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Abstract—Credit allows a lender to loan out surplus
capital to a borrower. In the traditional economy, credit
bears the risk that the borrower may default on its
debt, the lender hence requires an upfront collateral
from the borrower, plus interest fee payments.

Due to the atomicity of blockchain transactions,
lenders can offer flash loans, i.e. loans that are only valid
within one transaction and must be repaid by the end
of that transaction. This concept has lead to a number
of interesting attack possibilities, some of which have
been exploited recently (February 2020).

This paper is the first to explore the implication of
flash loans for the nascent decentralized finance (DeFi)
ecosystem. We analyze two existing attacks vectors
with significant ROIs (beyond 500k%), and then go on
to formulate finding flash loan-based attack parame-
ters as an optimization problem over the state of the
underlying Ethereum blockchain as well as the state
of the DeFi ecosystem. Specifically, we show how two
previously executed attacks can be “boosted” to result
in a profit of 829.5k USD and 1.1M USD, respectively,
which is a boost of 2.37× and 1.73×, respectively.

I. Introduction

A central component of our economy is credit: to foster
economic growth, market participants can borrow and lend
assets to each other. If credit creates new and sustainable
value, it may be perceived as a positive force. An abuse
of credit, however, i.e. when borrowers take on more debt
than they’re able to repay, would necessary entail negative
future consequences. Excessive debt may lead to a debt
default — i.e. a borrower is no longer capable to repay the
loan plus interest payment. This leads us to the following
intriguing question: What if it were possible to offer credit,
without bearing the risk that the borrower does not pay
back the debt? Such a concept appears impractical in
the traditional financial world. No matter how small the
borrowed amount, and how short the loan term, the risk
of the borrower defaulting remains. If one were absolutely
certain that a debt would be repaid, one could offer
loans of nearly infinitive volume — or lend to individuals
independently of demographics and geographic location,
effectively giving access to capital to rich and poor alike.

Given the peculiarities of blockchain-based smart con-
tracts, so-called flash loans emerged. A flash loan is a loan
that is only valid within one blockchain transaction. Flash
loans fail, if the borrower does not repay its debt before
the end of the transaction borrowing the loan. That is,
because a blockchain transaction can be reverted during its
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Fig. 1. Overview of our parametrized optimizer. Given a blockchain
state, DeFi models, and attack vector, it solves for the parameters
yielding the best revenue.

execution, if the condition of a repayment is not satisfied.
Such instant loan yields three novel properties, absent in
centralized financial economies:
• No debt default risk: A lender offering a flash loan

bears no risk that the borrower defaults on its debt1.
Because a transaction and its instructions must be
executed atomically, a flash loan is not granted if the
transaction fails due to a debt default.

• No need for collateral: Because the lender is guar-
anteed to be paid back, the lender can issue credit
without upfront collateral from the borrower: a flash
loan is non-collateralized.

• Loan size: Flash loans are taken from a public smart
contract-governed liquidity pool. Any borrower can
borrow the entire pool at any point in time. As of
March 2020, the two largest flash loan pools [5], [15]
each offer in excess of 20M USD.

To the best of our knowledge, this is the first paper which
investigates flash loans. We categorize their use cases and
explore their dangers. We meticulously dissect two events
where talented traders realized a profit of each about 350k
USD and 600k USD with two independent flash loans.
We show how these traders however, have forgone the
opportunity to realize a profit exceeding 829.5k USD
and 1.1M USD, respectively. We realize this by finding
the optimal adversarial parameters the trader should have
employed, using a parametrized optimizer (cf. Figure 1).
This paper makes the following contributions:
• Flash loan usage analysis. We provide a compre-

hensive overview of how and where the technique of

1Besides the risk of smart contract vulnerabilities.
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flash loans can and is utilized.
• Post mortem of existing attacks. We provide a de-

tailed analysis of two existing attacks that used flash
loans and generated an ROI beyond 500k%: a pump
and arbitrage from the 15th of February 2020 and an
oracle manipulation from the 18th of February 2020.

• Attack parameter optimization framework.
Given several DeFi systems covering exchanges, cred-
it/lending and margin trading systems, we provide a
framework to determine the parameters that yield the
maximum revenue a trader can achieve when utilizing
a particular flash loan strategy.

• Opportunity loss. We analyze previously proposed
and executed attacks to quantify the opportunity loss
for the attacker given their optimal behavior, as de-
termined by the framework above. We experimentally
validate the opportunity loss of both aforementioned
attacks on their respective blockchain state.

Paper organization: The remainder of the paper is
organized as follows. Section II elaborates on the DeFi
background. Section III outlines flash loan use cases.
Section IV, dissects two known flash loan attacks and
Section V shows how to optimize their revenue. Section VI
provides a discussion. We outline related work in Sec-
tion VII. We conclude the paper in Section VIII.

II. Background
Decentralized ledgers, such as Bitcoin [36], enable the

performance of transactions among peers without trusting
third parties. At its core, a blockchain is a chain of
blocks [8], [36], extended by miners by crafting new blocks
that contain transactions. Smart contracts [39] allow the
execution of complicated transaction types enabling DeFi.

A. Decentralized Finance (DeFi)
Decentralized Finance is a conglomerate of financial

cryptocurrency-related protocols defined by open-source
smart contracts. These protocols for instance allow to
lend and borrow assets [31], [18], exchange [15], [38],
margin trade [15], [4], short and long [4], and allow to
create derivative assets [18]. At the time of writing, the
DeFi space accounts for over 1bn USD in smart contract
locked capital among different providers. The majority of
the DeFi platforms operate on the Ethereum blockchain,
governed by the Ethereum Virtual Machine (EVM).

B. Reverting EVM State Transitions
The Ethereum blockchain is in essence a replicated state

machine. To achieve a state transition, one applies as
input transactions which modify the EVM state following
rules encoded within deployed smart contracts. The EVM
state is only altered if the transaction execute successfully.
Otherwise, the EVM state is reverted to the previous, non-
modified state. Transactions can fail due to three reasons:
(i) insufficient transaction fees (i.e. due to an out-of-gas
exception), (ii) due to a conflicting transaction (e.g. using

the same nonce) or (iii) due to a particular condition
within the to be executed transaction that cannot be met.
State reversion hence appears to be a necessary feature.

C. Flash Loans
Reversing EVM state changes, allows for an intriguing

new financial concept: flash loans. A flash loan is only valid
within a single transaction (cf. Figure 2).

1 . Take a f l a s h loan
2 . Use the l e n t a s s e t s
3 . Pay back the loan p lus i n t e r e s t s

Fig. 2. Flash loan approach, summarized.

Flash loans rely on the atomicity of blockchain (and,
specifically, Ethereum) transactions within a single block.
Atomicity has two important implications on flash loans.
First, non-collateralized lending: A lender does not need to
provide upfront collateral to request a loan of any size, up
to the flash loan liquidity pool amount. Any lender, willing
to pay the required transactions fees (which typically
amount to a few USD) is an eligible lender. Second, risk-
free lending: If a lender is not able to pay back the loan,
the flash loan transaction fails. Besides smart contract,
and more generally blockchain vulnerabilities, the lender
is hence not exposed to the risks of a debt default.

D. DeFi Actors
In the following, we define the on-chain actors that we

consider within this work and focus on a single blockchain.
Trader a trader possesses a private/public key pair and

is eligible to sign and send transactions towards other
accounts and smart contracts.

Liquidity Provider a trader with surplus capital may
chose to offer this capital to other traders, e.g. as
collateral within a DEX or lending platform.

Liquidity Taker a trader which is servicing liquidity
provider with fees in exchange to accessing the avail-
able capital.

E. DeFi Platforms
We briefly summarize relevant DeFi platforms, such

as exchanges [38], [26], margin trading [15], [4], cred-
it/lending [31], [18] DeFi platforms. Within this paper,
we are not covering alternative DeFi platforms such as
stablecoins [31], prediction markets and insurance systems.
Exchanges: We observe the following DeFi exchanges.
Limit order book (LOB) DEX: An order book is a
collection of bid and ask orders. Traders post buy/bid or
sell/ask orders for an asset of the market to a LOB. A
bid order positions the trader as a buyer, while an ask
positions the trader as a seller. Buyers aim to purchase an
asset at the lowest price possible, while sellers aim for the
highest possible selling price. When a trader specifies an
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order with a fixed or better price, the trader issues a so-
called limit order [2]. Once buyers and sellers post orders
with compatible prices, their orders can be matched. A
liquidity provider contributes bid and asks, to facilitate a
match (i.e. market making). Several blockchain exchanges
operate a LOB within a smart contract [32], [27], [26].
Automated market maker (AMM) DEX: An alterna-
tive exchange design is to collect funds within a liquidity
pool, e.g. two pools for an AMM asset pair X/Y . The
state (or depth) of an AMM market X/Y is defined as
(x, y), where x represents the amount of asset X and y
the amount of asset Y in the liquidity pool. Liquidity
providers can deposit/withdraw in both pools X and Y to
in/decrease liquidity. AMM DEX support endpoint such
as SwapXforY to trade an asset X for Y . The simplest
AMM mechanism is a constant product market maker,
which for an arbitrary asset pair X/Y , keeps the product
x × y constant during trades. A number of DEX operate
under the AMM model [38], [26].

