
Just-in-Time Static Analysis

Lisa Nguyen Quang Do∗, Karim Ali†, Benjamin Livshits‡, Eric Bodden§, Justin Smith¶, and Emerson Murphy-Hill¶
∗Fraunhofer IEM, Germany, lisa.nguyen@iem.fraunhofer.de
†University of Alberta, Canada, karim.ali@ualberta.ca
‡Microsoft Research, USA, livshits@microsoft.com

§Paderborn University and Fraunhofer IEM, Germany, eric.bodden@upb.de
¶North Carolina State University, USA, jssmit11@ncsu.edu and emerson@csc.ncsu.edu

Abstract—We present the concept of Just-In-Time
(JIT) static analysis that interleaves code development
and bug fixing in an integrated development environ-
ment. Unlike traditional static analysis tools, a JIT
analysis tool presents warnings to code developers over
time, providing the most relevant results quickly, and
computing less relevant results incrementally later.
This paper outlines general guidelines for designing
JIT analyses. We also present a general recipe for
turning static data-flow analyses into JIT analyses
through a concept of layered analysis execution il-
lustrated through Cheetah, a JIT taint analysis for
Android applications. Our evaluation of Cheetah on
real-world applications and our user study show that
JIT analyses are able to present those warnings that
are of importance to the code developers just-in-time,
allowing them to start fixing problems immediately,
without losing their context. Furthermore, study par-
ticipants consistently reported higher satisfaction levels
with Cheetah compared to its traditional counterpart.

I. Introduction

More companies are integrating static analysis checks
in their development process to detect software bugs early
enough in the development cycle. However, most static
analysis tools, such Microsoft’s PREfix/PREfast [1], [2],
Facebook’s Infer [3]–[5], HP Fortify [6] and Coverity [7],
are designed to be used in batch mode. Because analysis
runs on real-life projects can easily take hours, companies
run static analysis tools at major release points in the
product cycle, or as part of nightly builds. In the morning,
developers start their day by pouring over long lists of
warnings (often in the order of thousands of warnings for
real-life projects), deciding which messages correspond to
real errors that require a fix [8]–[11]. This limits the poten-
tial utility of static analysis: by the time the results are
generated, the developer may have forgotten the coding
context to which these results pertain.

In this paper, we propose the just-in-time (or JIT) static
analysis concept, in which we advocate the integration of
static analysis into the development workflow, allowing
code developers to immediately see the impact of their
changes in the code, and correct bugs as early as possible.
Additionally, by integrating the analysis into the develop-
ment environment (IDE), more manageable, “digestible”
sets of warnings can be reported almost continuously,
instead of providing the user with a long list of warnings

at the end of the analysis run. We also advocate a different
delivery strategy for the results, namely returning simple-
to-fix and more certain results first, and using the time
the developers take to tackle them to compute more
complex results and, perhaps, false-positive-prone results
later, while integrating developer feedback.

We propose the idea of a layered analysis, which starts
at a program point currently edited by the developer,
gradually expanding the analysis scope to encompass
methods, classes, files, and modules further away from
where the developer is currently focused. Lower analysis
layers quickly produce intra-procedural results, expected
to yield few false positives. Later layers might find more
complex results further out, but also run the risk of higher
analysis running times and higher false positive rates.

To concretely illustrate the concepts in this paper, we
instantiate the layered JIT analysis with Cheetah, a taint
analysis for Android applications. We have conducted an
empirical evaluation of Cheetah, along with a user study
with 18 participants, in order to evaluate the benefits and
shortcomings of our JIT approach, in comparison with a
traditional batch-style analysis. To summarize, this paper
makes the following contributions:

• It advocates a renewed focus on the interaction be-
tween the static analyzer and the user, with the goal
of making static analysis more useful to the user.

• It proposes the concept of JIT analysis that inter-
leaves the process of computing analysis warnings
with that of the user fixing them.

• It shows how one can convert existing static analyses
into JIT analyses using a layered analysis approach.

• It shows how such a layered JIT analyzer can be built
for taint analysis and applied to Android applications
to find potentially insecure information flows.

