the
input HTML as a string. This approach usually generates
an ill-formed HTML output (not standards compliant).

In the following we concentrate on describing some of the
functions used during step 2. Each function fi takes as input
a DOM tree and transforms it into an updated DOM tree.
As an example, the Fast program sani in Figure 2 traverses
the input DOM and outputs a copy of it in which all subtrees
whose root is labeled with "script" have been removed, and
all the characters "’" and """ have been escaped with a "\".

Next, we informally describe each component of the ex-
ample of Figure 2. Fast is a functional language which is
restricted to work on tree structures. In this example trees
are defined using the type HtmlE. Each node of type HtmlE
contains a tag of type string and is assigned one of the con-
structors nil , val , attr , or node. Each constructor has a num-
ber of children associated with it (2 for attr) and all such
children are HtmlE nodes. We use the type HtmlE to model
DOM trees. However, since DOM trees are unranked (each
node can have an arbitrary number of children), we will need
an encoding to represent them as trees of type HtmlE. An
example of such encoding is depicted in Figure 3. The next
paragraphs describe the encoding in detail.

Each HTML node n is encoded as an HtmlE element
node(x1, x2, x3) with three children x1, x2, x3 where: 1) x1

encodes the list of attributes of n and can be either of type
attr if n has at least one attribute, or type nil otherwise;
2) x2 encodes the first child of n in the DOM and can be

// Node definition
type HtmlE [tag : String]{nil(0), val(1), attr(2),node(3)}
// Language of HTML trees
lang nodeTree:HtmlE {

node(x1 , x2 , x3) given
(attrTree x1) (nodeTree x2) (nodeTree x3)

|nil() where (= tag "") }
lang attrTree:HtmlE {

attr(x1 , x2) given (valTree x1) (attrTree x2)
|nil() where (= tag "") }

lang valTree:HtmlE {
val(x1) where ( 6= tag "") given (valTree x1)
|nil() where (= tag "") }

// Sanitization functions
trans remScript:HtmlE->HtmlE {

node(x1 , x2 , x3) where (6= tag "script")
to (node [tag] x1 (remScript x2) (remScript x3))

|node(x1 , x2 , x3) where (= tag "script") to (remScript x3)
|nil() to (nil [tag]) }

trans esc:HtmlE->HtmlE {
node(x1 , x2 , x3) to (node [tag] (esc x1) (esc x2) (esc x3))
|attr(x1 , x2) to (attr [tag] (esc x1) (esc x2))
|val(x1) where (or (= tag "’")(= tag """))

to (val ["\"](val [tag] (esc x1)))
|val(x1) where (and (6= tag "’")( 6= tag """))

to (val [tag] (esc x1))
|nil() to (nil [tag]) }

// Composition and restriction to well formed input trees
def rem esc:HtmlE->HtmlE:=(compose remScript esc)
def sani:HtmlE->HtmlE:=(restrict rem esc nodeTree)

Figure 2: Implementation of a simple HTML sanitizer in Fast.
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Figure 3: HtmlE encoding of the HTML element <div
id=’red’><script>abc</script></div><br />. div, script, and
br are built using the constructor node; id, and text, are built using
the constructor attr . All single character nodes are built using the
constructor val, while all the ε are built using the constructor nil.
The string appearing in the figure are the tags.

either of type node if n has at least one child, or type nil
otherwise; 3) x3 encodes the next sibling of n in the DOM
and it can be either of type node if n has a sibling, or type
nil otherwise. tag contains the HTML node type of n (div,
br,. . . ).

Each HTML attribute a is encoded as an HtmlE element
attr(x1, x2) with two children x1, x2 where: 1) x1 encodes the
string value s of the attribute a and can be either of type
val if s is not the empty string, or type nil otherwise; 2) x2

encodes the attribute following a in the DOM and it can be
either of type attr if a is followed by an attribute, or type
nil otherwise. tag contains the name of a (id, style,. . . ).

Each string value w is encoded as an HtmlE element
val(x1) with one child x1. If the value of w is s1 . . . sn for
some n > 0, then x1 encodes the suffix s2 . . . sn and tag
contains the string “s1”. x1 can be either of type val if n > 1,
or type nil otherwise. Each element nil has tag "" and can
be seen as a termination operator for lists and trees.

The restrictions that we just informally imposed on the
tree structure are formalized in Figure 2. nodeTree de-
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scribes the language of correct HTML encodings: 1) the tree
node(x1, x2, x3) is in the language nodeTree if x1 is in the
language attrTree, x2 is in the language nodeTree, and x3 is
in the language nodeTree; 2) the tree nil is in nodeTree if its
tag contains "". The other languages are similar.

Next, we describe the sanitization functions. The trans-
formation remScript of type HtmlE->HtmlE takes an in-
put tree t of type HtmlE and produces an output tree t′

of type HtmlE . remScript recursively processes the input
tree t: 1) if t is node(x1, x2, x3) with tag "script", the out-
put t′ is the result of invoking remScript on x3, 2) if t is
node(x1, x2, x3) with tag different from "script", the out-
put t′ is a copy of t in which x2 and x3 are replaced by the
results of invoking remScript on x2 and x3 respectively; 3) if
t is nil the output t′ is a copy of t. The transformation esc of
type HtmlE->HtmlE escapes the characters ’’’ and ’"’.
esc outputs a copy of the input tree where each node val with
tag "’" or """ is prepended a node val with tag "\". The
transformations remScript and esc are then composed into
a single transformation rem esc. rem esc also accepts input
trees that are not in the language nodeTree and therefore
do not correspond to correct DOM encodings. The last line
of Figure 2, defines the transformation sani that is equiva-
lent to rem esc, but restricted to only accept inputs in the
language nodeTree.

This example showed that in Fast, simple sanitization
functions can be first coded independently and then com-
posed. This approach simplifies the implementation of the
final sanitizer making it less error-prone. As we will see in
Section 3, unlike in other programming languages, the com-
posed function processes the input tree in a single pass and
without producing intermediate results, making the Fast
implementation efficient. Such function can be finally com-
piled into efficient C# code and used for practical purposes.

3. Symbolic Tree Transducers and FAST

In this section we define both the syntax of Fast and its
semantics, hand in hand. The concrete syntax of Fast is
shown in Figure 4. Fast is designed for describing tree
transformations and is based on symbolic tree transducers
with regular look-ahead or STTRs. Symbolic tree transducers
are, in essence, top-down tree transducers modulo theories.
Regular look-ahead allows for checking additional conditions
on subtrees before applying a transformation.