When trading on an exchange, price slippage may occur,
i.e. the change in the price of an asset during a trade. The
greater the quantity to be traded, the greater the slippage.
Margin trading: Trading on margin offers the opportu-
nity for traders to borrow assets from the trading platform
(or broker) and trade with these borrowed assets. The
trader typically must provide collateral and the trading
platform then enables the trader to borrow several multi-
pliers of the collateral for margin trading. Multiple DeFi
platforms offer margin trading [4], [15].
Credit and lending: With over 900M USD locked capi-
tal, credit represents one of the most significant recent use-
cases for blockchain based DeFi systems. Because borrow-
ers are only represented with weak identities (e.g. public
keys), they must provide between 125% [15] to 150% [31]
collateral of an asset x to borrow 100% of another asset y.
Different DeFi lending platforms exist, ranging from user-
to-user lending, to pooled lending [18] and lending that
enable decentralized stable coins.

III. Use Cases for Flash Loan
In this section, we are analyze the possible use cases

for flash loans. It is in general difficult to qualify these
activities as fully benign or malicious—it depends on the
intent of the people orchestrating these transactions.

A. Arbitrage
The value of an asset is typically determined by demand

and supply of the market, across different exchanges. Due
to a lack of instantaneous synchronization among ex-
changes, the same asset can be traded at slightly different
prices on each exchange. Related work compared Bitcoin,
Ethereum and Ripple price variation across 14 exchanges
in Europe, Korea, Japan and the US (excluding China)
from 1st January 2017 to 28th February 2018 [30]. The
study found twice, price deviations beyond 50% during

several hours. Arbitrage is the process of exploiting price
differences among exchanges for a financial gain [3]. In fact,
arbitrage helps synchronizing exchanges by incentivizing
traders to equate the price of the same asset across
exchanges. To perform arbitrage, a trader needs a reserve
of an asset at different exchanges — i.e. arbitrage requires
an extensive portfolio and volatility risk management.
How flash loans change arbitrage risks: Given flash
loans, a trader can perform arbitrage on different DEX,
without the need to hold a monetary position or being
exposed to volatility risks. The trader can simply open
a loan, perform an arbitrage trade and pay back the loan
plus interests. One may argue that flash loans render arbi-
trage risk-free, the risks of smart contract vulnerabilities,
however, remain.
Arbitrage example: On 18th Jan 2020, a flash loan
borrowed 3, 137.41 DAI from Aave [5] to make an ar-
bitrage trade on the AMM DEX Uniswap2. To prepare
the arbitrage, DAI is converted to 3137.41 SAI using
MakerDAO’s migration contract3. The arbitrage converts
SAI for 18.16 ETH using SAI/ETH Uniswap, and then
immediately converts 18.16 ETH back to 3, 148.39 DAI
using DAI/ETH Uniswap. After the arbitrage, 3, 148.38
DAI is transferred back to Aave to pay the loan plus fee.
This transaction costs 0.02 ETH of gas (about 5.63 USD at
the time of writing). Note that even though the transaction
sender gains 3.29 DAI from the arbitrage, this particular
transaction is not profitable.

B. Wash Trading

The trading volume of an asset, is a metric indicating
the trading popularity of an asset. The most popular
assets therefore, are supposed to be traded the most —
e.g. Bitcoin to date enjoys the highest trading volume
(reported up to 50T USD per day) of all cryptocurrencies.

Malicious exchanges or traders can mislead other traders
by artificially inflating the trading volume of an asset
to attract interests. In September 2019, 73 out of the
top 100 exchanges on Coinmarketcap [9] were wash trading
over 90% of their volumes [1]. In centralized exchanges
operators can easily and freely create fake trades in the
backend, while decentralized exchanges settle trades on-
chain. Wash trading on DEX thus requires wash traders
to hold and use real assets. Flash loans can remove this
“obstacle” and wash trading comes at a cost of the loan
interest, trading fees, and (blockchain) transaction fees,
e.g. gas. A wash trading endeavour to increase the 24-
hour volume by 50% on the ETH/DAI market of Uniswap
would for instance cost about 1, 298 USD (cf. Figure 3).
We visualize in Figure 3 the required cost to create fake
volumes in Uniswap markets. At the time of writing, the

2transaction id: 0x4555a69b40fa465b60406c4d23e2eb98d8aee51de
f21faa28bb7d2b4a73ab1a9

3address: 0xc73e0383F3Aff3215E6f04B0331D58CeCf0Ab849
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Fig. 3. Wash trading cost on two Uniswap markets with flash loans
costing 0.09% (Aave) and a constant of 1 Wei (dYdX) respectively.
The 24-hour volumes of ETH/DAI and ETH/WBTC market were
963′786 USD and 67′690 USD respectively (1st of March, 2020).

transaction fee amounts to 0.01 USD, the flash loan inter-
ests range from a constant 1 Wei (on dYdX) to 0.09% (on
Aave), and exchange fees are about 0.3% (on Uniswap).
Wash trading example: On March 2nd, 2020, a
flash loan of 0.01 ETH borrowed from dYdX performed
two back-and-forth trades (first converted 0.01 ETH
to 122.1898 LOOM and then converted 122.1898 LOOM
back to 0.0099 ETH) on Uniswap ETH/LOOM market4.
The 24-hour trading volume of the ETH/LOOM market
increased by 25.8% (from 17.71 USD to 22.28 USD) as a
result of the two trades.

C. Collateral Swapping
We classify DeFi platforms that rely on users providing

cryptocurrencies [15], [5], [31] as follows: (i) a DeFi system
where a new asset is minted and backed-up with user-
provided collateral (e.g. MakerDAO’s DAI or SAI [31]) and
(ii) a DeFi system where long-term loans are offered and
assets are aggregated within liquidity pools (e.g. margin
trading [4] or long term loans [5]). Once a collateral posi-
tion is opened, DeFi platforms store the collateral assets
in a vault until the new/borrowed asset are destroyed/re-
turned. Because cryptocurrency prices fluctuate, this asset
lock-in bears a currency risk. With flash loans, it is possible
to replace the collateral asset with another asset, even if a
user does not possess sufficient funds to destroy/return the
new/borrowed asset. A user can close an existing collateral
position with borrowed funds, and then immediately open
a new collateral position using a different asset.
Collateral swapping example: On February 20th, 2020,
a flash loan borrowed 20.00 DAI (from Aave) to perform a
collateral swap (on MakerDAO)5. Before this transaction,
the transaction sender used 0.18 WETH as collateral for
instantiating 20.00 DAI (on MakerDAO). The transaction
sender first withdraws all WETH using the 20.00 DAI flash
loan, then converts 0.18 WETH for 178.08 BAT (using

4transaction id: 0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42
fd2cc72a75385a200e1544

5transaction id: 0x5d5bbfe0b666631916adb8a56821b204d97e75e2a
852945ac7396a82e207e0ca

cont rac t FlashMintableCoin i s ERC20 { [ . . . ]
function f l a shMint ( uint256 amount ) {

// mint coins and transfer them
mint (msg . sender , amount ) ;
// borrower uses the loan
Borrower (msg . sender ) . execute ( amount ) ;
// reverts if not have enough to burn
burn (msg . sender , amount ) ;

}}

Fig. 4. Flash mint example.

Uniswap). Finally the user creates 20.03 DAI using BAT
as collateral, and pays back 20.02 DAI (with fee to Aave).
This transaction converts the collateral from WETH to
BAT and the user gained 0.01 DAI, with an estimated gas
fee of 0.86 USD.

D. Flash Minting
Cryptocurrency assets are commonly known as either

inflationary (further units of an asset can be mined) or
deflationary (the total number of units of an asset are
finite). Flash minting is an idea to allow an instantaneous
minting of an arbitrary amount of an asset — the newly-
mined units exist only during one transaction. It is yet
unclear where this idea might be applicable to, the minted
assets could momentarily increase liquidity.
Flash minting example: A flash mint function (cf.
Figure 4) can be integrated into an ERC20 token, to mint
an arbitrary number of coins within a transaction only.
Before the transaction terminates, the minted coins will
be burned. If the available amount of coins to be burned
by the end of the transaction is less than those that were
minted, the transaction is reverted (i.e. not executed).
An example ERC20 flash minting code could take the
following form6:

IV. Flash Loan Post-Mortem
In this section we investigate how flash loans are used

and outline in depth two malicious flash loan transactions
which yielded an ROI beyond 500k%. To our knowledge,
flash loans only appeared in the beginning of 2020.

