
GATEKEEPER: Mostly Static Enforcement of
Security and Reliability Policies

for JavaScript Code

Benjamin Livshits
Microsoft Research

Salvatore Guarnieri
University of Washington

MSR-TR-2009-16

Abstract

The advent of Web 2.0 has lead to the proliferation of client-side code that is typ-
ically written in JavaScript. This code is often combined or mashed-up with other
code and content from disparate, mutually untrusting parties, leading to undesir-
able security and reliability consequences.

This paper proposes GATEKEEPER, a mostly static approach for soundly en-
forcing security and reliability policies for JavaScript programs. GATEKEEPER is a
highly extensible system with a rich, expressive policy language, allowing the host-
ing site administrator to formulate their policies as succinct Datalog queries. The
primary application of GATEKEEPER is in reasoning about JavaScript widgets such
as those hosted by widget portals Live.com and Google/IG. Widgets submitted to
these sites can be either malicious or just buggy and poorly written, and the host-
ing site has the authority to reject the submission of widgets that do not meet the
site’s security policies. To show the practicality of our approach, we describe nine
representative security and reliability policies. Statically checking these policies
results in 1,341 verified warnings in 684 widgets, no false negatives, due to the
soundness of our analysis, and false positives affecting only two widgets.

1 Introduction

JavaScript is increasingly becoming the lingua franca of the Web, used both for
large monolithic applications and small widgets that are typically combined with
other code from mutually untrusting parties. At the same time, many programming
language purists consider JavaScript to be an atrocious language, forever spoiled
by hard-to-analyze dynamic constructs such as eval and the lack of static typing.
This perception has lead to a situation where code instrumentation and not sta-
tic program analysis has been the weapon of choice when it comes to enforcing
security policies of JavaScript code [16, 19, 22, 28].

As a recent report from Finjan Security shows, widget-based attacks are
on the rise [13], making widget security an increasingly important problem to
address. The report also describes well-publicised vulnerabilities in the Vista
sidebar, Live.com, and Yahoo! widgets. The primary focus of this paper
is on statically enforcing security and reliability policies for JavaScript code.
These policies include restricting widget capabilities, making sure built-in ob-
jects are not modified, preventing code injection attempts, redirect and cross-
site scripting detection, preventing global namespace pollution, taint checking,
etc. Soundly enforcing security policies is harder that one might think at first.
For instance, if we want to ensure a widget cannot call document.write be-
cause this construct allows arbitrary code injection, we need to either analyze
or disallow tricky constructs like eval("document" + ".write(’...’)"),
or var a = document[’wri’ + ’te’]; a(’...’); which use reflection
or even var a = document; var b = a.write; b.call(this, ’...’),
which uses aliasing to confuse a potential enforcement tool. A naı̈ve unsound
analysis can easily miss these constructs. Given the availability of JavaScript ob-
fuscators [15], a malicious widget may easily masquerade its intent. Even for this
very simple policy, grep is far from an adequate solution.

JavaScript relies on heap-based allocation for the objects it creates. Because
of the problem of object aliasing alluded to above in the document.write ex-
ample where multiple variable names refer to the same heap object, to be able
to soundly enforce the policies mentioned above, GATEKEEPER needs to stati-
cally reason about the program heap. To this end, this paper proposes the first
points-to analysis for JavaScript. The programming language community has long
recognized pointer analysis to be a key building blocks for reasoning about object-
oriented programs. As a result, pointer analyses have been developed commonly
used languages such as C and Java, but nothing has been proposed for JavaScript
thus far. However, a sound and precise points-to analysis of the full JavaScript
language is very hard to construct. Therefore, we propose a pointer analysis for
JavaScriptSAFE, a realistic subset that includes prototypes and reflective language

1

constructs. To handle programs outside of the JavaScriptSAFE subset, GATEKEEPER

inserts runtime checks to preclude dynamic code introduction. Both the pointer
analysis and nine policies we formulate on top of the points-to results are written
on top of the same expressive Datalog-based declarative analysis framework. As a
consequence, the hosting site interested in enforcing a security policy can program
their policy in several lines of Datalog and apply it to all newly submitted widgets.

In this paper we demonstrate that, in fact, JavaScript programs are far more
amenable to analysis than previously believed. To justify our design choices, we
have evaluated over 8,000 JavaScript widgets, from sources such as Live.com,
Google, and the Vista Sidebar. Unlike some previous proposals [28], JavaScriptSAFE

is entirely pragmatic, driven by what is found in real-life JavaScript widgets. En-
couragingly, we have discovered that the use of with, Function and other “diffi-
cult” constructs [10] is similarly rare. In fact, eval, a reflective construct that usu-
ally foils static analysis, is only used in 6% of our benchmarks. However, statically
unknown field references such a[index], dangerous because these can be used to
get to eval through this[’eval’], etc., and innerHtml assignments, dangerous
because these can be used to inject JavaScript into the DOM, are more prevalent
than previously thought. Since these features are quite common, to prevent runtime
code introduction and maintain the soundness of our approach, GATEKEEPER in-
serts dynamic checks around statically unresolved field references and innerHtml
assignments.

This paper contains a comprehensive large-scale experimental evaluation. To
show the practicality of GATEKEEPER, we present nine representative policies for
security and reliability. Our policies include restricting widgets capabilities to pre-
vent calls to alert and the use of the XmlHttpRequest object, looking for global
namespace pollution, detecting browser redirects leading to cross-site scripting,
preventing code injection, taint checking, etc. We experimented on 8,379 widgets,
out of which 6,541 are analyzable by GATEKEEPER 1. Checking our nine policies
resulted in us discovering a total of 1,341 verified warnings that affect 684 widgets,
with only 113 false positives affecting only two widgets.

1.1 Contributions

This paper makes the following contributions:

• We propose the first points-to analysis for JavaScript programs. Our analysis
is the first to handle a prototype-based language such as JavaScript. We
also identify JavaScriptSAFE, a statically analyzable subset of the JavaScript

1Because we cannot ensure soundness for the remaining 1,845 widgets, we reject them without
further policy checking.

2

submit widget
GATEKEEPER

policy checks
pass ?

yes: deploy

no: reject and output detailed warnings

user widget host developer

Figure 1: GATEKEEPER deployment. The three principals are: the user, the widget host,
and the widget developer.

language and propose lightweight instrumentation that restricts runtime code
introduction to handle many more programs outside of the JavaScriptSAFE

subset.
• On the basis of points-to information, we demonstrate the utility of our ap-

proach by describing nine representative security and reliability policies that
are soundly checked by GATEKEEPER, meaning no false negatives are in-
troduced. These policies are expressed in the form of succinct declarative
Datalog queries. The system is highly extensible and easy to use: each pol-
icy we present is only several lines of Datalog. Policies we describe include
restricting widget capabilities, making sure built-in objects are not modified,
preventing code injection attempts, etc.

• Our experimental evaluation involves in excess of eight thousand publicly
available JavaScript widgets from Live.com, the Vista Sidebar, and Google.
We flag a total of 1,341 policy violations spanning 684 widgets, with 113
false positives affecting only two widgets.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 gives an overview of
our approach and summarizes the most significant analysis challenges. Section 3
provides a deep dive into the details of our analysis; a reader interested in learning
about the security policies may skip this section on the first reading. Section 4
describes nine static checkers we have developed for checking security policies
of JavaScript widgets. Section 5 summarizes the experimental results. Finally,
Sections 6 and 7 describe related work and conclude.

3

Program
AST

yes
Points-to

analysis rules

no

yes

JavaScriptSAFE ?

Instrument unresolved
array accesses and
.innerHtml stores

no

Policy #1

Policy #2

Policy #3

JAVASCRIPTGK?

+ =
Policy violationsPolicy violations

Figure 2: GATEKEEPER analysis architecture.