All definitions are parametric with respect to a given
background theory called a label theory over a fixed back-
ground structure with a recursively enumerable universe of
elements. We assume closure under Boolean operations and
equality. All other operations that are defined in the label
theory may be used as well but do not affect the results,
i.e., the label theory is used as a “black box”. We use λ-
expressions for defining anonymous functions called λ-terms
without having to name them explicitly. In general, we use
standard first-order logic and follow the notational conven-
tions that are consistent with [19].1

Example 1. An example of a decidable label theory is the
Boolean combination of quantifier free formulas over linear
arithmetic, uninterpreted function symbols, bit-vectors, fi-
nite enumerations, tuples, sets, and arrays. Such a label
theory is supported in state-of-the-art satisfiability modulo
theories (SMT) solvers such as Z3 [23]. �

1 Here we write τ instead of Uτ for the subuniverse of elements
of type τ .

Indentifiers ID : (a..z|A..Z|_)(a..z|A..Z|_|.|0..9)∗

Constants Const : true | false | . . . strings, numbers
Basic types σ : String | Int | Real | Bool . . .
Built-in operators op : < | > | = | + | and | or | . . .
Constructors c : ID
Natural numbers k : N
Tree types τ : ID
Language states p : ID
Transformation states q : ID
Attribute fields x : ID
Subtree variables y : ID

Main definitions:

Fast ::= (type τ ([ x:σ(,x:σ)∗ ])? { c(k)(,c(k))+ }
| lang p : τ { Lrule (| Lrule)∗}
| trans q : τ -> τ { Trule (| Trule)∗}
| def p : τ := L

| def q : τ -> τ := T )+

Lrule ::= c (( y(,y )∗))? (where Aexp)? (given (( p y ))+)?
Trule ::= Lrule to Tout
Tout ::= y | ( q y ) | ( c ([ Aexp(,Aexp)∗])? Tout∗)

Attribute expressions:

Aexp ::= ID | Const | (op Aexp+)

Operations over languages and transductions:
L ::= p | (intersect L L) | (union L L) |

(complement L) | (domain T) | (pre-image T L)
T ::= q | (compose T T) | (restrict T L) | (restrict out T L)

Figure 4: Concrete syntax of Fast. Nonterminals and meta-symbols
are in italic. Constant expressions for strings and numbers use C#
syntax. Additional well-formedness conditions (such as type correct-
ness) are assumed to hold.

The background is enriched with labeled trees defined
as follows. A ranked alphabet Σ is a finite set of symbols c
associated with fixed nonnegative ranks denoted \(c). We let

Σ(k)
def
= {c ∈ Σ | \(c) = k} and \(Σ)

def
= max{\(c) | c ∈ Σ}

and require that Σ(0) 6= ∅.

Definition 1. Given a ranked alphabet Σ and a type σ,
TreeΣ〈σ〉 is the tree type with constructors

c :σ × TreeΣ〈σ〉\(c)→TreeΣ〈σ〉 (for c ∈ Σ),

and testers Isc : TreeΣ〈σ〉→Bool that test if a tree has a
given constructor c. For each constructor c there is also a
label accessor πc0 : TreeΣ〈σ〉→σ and, if \(c) > 0 there are
subtree accessors πci : TreeΣ〈σ〉→TreeΣ〈σ〉, for 1 ≤ i ≤ \(c).

Note that the arity of each constructor c ∈ Σ is inten-
sionally \(c) + 1. The functions in Definition 1 assume stan-
dard semantics of inductive data types (modulo the theory
for σ).2 The symbols satisfy the typed versions of the term
algebra axioms [7, p. 35, (2.5)–(2.7)] (where L = Σ). the ax-
ioms [7, p. 61–62, (6.12)–(6.20)] (where πci is denoted by ci).

In Fast, the type keyword is used for declaring a new
ranked alphabet and corresponding inductive datatype of
trees. If there are multiple attribute fields then the label has
the corresponding tuple type.

Example 2. The Fast program in Figure 2, declares the
type HtmlE = TreeΣ〈String〉 over the ranked alphabet Σ =
{nil , val , attr ,node} where, e.g., \(attr) = 2. �

We write c[t0](t1, . . . , tk) for c(t0, t1, . . . , tk) to distinguish
the label (or attribute) term from the subtree terms. We
further abbreviate c[t]() by c[t].

2 Note that the intended set TreeΣ〈σ〉 is not first-order axiom-
atizable but is defined through the standard least fixpoint con-
struction.
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Example 3. A standard definition of binary trees whose
labels are pairs of integers can be declared in Fast as
follows: type bt [x : Int, y : Int]{Leaf (0),Node(2)}. Then bt =
TreeΣ〈Int× Int〉, where Σ(2) = {Node}, Σ(0) = {Leaf }. For
example Node[3, 4](Leaf [4, 5],Leaf [5, 6]) ∈ bt . �

Definition 2. A Symbolic Tree Automaton (STA) A is a
tuple (Q, τ, δ), where

• Q is a finite set of states,
• τ is a tree type TreeΣ〈σ〉, and
• δ is a finite set of rules r of the form (q, c, ϕ, ρ) where
q ∈ Q, c ∈ Σ, ρ ∈ (2Q)\(c) and ϕ is a σ-predicate. We
write r.q, r.c, r.ϕ and r.ρ for the components of r.

For q ∈ Q, δ(q)
def
= {r ∈ δ | r.q = q}.

Definition 3. The language of A for q ∈ Q, is the subset

LqA
def
= [[LqA]] of τ , where LqA is a fixed unary relation symbol

that satisfies the following axiom, modulo the label theory,
for all y : τ ,

LqA(y) ⇔
∨

r∈δ(q)

prq(y) where

pq, c, ϕ, ρq
def
= λy.(Isc(y) ∧ ϕ(πc0(y)) ∧

\(c)∧
i=1

∧
p∈ρ[i]

LpA(πci (y)))

(We omit the subscript A in LqA when A is clear from the
context.) The above mutually recursive definitions of Lq, for
q ∈ Q, are well-defined because of the following well-founded
order that decreases from left to right in the definitions: in
prq, all occurrences of Lp are applied to proper subtrees of
y and have therefore strictly smaller depth because τ is an
inductive datatype. Moreover, it follows that the axioms are
satisfiable and Lq for q ∈ Q is unique.