A. Flash Loan Uses in the Wild
We first consider flash loans offered by the Aave [5]

on the Ethereum blockchain, which started operating on
the 8th of January 2020. To our knowledge this is one
of the first DeFi platforms to widely advertise flash loan
capabilities (although others, such as dYdX also allow the
non-documented possibility to borrow flash loans). At the
time of writing, Aave charges a constant 0.09% interest fee
for flash loans and amassed a total liquidity of 22M USD.

We collect flash loan data between the 8th of January
2020 and the 26th of February 2020 with a full archive
Ethereum node gathering all event logs of the Aave smart
contract7. We then map the transaction data to a known

6cf. https://etherscan.io/address/0x09b4c8200f0cb51e6d44a1974
a1bc07336b9f47f#code

7address: 0x398eC7346DcD622eDc5ae82352F02bE94C62d119
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Actions within DeFi Flash loan txs Total amount(DAI) Mean gas used

0x, Aave, Dai, Oasis, USDC, WETH9 2 5227.47 593075.0± 47342.21
0x, Aave, Dai, Oasis, WETH9 1 1051.00 437015.0
0x, Aave, Dai, WETH9 2 49.96 493656.0± 9981.52
Aave, BAT, CollateralSwap, DSProxy, Dai, MakerDAO, Uniswap, WETH9 13 371.31 991763.85± 14030.38
Aave, BAT, CollateralSwap, Dai, MakerDAO, Uniswap, Unkown, WETH9 2 40.03 982763.0± 3357.34
Aave, Bancor, Dai, MakerDAO, OneLeverage, cDai, cEther 5 78.13 2205191.8± 71491.59
Aave, Compound, Dai, Kyber, MakerDAO, OneLeverage, cDai, cEther 6 151.27 2330717.83± 56046.77
Aave, Compound, Dai, MakerDAO, Oasis, OneLeverage, WETH9, cDai, cEther 9 2778.95 2096669.44± 31230.68
Aave, Compound, Dai, MakerDAO, Oasis, USDC, Unkown, cDai 1 0.00 4615916.0
Aave, Compound, Dai, MakerDAO, Oasis, Unkown, WETH9, cDai, cEther 1 9.13 4284296.0
Aave, Compound, Dai, MakerDAO, OneLeverage, Uniswap, cDai, cEther 8 425.66 2015270.0± 24679.46
Aave, Compound, Dai, MakerDAO, Uniswap, Unkown, cDai 1 0.00 4827060.0
Aave, Dai 9 5679.00 202890.78± 3058.56
Aave, Dai, Kyber, MakerDAO, OneLeverage, cDai, cEther 12 2554.08 2020557.33± 63103.89
Aave, Dai, MakerDAO, Oasis, OneLeverage, WETH9, cDai, cEther 6 1220.93 1729013.83± 55009.27
Aave, Dai, MakerDAO, OneLeverage, Uniswap, cDai, cEther 11 117.50 1634849.55± 25608.84
Aave, Dai, MakerDAO, SAI, Uniswap 1 3137.41 447779.0
Aave, Dai, MakerDAO, Uniswap, cDai, cEther 8 1368.71 1013177.0± 142538.07
Aave, Dai, Unkown 1 0.10 567382.0
Aave, Unkown 6 0.00 205047.83± 6077.03

Fig. 5. Classifying the usage of flash loans in the wild, based on an analysis of transactions between 8th of January, 2020 and the 26th of
February, 2020 on Aave [5]. Unknown indicates a private contract we could not attach an owner to.

list of projects (cf. Appendix A). In Figure 5 we show our
analysis of Aave flash loans, and manually label with which
platforms the flash loans interacts with. We observe that
most flash loans interact with lending/exchange DeFi sys-
tems and that the flash loan’s transaction costs (i.e. gas)
appears significant (at times beyond 4M gas, compared to
21k gas for regular Ether transfer).

B. Pump and Arbitrage
A flash loan transaction8, followed by 74 transactions,

yielded a profit of 1′193.69 ETH (350k USD) given a
transaction fee of 132.36 USD (cumulative 50′237′867 gas,
0.5 ETH). We show in Section V-E that the parameters
chosen by the adversary are not optimal, the adversary
could have earned a profit exceeding 829.5k USD.
Attack intuition: The core of this trade utilises a
margin trade on a DEX (bZx) to increase the price of
WBTC/ETH on another DEX (Uniswap) and thus cre-
ates an arbitrage opportunity. The trader then borrows
WBTC using ETH as collateral (on Compound), and then
purchases ETH at a “cheaper” price on the distorted
(Uniswap) DEX market. To maximise the profit, the
adversary then converts the “cheap” ETH to purchase
WBTC at a non-manipulated market price over a period of
two days after the flash loan. The adversary then returns
WBTC (to Compound) to redeem the ETH collateral. As
demonstrated in Figure 6, this trade mainly consists of
two parts. For simplicity, we omit the conversion between
WETH (the ERC20-tradable version of ETH) and ETH.
Flash Loan (one block): The first part of the attack (cf.
Figure 6) consists of 7 steps within a single transaction.

8executed on the 15th of February, 2020, transaction id: 0xb5c8
bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838,
264.71 USD/ETH

1)	Flash	Loan	Provider	(dYdX)
borrow	10'000.00	ETH

2)	Lending	(Compound	cETH)
lend	5'500.00	2'470.08	ETH	to	mint	cETH

4)	Margin	Trade	Provider	(bZx)
5x	short	1'300.00	1'456.23	ETH	against	WBTC

3)	Lending	(Compound	cWBTC)
borrow	112.00	50.77	WBTC	with	cETH	collateral

Exchange	(WBTC	Uniswap)
convert	5'637.62	6'314.97	ETH	to	51.35	53.30	WBTC

5)	Exchange	(WBTC	Uniswap)
convert	112.00	50.77	WBTC	to	6'871.41	6'219.28	ETH

6)	Flash	Loan	Provider	(DyDx)
pay	back	10'000.00	WETH
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a)	Exchange	(Kyber)
convert	4'377.72	1'984.11	ETH	to	112.00	50.77	WBTC

b)	Lending	(Compound	cWBTC)
return	112.00	50.77	WBTC	for	cETH

c)	Lending	(Compound	cETH)
return	cETH	for	5'500.00	2'470.08	ETHB
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Fig. 6. Procedure diagram of the pump and arbitrage attack. Solid
box represents a single state change operation, and dashed box
represents aggregated state change operation. The attack consists of
two parts a single flash loan transaction and several loan redemption
transactions. The numbers within rectangles represent the optimal
parameters found by our parametrized optimizer (cf. Section V).

In step 1 , the adversarial trader borrows a flash loan of
10, 000.00 ETH from a flash loan provider (dYdX). In step
2 and 3 , the adversarial trader uses 5, 500.00 out of

the 10, 000.00 ETH as collateral, to borrow 112.00 WBTC
on a lending platform (Compound). More specifically, the
adversary first deposits 5, 500 ETH to Compound, in ex-
change of 274, 843.68 cETH (cTokens) as a proof of owning
this liquidity. The adversary then borrows WBTC (on
Compound) using the cETH tokens as collateral. Note that
the adversarial trader does not return the 112.00 WBTC

5



within the flash loan. This means the adversarial trader
takes the risk of forced liquidation against the 274, 843.68
cETH collateral if the price fluctuates. In steps 4 , the
trader opens a short position for ETH against WBTC (on
bZx), with a 5× leverage. Upon receiving this request,
bZx transacts 5, 637.62 ETH on an exchange (Uniswap)
for only 51.35 WBTC (at 109.79 ETH/WBTC). Note
that at the start of block 9484688, Uniswap has a total
supply of 2, 817.77 ETH and 77.09 WBTC (at 36.55
ETH/WBTC). The slippage of this transaction is signifi-
cant with 239.84% (cf. Equation 1).

124.41− 36.55
36.55 = 239.84% (1)

Both DEXes, Uniswap and bZx, allowed for such high
slippage to occur. In step 5 , the trader converts 112.00
WBTC borrowed from lending platform (Compound) to
6′871.41 ETH on DEX (Uniswap) (at 61.35 ETH/WBTC).
Similarly, the slippage can be calculated per Equation 2.