• It evaluates the implementation in detail, focusing on
precision, performance, and interactive experiences,
the latter evaluated through a user study.

II. Overview

Despite years of work on eliminating false positives,
end-user experience, even for the unsound (or optimistic)
commercial tools, tends to be overwhelming [12]; this is
sometimes called the “wall of bugs” effect. Observing how
developers interact with static analysis tools, we highlight

1 public class A {
2 void main(B b)
3 String s = getSecret (); // source
4 String t = s;
5 String u = s;
6 sendMessage(s);
7 b.sendMessage(t);

8 leak(u); // sink , leak A
9 }

10 void sendMessage(String x) {
11 x = ’’not tainted ’’;
12 leak(x); // sink , no leak
13 }
14 }
15 public class B {
16 void sendMessage(String y) {

17 leak(y); // sink , leak B
18 }
19 }

Fig. 1: Running example for a JIT taint analysis.

that: (1) reporting a warning is effectively useless if it
is not likely to be examined or result in a bug fix; and
(2) even some true warnings are abandoned because they
are difficult to deal with [13]. To draw developers’ atten-
tion to specific high-priority warnings, batch-style tools
usually apply post-analysis filtering and ranking of the
results [14], [15]. To achieve the same goal, we impose three
properties on any sensible JIT analysis: prioritization,
responsiveness, and monotonicity. A JIT analysis typ-
ically runs in the background of the IDE, and ranks the
warnings not only by reporting them higher or lower in
the result list, but also by reporting them earlier or later
in time. This additional dimension helps developers focus
only on a subset of warnings, while the JIT analysis is com-
puting further results in the background. This approach
of interleaving analysis and developer activities reduces
the perceived analysis latency, which improves the overall
usability of a JIT analysis tool. Finally, a JIT analysis does
not simply refine an imprecise pre-analysis. The results of
a JIT analysis are monotonic in the sense that the later
stages of the analysis do not refute earlier warnings, as
this would be highly confusing to the developers.

A. Examples of JIT Analyses

Different strategies can be considered to determine what
is relevant to the user, i.e. what should be reported first
by a JIT analysis. We outline a few concrete examples
for expressing different relevance metrics through three
different data-flow analyses.

Taint analysis: A taint analysis tracks sensitive data
flows from sources to sinks to detect privacy leaks [16],
[17]. For the example in Fig. 1, a taint analysis reports
two leaks: one from the source on line 3 to the sink on
line 8 (labeled with A), and another one from line 3 to
line 17 (labeled with B). The sink call on line 12 is never
reached, because line 11 overwrites the tainted variable x

with non-sensitive information.
When writing code, developer attention is focused on

the particular parts of the code that she is editing. Hence,

20 void encrypt(Y y, Z z) {
21 Cipher g = new Cipher ();
22 z.maybeInit(g); // polymorphic call

23 g.doWork (); C
24 Cipher h = new Cipher ();
25 y.maybeInit(h); // monomorphic call

26 h.doWork (); D
27 }
28

29 // class X extends Z
30 void maybeInit(Cipher a) { a.init(); }
31

32 // class Y extends Z
33 void maybeInit(Cipher b) { }

Fig. 2: Example for a JIT API misuse detection.

34 void main() {
35 F g = new F(), h = new F(), f = null;
36 g = f;
37 if(...) h = f;

38 x = f.a; E

39 y = g.a; F

40 z = h.a; G
41 }

Fig. 3: Example for a JIT nullness analysis.

it is sensible to prioritize warnings by locality, i.e., report
those warnings that are closest to the user’s working set
first. If the user is editing the main method in Fig. 1, result
A should be reported first, as it is located in the same

method as the edit point. Result B can be reported later,
since it is located in a different class.

API misuse detection: Analyses that detect misuses of
APIs ensure that programs use APIs correctly by verifying
that they follow a certain usage protocol [18]. In Fig. 2, the
analysis seeks to verify that a cipher is always initialized
before a call to doWork. Two warnings are reported: C

and D . The former is harder to detect, since the call
to maybeInit on line 22 may resolve to either of the
two implementations of the method. Applying the same
ordering by locality as for the taint analysis, a JIT analysis
for API misuse detection should find D before C , since
finding C requires to compute information over three
different classes instead of two.