Definition 4. A is in normal form or normalized if for
all rules r ∈ δ, and for all i, 1 ≤ i ≤ \(r.c), |r.ρ[i]| =
1. A is deterministic if it is normalized and for all rules
(q, c, ϕ, ρ), (p, c, ψ, ρ) of A, if [[ϕ]] ∩ [[ψ]] 6= ∅ then q = p.

A normalized STA without attributes3 and with a dedi-
cated initial state corresponds to a classical tree automaton.
STAs can be normalized and determinized. Normalization is
discussed in Section 4. Determinization is outside the scope
of this paper but is based on a symbolic generalization of
the classical powerset construction and provides the basis
for complementing STAs. In Fast the statement

lang q : τ {c(ȳ) where ϕ(x̄) given `(ȳ)︸ ︷︷ ︸
one rule r

| . . .}

defines all the rules in δ(q), and thus corresponds precisely
to the axiom of Lq. In particular, r.ρ[i], for 1 ≤ i ≤ \(r.c), is
the set of all p such that (p yi) occurs in `(ȳ).4

Example 4. Consider the definition of valTree in
Figure 2; δ(valTree) = {(valTree, val , λx.x 6=
"", (valTree)), (valTree, nil , λx.x = "", ())}. �

3 Here“without attributes”means that the label type is the empty
tuple type whose only element is the empty tuple.
4Fast uses prefix notation and spaces for argument separators,
e.g., a term f(t1, t2) is written (f t1 t2). Only the top-level
attribute uses the notation [t1, t2] for constructing a tuple of
attribute fields.

(q,Node, λx.x < 4, (∅, ∅),

x+1

〈q, 2〉x−2

〈q′, 1〉〈q, 2〉
)

Figure 5: Example of a rule (q,Node, ϕ, ρ,Λ, θ) for sym-
bol Node of rank 2. In Fast it may look like a Trule
Node(l, r)where(< x 4)to(Node[+ x 1](Node[− x 2](q r)(q′ l))(q r)).
The guard of the rule requires the attribute to be less than 4, there is
no look-ahead, and the output Λ and continuation θ are depicted as
a tree, where each occurrence of a leaf 〈p, i〉 corresponds to a distinct
output variable whose value is some continued transformation of the
i’th input subtree from state p. The λ-prefix of the output is omitted.

Definition 5. A Symbolic Tree Transducer with Regular
look-ahead (STTR) S is a tuple (Q, q0, τ, τ ′,∆, R, δ), where
(R, τ, δ) is an STA called the look-ahead automaton of S,

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• τ is the input tree type TreeΣ〈σ〉,
• τ ′ is the output tree type, and
• ∆ is a finite set of rules of the form r = (q, c, ϕ, ρ,Λ, θ),

where q ∈ Q, c ∈ Σ, ϕ is a σ-predicate, ρ ∈ (2R)\(c), and
Λ is a λ-term λ(x, z1, . . . , zn).t called the output of r,
where t is a term of type τ ′, x has type σ, n ≥ 0,
z1, . . . , zn is a sequence of distinct output variables of
type τ ′, each zi must occur exactly once in t;
θ ∈ (Q× {1, . . . , \(c)})n is the continuation of r.

Let ∆(q)
def
= {r ∈ ∆ | r.q = q} and ∆c def

= {r ∈ ∆ | r.c = c}.
S is called a Symbolic Tree Transducer (STT) when R = ∅.
Definition 6. The transduction relation of S for q ∈ Q is

the relation T qS
def
= [[T qS ]] over τ × τ ′, where T qS is a fixed

binary relation symbol that satisfies the following axiom,
modulo the label theory, for all y : τ and z : τ ′,

T qS(y, z) ⇔
∨

(q,c,ϕ,ρ,Λ,θ)∈∆(q)

(pq, c, ϕ, ρq(y) ∧

∃z1 . . . zn (z = Λ(πc0(y), z1, . . . , zn) ∧
n∧
j=1

T
θ[j][1]
S (πcθ[j][2](y), zj)))

Again, well-definedness of Definition 6 holds for reasons
similar to the case of Definition 3. In Fast, the axiom of T q

is defined by the statement

trans q :τ -> τ ′ {c(ȳ) where ϕ(x̄) given `(ȳ) to f(x̄, ȳ)︸ ︷︷ ︸
one rule r

| . . .}

where, in f(x̄, y1, . . . , y\(c)), for 1 ≤ i ≤ \(c) and p ∈ Q, each
occurrence of (p yi) corresponds to a fresh output variable
associated with (p, i) ∈ θ, as illustrated in Figure 5. For all
(p yi) in `(y1, . . . , y\(c)), p belongs to the look-ahead r.ρ[i].

Example 5. Recall the transformation state q = remScript
in Figure 2. The corresponding rules are: the “safe” case:

(q,node, λx.x 6= "script", (∅, ∅, ∅),
λ(x, z1, z2, z3).node[x](z1, z2, z3), ((id , 1), (q, 2), (q, 3)))

where id is the identity transformation; the “unsafe” case:

(q,node, λx.x = "script", (∅, ∅, ∅), λ(x, z).z, ((q, 1)))

and the harmless case: (q,nil ,>, (), λ x.nil [x], ()) �

Definition 7. The transduction (function) of S, is the

function TS : τ→ 2τ
′
, TS(t)

def
= {u | T q

0

S (t, u)}.
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3.1 The role of regular look-ahead

The main drawback of STTs is that they are not closed
under composition, even for very restricted classes. As shown
in the next example, when STTs are allowed delete subtrees,
the domain is not preserved by the composition.