2 Overview

As a recent report from Finjan Security shows, widget-based attacks are on the
rise [13]. Exploits such those in a Vista sidebar contacts widget, a Live.com RSS
widget, and a Yahoo! contact widget [13, 21] not only affect unsuspecting users,
they also reflect poorly on the hosting site. In a way, widgets are like operating
system drivers: their quality directly affects the perceived quality of the underlying
OS. While driver reliability and security has been subject of much work [5], widget
security has received relatively little attention. Just like with drivers, however,
widgets can run in the same page (analogous to an OS process) as the rest of the
hosting site. Because widget flaws can negatively impact the rest of the site, it is
our aim to develop tools to ensure widget security and reliability.

While our proposed static analysis techniques are much more general and can
be used for purposes as diverse as program optimization, concrete type inference,
and bug finding, the focus of this paper is on soundly enforcing security and re-
liability policies of JavaScript widgets. There are three principals that emerge in
that scenario: the widget hosting site such as Live.com, the developer submitting
a particular widget, and the user on whose computer the widget is ultimately exe-
cuted. The relationship of these principals is shown in Figure 1. We are primarily
interested in helping the widget host ensure that their users are protected.

2.1 Deployment

We envision GATEKEEPER being deployed and run by the widget hosting provider
as a mandatory checking step in the online submission process, required before a
widget is accepted from a widget developer. Many hosts already use captchas to
ensure that the submitter is human. However, captchas say nothing about the qual-
ity and intent of the code being submitted. Using GATEKEEPER will ensure that
the widget being submitted complies with the policies chosen by the host. A host-
ing provider has the authority to reject some of the submitted widgets, instructing
widgets authors to change their code until it passes the policy checker, not unlike
tools like the static driver verifier for Windows drivers [18]. Our policy checker

4

Sidebar Windows Live Google

JavaScript Construct Affected % Affected % Affected %

Non-Const Index 1,736 38.6% 176 6.5% 192 16.4%
with 422 9.4% 2 .1% 2 .2%
arguments 175 3.9% 6 .2% 3 .3%
setTimeout 824 18.3% 49 1.8% 65 5.6%
setInterval 377 8.4% 16 .6% 13 1.1%
eval 353 7.8% 10 .4% 55 4.7%

apply 173 3.8% 29 1.1% 6 .5%
call 151 3.4% 2,687 99.0% 4 .3%
Function 142 3.2% 4 .1% 21 1.8%
document.write 102 2.3% 1 0% 108 9.2%
.innerHTML 1,535 34.1% 2,053 75.6% 288 24.6%

Figure 3: Statistics for 4,501 widgets from Sidebar and 2,714 widgets from Live, and
1,171 widgets from Google.

outputs detailed information about why a particular widget fails, annotated with
line numbers, which allows the widget developer to fix their code and resubmit.

2.2 Designing Static Language Restrictions

To enable sound analysis, we first restrict the input to be a subset of JavaScript
as defined by EcmaScript-262 language standard. Unlike previous proposals that
significantly hamper the language expressiveness for the sake of safety [9], our
restrictions are relatively minor. In particular, we disallow the eval construct and
its close cousin, the Function object constructor as well as functions setTimeout
and setInterval. All of these constructs take a string and execute it as JavaScript
code. The fundamental problem with these constructs is that they introduce new
code at runtime that is unseen — and cannot be reasoned about — by the static
analyzer. These constructs have the same expressive power: allowing one of them
is enough to have the possibility of arbitrary code introduction.

We also disallow the use of with, a language feature that allows to dynam-
ically substitute the symbol lookup scope, a feature that has few legitimate uses
and significantly complicates static reasoning about the code. As our treatment of
prototypes shows, it is in fact possible to handle with, but it is only used in 8% of
our benchmarks.

We do allow reflective constructs Function.call, Function.apply, and the
arguments array. Indeed, Function.call, the construct that allows the caller of
a function to set the callee’s this parameter, is used in 99% of Live widgets and
can be analyzed statically with relative ease, so we handle this language feature. In

5

Feature JavaScriptSAFE JavaScriptGK

UNCONTROLLED CODE INJECTION

Unrestricted eval 7 7

Function constructor 7 7

setTimeout, setInterval 7 7

with 7 7

document.write 7 7

Stores to code-injecting fields
innerHtml, onclick, etc.

7 7

CONTROLLED REFLECTION

Function.call X X
Function.apply X X
arguments array X X

INSTRUMENTATION POINTS

Non-static field stores 7 X
innerHtml assignments 7 X

Figure 4: Support for different dynamic EcmaScript-262 language features in
JavaScriptSAFE and JavaScriptGK language subsets.

other words, our analysis choices are driven by the statistics we collect from 8,379
real-world widgets and not hypothetical considerations. More information about
the relative prevalence of “dangerous” language features can be found in Figure 3.
The most common “unsafe” features we have to address are .innerHtml assign-
ments and statically unresolved field references. Because they are so common, we
cannot simply disallow them, so we check them at runtime instead.

To implement restrictions on the allowed input, in our JavaScript parser we
flag the use of tokens eval, Function, and with, as well as setTimeout, and
setInterval. We need to disallow all of these constructs because letting one
of them through is enough for arbitrary code introduction. The feature we cannot
handle simply using token blacklisting is document.write. We first optimistically
assume that no calls to document.write are present and then proceed to verify this
assumption as described in Section 4.3. This way our analysis remains sound.

We consider two subsets of the JavaScript language, JavaScriptSAFE and
JavaScriptGK. The two subsets are compared in Figure 4. If the program passes
the checks above and lacks statically unresolved array accesses and innerHtml
assignments, it is declared to be in JavaScriptSAFE. Otherwise, these dangerous ac-
cesses are instrumented and it is declared in the JavaScriptGK language subset. To
resolve field accesses, we run a local dataflow constant propagation analysis [1] to

6

identify the use of constants as field names. In other words, in the following code
snippet

var fieldName = ’f’;
a[fieldName] = 3;

the second line will be correctly converted into a.f = 3.

2.3 Analysis Process

The analysis process is summarized in Figure 2. If the program is outside of
JavaScriptGK, we reject it right away. Otherwise, we first traverse the program
representation and output a database of facts, expressed in Datalog notation. This
is basically a declarative database representing what we need to know about the
input JavaScript program. We next combine these facts with a representation of
the native environment of the browser discussed in Section 3.5 and the points-to
analysis rules. All three are represented in Datalog and can be easily combined.
We pass the result to bddbddb, an off-the-shelf declarative solver [26], to produce
policy violations. This provides for a very agile experience, as changing the policy
usually only involves editing several lines of Datalog.

2.4 Processing JavaScriptSAFE

For a JavaScriptSAFE program, we normalize each function to a set of statements
shown in Figure 5. Note that the JavaScriptSAFE language, which we shall ex-
tend in Section 3 is very much Java-like and is therefore amenable to inclusion-
based points-to analysis [26]. What is not made explicit by the syntax is that
JavaScriptSAFE is a prototype-based language, not a class-based one. This means
that objects do not belong to explicitly declared classes. Instead, a object cre-
ation can be based on a function, which becomes that object’s prototype. Fur-
thermore, we support a restricted form of reflection including Function.call,
Function.apply, and the arguments array. The details of pointer analysis are
captured in the Datalog rules in Figure 7 and discussed in detail in Section 3.

The crux of the GATEKEEPER approach is to perform declarative analysis on
top of the program representation computed via the points-to analysis. One key
distinction of our approach with Java is that there is basically no distinction of
heap-allocation objects and function closures in the way the analysis treats them.
In other words, at a call site, if the base of a call “points to” an allocation site
that corresponds to a function declaration, we statically conclude that that function
might be called. While it may be possible to recover portions of the call graph

7

s ::=
ε | [EMPTY]

s; s | [SEQUENCE]

v1 = v2 | [ASSIGNMENT]

v = ⊥ | [PRIMASSIGNMENT]

return v; | [RETURN]

v = new v0(v1, ..., vn); | [CONSTRUCTOR]

v = v0(v1, v2, . . . , vn); | [CALL]

v1 = v2.f ; | [LOAD]

v1.f = v2; | [STORE]

v = function(v1, ..., vn) {s; }; [FUNCTIONDECL]

Figure 5: JavaScriptSAFE statement syntax in BNF.

through local analysis, we interleave call graph and points-to analysis in our ap-
proach.