Another strategy based on confidence prioritizes D ,
as resolving polymorphic calls is more likely to yield
false positives compared to monomorphic calls. Similarly,
following a strategy based on computational resources,
Cheetah decides at runtime to delay the computation
of warnings related to polymorphic calls, as they create
more data flows than monomorphic calls. In general, local
results are not just the most relevant to the user’s current
task, they can also be computed precisely and quickly.

Nullness analysis: A nullness analysis searches for null
dereferences to avoid runtime errors. In Fig. 3, a nullness
analysis reports three warnings: E on line 38 because
f points to null, F on line 39 because f and g must-
alias after the assignment statement on line 36, and G on
line 40 due to the may-alias on line 37.

While E takes minimal computation to find, F and G

require must and may-alias information, respectively. In
real-world programs, such flows can become exponentially
more complex, and take minutes of computation to be
reported, holding back the delivery of other simpler results
that could be fixed in the meantime. With an ordering
strategy by confidence, E can be returned directly, while
alias information is computed to find F and then G .

An advantage of correcting the first warnings early is
that the analysis can update the results accordingly. For
example, if the developer fixes E , the other two warnings
(F and G) are naturally fixed as well. This reduces the
total number of warnings the user has to consider.

III. JIT Analysis Through Layering

We next discuss how one can turn an existing data-
flow analysis into a JIT analysis, fulfilling the properties
described in Section II. Our particular approach reorga-
nizes the analysis into multiple layers. The goal is to
immediately report the most relevant results to the user.
Early analysis layers are run first, yielding the first results
within a matter of seconds. The following layers enrich the
analysis by computing increasingly complex results.

A. A Possible Choice of Layers for Android Applications

In code development, user focus is concentrated around
the current edit point. We propose a layered analysis
that computes warnings by increasing the analysis scope,
i.e., by taking more and more code into consideration,
starting with the code the developer recently modified
or viewed. We define a set of layers for this strategy, as
shown in Fig. 4. Prioritization comes by design, with a
prioritization strategy based on locality. Responsiveness
is ensured as lower layers require minimal class loading
and computational resources. For example, only one class
needs to be loaded to be able to compute results up
to L3 . Monotonicity is to be assured by the internal
implementation of each layer: if a given layer cannot
confirm a warning within its own scope then it must leave
the final decision to later layers.

B. Layered Analysis Examples

Fig. 5 shows the warnings resulting from our example
JIT analyses using the layering system above. In the case
of a JIT taint analysis, the warning A is found at L1, as
it is a direct leak, while B is found after the resolution of
the call on line 7. Assuming that classes A and B are in the
same file, B is reported at L4. In the case of a JIT API
misuse detection, results C and D are returned after the
two calls to maybeInit on lines 22 and 25, respectively.
Assuming that the calls are not in the same package as
the encrypt method, C is returned at L7 and D at
L6. Since the chosen layer system does not include alias-
specific information, the three null dereferences E , F

and G are reported at L1.

L1 Method In this layer, the analysis performs data-flow
propagation in the same method as the current
edit point. The analysis pauses at each method
call, and the information propagated to those
calls is kept in memory to be resolved at later
layers.

L2 Class From L1, the analysis only resolves those method
calls whose callee resides in the same class as
the current edit point. Data-flows are propagated
accordingly.

L3 Class
lifecycle

For event-based frameworks like Android, special
components such as activities, services, content
providers, and broadcast receivers have their own
lifecycle. In this layer, data-flows are propagated
through a component’s lifecycle methods, if the
current edit point is in the same class as the
method.

L4 File This layer propagates along calls to callees that
are in the same file as the current edit point.

L5 Package This layer propagates along calls to callees that
are in the same package as the current edit point.

L6 Project
monomor-
phic

This layer propagates only along monomorphic
calls within the same project.

L7 Project
polymor-
phic

This layer includes further all polymorphic calls
within the same project.

L8 Android
lifecycle

In the case of frameworks (we consider Android),
several components can interact and data can
be propagated implicitly through the framework.
Such flows are handled at this layer.