Example 6. Assume Σ has rank 2, and Σ(2) = {b} and
Σ(0) = {e}. T1 is the transduction that given a tree t ∈
TreeΣ〈Bool〉, T1(t) = {t} iff t does not contain a false
label; T1 = ∅, otherwise. T2 is the transduction that for
every t ∈ TreeΣ〈Bool〉 outputs {e[true]}. It is easy to
see that both transductions are definable using STTs. Now
consider the composed transduction T = T1◦T2. T outputs
{e[true]} iff the input tree does not contain a false label.
However this function cannot be defined by any STT, when
reading a node a, if the STT does not produce any output,
it can only continue reading one of the two subtrees. This
means that the STT cannot check that the other subtree
does not contain any false labels. �

A position p in a tree t (p(t)) is a sequence of accessors
that is well-defined, e.g. the position p = [πb1, π

b
2] of t =

b[1](b[4](z, w), y) refers to w. We call Π(t) the set of positions
in t. Given a state q ∈ Q, and a symbol c ∈ Σ, two rules
r, r′ ∈ ∆c(q) are equivalent with respect to a predicate ϕ,

r
ϕ
= r′, iff the following holds: if r.Λ = λ(x, z1, . . . , zn).t,

r′.Λ = λ(x, z1, . . . , zn).t′ and a ∈ [[ϕ]], then Π(t(a)) =
Π(t′(a)) and for all p ∈ Π(t(a)), 1) p(t(a)) is a variable
zi iff p(t′(a)) is a variable zj and r.θ(i) = r′.θ(j), for
some i and j, 2) if p(t(a)) is not a variable then p(t(a)) =
p(t′(a)). The following definition of deterministic STTRs
is important and captures a practically useful fragment of
STTRs. The intuition behind the definition is that two
different transformation rules must not be enabled for the
same input tree.

Definition 8. An STTR S is deterministic when the fol-
lowing holds for all q ∈ Q, c ∈ Σ, and r, r′ ∈ ∆c(q), let
V = [[r.ϕ]] ∩ [[r′.ϕ]] and let

Li = (
⋂

p∈r.ρ[i]

Lp) ∩ (
⋂

p∈r′.ρ[i]

Lp) (for 1 ≤ i ≤ \(c)).

If V 6= ∅ and, for all i, 1 ≤ i ≤ \(c), Li 6= ∅, then r.θ
ψ
= r′.θ

where ψ = r.ϕ ∧ r′.ϕ.

Note that the look-ahead automaton does not have to
be deterministic. Whether it is or is not deterministic is
orthogonal to S being deterministic.

Example 7. The following ML code is intended to imple-
ment a function negIfLeftOdd that negates a node value if
the value in its left child is odd, and otherwise it leaves the
value unchanged.

datatype tree = Leaf of nat | Node of (nat * tree * tree)
fun oddRoot (t1:tree) : bool =
case n1 of

Leaf(x) => (odd x)
| Node(x,t1,t2) => (odd x)

fun negIfLeftOdd (t1:tree) : tree =
case n1 of

Leaf(x) => n1
| Node(x,t1,t2) => case (oddRoot t1) of

| true => Node(-x,negIfLeftOdd t1,negIfLeftOdd t2)
| false => n1

The function oddRoot takes a tree as argument and
returns true iff the value of the root is odd. For example

negIfLeftOdd(Node(1,Leaf(2),Leaf(3)) = Node(1,Leaf(2),Leaf(3))

negIfLeftOdd(Node(1,Leaf(5),Leaf(4)) = Node(-1,Leaf(5),Leaf(4))

It is possible to describe negIfLeftOdd by a nondeter-
ministic STT (nondeterminism is used to guess if the label
of the left child is odd or even). We show how the transfor-
mation can be described by a deterministic STTR. We start
with an equivalent Fast program.

type tree[x : Int]{Leaf (0),Node(2)}
lang oddRoot:tree {

Node(t1, t2) where (odd x)
|Leaf () where (odd x) }

lang evenRoot:tree {
Node(t1, t2) where (even x)
|Leaf () where (even x) }

trans negIfLeftOdd:tree->tree {
Node(t1, t2) given (oddRoot t1)

to Node[−x](negIfLeftOdd t1,negIfLeftOdd t2)
|Node(t1, t2) given (evenRoot t1)

to Node[x](negIfLeftOdd t1,negIfLeftOdd t2)
|Leaf () to Leaf [x] }

A tree is in the language evenRoot or oddRoot if its root is
even or odd respectively. We now show the corresponding
deterministic STTR S for the transformation negIfLeftOdd.
The initial state is q, ri are the transduction rules and r′i are
the look-ahead rules.

δ ∪∆

r1 : (q,Node,>, ({qo}, ∅), λ(x, z̄).Node[−x](z̄), ((q, 1), (q, 2)))
r2 : (q,Node,>, ({qe}, ∅), λ(x, z̄).Node[x](z̄), ((q, 1), (q, 2))))

r3 : (q,Leaf ,>, (), λx.Leaf [x], ())

r′1 : (qo,Node, odd, (∅, ∅))
r′2 : (qe,Node, even, (∅, ∅))
r′3 : (qo,Leaf , odd, ())
r′4 : (qe,Leaf , even, ())

We spell out the meaning of r1 to clarify the semantics.
The rule is enabled if the transducer is in state q, the input
tree has constructor Node whose left subtree belongs to Lqo .
The label is unrestricted. When the rule applies it produces
a tree whose label is the negated input label and whose
left and right subtrees are produced by transforming the
corresponding input subtrees from state q. �

3.2 Operations

The semantics of expressions of the form def p : τ := L
and def q : τ -> τ ′ := T are defined through corresponding
operations over STAs and STTRs. We assume a given set
of main definitions as explained above such that each basic
language state p denotes the tree language [[p]] = LpA of
the STA A spanned by the rules reachable from the state
p. Similarly, each basic transformation state q denotes the
transduction [[q]] = T q

S of the STTR S spanned by the rules
reachable from the state q.

intersect, union, complement correspond to Boolean op-
erations over STAs. In those definitions an STA is as-
sumed to have a fixed initial state.

domain converts an STTR into an STA by omitting output
transformations.

pre-image q p computes an STA whose pre-image is {t |
[[q]](t)∩ [[p]] 6= ∅}, i.e., the set of all trees t such that some
transformation of t from [[q]] ends up in [[p]].

compose q1 q2 constructs an STTR T such that if q1 is
deterministic or q2 is linear then [[T ]] = [[q1]] ◦ [[q2]] (see
Section 4.2).

restrict q p restricts the domain of [[q]] to [[p]], i.e.,
[[restrict q p]](t) is [[q]](t), if t ∈ [[p]]; ∅, otherwise.
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restrict out q p restricts the output of [[q]] to [[p]], i.e.,
[[restrict out q p]](t) is {t′ | t′ ∈ [[q]](t) ∧ t′ ∈ [[p]]};

The above set of operations is not minimal. Several opera-
tions are special applications of composition. For example:

restrict out q p = compose q (restrict I p)
pre-image q p = domain (restrict out q p)

where I is the identity STTR.