We are primarily concerned with analyzing objects or references to them in the
JavaScript heap and not primitive values such as integers and strings. We therefore
do not attempt to faithfully model primitive value manipulation, lumping primitive
values into PRIMASSIGNMENT statements.

2.5 Analysis Soundness

The core static analysis implemented by GATEKEEPER is sound, meaning that we
statically provide a conservative approximation of the runtime program behavior.
Achieving this for JavaScript with all its dynamic features is far from easy. As a
consequence, we extend our soundness guarantees to programs utilizing a smaller
subset of the language. For programs within JavaScriptSAFE, our analysis is sound.
For programs within GATEKEEPER, our analysis is sound as long as no code in-
troduction is detected with the runtime instrumentation we inject. This is very sim-
ilar to saying that, for instance, a Java program is not going to access outside the
boundaries of an array as long as no ArrayOutOfBoundsException is thrown.
Details of runtime instrumentation are presented in Section 3.3. The implications
of soundness is that GATEKEEPER is guaranteed to flag all policy violations, at the
cost of potential false positives.

We should also point out that the GATEKEEPER analysis is inherently a whole-
program analysis, not a modular one. The need to statically have access to the
entire program is why we work so hard to limit language features that allow dy-

8

v1 = v2 ASSIGN(v1, v2). [ASSIGNMENT]
v = ⊥ [BOTASSIGNMENT]
return v CALLRET(v). [RETURN]

v = new v0(v1, v2, ..., vn) PTSTO(v, dfresh).
PROTOTYPE(dfresh , h) : –

PTSTO(v0, m),
HEAPPTSTO(m,"prototype", h).

∀z > 0 : ACTUAL(i, z, vz).
∀z > 0 : CALLRET(i, v).

[CONSTRUCTOR]

v = v0(v1, v2, . . . , vn) ∀z > 0 : ACTUAL(i, z, vz).
∀z > 0 : CALLRET(i, v).

[CALL]

v1 = v2.f LOAD(v1, v2, f). [LOAD]
v1.f = v2 STORE(v1, f, v2). [STORE]

v = function(v1, ..., vn) {s} PTSTO(v, dfresh).
HEAPPTSTO(dfresh ,

"prototype", pfresh).
FUNCDECL(dfresh).
PROTOTYPE(pfresh , hFP).
METHODRET(dfresh , v).
FORMAL(dfresh , z, vz).

[FUNCTIONDECL]

Figure 6: Datalog facts generated for each JavaScriptSAFE statement.

namic code loading or injection.

3 Analysis Details

This section is organized as follows. Section 3.1 talks about pointer analysis in de-
tail. Section 3.3 discusses the runtime instrumentation inserted by GATEKEEPER.
Section 3.4 talks about how we normalize JavaScript AST to fit into our interme-
diate representation. Section 3.5 talks about how we model the native JavaScript
environment.

9

% Basic rules
PTSTO(v, h) : – ALLOC(v, h).
PTSTO(v, h) : – FUNCDECL(v, h).
PTSTO(v1, h) : – PTSTO(v2, h), ASSIGN(v1, v2).

DIRECTHEAPSTORESTO(h1, f, h2) : – STORE(v1, f, v2), PTSTO(v1, h1), PTSTO(v2, h2).
DIRECTHEAPPOINTSTO(h1, f, h2) : – DIRECTHEAPSTORESTO(h1, f, h2).
PTSTO(v2, h2) : – LOAD(v2, v1, f), PTSTO(v1, h1),

HEAPPTSTO(h1, f, h2).
HEAPPTSTO(h1, f, h2) : – DIRECTHEAPPOINTSTO(h1, f, h2).

% Call graph
CALLS(i, m) : – ACTUAL(i, 0, c), PTSTO(c, m).

% Interprocedural assignments
ASSIGN(v1, v2) : – CALLS(i, m), FORMAL(m, z, v1),

ACTUAL(i, z, v2), z > 0.
ASSIGN(v2, v1) : – CALLS(i, m), METHODRET(m, v1),

CALLRET(i, v2).

% Prototype handling
HEAPPTSTO(h1, f, h2) : – PROTOTYPE(h1, h), HEAPPTSTO(h, f, h2).

Figure 7: Pointer analysis inference rules for JavaScriptSAFE expressed in Datalog.

3.1 Pointer Analysis

We define the following domains for the points-to analysis GATEKEEPER per-
forms: heap-allocated objects and functions H , program variables V , call sites I ,
fields F , and integers Z. Note that the potentially unbounded number of heap-
allocated objects is approximated using a statically fixed number of allocation sites
in the program. The analysis operates on a number of relations of fixed arity and
type. In particular,

• CALLS(i : I, m : H) holds when call site i invokes method m.
• FORMAL(m : H, z : Z, v : V) and METHODRET(m : H, v : V) record formals

of a function as well as its return value. FORMAL(m, z, v) means that function
m has z-th formal parameter v. METHODRET(m, v) means that method m’s
return parameter is v.

• ACTUAL(i : I, z : Z, v : V) and CALLRET(i : I, v : V) record actuals of a
function call as well as the return value. ACTUAL(i, z, v) means that at call
site i, z-th actual is v.

• DECLAREDIN(i : I, m : H) means that call site i is located in function m.

10

• ASSIGN(v1 : V, v2 : V) records variable assignment of the form v1 = v2.
• LOAD(v1 : V, v2 : V, f : F) and STORE(v1 : V, f : F, v2 : V) represent field

loads and stores for heap-based objects. LOAD(v1, v2, f) corresponds to the
load operation v1 = v2.f . STORE(v1 : V, f : F, v2 : V) corresponds to the
store operation v1.f = v2.

• PTSTO(v : V, h : H) and HEAPPTSTO(h1 : H, f : F, h2 : H) represent points-
to relations for variables and heap objects, respectively. PTSTO(v, h) means
that variable v may point to heap-allocated object h. HEAPPTSTO(h1, f, h2)
means that field f of object h1 may point to object h2.

• Finally, the PROTOTYPE(h1 : H,h2 : H) relation records a static approxima-
tion of object prototypes. PROTOTYPE(h1, h2) means that the implicit proto-
type for object h1 may be h2.

Starting with a set of initial input relation, the analysis follows inference rules, up-
dating intermediate relation values until a fixed point is reached. Details of declar-
ative analysis and BDD-based representation can be found in [25]. The analysis
proceeds in stages. In the first analysis stage, we traverse the normalized represen-
tation for JavaScriptSAFE shown in Figure 5. The basic facts that are produced for
every statement in the JavaScriptSAFE program are summarized in Figure 6. As part
of this traversal, we fill in relations ASSIGN, FORMAL, ACTUAL, METHODRET, CALLRET,
etc. This is a relatively standard way to represent information about the program in
the form of a database of facts. The second stage applies Datalog inference rules
to the initial set of facts. The analysis rules are summarized in Figure 7. In the rest
of this section, we discuss different aspects of the pointer analysis.

3.1.1 Call Graph Construction

Call graph construction in JavaScript presents a number of challenges. First, unlike
a language with function pointers like C, or a language with a fixed class hierar-
chy like Java, JavaScript does not have any initial call graph to start with. Aside
from local analysis, the only conservative default we have to fall back to when
doing static analysis is “any call site calls every declared function,” which is too
imprecise.