Fig. 4: Analysis layering in this paper for analyzing An-
droid apps.

L1 L2 L3 L4 L5 L6 L7 L8

Taint A B

Null D C

API E F G

Fig. 5: Results reported by each location-based layer for
three JIT analyses, when analyzing the Java examples in
Figures 1–3., for the following respective starting points
(i.e., the currently edited methods): main, encrypt, and
main.

C. Layering an Existing Analysis

We next explain how to turn into a layered analysis any
existing data-flow analysis that is distributive, i.e., whose
flow functions distribute over the merge operator [19]. This
constraint eases exposition. In general, one can also apply
layering to non-distributive frameworks.

Definitions: We define a trigger as a program statement
at which the analysis needs to pause the propagation of
certain data-flow facts to prioritize others. In the example
from Fig. 1, the triggers are the two calls to sendMessage

on lines 6 and 7. At those triggers, the JIT analysis should
delay the propagation of s and t and propagate u first to
report A in priority. The choice of whether to propagate
s or t next depends on the priority layers. The data-flow
facts created by a particular layer at a trigger create a
task. In the same example, the JIT analysis pauses at the
triggers, and two tasks are created: one with the initial
set {s} with priority L2, and one with the set {t} with

Algorithm 1 Formalization of a JIT analysis

1: procedure main
2: computedTasks = ∅
3: while PQ 6= ∅ do
4: pop task t off priority queue PQ
5: if t /∈ computedTasks then
6: analyze(t)
7: computedTasks ∪ = {t}
8: procedure analyze(〈l, st, in〉)
9: wl := {st} //init worklist

10: IN [st] = in
11: while wl 6= ∅ do
12: pop s off wl
13: if s is a trigger and st 6= s then
14: for l′ ∈ {1..|layers|} do
15: in′ := {i ∈ IN [s] | layer(s, i, l) = l′}
16: add new task 〈l′, s, in′〉 to PQ

17: else
18: OLD := OUT [s]
19: IN [s] := t{OUT [p] | p ∈ preds(s)}
20: OUT [s] := fs(IN [s])
21: if OLD 6= OUT [s] then
22: wl ∪ = succ(s)

PQ returns tasks with the lowest priority layers first.

priority L4. The analysis executes the first task - since its
priority layer is higher, propagating s until the end of the
program (or until it reaches the next trigger), and then
executes to the second task to report B .

General algorithm: To illustrate how one can adapt a
general, distributive data-flow analysis into a JIT analysis,
we present the general JIT-analysis Algorithm 1. The
algorithm is designed to require only a minimum number
of changes to the analysis solver. The definition of the
data-flow analysis problem remains entirely unmodified.

A traditional data-flow analysis would consist of the
procedure analyze, without lines 13-16. This is a stan-
dard fixed-point analysis iterating over the different state-
ments of a program, calling the flow function fs on those
statements (line 20) until the resulting OUT-sets remain
unchanged.

The conversion into a JIT analysis divides this large
fixed-point iteration into smaller tasks. When reaching
trigger-statements within a task, the analysis forces an
intermediate fixed-point to be reached by not modifying
the OUT-set (line 13). This forces the current analysis
task to stop prematurely. All other statements which do
not correspond to triggers are handled in the same fashion
that the base analysis would normally do (lines 17-22).

To allow the analysis to eventually compute the same
results as the base analysis, the JIT analysis creates new
tasks at trigger statements, and adds them to the priority
queue PQ to be executed later (lines 14-16). When a
task finishes, the analysis pops the next highest-priority
task from PQ. It then creates a new instance of the base
analysis to continue propagating where the previous task
stopped. The new analysis is initialized at the trigger point
where its predecessor stopped, with the appropriate IN-
set. The role of the priority queue is to delay or prioritize

certain propagation tasks, in order to discover certain
warnings first.

When creating new tasks, the analysis uses the
layer(s,i,l) method to determine the priority layer l’

to assign to the new task, which will continue propagating
the face i at statement s, knowing that it was paused at
layer l.