1
61.35 −

1
36.55

1
36.55

= −40.42% (2)

In step 6 , the trader pays back the loan, paying a 1×1011

Wei fee. Note that dYdX only requires a fee of 1 Wei.
After the flash loan transaction (i.e. the first part of this
pump and arbitrage trade), the trader gained 71.41 ETH,
and has an over-collateralized loan of 5, 500 ETH for 112
WBTC (49.10 ETH/WBTC). If the ETH/WBTC market
price is above this loan exchange rate, the adversary can
redeem the loan’s collateral as follows.
Loan redemption: The second part of the trade con-
sists of three recurring steps, (step a - c ), between
Ethereum block 9484917 and 9496602. Those transac-
tions aim to redeem ETH by paying back the WBTC
borrowed earlier (on Compound). To avoid slippage
when purchasing WBTC, the trader executes the sec-
ond part in small amounts over a period of two days
on the DEX (Kyber, Uniswap). In total, the adversarial
trader exchanged 4, 377.72 ETH for 112 WBTC (at 39.08
ETH/WBTC) to redeem 5, 500.00 ETH.
Finding the victim: We investigate who of the partic-
ipating entities is losing money. Note that in step 4 of
Figure 6, the short position (on bZx) borrows 5, 637.62−
1, 300 = 4, 337.62 ETH from the lending provider (bZx),
with 1, 300 ETH collateral. Step 4 requires to purchase
WBTC at a price of 328.49 ETH/WBTC, with both, the
adversary’s collateral and the pool funds of the liquidity
provider. 328.49 ETH/WBTC does not correspond to the
market price of 36.55 ETH/WBTC prior to the attack,
hence the liquidity provider overpay by nearly a magnitude
of the WBTC price.
How much are the victims losing: We now quan-
tify the losses by the liquidity providers. The loan
provider lose 4, 337.62 (ETH from loan providers) - 51.35
(WBTC left in short position) × 39.08 (market ex-
change rate ETH/WBTC) = 2, 330.86 ETH. The adver-

2)	Exchange	(sUSD	Uniswap)
convert	540.00	900.61	ETH	to	92'419.70	123'146.13	sUSD

3)	Exchange	(Kyber)
convert	360.00	547.71	ETH	to	63'584.09	79'802.10	sUSD:
				*	convert	20.00	ETH	to	5'240.98	sUSD
				*	convert	20.00	ETH	to	4'983.33	sUSD
				*	convert	20.00	ETH	to	4'738.35	sUSD
				*	convert	20.00	ETH	to	4'505.41	sUSD
				*	convert	20.00	ETH	to	4'283.92	sUSD
				*	convert	20.00	ETH	to	4'073.32	sUSD
				*	convert	20.00	ETH	to	3'873.08	sUSD
				*	convert	20.00	ETH	to	3'682.67	sUSD
				*	convert	20.00	ETH	to	3'501.63	sUSD
				*	convert	20.00	ETH	to	3'329.49	sUSD
				*	convert	20.00	ETH	to	3'165.81	sUSD
				*	convert	20.00	ETH	to	3'010.18	sUSD
				*	convert	20.00	ETH	to	2'862.20	sUSD
				*	convert	20.00	ETH	to	2'721.49	sUSD
				*	convert	20.00	ETH	to	2'587.69	sUSD
				*	convert	20.00	ETH	to	2'460.49	sUSD
				*	convert	20.00	ETH	to	2'339.53	sUSD
				*	convert	20.00	ETH	to	2'224.52	sUSD

4)	Exchange	(Synthetix)
deposit	3'517.86	3'517.86	ETH	for	943'837.59	943'837.59	sUSD

5)	Lending	(bZx)
borrow	6'799.27	6'902.05	ETH	
using	1'099'841.39	1'100'013.72	sUSD	as	collateral

1)	Flash	Loan	Provider	(bZx)
borrow	7'500.00	ETH

6)	Flash	Loan	Provider	(bZx)
pay	back	7'500.00	ETH
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Fig. 7. Procedure diagram of the oracle manipulation attack. Solid
box represents a single state change operation, and dashed box rep-
resents aggregated state change operation. The numbers within rect-
angles represent the optimal parameters found by our parametrized
optimizer (cf. Section V).

sary gains 5, 500.00 (ETH loan collateral in Compound) -
4, 377.72 (ETH spent to purchase WBTC) + 71.41 (part
1) = 1, 193.69 ETH in total.
Arbitrage: is more money left on the table: Due to
the attack, Uniswap’s price reduced from 36.55 to 11.50
ETH/WBTC. This creates an arbitrage opportunity,
where a trader can sell ETH against WBTC on Uniswap
to synchronize the price. 1, 233.79 ETH would yield 60.65
WBTC, instead of 33.76 WBTC, realizing an arbitrage
profit of 26.89 WBTC (286, 035.04 USD).

C. Oracle Manipulation

In the following, we discuss the details of a second
flash loan trade, which yields a profit of 2, 381.41 ETH
(c. 650k USD) within a single transaction9 given a trans-
action fee of 118.79 USD. Before diving into the details,
we cover additional required background knowledge. We
again show how the chosen attack parameters were sub-
optimal and present in Section V-E attack parameters
that would yield a profit of 1.1M USD instead. For this
attack, the adversary involves three different exchanges
for the same sUSD/ETH market pair (the Kyber-Uniswap
reserve, Kyber, and Synthetix). Two of these exchanges
(Kyber, Kyber-Uniswap) act as price oracle for the lending
platform (bZx) from which the adversary borrows assets.

9executed on the 18th February 2020, transaction id: 0x762881b07
feb63c436dee38edd4ff1f7a74c33091e534af56c9f7d49b5ecac15, 282.91
USD/ETH
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Price oracle: One of the goals of the DeFi ecosystem is
to not rely on trusted third parties. This premise holds
both for asset custody as well as additional information,
such as asset pricing. One common method to determine
an asset price is hence to rely on the pricing information
of an on-chain DEX (e.g. Uniswap). One drawback of this
approach, is the danger of a DEX price manipulation.

Attack intuitionn: The core of this trade is an or-
acle manipulation using a flash loan on the asset pair
sUSD/ETH. The manipulation lowers the price of sUS-
D/ETH (from 268.30 sUSD/ETH to 106.05 sUSD/ETH
on Uniswap and 108.44 sUSD/ETH on Kyber Reserve). In
a second step, the adversary benefits from this sUSD/ETH
price decrease by borrowing ETH with sUSD as collateral.

Adversarial oracle manipulation: We identify a total
of 6 steps steps within this transaction (cf. Figure 7).
In step 1 , the trader borrows a flash loan of 7, 500.00
ETH (on bZx). In the next three steps ( 2 , 3 , 4 ), the
adversary converts a total of 4, 417.86 ETH to 943, 837.59
sUSD (at an average of 213.64 sUSD/ETH). Step 2
purchases sUSD with ETH at 171.15 sUSD/ETH (on the
Kyber-Uniswap reserve) and step 3 purchases sUSD
with ETH at 111.23 sUSD/ETH (on Kyber). The third
involved party is the lending platform bZx, which uses
the DEX Kyber as a price oracle. Step 2 and 3
allow the adversary to borrow more sUSD with ETH,
because the price of sUSD/ETH perceived by the lending
platform decreased by over 58% since the beginning of
the attack. Step 4 converts ETH to sUSD on a third
exchange market (Synthetix), which is yet unaffected by
the previous trades. This exchange is not serving as price
oracle for the lending platform (bZx).

The adversarial trader then uses the sum of
the purchased sUSD (1, 099, 841.39) as collateral
to borrows 6, 799.27 ETH (at exchange rate

collateral factor =
max(106.05, 108.44) × 1.5 = 162.66 sUSD/ETH on bZx).
Now the adversary possesses 6, 799.27 + 3, 082.14 ETH
and in the last step pays back the flash loan amounting
to 7, 500.00 ETH. The adversary therefore generates
a revenue of 2, 381.41 ETH while only paying 0.42
ETH (118.79 USD) transaction fees.

Finding the victim: The adversary distorted the price
oracle (i.e. Uniswap and Kyber) from 268.30 sUSD/ETH
to 107.83 sUSD/ETH, while other DeFi platforms remain
unaffected with 268.30 sUSD/ETH. Similar to the Pump
and Arbitrage attack, the lenders on bZx are the vic-
tims losing cryptocurrency as a result of the distorted
price oracle. The lender lost 6, 799.27 ETH - 1, 099, 841
sUSD, which is estimated to be 2, 699.97 ETH (at 268.30
sUSD/ETH). The adversary gains 6, 799.27 (ETH from
borrowing) - 3, 517.86 (ETH to purchase sUSD) - 360
(ETH to purchase sUSD) - 540 (ETH to purchase sUSD)
= 2, 381.41 ETH.

V. Optimal DeFi Attack Parameter Generation

In light of the complexity of the aforementioned DeFi
attacks (cf. Section IV), in this section we propose a con-
strained optimization framework that allows to efficiently
discover the optimal trade parameters to maximize the
resulting expected revenue.

A. System Model and Assumptions
The system considered is limited to one decentralized

ledger which supports pseudo-Turing complete smart con-
tracts (e.g. similar to the Ethereum Virtual Machine; state
transitions can be reversed given certain conditions, such
as out-of-gas, or insufficient funds returned). Our system
comprises of regular users, or traders, which do hold at
least one private/public key pair to denote their blockchain
address. The private key enables users to transfer cryp-
tocurrency assets and interact/invoke smart contracts.