4. Composition of STTRs

The core algorithm that we are investigating here is com-
position of STTRs. Several other algorithms can be imple-
mented through composition. We noted earlier that STTs,
unlike SFTs [19], are not closed under composition. The two
main reasons for this are their ability to delete and to dupli-
cate input subtrees. The first reason was illustrated earlier
in Example 6 and, as shown here, is remedied by introducing
regular look-ahead. The second reason, as illustrated in the
next example, shows that duplication causes problems when
combined with nondeterminism.

Example 8. Assume Σ has rank 2, Σ(2) = {a, b} and
Σ(0) = {ε}. f1 is the transformation that given a tree t ∈
TreeΣ nondeterministically swaps as, and bs. For example
on the input a(ε, ε) f1 produces a(ε, ε) itself and b(ε, ε). f2 is
the function that for every t ∈ TreeΣ outputs the tree a(t, t).
It is easy to see that f1 and f2 are both definable using STTs.
Now consider the composed transformation f = f1 ◦ f2. On
input t, the output of f is {a(t′, t′)|t′ ∈ f1(t)}. However
this function cannot be defined by any STT. In fact when
processing the two copies of t that will be attached to the
root, the STT cannot “coordinate” them and make sure they
will produce the same output, due to nondeterminism. �

We show that STTRs are closed under composition when
one of the following conditions is fulfilled: STTR is linear
(duplication of subtrees is not allowed), or the STTR is
deterministic (recall Definition 8).

4.1 Composition algorithm

We first recall some basic notions over functions. Given
f :X→ 2Y and x ⊆ X, f(x)

def
=

⋃
x∈x f(x). Given

f :X→ 2Y and g :Y → 2Z , f ◦ g(x)
def
= g(f(x)). This defini-

tion follows the convention in [5], i.e., ◦ applies first f , then
g, contrary to how ◦ is used for standard function composi-
tion.

We first present an algorithm that given two STTRs S
and T such that τ ′S = τT constructs a composed STTR S ◦T
such that τS◦T = τS and τ ′S◦T = τ ′T . We then prove that,
under the assumptions mentioned above, TS◦T = TS ◦ TT .
We consider binary trees only. Generalization to arbitrary
ranked alphabets is straightforward.

At the top level the algorithm is a fixpoint construction
that can be described using depth first search. For unifor-
mity of presentation and without loss of generality, look-
ahead rules are represented by transduction rules as follows.
We write AND(t1, t2) for the term Node[a](t1, t2) to symboli-
cally represent a conjunction using a tree term, and we write
TRUE for Leaf[a], where a is some fixed attribute value. We
assume that RS ⊆ QS and RT ⊆ QT and that each look-
ahead rule such as (p,Node, ϕ, ({p1}, {p2})) is represented
by a (domain-equivalent) transduction rule of the form

(p,Node, ϕ, , λ(x, y1, y2).AND(p̂1(y1), p̂2(y2)))

1 S ◦ T def
=

2 S := Normalize(S); T := Normalize(T );

3 q0 := (q0S , q
0
T ); Q := {q0} ∪ RS ; ∆ := δS ; R := RS ;

4 Stack := [q0];

5 while Stack 6= []

6 pop (p, q) from Stack ;

7 foreach r ∈ Transduce(p, q) add r to ∆;

8 return Normalize(Q, q0, τS , τ
′
T ,∆, R, {r ∈ ∆ | r.q ∈ R});

9

10 Transduce(p, q)
def
=

11 foreach (p, c, ϕ, ρ, f) ∈ ∆S

12 foreach (g, ψ, `) ∈ TransduceT(q, f, ϕ, ρ)

13 yield ((p, q), c, ψ, `, g);

14

15 TransduceT(q,Leaf[t0], ξ, `)
def
=

16 foreach (q,Leaf, ϕ, ρ, f) ∈ ∆T

17 if IsSat(ξ ∧ ϕ(t0)) then yield (f(t0), ξ ∧ ϕ(t0), `);

18 TransduceT(q,Node[t0](t1, t2), ξ, `)
def
=

19 foreach (q,Node, ϕ, f, ρ) ∈ ∆T ;

20 if IsSat(ξ ∧ ϕ(t0)) then

21 foreach ( , ξ′, `′) ∈ Reduce(ρ(t1, t2), ξ ∧ ϕ(t0), `)

22 foreach v ∈ Reduce(f(t0, t1, t2), ξ′, `′) yield v;

23 TransduceT(q, p̂(yi), ξ, `)
def
=

24 o := (p, q);

25 if o /∈ Q then { add o to Q; push o to Stack ; }

26 if q ∈ RT then { add o to R; ` := AND(ô(yi), `); }

27 yield (ô(yi), ξ, `);

28

29 Reduce(Leaf[t0], ξ, `)
def
=

30 yield (Leaf[t0], ξ, `);

31 Reduce(Node[t0](t1, t2), ξ, `)
def
=

32 foreach (u1, ξ1, `1) ∈ Reduce(t1, ξ, `)

33 foreach (u2, ξ2, `2) ∈ Reduce(t2, ξ1, `1)

34 yield (Node[t0](u1, u2), ξ2, `2);

35 Reduce(q̂(t), ξ, `)
def
= TransduceT(q, t, ξ, `);

Figure 6: Composition algorithm of STTRs.

where the look-ahead component is irrelevant. In trans-
duction rules, the output Λ and continuation θ are com-
bined into a single term Λ(x, θ[1], . . . , θ[|θ|]) where each pair
(p, i) ∈ θ is considered as a continuation point term p̂(yi).

In the constructed STTR S ◦ T we have QS◦T ⊆ QS ×
QT ∪ RS and the look-ahead rules form a subset of the
transduction rules. In a final phase (as described below)
the merged state conditions are normalized to single state
conditions.

Symbolic transduction

The main step of the algorithm, Transduce, symbolically
composes a single reduction step from S followed by multiple
reduction steps from T starting in a given pair state (p, q) ∈
QS ×QT . See Figure 6.5

5 The actual implementation in C# is more verbose but quite
similar to the one presented here.
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In the algorithm we omit λs for readability, the attribute
variable is assumed to be x and the input subtree variables
for the left and right subtrees of Node are assumed to be
y1 and y2. The foreach statement corresponds to returning
a finite enumeration of all possible choices. If the are no
possible choices then the result is empty. We use the keyword
yield to indicate the enumeration semantics.6

Normalization

Normalization updates the regular look-ahead component so
that for all r = (q,Node, ϕ, (q1, q2), f), qi is a singleton set
and, if t1 ∈ Lq1 and t2 ∈ Lq2 , then f(a, t1, t2) is a valid
input, i.e., the look-ahead is at least as strict as the trans-
formation function. The core idea behind the normalization
is as follows.