Instead, we chose to combine points-to and call graph constraints into a single
Datalog constraint system and resolve them at once. Informally, intraprocedural
data flow constraints lead to new edges in the call graph. These in turn lead to
new data flow edges when we introduce constraints between newly discovered ar-
guments and return values. In a sense, function declarations and object allocation
sites are treated very much the same in our analysis. If a variable v ∈ V may point

11

1. function T(){ this.foo = function(){ return 0;}}; dT , pT

2. var t = new T(); a1

3. T.prototype.bar = function(){ return 1; }; dbar, pbar
4. t.bar(); // return 1

Figure 8: Prototype manipulation example.

to function declaration f , this implies that call v() may invoke function f . Alloca-
tion sites and function declarations flow into the points-to relation PTSTO through
relations ALLOC and FUNCDECL.

3.1.2 Prototype Treatment

The JavaScript language defines two lookup chains. The first is the lexical (or
static) lookup chain common to all closure-based languages. The second is the
prototype chain. To resolve o.f, we follow o’s prototype, o’s prototype’s prototype,
etc. to locate the first object associated with field f.

Note that the object prototype (sometimes denoted as [[Prototype]]) is differ-
ent the prototype field available on any object. We model [[Prototype]] through
the PROTOTYPE relation in our static analysis. When PROTOTYPE(h1, h2) holds, h1’s
internal [[Prototype]] may be h2

2.
Two rules in Figure 6 are particularly relevant for prototype handling: [CON-

STRUCTOR] and [FUNCTIONDECL]. In the case of a constructor call, we allocate
a new heap variable dfresh and make the return result of the call v point to it. For
(every) function m the constructor call invokes, we make sure that m’s prototype
field is connected with dfresh through the PROTOTYPE relation. We also set up ACTUAL

and CALLRET values appropriately. In the case of a [FUNCTIONDECL], we cre-
ate two fresh allocation site, dfresh for the function and pfresh for the newly create
prototype field for that function. We use shorthand notion hFP to denote object
Function.prototype and create a PROTOTYPE relation between pfresh and hFP . We
also set up HEAPPTSTO relation between dfresh and pfresh objects. Finally, we set up
relations FORMAL and METHODRET.

Example 1. The example in Figure 8 illustrates the intricacies of prototype ma-
nipulation. Allocation site a1 is created on line 2. Every declaration creates a
declaration object and a prototype object, such as dT and pT . The following rules
are output in as this code is processed, annotated with the line number they come
from:

2We follow the EcmaScript-262 standard; Firefox makes [[Prototype]] accessible through a
non-standard field proto .

12

1. PTSTO(T, dT). HEAPPTSTO(dT ,"prototype", pT). PROTOTYPE(pT , hFP).
2. PTSTO(t, a1). PROTOTYPE(a1, pT).
3. HEAPPTSTO(pT ,"bar", dbar). HEAPPTSTO(dbar,"prototype", pbar).

PROTOTYPE(pbar, hFP).

To resolve the call on line 4, we need to determine what t.bar points to. Given
PTSTO(t, a1) on line 2, this resolves to the following Datalog query:

HEAPPTSTO(a1,"bar", X)?

Since there is nothing dT points to directly by following the bar field, the
PROTOTYPE relation is consulted. PROTOTYPE(a1, pT) comes from line 2. Because
we have HEAPPTSTO(pT ,"bar", dbar) on line 3, we resolve X to be dbar. As a
result, the call on line 4 may correctly invoke function bar. Note that our rules do
not try to keep track of the order of objects in the prototype chain. �

3.2 Handling Reflection

We add the following rules to handle reflective call constructs to the rules in Fig-
ure 7:

v = v0.apply(vthis , [v1, v2, . . . , vn]) [APPLYREFLECTIVE]
v = v0.call(vthis , v1, v2, . . . , vn) [CALLREFLECTIVE]

The rules to handle these reflective invokations as as follows for apply, where
invocation site i′ is a fresh call site at the same code location as the orginal reflective
call to apply:

ACTUAL(i, z, v) : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"apply", a), CALLS(i, a),
ACTUAL(i, z + 1, v), z < 2.

ACTUAL(i, 1,"global") : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"apply", a), CALLS(i, a).

ACTUAL(i, z, v) : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"apply", a), CALLS(i, a),
ACTUAL(i, 3, v′), PTSTO(v′, h),
HEAPPTSTO(h, f, h′),
PTSTO(v, h′),Num2Str(z − 2, f), z > 1.

CALLRET(i, v) : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"apply", a), CALLS(i, a),
CALLRET(i, v).

13

Function call is addressed similarly, except ACTUAL values are shifted by one:

ACTUAL(i, z, v) : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"call", a), CALLS(i, a),
ACTUAL(i, z + 1, v).

ACTUAL(i, 1,"global") : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"call", a), CALLS(i, a).

CALLRET(i, v) : – GlobalSym("Function", fun),
HEAPPTSTO(fun,"call", a), CALLS(i, a),
CALLRET(i, v).

The next challenge is to handle the arguments array. In addition to actual
parameters for the current function, it also has elements caller and callee re-
ferring to the calling and the current function, respectively. The actual parameters
are handled the following way. When processing a [FUNCTIONDECL], we add the
following relation

PTSTO("arguments", afresh).
ARGUMENTS(dfresh , afresh).

This effectively declares a new arguments object for each function and con-
nects the allocation site for the function declaration to that object using relation
ARGUMENTS : H × H . Formals of the function and arguments elements are con-
nected the following way:

DIRECTHEAPSTORESTO(a, fi, h) : – ARGUMENTS(d, a), FORMAL(d, i + 2, v),
PTSTO(v, h), INT2STR(i, fi).

where INT2STR is an auxiliary relation used to convert between integers and strings.
It is set up by declaring INT2STR(0,"0"). INT2STR(1,"1"). INT2STR(2,"2")
The numbering offset of 2 is needed because arguments[0] is the same as formal
number 2 (formal number 1 is the this parameter for the current function). Next,
the callee field of the arguments array is set up the following way:

DIRECTHEAPSTORESTO(a,"callee", d) : – ARGUMENTS(d, a).

The caller field is set to any potential caller of function d as follows:

DIRECTHEAPSTORESTO(a,"caller", d′) : – CALLS(i, d), ARGUMENTS(d, a),
DECLAREDIN(i, d′).

Recall that relation DECLAREDIN records the function in which call site is located.

14

3.3 Rewriting GATEKEEPER Programs Outside JavaScriptSAFE

The focus of this section is on runtime instrumentation for programs outside
JavaScriptSAFE, but within the JavaScriptGK JavaScript subset that is designed to
prevent runtime code introduction.

3.3.1 Rewriting Unresolved Heap Loads and Stores

Syntax for JavaScriptGK supported by GATEKEEPER has an extra variant of LOAD

and STORE rules for associative arrays, which introduce Datalog facts shown be-
low:

v1 = v2[∗] LOAD(v1, v2,_) [ARRAYLOAD]
v1[∗] = v2 STORE(v1,_, v2) [ARRAYSTORE]

When the indices of an associative array operation cannot be determined statically,
we have to be conservative. This means that any field that may potentially be
reached should be considered as accessed.

Example 2. Consider the following motivating example:

1. var a = {’f’ : function(){...}, ’g’ : function(){...}, ...};

2. a[x + y] = function(){...};

3. a.f();

If we cannot statically decide which field of object a is being written to on line 2,
we have to conservatively assume that the assignment could be to field f. This can
affect which function is called on line 3. �

Moreover, any statically unresolved store may introduce additional code
through writing to the innerHtml field that will be never seen by static analy-
sis. We rewrite statically unsafe stores v1[i] = v2 by blacklisting field that may
lead to code introduction:

if ((i=="innerHtml" || i.toLowerCase()=="onclick" || ...)

&& __IsUnsafe(v2))

{

abort("Disguised eval attempt at <file>:<line>");

} else {

v1[i] = v2;

}

where function IsUnsafe disallows all but very simple HTML. Similarly, stati-
cally unsafe loads of the form v1 = v2[i] can be restricted as follows:

15

if (i=="eval" || i=="setInterval" || i=="setTimeout" ||...) {

abort("Disguised eval attempt at <file>:<line>");

} else {

v1 = v2[i];

}

Note that we have to check for unsafe functions such as eval, setInterval,
etc. While we reject them as tokens for JavaScriptSAFE, they can still try to creep in
through the use of statically unresolved array accesses. As an alternative to explicit
runtime checking, we could wrap i in a call to toSafeHtml, a construct supported
in newer versions of Internet Explorer, but not yet universally adopted.