We assume that the underlying blockchain is not com-
promised by a malicious adversary. We therefore assume
that the share of consensus participants corrupted by the
adversary is bounded by the threshold required to main-
tain safety and liveness of the underlying blockchain. In
the Nakamoto consensus-based blockchains, for example,
we assume that the fraction of the computational power
of the adversary does not exceed 1/3 [21], [20]. Similarly,
in Byzantine fault-tolerant systems, (e.g. Proof-of-Stake
based), we assume that the number of faulty processes
does not exceed 1/3 of the number of consensus par-
ticipants. The previous assumptions guarantee the chain
quality and common-prefix properties [20]. We consider a
transaction to be securely included within the blockchain
after k confirmations, where k depends on the transaction
value [21] and the chain-growth property [20].

Importantly, flash loans only apply to a single transac-
tion and hence we limit our analysis to what may happen
within a single blockchain block.

B. Threat and Network Model
Foremost, we assume that the cryptographic primitives

of the considered blockchain are secure. We also assume
the presence of at least one computationally-bounded and
economically rational adversary A. A attempts to exploit
the availability of flash loans for financial gain. A may
perform any action that maximizes its economic revenue,
such as censor or delay transactions, observe unconfirmed
transactions on the network layer or the memory pool,
and mount Sybil attacks [14]. For the network layer we
follow related work [17], [13] in assuming that honest
nodes are well-connected, and that communication chan-
nels are semi-synchronous. Importantly, we assume that
transactions broadcast by users are received by honest
users within an upper bound time. The adversary may
collude with other adversaries. While A is not required
to provide its own collateral to perform the presented
attacks, the adversary must be financially capable to pay
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transaction fees. The adversary may amass more capital
which possibly could increase its impact and ROI.

C. Modelling the State of DeFi
We start by modeling different components that may

engage in a DeFi attack. To facilitate optimal parameter
solving, we quantitatively formalize every endpoint pro-
vided by DeFi platforms as a state transition function
S′ = T (S; p) with the constraints C(S; p), where S is the
given state, p are the parameters chosen by the adversary
and S′ is the output state. The state can represent, for
example, the adversarial balance or any internal status of
the DeFi platform, while the constraints are set by the
execution requirements of the Ethereum Virtual Machine
(e.g. the Ether balance of an entity should never be a
negative number) or the rules defined by the respective
DeFi platform (e.g. a flash loan must be repaid before the
transaction termination plus loan fees). Note that when
quantifying profits, we ignore the loan interest/fee pay-
ments and Ethereum transaction fees, which are negligible
in the present DeFi attacks. The constraints are enforced
on the input parameters and output states to ensure that
the optimizer yields valid parameters.

We define the balance state function B(E; X; S) to denote
the balance of currency X held by entity E at a given state
S. The constraint of Equation 3 must always be satisfied.

∀(E, X, S), B(E; X; S) ≥ 0 (3)
In the following, we detail the quantitative DeFi models
applied in this work. Note that we do not include all the
states involved in the DeFi attacks but only those relevant
to the constrained optimization.
Flash loan: We assume a flash loan platform F with zX
amount of asset X, which the adversary A can borrow.
The required interest to borrow b of X is represented by
interest(b).
State: In a flash loan, the state is represented by the
balance of A, i.e. B(A; X; S).
Transitions: We define the transition functions of Loan in
Equation 4 and Repay in Equation 5, where the parameter
bX denotes the loaned amount.

B(A; X; S′) = B(A; X; S) + bX

s.t. zX − bX ≥ 0
(4)

B(A; X; S′) = B(A; X; S)− bX − interest(bX)
s.t. B(A; X; S)− bX − interest(bX) ≥ 0

(5)

Fixed price trading: We define the endpoint SellXforY
that allows the adversary A to trade qX amount of X for
Y at a fixed price pm. maxY is the maximum amount of Y
available for trading.
State: We consider the following state variables:
• Balance of asset X held by A: B(A; X; S)
• Balance of asset Y held by A: B(A; Y; S)

Transitions: Transition functions of SellXforY are defined
in Equation 6.

B(A; X; S′) = B(A; X; S)− qX

B(A; Y; S′) = B(A; Y; S) + qX
pm

s.t. B(A; X; S)− qX ≥ 0

maxY − qX
pm
≥ 0

(6)

Constant product automated market maker: The
constant product AMM is with a market share of 77%
among the AMM DEX, the most common AMM model
in current DeFi ecosystem [38]. We denote by M an AMM
instance with trading pair X/Y and exchange fee rate f.

State: We consider the following states variables that can
be modified in an AMM state transition.
• Amount of X in AMM liquidity pool: uX(S), which

equals to B(M; X; S)
• Amount of Y in AMM liquidity pool: uY(S), which

equals to B(M; Y; S)
• Balance of X held by A: B(A; X; S)
• Balance of Y held by A: B(A; Y; S)

Transitions: Among the endpoints of M, we focus on
SwapXforY and SwapYforX, which are the relevant end-
points for the DeFi attacks discussed within this work.
pX is a parameter that represents the amount of X the
adversary intends to trade. A inputs pX amount of X
in AMM liquidity pool and receives oY amount of Y
as output. The constant product rule [38] requires that
Equation 7 holds.

uX(S)× uY(S) = (uX(S) + (1− f)pX)× (uY(S)− oY) (7)
We define the transition functions and constraints of
SwapXforY in Equation 8 (analogously for SwapYforX ).

B(A; X; S′) = B(A; X; S)− pX

B(A; Y; S′) = B(A; Y; S) + oY

uX(S′) = uX(S) + pX

uY(S′) = uY(S)− oY

where oY = pX × (1− f)× uY(S)
uX(S) + pX × (1− f)

s.t. B(M; X; S)− pX ≥ 0

(8)

Because an AMM DEX M transparently exposes all
price transitions on-chain, it can be used as a price oracle
by the other DeFi platforms. The price of Y with respect
to X given by M at state S is defined in Equation 9.

pY(M; S) = uX(S)
uY(S) (9)

Automated price reserve: The automated price reserve
is another type of AMM that automatically calculates the
exchange price depending on the assets hold in inventory.
We denote a reserve holding the asset pair X/Y with R.
A minimum price minP and a maximum price maxP is set
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when initiating R. R relies on a liquidity ratio parameter
lr to calculate the asset price. We assume that R holds
kX(S) amount of X at state S. We define the price of Y in
Equation 10.

PY(R; S) = minP× elr×kX(S) (10)
The endpoint ConvertXtoY provided by R allows the
adversary A to exchange X for Y.

State: We consider the following state variables:
• The inventory of X in the reserve: kX(S), which equals

to B(R; X; S)
• Balance of X held by A: B(A; X; S)
• Balance of Y held by A: B(A; Y; S)

Transitions: We denote as hX the amount of X that A inputs
in the exchange to trade against Y. The exchange output
amount of Y is calculated by the following formulation.

jY = e−lr×hX − 1
lr × PY(R; S)

We define the transition functions within Equation 11.
kX(S′) = kX(S) + hX

B(A; X; S′) = B(A; X; S)− hX

B(A; Y; S′) = B(A; Y; S) + jY

where jY = e−lr×hX − 1
lr × PY(R; S)

s.t. B(A; X; S)− hX ≥ 0
PY(R; S′)−minP ≥ 0
maxP− PY(R; S′) ≥ 0

(11)

Collateralized lending & borrowing: We consider
a collateralized lending platform L, which provides the
CollateralizedBorrow endpoint that requires the user
to collateralize an asset X with a collateral factor cf (s.t.
0 < cf < 1) and borrows another asset Y at an exchange
rate er. The collateral factor determines the upper limit
that a user can borrow. For example, if the collateral factor
is 0.75, a user is allowed to borrow up to 75% of the
value of the collateral. The exchange rate is for example
determined by an outsourced price oracle. zY denotes the
maximum amount of Y available for borrowing.

State: We hence consider the following state variables and
ignore the balance changes of L for simplicity.
• Balance of asset X held by A: B(A; X; S)
• Balance of asset Y held by A: B(A; Y; S)

Transitions: The parameter cX represents the amount of as-
set X that A aims to collateralize. Although A is allowed to
borrow less than his collateral would allow for, we assume
that A makes use the entirety of his collateral. Equation 12
shows the transition functions of CollateralizedBorrow.

B(A; X; S′) = B(A; X; S)− cX

B(A; Y; S′) = B(A; Y; S) + bY

where bY = cX × cf
er

s.t. B(A; X; S′)− cX ≥ 0; zY − bY ≥ 0

(12)

A can retrieve its collateral by repaying the borrowed asset
through the endpoint CollateralizedRepay. We show
the transition functions in Equation 13 and for simplicity
ignore the loan interest fee.