Let A = (R,Tree〈σ〉, δ) be an STA. We are going to
compute merged rules (q, c,ϕ,ρ) over merged states q ∈ 2R

where ρ ∈ 2R × 2R and ϕ is a set of predicates considered
as a conjunction. We define the new transition relation δc

as follows:

δc(∅) def
= {(∅, c, ∅, ∅\(c))}

δc({p}) def
= {({p}, c, {ϕ}, ρ) | (p, c, ϕ, ρ) ∈ δ}

δc(p ∪ q)
def
= {r ! s | r ∈ δc(p), s ∈ δc(q)}

(p, c,ϕ, (pi)
\(c)
i=1) ! (q, c,ψ, (qi)

\(c)
i=1)

def
=

(p ∪ q, c,ϕ ∪ψ, (pi ∪ qi)
\(c)
i=1)

Algorithmically, merged rules are computed lazily and those
with unsatisfiable conditions

∧
ϕ∈ϕ ϕ are eliminated eagerly.

New concrete states are created for reachable merged states.

Cleanup

After normalization, the composition is cleaned by elimi-
nating useless states. Normalization may create states q in
Q ∪ R that are either unreachable or deadends (no tree is
accepted from q). For example, if the only rule from a state
q ∈ R is (q,Node,>, (q, q)) then q is a deadend because q
cannot be eliminated by applying the rule. Elimination of
deadends uses the algorithm for eliminating useless symbols
from a context free grammar [9, p. 88–89]. It converts rules
to context free grammar productions where states are non-
terminals and the initial state is the start symbol.

4.2 Properties of composition

We now show the main correctness result of the composition
algorithm. An STTR is linear if for all rules r, and for all
i, 1 ≤ i ≤ \(r.c), the continuation r.θ contains at most one
pair whose second element is i.

The key technical result that we need is the following
quantifier-elimination lemma for proving the composition
theorem of STTRs.

Lemma 1. If T is linear or if S is deterministic then, for
all (p, q) ∈ QS◦T , and all t ∈ τS, v ∈ τ ′

T :

∃u(T pS(t, u) ∧ T qT (u, v))⇔ T
(p,q)
S◦T (t, v)

The proof of Lemma 1 is by induction over t. It uses
laws of distributivity, in particular that ∃ distributes over
disjunctions, and laws of equality. It also makes use of
the dual characterization of T q that uses the accessors for
expressing the constraint that z is equal to the output of a

6 The corresponding statement in C# is yield return.

rule to avoid the inner existential quantifiers in the definition
of T q, similar to the case of term algebras [7].

Theorem 1. If T is linear or if S is deterministic then
TS◦T = TS ◦ TT .

Proof. The statement v ∈ (TS ◦ TT )(t) is (by definition)

equivalent to ∃u(T
q0S
S (t, u)∧T q

0
T
T (u, v)), which by Lemma 1,

is equivalent to T
(q0S ,q

0
T )

S◦T (t, v), i.e., v ∈ TS◦T (t) (since
(q0
S , q

0
T ) = q0

S◦T ).
Termination of the composition algorithm is guaranteed

by the fact that the size of the search stack and thus the
number of top-level iterations is bounded by |QS×QT |. The
final normalization step is needed to eliminate look-ahead
rules with merged states. Normalization is in the worst case
exponential in the size of |QS×QT | because it uses a subset
construction.

We have not investigated the precise complexity of the
algorithm, or what can be said about the properties of S ◦T
when S is nondeterministic and T is nonlinear.

5. Evaluation

Program LOC

nondet.fast 7
domain.fast 11
apply.fast 13
lists.fast 14

functions.fast 15
intersect.fast 15

union.fast 15
restrict.fast 21
constants.fast 23

trees.fast 32
sample.fast 35

deforestation.fast 52
compose.fast 65

htmlSanitizer.fast 101
bodytree.fast 173

Figure 7: Fast programs.

Fast can be applied in mul-
tiple different applications.
Section 5.1 considers HTML
input sanitization for secu-
rity. Section 5.2 shows how
augmented reality (AR) ap-
plications can be checked
for potential conflicts. Sec-
tion 5.3 shows how deforesta-
tion in functional languages
can be implemented using
transducers. We show the
lines of code required for each
Fast program in Figure 7.
Finally, we sketch how clas-
sic transformations from ma-
chine learning and compiler
optimization can be captured
in Fast.

5.1 HTML Sanitization

A central concern for secure web application is untrusted
user inputs. These lead to cross-site scripting (XSS) attacks,
which, in its simplest form, is echoing untrusted input ver-
batim back to the browser. A common solution is encod-
ing untrusted inputs before they can reach application out-
puts. For example, the < character might be encoded as a
three character sequence &lt;. While finding exactly where
to place calls to encoding routines is a challenging task, of-
ten encoding away potentially malicious content is too crude
an approach.

Consider bulletin boards that want to allow partial
markup such as <b> and <i> tags or HTML email messages,
where the email provider wants rich email content with for-
matting and images but wants to prevent active content such
as JavaScript from propagating through. In these cases, a
subtler technique called sanitization is used to allow rich
markup, while removing active (executable) content. How-
ever, proper sanitization is far from trivial: unfortunately, for
both of these scenarios above, there have been high-profile
vulnerabilities stemming from careless sanitization of spe-
cially crafted HTML input leading to the creation of the
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Time Size After

Site Size Fast Purifier Fast Purifier

Amazon.com 219 119 185 127 6
Bing.com 20 8 29 8 9
Cnn.com 98 88 247 86 78
Economist.com 75 42 184 49 49
Facebook.com 409 75 306 218 9
Gmail.com 104 5 21 3 3
Google.com 25 16 35 15 10
Wikipedia.com 52 61 126 59 45
Yahoo.com 293 81 265 120 103
Yelp.com 48 49 143 40 39

Average 134 54 154 71 35

Figure 8: Applying HTML sanitization to popular sites.

infamous Samy worm for MySpace [16] and the Yamanner
worm [2] for the Yahoo Mail system. In fact, MySpace has
repeatedly failed to properly sanitize their HTML inputs,
leading to a Month of MySpace Bugs initiative [15].