Note that to preserve the soundness of our analysis, care must be taken to black-
list all the ways to inject code. We do our best to ensure that all the relevant fields
are checked for and our results are sound assuming we eliminate all the possibili-
ties.

3.3.2 Rewriting .innerHtml assignments

innerHtml assignments are a common dangerous language feature that may
prevent GATEKEEPER from statically seeing all the code. We disallow it in
JavaScriptSAFE, but because it is so common, we still allow it in the JavaScriptGK

language subset. While in many cases the right-hand side of .innerHtml assign-
ments is a constant, there is an unfortunate coding pattern encouraged by Live
widgets that makes static analysis difficult:

this.writeWidget = function(widgetURL) {

var url = "http://widgets.clearspring.com/csproduct/web/show/flash?

opt=-MAX/1/-PUR/http%253A%252F%252Fwww.microsoft.com&url="+widgetURL;

var myFrame = document.createElement("div");

myFrame.innerHTML = ’<iframe id="widgetIFrame" scrolling="no"

frameborder="0" style="width:100%;height:100%;border:0px" src="’+

url+’"></iframe>’;

...

}

The url value, which is the result concatenating of a constant URL and
widgetURL is being used on the right-hand side and could be used for code in-
jection. An assignment v1.innerHtml = v2 is rewritten as

16

if (__IsUnsafe(v2)) {

abort("Disguised eval attempt at <file>:<line>");

} else {

v1.innerHtml = v2;

}

3.4 Normalization Details

In this section we discuss various aspects of normalizing the JavaScript AST.
Handling the global object. We treat the global object explicitly by introducing
a variable global and then assigning to its fields. One interesting detail is that
global variable reads and writes become loads and stores to fields of the global
object, respectively.
Handling of this argument in function calls. One curious feature of JavaScript
is its treatment of the this keyword, which is described in section 10.2 of the
EcmaScript-262 standard. For calls of the form f(x, y, ...), the this value is set
by the runtime to the global object. This is a pretty surprising design choice, so we
translate syntactic forms f(x, y, ...) and o.f(x, y, ...) differently, passing the global
object in place of this in the former case. When translating the program into
Datalog, argument this is made parts of the ACTUAL rule: we explicitly pass it as
actual argument number 1.
Object literals. The object literal v = {f1 : v1, f2 : v2, . . . } notation in
JavaScript can be interpreted as shorthand for v.f1 = v1; v.f2 = v2;

3.5 Native Environment

The browser embedding of the JavaScript engine has a large number of pre-
defined objects. In addition to Array, Date, String, and other objects defined
by the EcmaScript-262 standard, the browser defines objects such as Window and
Document. Because we are doing whole-program analysis, we need to create stubs
for the native environment so that calls to built-in methods resolve to actual func-
tions. We recursively traverse the native embedding. For every function we en-
counter, we provide a default stub function(){return undefined; }. The re-
sulting set of declaration looks as follows:

var global = new Object();

// this references in the global namespace refer to global

var this = global;

global.Array = new Object();

global.Array.constructor = new function(){return undefined;}

global.Array.join = new function(){return undefined;}

...

17

Note that we use an explicit global object to host a namespace for our decla-
rations instead of the implicit this object that JavaScript uses. In most browser
implementations, the global this object is aliased with the window object, leading
to the following declaration: global.window = global;.

However, as it turns out, creation of a sound native environment is more diffi-
cult than that. Indeed, the approach above assumes that the built-in functions return
objects that are never aliased. This fallacy is most obviously demonstrated by the
following code:

var parent_div = document.getElementById(’header’);

var child_div = document.createElement(’div’);

parent_div.appendChild(child_div);

var child_div2 = parent_div.childNodes[0];

In this case, child div and child div2 are aliases for the same DIV element. if
we pretend they are not, we will miss an existing alias. We therefore model opera-
tions such as appendChild, etc. in JavaScript code, effectively creating mock-ups
instead of native browser-provided implementations.

4 Security and Reliability Policies

This section is organized as follows. Sections 4.1–4.4 talk about six policies that
apply to widgets from all widgets hosts we use in this paper (Live, Sidebar, and
Google). Section 4.5 talks about host-specific policies, where we present two poli-
cies specific to Live and one specific to Sidebar widgets. Along with each policy,
we present the Datalog query that is designed to find its violations. We have run
these queries on our set of 8,379 benchmark widgets. We summarize our experi-
mental findings in Section 5.

4.1 Restricting Widget Capabilities

Perhaps the most common requirement for a system that reasons about widget
is the ability to restrict code capabilities, such as disallowing calling a particular
function, using a particular object or namespace, etc. The Live Widget Developer
Checklist provides many such examples [27]. This is also what system like Caja
and WebSandbox aim to accomplish [19, 22]. We can achieve the same goal stati-
cally.

Pop-up boxes represent a major annoyance when using web sites. Widgets
that bring up popup boxes, achieved by calling function alert in JavaScript, can
be used for denial-of-service against the user. In fact, the alert box prevention
example below comes from a sample of a widget that asynchronously spawns of

18

new alert boxes, distributed with WebSandbox [20]. The following query ensures
that the alert routine is never called:

Query output: AlertCalls(i : I)

GlobalSym(m, h) : – PTSTO("global", g), HEAPPTSTO(g,m, h).
AlertCalls(i) : – GlobalSym("alert", h), CALLS(i, h).

To define AlertCalls , we first define an auxiliary query GlobalSym : F ×H used
for looking up global functions such as alert. On the right-hand side, g ∈ H
is the explicitly represented global object pointed to by variable global. Follow-
ing field m takes us to the heap object h of interest. AlertCalls instantiates this
query for field alert. Note that there are several references to it in the default
browser environment such as window.alert and document.alert. Since they all
are aliases for the same function, the query above will spot all calls, independently
of the the reference being used.

4.2 Detecting Writes to Frozen Objects

We disallow changing properties of built-in functions such as Array, Date,
Document, etc. to prevent environment pollution attacks such as prototype hi-
jacking [7]. This is similar to frozen objects proposed in EcmaScript 4. The query
below looks for attempts to add or update properties of JavaScript built-in objects
specified by the auxiliary query BuiltInObject , including attempts to change their
prototypes:

Query output: FrozenViolation(v : V)

BuiltInObject(h) : – GlobalSym("Boolean", h).
BuiltInObject(h) : – GlobalSym("Array", h).
BuiltInObject(h) : – GlobalSym("Date", h).
BuiltInObject(h) : – GlobalSym("Function", h).
BuiltInObject(h) : – GlobalSym("Math", h).
BuiltInObject(h) : – GlobalSym("Document", h).
BuiltInObject(h) : – GlobalSym("Window", h).

FrozenViolation(v) : – STORE(v,_,_), PTSTO(v, h),BuiltInObject(h).

The rules above handle the case of assigning to properties of these built-in ob-
jects directly. Often, however, a widget might attempt to assign properties of the
prototype of an object as in Function.prototype.apply = function(){...}.

19

We can prevent this by first defining a recursive heap reachability relation Reaches:

Reaches(h1, h2) : – HEAPPTSTO(h1,_, h2).
Reaches(h1, h2) : – HEAPPTSTO(h1,_, h′),Reaches(h′, h2).

and then adding to the FrozenViolation definition:

FrozenViolation(v) : – STORE(v,_,_), PTSTO(v, h′),
BuiltInObject(h),Reaches(h, h′).