B(A; X; S′) = B(A; X; S) + cX

B(A; Y; S′) = B(A; Y; S)− bY

s.t. B(A; Y; S)− bY ≥ 0
(13)

Margin trading: A margin trading platform T allows the
adversary A to short/long an asset Y by collateralizing
asset X at a leverage `, where ` ≥ 1.

We focus on the MarginShort endpoint which is relevant
to the discussed DeFi attack in this work. We assume A
shorts Y with respect to X on F. The parameter dX denotes
the amount of X that A collateralizes upfront to open the
margin. wX represents the amount of X held by F that
is available for the short margin. A is required to over-
collateralize at a rate of ocr in a margin trading. In our
model, when a short margin (short Y with respect to X) is
opened, F performs a trade on external X/Y markets (e.g.
Uniswap) to convert the leveraged X to Y. The traded Y
is locked until the margin is closed or liquidated.
State: In a short margin trading, we consider the following
state variables:
• Balance of X held by A: B(A; X; S)
• The locked amount of Y: L(A; Y; S)

Transitions: We assume F transacts from an external
market at a price of emp. The transition functions and
constraints are specified in Equation 14.

B(A; X; S′) = B(A; X; S)− cX

L(A; Y; S′) = L(A; Y; S) + lY

where lY = dX × `

ocr × emp
s.t. B(A; X; S)− cX ≥ 0

wX + dX −
dX × `

ocr ≥ 0

(14)

D. Parametrized Optimization

Our parametrized optimizer (cf. Figure 1) is designed to
solve the optimal parameters that maximizes the revenue
given an on-chain state, Defi models (cf. Section V-C)
and attack vector. An attack vector specifies the execution
order of different endpoints across various DeFi platforms,
depending on which we formalize a unidirectional chain of
transition functions (cf. Equation 15).

Si = Ti(Si−1; pi) (15)
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Description Variable Value

Maximum Amount of ETH to flash loan vX 10, 000

Collateral Factor cf 0.75
Collateralized Borrowing Exchange Rate er 36.48
Maximum Amount of WBTC to Borrow zY 155.70
Uniswap Reserved ETH uX(S0) 2, 817.77
Uniswap Reserved WBTC uY(S0) 77.08
Over Collateral Ratio ocr 1.153
Leverage ` 5
Maximum Amount of ETH to leverage wX 4, 858.74
Market Price of WBTC pm 39.08

Fig. 8. Initial on-chain states of the pump and arbitrage attack.

By nesting transition functions, it is trivial to obtain the
cumulative state transition functions ACCi(S0; p1:i); pi)
that satisfy Equation 16, where p1:i = (p1, ..., pi).

Si = Ti(Si−1; pi)
= Ti(Ti−1(Si−2; pi−1); pi)
= Ti(Ti−1(...T1(S0, p1)...; pi−1); pi)
= ACCi(S0; p1:i)

(16)

Therefore the constraints generated in each step can be
expressed as Equation 17.

Ci(Si; pi)⇐⇒ Ci(ACCi(S0; p1:i); pi) (17)
We assume an attack vector composed of N transition
functions. The objective function can be calculated from
the initial state S0 and the final state SN (e.g. the increase
of the adversarial balance).

O(S0; SN )⇐⇒ O(S0;ACC(S0; p1:N )) (18)
Given the initial state S0, we formulate an attack vector
into a constrained optimization problem with respect to
all the parameters p1:N (cf. Equation 19).

maximize O(S0;ACC(S0; p1:N ))
s.t. Ci(ACCi(S0; p1:i); pi) ∀i ∈ [1, N ]

(19)

E. Optimizing the Pump and Arbitrage
In the following, we evaluate our parametrized opti-

mization framework on the existing attacks described in
Section IV. Figure 8 summarizes the on-chain state when
the attack was executed (i.e. S0). We use these blockchain
records as the initial state in our evaluation. X and Y
denote ETH and WBTC respectively. For simplicity, we
ignore the trading fees in the constant product AMM (i.e.
f = 0 for M). The endpoints executed in the pump and
arbitrage attack are listed in the execution order as follows.

1) Loan (dYdX)
2) CollateralizedBorrow (Compound)
3) MarginShort(bZx) & SwapXforY (Uniswap)
4) SwapYforX (Uniswap)
5) Repay (dYdX)
6) SellXforY & CollateralizedRepay(Compound)

In in the pump and arbitrage attack vector, we intend to
tune the following two parameters, (i) p1: the amount of X
collateralised to borrow Y in the endpoint 2) and (ii) p2:

the amount of X collateralised to short Y in the endpoint
3). Following the procedure of Section V-D, we proceed
with detailing the construction of the constraint system.

0): We assume the initial balance of X owned by A is B0
(cf. Equation 20), and we refer the reader to Figure 8 for
the remaining initial state values.

B(A; X; S0) = B0 (20)

1) Loan: A gets a flash loan of X amounts p1 + p2 in total
B(A; X; S1) = B0 + p1 + p2

with the constraints
p1 ≥ 0, p2 ≥ 0, vX − p1 − p2 ≥ 0

2) CollateralizedBorrow: A collateralizes p1 amount of
X to borrow Y from the lending platform L

B(A; X; S2) = B(A; X; S1)− p1 = B0 + p2

B(A; Y; S2) = p1 × cf
er

with the constraint zY −
p1 × cf

er ≥ 0

3) MarginShort & SwapXforY: A opens a short margin
with p2 amount of X at a leverage of ` on the margin
trading platform T; T swaps the leveraged X for Y at the
constant product AMM M

B(A; X; S3) = B(A; X; S2)− p2 = B0

uX(S3) = uX(S0) + p2 × `

ocr
uY(S3) = uX(S0)× uY(S0)

uX(S3)
L(A; Y; S3) = uY(S0)− uY(S3)

with the constraint wX + p2 −
p2 × `

ocr ≥ 0

4) SwapYforX: A dumps all the borrowed Y at M
B(A; Y; S4) = 0

uY(S4) = uY(S3) + B(A; Y; S2)

uX(S4) = uX(S3)× uY(S3)
uY(S4)

B(A; X; S4) = B0 + uX(S3)− uX(S4)

5) Repay: A repays the flash loan
B(A; X; S5) = B(A; X; S4)− p1 − p2

with the constraint B(A; X; S4)− p1 − p2 ≥ 0

6) SellXforY & CollateralizedRepay: A buys Y from
the market with the market price pm and retrieves the
collateral from L

B(A; X; S6) = B(A; X; S5) + p1 − B(A; Y; S2)× pm
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Objective
uX(S0) + p2×`

ocr − uX(S4)− p2 − p1×cf×pm
erfunction

Constraints

p1 ≥ 0, p2 ≥ 0
vX − p0 − p1 ≥ 0

zY − p1×cf
er ≥ 0

wX + p2 − p2×`
ocr ≥ 0

B0 + uX(S0) + p2×`
ocr − uX(S4)− p1 − p2 ≥ 0

Fig. 9. Constraints generated for the pump and arbitrage attack.
We remark that uX(S4) is a nonlinear component with respect to p1
and p2.

The objective function is the adversarial ETH revenue
(cf. Equation 21).
O(S0; p1; p2) = B(A; X; S6)− B0

= uX(S3)− uX(S4)− p2 − pm × B(A; Y; S2)

= uX(S0) + p2 × `

ocr − uX(S4)− p2

− p1 × cf × pm

er
(21)

Constraints: We summarize the constraint in Figure 9,
five linear constraints and one nonlinear constraint, which
implies that the optimization can be solved efficiently.

F. Optimizing the Pump and Arbitrage Attack
We apply the Sequential Least Squares Program-

ming (SLSQP) algorithm from SciPy10 to solve the
optimization problem. Our program is evaluated on a
Ubuntu 18.04.2 machine, 16 CPU cores and 32GB RAM.
We repeated our experiment for 1′000 times, the optimizer
spent 6.1ms on average converging to the optimum.
Optimal pump and arbitrage parameters: The opti-
mizer provides a maximum revenue of 2, 778.94 ETH when
setting the parameters (p1; p2) to (2, 470.08; 1, 456.23),
while in the original attack the parameters (5, 500; 1, 300)
only yield 1, 171.70 ETH. Note, due to the ignorance
of trading fees and precision differences, there is a mi-
nor discrepancy between the original attack revenue cal-
culated with our model and the real revenue which
is 1, 193.69 ETH (cf. Section IV). This is a 829.5k USD
gain over the attack that took place, using the price of
ETH at that time.
Optimal parameter validation: We experimentally val-
idate the optimal pump and arbitrage attack by forking
the Ethereum blockchain with Ganache11 at block 9484687
(one block prior to the original attack transaction). We
then implement the pump and arbitrage attack in solid-
ity v0.6.3. In the Pump and Arbitrage attack, revenues
are divided into two parts: part one from the flash loan
transaction, and part two which is a follow-up operation
in later blocks (cf. Section IV) to repay the loan. For
simplicity, we chose to only validate the first part, abiding

10https://www.scipy.org/. We use the minimize function in the
optimize package.