Surprisingly, HTML sanitization turns out exceedingly
tricky to get right: we want to permit proper formatting,
while disallowing script injection. Script in HTML docu-
ments can, however, come in many forms: embedded as
<script> blocks, attacked to HTML elements as handlers,
and even hidden in style sheets and included elements.

This has lead the emergence of a range of libraries at-
tempting to do HTML sanitization, including PHP Input
Filter, HTML Safe, kses, htmLawed, Safe HTML Checker,
HTML Purifier. Among these, the last one, HTML Purifier
(http://htmlpurifier.org) is believed to be most robust,
so we choose it as a comparison point for our experiments.
Note that HTML Purifier is a tree-based rewriter written
in PHP, which uses the HTMLTidy library to parse the in-
put. Our version on an HTML sanitizer written in Fast
and automatically translated by the Fast compiler into C#
is partially shown in Figure 2 and is described in Section 2.

Performance: To compare different sanitization strategies
in terms of performance, we chose 10 popular large-scale web
sites and obtained their HTML content, ranging from 20 KB
(Bing) to 409 KB in size (Facebook). Figure 8 shows a
comparison of both the obtained sizes post-sanitization as
well as sanitizer running times.

Overall, the Fast-based sanitizer is both faster (3.1x on
average), amenable to reasoning and analysis, and consider-
ably more maintainable than HTML Purify (101 lines vs.
over 10,000 lines). Clearly, HTML Purify is considerably
more aggressive at stripping out relevant content, often re-
sulting in much smaller HTML document outputs, but this
is not necessarily a good feature. Indeed, we want a sani-
tizer that produces safe output, while keeping as much of
the original document intact as possible.

5.2 Conflicting Augmented Reality Applications

In augmented reality the view of the physical world is
enriched with computer-generated information. For exam-
ple, applications on the Layar phone AR platform applica-
tions (http://www.layar.com/layers/new) provide up-to-
date information such as data about crime incidents near
the user’s location, information about historical places and
landmarks, real estate, and other points of interest.

Taggers: We focus on such taggers. A tagger, given a
set of input elements, tags some of them with a piece of
information based on properties of the elements. As an
example, consider a tagger that assigns to every city a set
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Figure 9: Running times for operations on transducers; the x-axis
represent time intervals in ms. The y-axis shows how many cases run
in a time belonging to an interval. For example in plot (a) about 1,600
compositions took between 16 and 32 milliseconds.

of tags representing the monuments in such city. We assume
that the physical world is represented as a tree of elements.

Conflict detection: We need to know if two taggers might
conflict with each other. Users should be warned if not
prevented from installing applications that conflict with
others they have already installed. We say that two taggers
conflict if they both label the same node of some input tree.
In order to detect conflicts we perform the following four-
step check for each pair of taggers 〈p1, p2〉:

1. [composition] we compute p, composition of p1 and p2;

2. [input restriction] we compute p′, a restriction of p that
only accepts trees where each node contains no tags;

3. [output restriction] we compute p′′, a restriction of p′

that only outputs trees where at least one node has been
tagged twice;

4. [check] we check if p′′ is the empty transducer: if this is
the case p1 and p2 do not conflict, otherwise they conflict
on every input accepted by p′′.

Performance: Figure 9 shows the timing results for con-
flict analysis. To collect this data, we randomly generate
100 taggers in Fast and check whether they conflict with
each other. Each tagger we generate conforms to the follow-
ing properties: 1) it is non-empty; 2) it tags on average 3
nodes; 3) it tags each node at most once.

The sizes of our taggers vary from 1 to 95 states. The
language we use for the input restriction has 3 states, the one
for the output 5 states. We analyze 4,950 possible conflicts
and 222 will be actual conflicts. The three plots show the
time distribution for the steps of a) composition, b) input
restriction, and c) output restriction respectively. The x axis
represents the running time in ms. Notice that the scale
is logarithmic and the times are intervals (i.e. [4-8) means
the running time is between 4 included and 8 excluded).
The y axis represents the number of cases that completed
in a given time interval. For example in Figure 9(a) we
see that around 1,600 compositions terminated in a time
between 8 and 16 ms. All the compositions are computed in
less than 250 ms. The average time is 15 ms.

All the input restrictions are computed in less
than 150 ms. The average time is 3.5 ms. All the output
restrictions are computed in less than 33,000 ms. The aver-
age time is 175 ms. The output restriction takes longer to
compute in some cases, due to the following two factors:
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type RList[i : Int]{nil(0), cons(1)}
trans map:RList->RList {

nil() to (nil[0])
|cons(y) to (cons [(f i)] (map y))

}
trans filter:RList->RList {

nil() to (nil[0])
|cons(y) where (p i) to (cons [i] (filter y))
|cons(y) where (not(p i)) to (filter y)

}
def map filter:RList -> RList := (compose map filter)

Figure 10: Two common functional programs over lists implemented
in Fast: filter and map.
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Figure 11: Deforestation advantage for a list of 4,096 integers.

1. the input sizes are always bigger: the size of the composed
transducers after the input restriction (p′ in the list
before) vary from 5 to 300 states and 10 to 4,000 rules.
This causes the restricted output version to have up
to 5,000 states and 100,000 rules;

2. since the conditions in the example are randomly gen-
erated, some of them may be complex causing the SMT
solver to slow down the computation. The 33,000 ms ex-
ample contains non-linear constraints over reals of de-
gree 3.

The average time of 193 ms per pairwise conflict check is
quite acceptable: indeed, adding a new app to a store al-
ready containing 10,000 apps will incur an average checking
overhead of about 35 minutes.

5.3 Deforestation

Our last case study explores the idea of deforestation. First
introduced by Wadler in 1988 [20], deforestation is the
idea of eliminating intermediate computation trees when
evaluating functional programs. For example, to compute
the sum of the squares of the integers between 1 and n, the
following small program might be used:

sum (map square (upto 1 n))

Intermediate lists created as a result of evaluation are a
source of inefficiency.

However, it has been observed that transducer composi-
tion can also be used to eliminate intermediate results. This
can be done as long as individual functions are represented
as transducers and their composition is a transducer itself.
Kühnemann et al. [10] consider a class of syntactic transfor-
mations (Macro Tree Transducers) that is bigger than top-
down tree transducers with RLA. However their approach
does not deal with infinite alphabets.