An example of a typical policy violation from our experiments is shown below:

Array.prototype.feed = function(o, s){
if(!s){s=o;o={};}
var k,p=s.split(":");
while(typeof(k=p.shift())!="undefined")o[k]=this.shift();
return o;

}

4.3 Detecting Code Injection

As discussed above, document.write is a routine that allows the developer to
output arbitrary HTML, thus allowing code injection through the use of <script>
tags. While verbatim calls to document.write can be found using grep, it is easy
to disguise them through the use of aliasing:

var x = document;

var y = x.write;

y("<script>alert(’hi’);</script>");

The query below showcases the power of points-to analysis. In addition to finding
the direct calls, the query below will correctly determine that the call to y invokes
document.write.

Query output: DocumentWrite(i : I)

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"write",m), CALLS(i, h).

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"writeln",m), CALLS(i, h).

20

4.4 Redirecting the Browser to a Different Location

JavaScript in the browser has write access to the current page’s location,
which may be used to redirect the user to a malicious site. Google widget
Google Calculator performing such redirection is shown below:

window.location = "http://e-r.se/google-calculator/index.htm"

Allowing such redirect not only opens the door to phishing widgets luring users
to malicious sites, redirects within an iframe also opens the possibility of run-
ning code that has not been adequately checked by the hosting site, potentially
circumventing policy checking entirely. Another very real possibility is cross-site
scripting attacks that involve stealing cookies. Of course, grep is not an adequate
tool for spotting redirects, both because of the aliasing issue described above and
because read access to window.location is in fact allowed. Moreover, redirects
can take many forms, which we discuss in turn below.

Query output: LocationAssign(v : V)

LocationAssign(v) : – GlobalSym("window", h), PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – GlobalSym("document", h), PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – PTSTO("global", h), PTSTO(v, h),
STORE(_,"location", v).

Storing to location object’s properties:

LocationAssign(v) : – GlobalSym(h,"location"), PTSTO(v, h),
STORE(v,_,_).

Calling methods on the location object:

Query output: LocationChange(i : I)

LocationChange(i) : – LocationObject(h), HEAPPTSTO(h,"assign", h′),
CALLS(i, h′).

LocationChange(i) : – LocationObject(h), HEAPPTSTO(h,"reload", h′),
CALLS(i, h′).

LocationChange(i) : – LocationObject(h), HEAPPTSTO(h,"replace", h′),
CALLS(i, h′).

21

Function window.open is another form of redirects:

Query output: WindowOpen(i : I)

WindowOpen(i) : – WindowObject(h), HEAPPTSTO(h,"open", h′),
CALLS(i, h′).

4.5 Host-specific Policies

The policies we have discussed thus far have been relatively generic. In this sec-
tion, we give examples of policies that are specific to the host site they reside on.

4.5.1 No XMLHttpRequest Object Use in Live Widgets

The first policy of this sort comes directly from the Live Web Widget Developer
Checklist [27]. Among other rules, they disallow the use of XMLHttpRequest
object in favor of function Web.Network.createRequest. The latter makes sure
that the network requests are properly proxied so they can work cross-domain:

Query output: XMLHttpRequest(i : I)

XMLHttpRequest(i) : – GlobalSym("XMLHttpRequest", h), CALLS(i, h).

4.5.2 Detecting Global Namespace Pollution in Live Widgets

Because web widgets can be deployed on a page with other widgets running within
the same JavaScript interpreter, polluting the global namespace, leading to name
clashes and unpredictable behavior. This is why hosting providers such as Face-
book, Yahoo!, Live, etc. strongly discourage pollution of the global namespace,
favoring a module or a namespace approach instead [8] that avoids name collision.
We can easily prevent stores to the global scope:

Query output: GlobalStore(h : H)

GlobalStore(h) : – PTSTO("global", g), HEAPPTSTO(g,_, h).

Here is an example of a violation of this policy from a Live.com widget:

var SearchTag = new String ("Home");

var SearchTagStr = new String ("meta%3ASearch.tag%28%22beginTag+" + SearchTag +"endTag%22%29");

var QnaURL= new String (SearchHostPath /*+ SearchQstateStr */+ SearchTagStr +"&format=rss") ;

// define the constructor for your Gadget (this must match the name in the manifest xml)

Microsoft.LiveQnA.RssGadget = function(p_elSource, p_args, p_namespace) { ... }

22

Because the same widget can be deployed twice within the same interpreter scope
with different values of SearchTag, this can lead to a date race on the globally
declared variable SearchTagStr.

Note that our analysis approach is radically different from proposals that ad-
vocate language restrictions [9, 22] to protect access to the global object. The dif-
ficulty those techniques have to overcome is that the this identifier in the global
scope will point to the global object. However, disallowing this completely makes
object-oriented programming difficult. With the whole-program analysis GATE-
KEEPER implements, we do not have this problem. We are able to distinguish ref-
erences to this that point to the global object (aliased with the global variable)
from a local reference to this within a function.

4.5.3 Tainting Data in Sidebar Widgets

This policy ensures that data from ActiveX controls that may be instantiated by
a Sidebar widget does not get passed into System.Shell.execute for direct execu-
tion on the user’s machine. This is because it is common for ActiveX controls
to retrieve unsanitized network data, which is how a published RSS Sidebar ex-
ploit operates [21]. There, data obtained from an ActiveX-based RSS control was
assigned directly to the innerHtml field withing a widget, allowing a cross-site
scripting exploit. What we are looking for is demonstrated by the pattern:

var o = new ActiveXObject();
var x = o.m();
System.Shell.Execute(x);

The Datalog query below looks for instances where the tainted result of a call to
method m on an ActiveX object is directly passed as an argument to the “sink”

23

function System.Shell.Execute:

Query output: ActiveXExecute(i : I)

ActiveXObjectCalls(i) : – GlobalSym("ActiveXObject", h′), CALLS(i, h′).

ShellExecuteCalls(i) : – PTSTO("global", h1),
HEAPPTSTO(h1,"System", h2),
HEAPPTSTO(h2,"Shell", h3),
HEAPPTSTO(h3,"execute", h4), CALLS(i, h4).

ActiveXExecute(i) : – ActiveXObjectCalls(i),
CALLRET(i, v), PTSTO(v, h),
HEAPPTSTO(h,_,m), CALLS(i?,m),
CALLRET(i?, r), PTSTO(r, h?),
ShellExecuteCalls(i′),
ACTUAL(i′,_, v′), PTSTO(v′, h?).

Auxiliary queries ActiveXObjectCalls and ShellExecuteCalls look for source
and sink calls and ShellExecuteCalls ties all the constraints together, effectively
matching the call pattern described above.

5 Experimental Results

For our experiments, we have downloaded a large number of widgets from widget
hosting sites’ widget galleries. As mentioned before, we have experimented with
widgets from Live.com, the Vista Sidebar, and Google. We automated the down-
load process to save widgets locally for analysis. Once downloaded, we parsed
through each widget’s manifesto to determine where the relevant JavaScript code
resides. This process was slightly different across the widget hosts. In particular,
Google widgets tended to embed their JavaScript in HTML, which required us to
develop a limited-purpose HTML parser. In the Sidebar case, we had to extract the
relevant JavaScript code out of an archive. At the end of this process, we ended up
with a total of 8,379 JavaScript files to analyze.

Figure 9 provides aggregate statistics for the widgets we used as benchmarks.
For each widget source, we specify the total number of widgets we managed to
obtain in column 2. Column 3 shows the average lines-of-code count for every
widget. In general, Sidebar widgets tend to be longer and more involved than their
Web counterparts, as reflected in the average line of code metric. Note that in
addition to every widget’s code, at the time of policy checking, we also prepend
the native environment constructed as described in Section 3.5. The native envi-
ronment constitutes 270 lines of non-comment JavaScript code (127 for specifying

24

Avg. Widget counts
Widget Source LOC Count JavaScriptGK JavaScriptSAFE

Live.com 105 2,707 2,643 97% 643 23%
Vista sidebar 261 4,501 2,946 65% 1,767 39%
Google.com/ig 137 1,171 962 82% 768 65%

Figure 9: Aggregate statistics for widgets from Live portal, Windows Sidebar, and Google
portal widget repositories.

the the browser embedding and 143 for specifying built-in objects such as Array
and Date).