11https://www.trufflesuite.com/ganache

Description Variable Value

Maximum Amount of ETH to flash loan vX 7, 500
Uniswap Reserved ETH uX(S0) 879.757
Uniswap Reserved sUSD uY(S0) 243, 441.12
Liquidity Rate lr 0.00252
Minimum sUSD Price of Kyber Reserve minP 0.0037
Maximum sUSD Price of Kyber Reserve maxP 0.0148
Inventory of ETH in Kyber Reserve kX(S0) 0.90658
Market Price of sUSD pm 0.00372719
Maximum Amount of sUSD to Buy maxY 943, 837.59
Collateral Factor cf 0.667
Maximum Amount of ETH to Borrow zY 11, 086.29

Fig. 10. Initial on-chain states of the oracle manipulation attack.

by the following methodology: (i) We apply the parame-
ter output of the parametrized optimizer, i.e. (p1; p2) =
(2, 470.08; 1, 456.23) to the adversarial validation smart
contract. (ii) Note that our model is an approximation of
the real blockchain transition functions. Hence, due to the
inaccuracy of our model we cannot directly use the precise
model output, but instead use the model output as a guide
for a manual, trial and error search. We find 1, 344 is the
maximum value of p2 that allows the successful adversarial
trade. (iii) Given the new p2 constraint, our optimizer
outputs the new optimal parameters (2, 404; 1, 344). (iv)
Our optimal adversarial trade yields a profit of 1, 958.01
ETH part one revenue (as opposed to 71.41 ETH for the
original attack). Executing our attack consumes a total
of 3.3M gas. We note that these cumbersome manual
parameter adjustments would be unnecessary with a more
precise DeFi model.

G. Optimizing the Oracle Manipulation Attack

In the oracle manipulation attack, X denotes ETH and
Y denotes sUSD. Again, we ignore the trading fees in the
constant product AMM (i.e. f = 0 for M). The initial state
variables are presented in Figure 10. We assume that A
owns zero balance of X or Y. We list the endpoints involved
in the oracle manipulation attack vector as follows.

1) Loan(bZx)
2) SwapXforY(Uniswap)
3) ConvertXtoY(Kyber reserve)
4) SellXforY(Synthetix)
5) CollateralizedBorrow(bZx)
6) Repay(bZx)

There are three parameters to optimize in this attack, (i)
p1: the amount of X used to swap for Y in step 2); ii the
amount of X used to swap for Y in step 3); (iii) the amount
of Y used to exchange for Y in step 4). We construct the
constrained optimization problem as follows.

1) Loan: A gets a flash loan of X amounts p1 + p2 + p3

B(A; X; S1) = p1 + p2 + p3

with the constraints
p1 ≥ 0, p2 ≥ 0, p3 ≥ 0, vX − p1 − p2 − p3 ≥ 0
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2) SwapXforY: A swaps p1 amount of X for Y from the
constant product AMM M

B(A; X; S2) = B(A; X; S1)− p1 = p2 + p3

uX(S2) = uX(S0) + p1

uY(S2) = uX(S0)× uY(S0)
uX(S2)

B(A; Y; S2) = uY(S0)− uY(S2)

3) ConvertXtoY: A converts p2 amount of X to Y from
the automated price reserve R

B(A; X; S3) = B(A; X; S2)− p2 = p1

kX(S3) = kX(S0) + p2

PY(R; S3) = minP× elr×kX(S3)

B(A; Y; S3) = B(A; Y; S2) + e−lr×p2 − 1
lr × PY(R; S0)

s.t. maxP− PY(R; S3) ≥ 0

4) SellXforY: A sells p3 amount of X for Y at the price
of pm

B(A; X; S4) = B(A; X; S3)− p3 = 0

B(A; Y; S4) = B(A; Y; S3) + p3

pm

with the constraint maxY − p3

pm
≥ 0

5) CollateralizedBorrow: A collateralizes all owned Y
to borrow X according to the price given by the constant
product AMM M (i.e. the exchange rate er = 1

PY(M;S2) )

B(A; Y; S5) = 0
B(A; X; S5) = B(A; Y; S4)× cf × PY(M; S2)

with the constraint
zY − B(A; Y; S4)× cf × PY(M; S2) ≥ 0

6) Repay: A repays the flash loan
B(A; X; S6) = B(A; X; S5)− p1 − p2 − p3

with the constraint B(A; X; S5)− p1 − p2 − p3 ≥ 0
The objective function is the remaining balance of X after
repaying the flash loan (cf. Equation 22).
O(S0; p1; p2; p3) = B(A; X; S6)

= B(A; X; S5)− p1 − p2 − p3

= B(A; Y; S4)× cf × PY(M; S2)
− p1 − p2 − p3

(22)

Constraints: We summarize the produced constraints of
the oracle manipulation attack vector in Figure 11. Five
constraints are linear and the other two are nonlinear.

H. Finding Optimal Oracle Manipulation Parameters
We execute our optimizer 1, 000 times on the same

Ubuntu 18.04.2 machine with 16 CPU cores and 32 GB
RAM. The average convergence time is 12.9ms.

Objective B(A; Y; S4)× cf × PY(M; S2)− p1 − p2 − p3
function

Constraints

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0
vX − p1 − p2 − p3 ≥ 0

maxP−minP× elr×(kX(S0)+p2) ≥ 0
maxY − p3

pm
≥ 0

zY − B(A; Y; S4)× cf × PY(M; S2) ≥ 0

Fig. 11. Constraints generated for the oracle manipulation attack.
We remark that B(A; Y; S4) and PY(M; S2) are nonlinear components
with respect to p1, p2 and p3.

Optimal oracle manipulation parameters:
The optimizer discovers that setting (p1; p2; p3) to
(898.58; 546.80; 3, 517.86) results in about 6, 323.93 ETH
in profit for the adversary. This results in a gain
of 1.1M USD instead of about 600k USD.
Optimal parameter validation: We fork the Ethereum
blockchain with Ganache at block 9504626 (one block prior
to the original adversarial transaction). We then imple-
ment the oracle manipulation attack solidity v0.6.3. We
validate that executing the adversarial smart contract with
parameters (p1; p2; p3) = (898.58; 546.8; 3, 517.86) renders
a profit of 6, 262.28 ETH, while the original attack pa-
rameters yield 2, 381.41 ETH. The attack consumes 11.3M
gas (which exceeds the block gas limit (9.7M) on the
Ethereum main network). By analyzing the adversarial
validation contract, we find 460 is the maximum value of
p2 that makes the gas consumption under the block limit.
Following the similar methodology in Section V-F, we add
the new constraint to the optimizer, which then gives the
optimal parameters (714.3; 460; 3, 517.86). The augmented
validation contract makes a profit of 4, 167.01 ETH and
consumes 9.6M gas.

VI. Discussion
The current generation of DeFi had developed organi-

cally, without much scrutiny when it comes to financial
security; it, therefore, presents an interesting security
challenge to confront. DeFi, on the one hand welcomes
innovation and the advent of new protocols, such as
MakerDAO, Compound, and Uniswap. On the other hand,
despite a great deal of effort spent on trying to secure
smart contacts [28], [23], [11], [40], [37], and to avoid
various forms of market manipulation, etc. [33], [34], [7],
there has been little-to-no effort to secure entire protocols.

As such, DeFi protocols join the ecosystem, which leads
to both exploits against protocols themselves as well as
multi-step attacks that utilize several protocols such as the
two attack in Section IV. In a certain poignant way, this
highlights the fact the DeFi, lacking a central authority
that would enforce a strong security posture, is ultimately
vulnerable to a multitude of attacks effectively by design.
Flash loans are merely a mechanism that accelerates these
attacks. It does so by requiring no collateral (except for the
minor gas costs), which, in a certain way, democratizes the
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attack, opening this strategy to the masses. However, it is
quite likely that there will be other mechanisms invented
that will enable further, potentially even more devastating,
attacks in the near future.
Responsible disclosure: It is somewhat unclear how
to perform responsible disclosure within DeFi, given that
the underlying vulnerability and victim are not always
perfectly clear and that there is a lack of security standards
to apply. We plan to reach out to Aave, Kyber, and
Uniswap to disclose the contents of this paper.
Determining what is malicious: An interesting ques-
tion remains whether we can qualify the use of flash loans
(cf. Section III), as clearly malicious (or clearly benign).
We believe this is a difficult question to answer and
prefer to withhold the value judgement. The two attacks
in Section IV are clearly malicious: pump and arbitrate
involves manipulating the WBTC/ETH price on Uniswap;
the oracle manipulation attack involves price oracle by
manipulatively lowering the price of ETH against sUSD on
Kyber. However, the arbitrage mechanism in general is not
malicious — it is merely a consequence of the decentralized
nature of the DeFi ecosystem, where many exchanges and
DEXs are allowed to exist without much coordination with
each other. As such, arbitrage will continue to exist as an
phenomenon, with good and bad consequences.
Does extra capital help: The main attraction of flash
loans stems from them not requiring a collateral that needs
to be raised. One can, however, wonder whether extra
capital would make the attacks we focus on more potent
and the ROI greater. Based on our results, extra collateral
for the two attacks of Section IV would not increase
the ROI, as the liquidity constraints of the intermediate
protocols do not allow for a higher impact.
Potential defenses: Here we discuss several potential
defenses. However, we would be the first to admit that
these are not foolproof and come with potential downsides
that would significantly hamper normal interactions.
• Should DEX accept trades coming from flash loans?
• Should DEX accept coins from an address if the pre-

vious block did not show those funds in the address?
• Would introducing a delay may make sense, e.g. in

governance voting, or price oracles?
• When designing a DeFi protocol, a single transaction

should be limited in its abilities: a DEX should not
allow a single transaction triggering a slippage be-
yond 100%.