Experiment: Figure 10 shows two common functional pro-
grams over lists implemented in Fast: filter and map. The
programs transform lists of reals into lists of reals. We as-
sume p : real 7→ bool and f : real 7→ real to be some

previously defined predicate and function respectively. The
program map filter will compute the same function as ap-
plying map first and then filter but in a single pass.

We analyze how effective composition is in our setting.
We consider the function map in Figure 10 with f defined to
be a simple version of the Caesar cipher: λx.(x+ 5) mod 26.

Performance: We compose the function map with itself
several times and see how the performance improve when
using transducers to avoid the intermediate result computa-
tion. Figure 11 shows the running time with and without
deforestation for a list of 4,096 integers used as the input.
The running time of the Fast composed version is almost
unchanged, even for 512 compositions. On the other hand,
the running time of the näıvely composed functions degrades
linearly in the number of composed functions.

5.4 Additional Applications

Decision Tree Manipulation. Decision trees are a fun-
damental construct in machine learning, used in everything
from computer vision to network anomaly detection. A de-
cision tree is a tree where each interior node is associated
with a predicate; evaluation begins at the root and proceeds
down a “true” or “false” branch until reaching a leaf. The
leaf then determines the final category of the input. A clas-
sic technique to improve efficiency and avoid overfitting is
postpruning, in which each node is evaluated on a training
set according to a performance criterion. Nodes that fail the
performance criterion are removed and their children are
merged into a replacement node [17].

Because the training set is finite, for each training set and
each performance criterion, we can construct a transducer
that encodes a node’s performance on the training set. We
can then use our composition analysis to perform post-
pruning in a single pass, even when multiple training sets are
considered. Mansour and McAllester also show how multiple
decision trees can be merged to form branching programs,
in which the structure is an arbitrary directed acyclic graph
instead of a tree [12]. The merge criterion they provide again
depends on each node’s performance against a training set.
While our transducers output trees, not graphs, they can
readily mark nodes in each tree for merging.

Our formalism captures classic operations on decision
trees, while opening the way to new ones. For example, our
pre-image synthesis allows us to take a decision tree and
recover possible “pre-pruned” trees for a given data set.
Compiler Optimization. Compilers employ local opti-
mizations on IR and generated code. Some of these transfor-
mations can be represented as tree manipulations, such as
common subexpression elimination. By representing these as
transducers and performing composition, we obtain a single
pass over IR to perform all optimizations.

6. Related Work

Symbolic finite transducers (SFTs) over lists were originally
introduced in [8] with a focus on security analysis of string
sanitizers. A domain-specific language for string manipula-
tions, Bek, whose semantics is based on SFTs is also de-
fined in [8]. The key properties that are studied in [8] from a
practical point of view are idempotence, commutativity and
equivalence checking of string sanitizers. The formal foun-
dations and the theoretical analysis of the underlying SFT
algorithms, in particular, an algorithm for deciding equiva-
lence of SFTs modulo a decidable background theory is stud-
ied in [19]. The formalism of SFTs is also extended in [19] to
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Language Alphabet Analyzable Domain

Fast infinite yes Tree-manipulating programs
TTT finite no NLP
TIBURON finite yes NLP
XPath infinite fragment XML query (only Selection)
XSLT infinite no XML transformations

Figure 12: Languages for tree-manipulating programs.

Symbolic Transducers (STs) that allow the use of registers.
STTs are originally introduced in [18], where it is wrongly
claimed that STTs are closed under composition by refer-
ring to a generalization of a proof of the classical case in [5]
which is only stated for total deterministic finite tree trans-
ducers. In [6] this error is discovered and other properties
of STTs are investigated. The main result of the paper [18]
is an equivalence checking algorithm for single-valued linear
STTs. We are currently investigating decidability of equiv-
alence checking of single-valued STTRs.

TTT [14] and Tiburon [13] are transducers based lan-
guages specialized on tree transformations for natural lan-
guage processing. TTT allows complex forms of pattern
matching, but does not enable any form of analysis. Tiburon
supports several transducers algorithms and allows the use
of probabilistic transitions. Both the languages only support
finite input and output alphabets. To the best of our knowl-
edge, Fast is the first language for tree manipulations that
supports infinite input and output alphabets while preserv-
ing decidable analysis.

XPath [21] and XSLT [22] are languages for manipu-
lating XML trees. XPath can extract, but not transform,
nodes from XML trees. XSLT can transform nodes and uses
XPath to access them. Both these languages are designed
for programming aid and do not support analysis. However,
some restricted fragments of XPath [1] have decidable empti-
ness. While Fast supports several decidable theories, the
approach in [1] only allows equality checking of nodes in the
input. Identifying a fragment of XPath expressible in Fast
is an interesting research question we have not explored.

Table 12 summarizes the relations between Fast and the
other domain-specific languages for tree transformations.

The connection between tree transducers and deforesta-
tion was first investigated in [20], where programs that
manipulate trees over finite alphabets were considered.
In [20] integers are represented as unary lists of the form
S(S(. . . (0) . . .)). The deforestation is done via Macro Tree
Transducers (MTTs) [4]. MTTs are more expressive than
Top Down Transducers with RLA, but they do not support
infinite alphabets. MTTs can be composed, but the com-
position algorithm has high complexity. Indeed, we are not
aware of an actual implementation of deforestation based on
MTTs or any other transducer model.

Higher-Order Multi-Parameter Tree Transducers
(HMTT) [11] are used for type-checking of functional
programs. HMTTs enable sound but incomplete analysis of
programs which takes multiple trees as input. HMTTs only
support finite alphabets. Extending our theory to multiple
input trees is an open research direction.

Several complexity related questions for STAs and
STTRs are open and depend on the complexity of the la-
bel theory, but some lower bounds can be established using
known results for finite tree automata and transducers. For
example, an STA may be exponentially more succinct than
the equivalent normalized STA because one can directly ex-
press the intersection non-emptiness problem of a set of nor-
malized STAs as the emptiness of an unnormalized STA. In

the classical case, the non-emptiness problem of tree au-
tomata is P-complete, while the intersection non-emptiness
problem is ExpTime-complete [3, Theorem 1.7.5].

7. Conclusions

In this paper, we have introduced Fast, a new domain-
specific language for tree manipulation, gave a semantics for
this language in terms of symbolic tree transducers, and we
showed how multiple applications benefit from this analysis.
Fast strikes a delicate balance between precise analysis and
expressiveness. Our work shows this balance is sufficient
across a range of applications in different fields.
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