Result Summary. A summary of our experimental results in presented in Fig-
ure 10. For each policy described in Section 4, we show the the total number of
violations across 8,379 benchmarks, and the number of violating benchmarks. The
latter two may be different because there could be several violations of a particular
query per widget. We also show the percentage of benchmarks for which we find
policy violations. As can be seen from the table, overall, policy violations are quite
uncommon, with only several percent of widgets affected in each case. Overall, a
total of 1,341 policy violations are reported. Section 4.5, we only ran those policies
on the appropriate subset of widgets, leaving other table cells blank. To validate
the precision of our analysis, we have examined all violations reported by our poli-
cies. Doing so took about 10 hours of manual effort. Encouragingly, in most cases,
GATEKEEPER results were remarkably precise.

False positives. We should point out that a conservative analysis such as GATE-
KEEPER is inherently imprecise. Two main sources of false positives in our formu-
lation are prototype handling and arrays. Almost all false positives detected in our
experiments occur in the Sidebar widget called JustMusic.FM, in file common.js.
When relying on points-to information, it is common for a single imprecision
within static analysis to create numerous “cascading” false positive reports. This
is the case here as well. Because of our handling of arrays, the analysis conser-
vatively concludes that certain heap-allocated objects can reach many others by
following any field of array a, as shown below:

function MM_preloadImages() { //v3.0

var d=m_Doc; if(d.images){ if(!d.MM_p) d.MM_p=new Array();

var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)

if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=a[i];}}

}

25

L
IV

E
W

ID
G

E
T

S
V

IS
TA

S
ID

E
B

A
R

G
O

O
G

L
E

W
ID

G
E

T
S

Q
ue

ry
Se

ct
io

n
V

io
l.

A
ff

ec
te

d
%

FP
A

ff
ec

te
d

V
io

l.
A

ff
ec

te
d

%
FP

A
ff

ec
te

d
V

io
l.

A
ff

ec
te

d
%

FP
A

ff
ec

te
d

A
le

rt
C

al
ls

(i
:I

)
4.

1
54

29
1.

1
0

0
16

1
84

2.
9

0
0

57
35

3.
6

0
0

Fr
oz

en
V

io
la

ti
on

(v
:V

)
4.

2
3

3
0.

1
0

0
14

3
52

1.
5

94
1

1
1

0.
1

0
0

D
oc

um
en

tW
ri

te
(i

:I
)

4.
3

5
1

0.
0

0
0

17
5

75
1.

7
0

0
15

8
88

8.
1

0
0

Lo
ca

ti
on

A
ss

ig
n
(v

:V
)

4.
4

3
3

0.
1

2
1

15
7

10
9

3.
8

15
1

9
9

0.
7

0
0

Lo
ca

ti
on

C
ha

ng
e(

i
:I

)
4.

4
3

3
0.

1
0

0
21

20
0.

7
1

1
3

3
0.

3
0

0
W

in
do

w
O

pe
n
(i

:I
)

4.
4

50
22

0.
9

0
0

18
2

87
3.

0
1

1
19

14
1.

5
0

0
X

M
L
H

tt
pR

eq
ue

st
(i

:I
)

4.
5

1
1

0.
0

0
0

—
—

—
—

—
—

—
—

—
—

G
lo

ba
lS

to
re

(v
:V

)
4.

5
13

6
45

1.
7

0
0

—
—

—
—

—
—

—
—

—
—

A
ct

iv
eX

E
xe

cu
te

(i
:I

)
4.

5
—

—
—

—
—

0
0

0
0

0
—

—
—

—
—

Fi
gu

re
10

:E
xp

er
im

en
ta

lr
es

ul
ts

um
m

ar
y

fo
rn

in
e

po
lic

ie
s

de
sc

ri
be

d
in

Se
ct

io
n

4.
B

ec
au

se
so

m
e

po
lic

ie
s

ar
e

ho
st

-s
pe

ci
fic

,w
e

on
ly

ru
n

th
em

on
a

su
bs

et
of

w
id

ge
ts

.“
—

”
in

di
ca

te
s

ex
pe

ri
m

en
ts

th
at

ar
e

no
ta

pp
lic

ab
le

.

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 More

Analysis time (seconds) Cumulative %

n
u

m
b

er
o

f
w

id
g

et
s

analysis time, in seconds

Figure 11: Histogram showing GATEKEEPER processing times, in seconds.

Luckily, it is possible to group cascading reports together in order to avoid over-
whelming the user with false positives caused by a single imprecision. This im-
precision in turn affects FrozenViolation and LocationAssign queries leading to
many very similar reports. A total of 113 false positives are reported, but luckily
they affect only two widgets.

Analysis Running Times. Our implementation uses a publicly available declara-
tive analysis engine provided by bddbddb [25]. This is a highly optimized BDD-
based solver for Datalog queries used for static analysis in the past. Because re-
peatedly starting bddbddb is inefficient we perform both the points-to analysis and
run our Datalog queries corresponding to the policies in Section 4 as part of one
run for each widget.

Our analysis is quite scalable in practice, as shown in Figure 11. This histogram
shows the distribution of analysis time, in seconds. These results were obtained on
a Pentium Core 2 duo 3 GHz machine with 4 GB of memory, running Microsoft
Vista SP1. Note that the analysis time includes the JavaScript parsing time, the
normalization time, the points-to analysis time, and the time to run all nine policies.
For the vast majority of widgets, the analysis time is under 4 seconds, as shown by
the cumulative percentage curve in the figure.

Runtime Instrumentation. Programs outside of the JavaScriptSAFE language sub-

27

Live Sidebar Google
Number of instrumented files 2,000 1,179 194
Instrumentation points per file 1.74 8.86 5.63

Figure 12: Instrumentation statistics.

set but with the JavaScriptGK language subset require instrumentation. Figure 12
summarizes data on the number of instrumentation points required, both as an ab-
solute number and in proportion of the number of widgets that required instru-
mentation. We plan to assess our runtime overhead as part of future work. How-
ever, we do not anticipate it to be very high, as the checks we insert require only
several direct pointer comparisons. The number of instrumentation points per in-
strumented widget ranges roughly in proportion to the size and complexity of the
widget. Given the relatively small number of instrumentation points on average
and the fact that the runtime check is quite lightweight, we do not anticipate the
overhead to be noticeable.

6 Related Work

Much of the work related to this paper focuses on limiting various attack vectors
that exist in JavaScript. They do this through the use of type systems, language
restrictions, and modifications to the browser or the runtime. We describe these
strategies in turn below.

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it difficult to reason about
programs written in it. However, with certain expressiveness restrictions, desir-
able security properties can be achieved. ADSafe and Facebook both implement a
form of static checking to ensure a form of safety in JavaScript code. ADSafe [9]
disallows dynamic content, such as eval, and performs static checking to ensure
the JavaScript in question is safe. Facebook takes an approach similar to ours in
rewriting statically unresolved field stores, however, it appears that, unlike GATE-
KEEPER, they do not try to do local static analysis of field names. Facebook uses a
JavaScript language variant called FBJS [11], that is like JavaScript in many ways,
but DOM access is restricted and all variable names are prefixed with a unique
identifier to prevent name clashes with other FBJS programs on the same page.

In many ways, however, designing a safe language subset is a tricky business.
It is really difficult to write anything but most simple applications in ADSafe be-
cause of its static restrictions. On the other hand, while considerably more ex-
pressive, FBJS has been subject of several well-publicised attacks that circumvent

28

the isolation of the global object offered through Facebook sandbox rewriting [2].
This demonstrates that while easy to implement, reasoning about what static lan-
guage restrictions accomplish is tricky. GATEKEEPER circumvents this problem
completely, performing whole program analysis instead. We do no try to prove
that JavaScriptSAFE programs cannot pollute the global namespace, for example.
Instead, we take the entire program and a representation of its environment and
soundly check if this can happen.