Looking into the future: In the future, we antici-
pate DeFi protocols eventually starting to comply with
a higher standard of security testing, both within the
protocol itself, as well as part of integration testing into
the DeFi ecosystem. We believe that eventually, this may
lead to some form of DeFi standards where it comes to
financial security, similar to what is imposed on banks
and other financial institutions in traditional centralized

(government-controlled) finance. We anticipate that ei-
ther whole-system penetration testing or an analytical
approach of modeling the space of possibilities like in this
paper are two ways to improve future DeFi protocols.

VII. Related Work
There is a growing body of work focusing of various

forms of manipulation and financially-driven attacks in
cryptocurrency markets. Because some of the phenomena
presented in this paper are so new, there is a paucity
of directly related work. However, existing work can be
divided into the following categories.
Crypto manipulation: A thorough crypto manipulation
study by Daian et al. [12] analyses the behaviour of
competitive arbitrage bots. Gandal et al. [19] demonstrate
that the unprecedented spike in the USD-BTC exchange
rate in late 2013 was possibly caused by price manipula-
tion. Makarov et al. [29] probe arbitrage opportunities
in crypto markets. Many scholars use GARCH models
to fit the time series of Bitcoin price. Dyhrberg et al.
[16] explore the financial asset capabilities of Bitcoin
and suggests categorizing Bitcoin as something between
gold and US Dollar; Katsiampa [25] emphasizes modelling
accuracy and recommends the AR-CGARCH model for
price retro-fitting. Bariviera et al. [6] compute the Hurst
exponent by means of the Detrended Fluctuation Analysis
method and conclude that the market liquidity does not
affect the level of long-range dependence. Corbet et al.
[10] demonstrate that Bitcoin shows characteristics of
an speculative asset rather than a currency also with
the presence of futures trading in Bitcoin. Some recent
papers focus on the phenomenon of pump-and-dump for
manipulating crypto coin prices [41], [24].
Governance Attacks: DeFi protocols such as Maker-
DAO [31] operate with a decentralized governance mecha-
nism. Holders of a voting token, are eligible to propose and
vote on changes to the protocol. By design, an entity that
is capable of amassing a sufficient number of voting to-
kens is eligible to perform unilaterally significant changes
(e.g. to liquidate and receive all collateral). Governance
attacks [35] could be aggravated with flash loans [22].

VIII. Conclusion
This paper is the first one to present a detailed ex-

ploration of the flash loan mechanism on the Ethereum
network. While proposed as a clever mechanism within
DeFi, flash loans are starting to be used as financial
attack vectors to effectively pull money in the form of
cryptocurrency out of DeFi. In this paper we analyze
existing flash loan-based attacks in detail and then proceed
to propose optimizations that significantly improve the
ROI of these attacks. Specifically, we are able to show how
two previously executed attacks can be “boosted” to result
in a revenue of 829.5k USD and 1.1M USD, respectively,
which is a boost of 2.37× and 1.73×, respectively.
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Appendix
category map = {

”0 x6B175474E89094C44Da98b954EedeAC495271d0F ” : ” Dai ” ,
”0 x61935CbDd02287B511119DDb11Aeb42F1593b7Ef ” : ”0 x ” ,
”0 x197E90f9FAD81970bA7976f33CbD77088E5D7cf7 ” : ”MakerDAO” ,
”0 x7a3370075a54B187d7bD5DceBf0ff2B5552d4F7D ” : ” Kyber ” ,
”0 x9759A6Ac90977b93B58547b4A71c78317f391A28 ” : ”MakerDAO” ,
”0 xad37fd42185Ba63009177058208dd1be4b136e6b ” : ”MakerDAO” ,
”0 x2a1530C4C41db0B0b2bB646CB5Eb1A67b7158667 ” : ” Uniswap ” ,
”0 x398eC7346DcD622eDc5ae82352F02bE94C62d119 ” : ” Aave ” ,
”0 x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B ” : ”Compound ” ,
”0 x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643 ” : ” cDai ” ,
”0 xc0829421C1d260BD3cB3E0F06cfE2D52db2cE315 ” : ” Bancor ” ,
”0 x8007aa43792A392b221DC091bdb2191E5fF626d1 ” : ” Kyber ” ,
”0 x5bcA0f6cD5F9a74895d66005acEf969342F301A0 ” : ” C o l l a t e r a l S w a p ” ,
”0 x20a1d01e03D65495AE157d47E4519EceACb608f6 ” : ” OneLeverage ” ,
”0 x5ef30b9986345249bc32d8928B7ee64DE9435E39 ” : ”MakerDAO” ,
”0 x3D0B1912B66114d4096F48A8CEe3A56C231772cA ” : ”MakerDAO” ,
”0 x3Ab6564d5c214bc416EE8421E05219960504eeAD ” : ” Bancor ” ,
”0 x201b704Ae89b31fB795F5EF41E62461b9302E1BA ” : ”DSProxy ” ,
”0 x65bF64Ff5f51272f729BDcD7AcFB00677ced86Cd ” : ” Kyber ” ,
”0 x4Ddc2D193948926D02f9B1fE9e1daa0718270ED5 ” : ” cEther ” ,
”0 x2F0b23f53734252Bda2277357e97e1517d6B042A ” : ”MakerDAO” ,
”0 x23401C7811411f40008CE9688EdB293D8fe507bc ” : ”DSProxy ” ,
”0 x06f7Bf937Dec0C413a2E0464Bb300C4d464bb891 ” : ” Bancor ” ,
”0 x3dfd23A6c5E8BbcFc9581d2E864a68feb6a076d3 ” : ” Aave ” ,
”0 x63825c174ab367968EC60f061753D3bbD36A0D8F ” : ” Kyber ” ,
”0 x794e6e91555438aFc3ccF1c5076A74F42133d08D ” : ” O a s i s ” ,
”0 xC9A4AEF09fD9ae835A0c60A0757C8dd748116781 ” : ” OneLeverage ” ,
”0 x1F573D6Fb3F13d689FF844B4cE37794d79a7FF1C ” : ” Bancor ” ,
”0 xFa8C4B17ac43A025977F5feD843B6c8c4EA52F1c ” : ”DSProxy ” ,
”0 x2E642b8D59B45a1D8c5aEf716A84FF44ea665914 ” : ” Uniswap ” ,
”0 xE03374cAcf4600F56BDDbDC82c07b375f318fc5C ” : ” Bancor ” ,
”0 x309627af60F0926daa6041B8279484312f2bf060 ” : ” Bancor ” ,
”0 x09cabEC1eAd1c0Ba254B09efb3EE13841712bE14 ” : ” Uniswap ” ,
”0 x0D8775F648430679A709E98d2b0Cb6250d2887EF ” : ”BAT” ,
”0 x207737F726c13C1298B318D233AAa6164EE6b712 ” : ”DSProxy ” ,
”0 x818E6FECD516Ecc3849DAf6845e3EC868087B755 ” : ” Kyber ” ,
”0 x35D1b3F3D7966A1DFe207aa4514C12a259A0492B ” : ”MakerDAO” ,
”0 x39755357759cE0d7f32dC8dC45414CCa409AE24e ” : ” O a s i s ” ,
”0 xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48 ” : ”USDC” ,
”0 xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 ” : ”WETH9” ,
”0 x7778d1011e19C0091C930d4BEfA2B0e47441562A ” : ” OneLeverage ” ,
”0 x89d24A6b4CcB1B6fAA2625fE562bDD9a23260359 ” : ” SAI ” ,
”0 xd3ec78814966Ca1Eb4c923aF4Da86BF7e6c743bA ” : ” Bancor ” ,
”0 x19c0976f590D67707E62397C87829d896Dc0f1F1 ” : ”MakerDAO” ,
”0 x35A679A2A63F774BBEc5E80E32aE436BC3b5d98e ” : ”DSProxy ” ,

}
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