6.2 JavaScript Rewriting and Instrumentation

A practical alternative to static language restrictions is instrumentation. Caja [22]
is one such attempt at limiting capabilities of JavaScript programs and enforcing
this through the use of runtime checks. WebSandbox is another project with similar
goals that also attempts to enforce reliability and resource restrictions in addition
to security properties [19].

Yu et al. traverse the JavaScript document and rewrite based on a security
policy [28]. Unlike Caja and WebSandbox, they prove the correctness of their
rewriting with operational semantics for a subset of JavaScript called CoreScript.
BrowserShield [23] similarly uses dynamic and recursive rewriting to ensure that
JavaScript and HTML are safe, for a chosen version of safety, and all content gen-
erated by the JavaScript and HTML is also safe. Instrumentation can be used for
more than just enforcing security policies. AjaxScope [16] rewrites JavaScript to
insert instrumentation that sends runtime information, such as error reporting and
memory leak detection, back to the content provider.

Compared to these techniques, GATEKEEPER has two clear advantages. First,
as a mostly static analysis, GATEKEEPER places little runtime overhead burden on
the user. According to some reports, runtime overhead of Caja and WebSandbox
can be as high as 5–10x, depending on the level of rewriting. Second, just as
with the Facebook exploits mentioned above, it is really difficult to reason about
whether source-level rewriting provides complete isolation. We feel that sound
static analysis provides a much more systematic way to reason about what code
can do.

6.3 Runtime and Browser Support

Current browser infrastructure and the HTML standard require a page to fully trust
foreign JavaScript if they want the foreign JavaScript to interact with their site.
The alternative is to place foreign JavaScript in an isolated environment, which
disallows any interaction with the hosting page. This leads to web sites trusting
untrustworthy JavaScript code in order to provide a richer web site. One solu-

29

tion to get around this all-or-nothing trust problem is to modify browsers and the
HTML standard to include a richer security model that allows untrusted JavaScript
controlled access to the hosting page.

MashupOS [14] proposes a new browser that is modeled after an OS and mod-
ifies the HTML standard to provide new tags that make use of new browser func-
tionality. They provide rich isolation between execution environments, including
resource sharing and communication across instances. In a more lightweight modi-
fication to the browser and HTML, Felt et al. [12] add a new HTML tag that labels
a div element as untrusted and limits the actions that any JavaScript inside of it
can take. This would allow content providers to create a sand box in which to place
untrusted JavaScript. We can even imagine integrating GATEKEEPER techniques
into the browser itself, without relying on the host.

The future of the web browser, HTML, and scripting languages will see many
changes. These proposed changes to the runtime system and the browser will help
make JavaScript easier to use securely, but they require a wide adoption of new
technologies. GATEKEEPER provides a way for hosting sites to identify dangerous
JavaScript widgets today.

6.4 Typing in JavaScript

A more useful type system in JavaScript could prevent errors or safety violations.
Since JavaScript does not have a rich type system to begin with, the work here is
devising a correct type system for JavaScript and then building on the proposed
type system. Soft typing [6] might be one of the more logical first steps in a
type system for JavaScript. Much like dynamic rewriters insert code that must be
executed to ensure safety, soft typing must insert runtime checks to ensure type
safety. Other work has been done to devise a static type system that describes
the JavaScript language [3, 4, 24]. These works focus on a subset of JavaScript and
provide sound type systems and semantics for their restricted subests of JavaScript.
As far as we can tell, none of these approaches have been applied to realistic bod-
ies of code. GATEKEEPER uses a pointer analysis to reason about the JavaScript
program in contrast to the type systems and analyses of these works. We feel that
the ability to reason about pointers and the program call graph allows us to express
more interesting security policies than we would be able otherwise.

7 Conclusions

We feel that static analysis of JavaScript is a key building block for enabling an
environment in which code from different parties can safely co-exist and interact.
This paper presents GATEKEEPER, a mostly static sound policy enforcement tool

30

for JavaScript. GATEKEEPER is built on top of what is to our knowledge the first
pointer analysis developed for JavaScript. To show the practicality of our approach,
we describe nine representative security and reliability policies for JavaScript wid-
gets. Statically checking these policies results in 1,341 verified warnings in 684
widgets, with 113 false positives affecting only two widgets. While in this pa-
per our focus is on policy enforcement, the techniques outlines here are generally
useful for any task that involves reasoning about code such as code optimization,
rewriting, program understanding tools, bug finding tools, etc.

References

[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 2007.

[2] Ajaxian. Facebook JavaScript and security. http://ajaxian.com/
archives/facebook-javascript-and-security, Aug. 2007.

[3] C. Anderson and P. Giannini. Type checking for JavaScript. In In WOOD
04, volume WOOD of ENTCS. Elsevier, 2004. http://www.binarylord.com/
work/js0wood.pdf, 2004.

[4] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
JavaScript. In In ECOOP05 - Object-Oriented Programming, Lecture Notes
in Computer Science, pages 429–452. Springer, 2005.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. In EuroSys, pages 73–85, 2006.

[6] R. Cartwright and M. Fagan. Soft typing. SIGPLAN Not., 39(4):412–428,
2004.

[7] B. Chess, Y. T. O’Neil, and J. West. JavaScript hijacking.
www.fortifysoftware.com/servlet/downloads/public/
JavaScript Hijacking.pdf, Mar. 2007.

[8] D. Crockford. Globals are evil. http://yuiblog.com/blog/2006/06/
01/global-domination/, June 2006.

[9] D. Crockford. AdSafe: Making JavaScript safe for advertising. http://
www.adsafe.org, 2007.

[10] D. Crockford. JavaScript: the good parts. 2008.

31

[11] Facebook, Inc. Fbjs. http://wiki.developers.facebook.com/index.
php/FBJS, 2007.

[12] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to strangers without
taking their candy: isolating proxied content. In Proceedings of the Workshop
on Social Network Systems, pages 25–30, 2008.

[13] Finjan Inc. Web security trends report. http://www.finjan.com/
GetObject.aspx?ObjId=506.

[14] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS: Operating sys-
tem abstractions for client mashups. In Proceedings of the Workshop on Hot
Topics in Operating Systems, May 2007.

[15] javascript-reference.info. JavaScript obfuscators review. http:
//javascript-reference.info/javascript-obfuscators-review.
htm, 2008.

[16] E. Kiciman and H. J. Wang. Live monitoring: using adaptive instrumentation
and analysis to debug and maintain Web applications, in submission. 2007.

[17] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static enforcement of secu-
rity and reliability policies for JavaScript code. Technical report, Microsoft
Research, Feb. 2009.

[18] Microsoft Corporation. Static driver verifier. http://www.microsoft.
com/whdc/devtools/tools/SDV.mspx, 2005.

[19] Microsoft Live Labs. Live Labs Websandbox. http://websandbox.org,
2008.

[20] Microsoft Live Labs. Quality of service (QoS) protections. http://
websandbox.livelabs.com/documentation/use qos.aspx, 2008.

[21] Microsoft Security Bulletin. Vulnerabilities in Windows gadgets could allow
remote code execution (938123). http://www.microsoft.com/technet/
security/Bulletin/MS07-048.mspx, 2007.

[22] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active
content in sanitized JavaScript. http://google-caja.googlecode.com/
files/caja-2007.pdf, 2007.

[23] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. In Proc. OSDI, 2006.

32

[24] P. Thiemann. Towards a type system for analyzing JavaScript programs.
2005.

[25] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and binary
decision diagrams for program analysis. In Proceedings of the Asian Sympo-
sium on Programming Languages and Systems, Nov. 2005.

[26] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 131–144, June
2004.

[27] Windows Live. Windows live gadget developer checklist. http://dev.
live.com/gadgets/sdk/docs/checklist.htm, 2008.

[28] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for
browser security. In Proceedings of Conference on Principles of Program-
ming Languages, Jan. 2007.

33