Termination: The JIT algorithm expands on an existing
base analysis. Assuming that the base analysis terminates,
the inner loop (line 11) is guaranteed to terminate for all
analysis instances, as the algorithm does not add to or
modify the IN and OUT sets. The outer loop (line 3) also
terminates, as the number of potentially created tasks is
bounded. Tasks depend on their associated set of facts, and
as long as the base analysis’ data-flow lattice is bounded,
the number of facts — and, therefore, tasks — is also
bounded. The check at line 5 ensures that no task is
computed twice, providing termination (and improving
efficiency).

Soundness: To keep the same level of soundness as the
original analysis, the layers of the JIT analysis have to
ensure that at each statement, every data-flow fact created
by the base analysis’ flow function should be assigned to
at least one layer. Additionally, on line 15, the algorithm
partitions the statement’s IN-set into smaller sets. For
this operation to be safe, the data-flow facts should be
separable, i.e., the analysis problem should be distributive.
In this case, the data-flow facts can be independently dis-
tributed between the layers and we can improve efficiency
by requiring that each data-flow fact of an IN-set should
be assigned to one layer, and one layer only.

Requirements: We summarize the requirements for cre-
ating a JIT analysis according to Algorithm 1:

• The base analysis must terminate.
• The analysis problem must be distributive.
• The priority layers should be carefully chosen to

always provide a complete and disjoint partitioning
of the IN-set between the different layers.

The layering described in Section III-A fulfills the above
criteria rather trivially by using only method calls as trig-
gers and by partitioning IN-sets according to the callees to
which they are passed. Other layerings are possible, how-
ever. For instance, one might define layers distinguishing
data flows with or without aliasing.

IV. CHEETAH: A JIT Taint Analysis

Following the layered approach from Section III, we have
implemented Cheetah, a JIT taint analysis that detects
data leaks in Android applications. We have also inte-
grated Cheetah into the Eclipse Integrated Development
Environment (IDE) to be able to evaluate its usability
with a user study. Cheetah is built on top of the Soot
analysis framework [20] and the Heros IFDS solver [21].
Cheetah is based on a simple taint analysis that tracks
explicit dataflow. We use IFDS [19] as a succinct way to

s = getSecret()

t = s

u = s

sendMessage(s)

b.sendMessage(t)

leak(u)

main()
0 u s t

A.sendMessage(x)

B.sendMessage(y)

0 x

x = “not tainted”

leak(x)

leak(y)

0 y

T1 T1

T1

T1

T1

T1

T2

T2

Normal Flow Function Call-to-Return Flow Function Return Flow Function Call Flow Function

T2

T2 T2

T1

T1

T2

T2

Fig. 6: IFDS taint analysis for the example in Fig. 1. T1

and T2 mark the edges created by Cheetah for tasks T1

and T2, respectively. The unmarked edges are created for
task T0.

capture out taint analysis. IFDS is designed to solve in-
terprocedural finite distributive subset problems as graph-
reachability problems on a directed graph representing the
facts of interest to the analysis at each program point
within the exploded super-graph.

Data-flow domain: An IFDS analysis’ data-flow domain
is composed of data-flow facts (or abstractions) that
might hold at each statement of the analyzed program.
A tautological fact, 0, holds at each statement of the
program and is the root of the exploded super-graph. For
a taint analysis, the data-flow domain D is composed of
all references present in the program. We model them as
access paths, i.e., a combination of a local variable and
successive field accesses. For example, the access path x.y.z
denotes the field λ = y.z of the base object x. A fact holds
if it is reachable from the root of the exploded super-graph:
the original 0. In our taint analysis, a fact holds if the
corresponding access path is tainted.

Flow functions: In the IFDS framework, the flow func-
tions map each existing data-flow fact to its successors
(D to 2D). For a taint analysis, a typical flow function
would (1) generate new taint flows if it encounters source
methods; (2) kill taints if the tainted variable is overwrit-
ten by non-tainted data or (3) transfer taint if tainted
references are assigned to other references. Generally,
IFDS uses four different kinds of flow functions, which we
illustrate for the running example from Fig. 1 in Fig. 6.

• Normal flow functions: are applied at each state-
ment that is not a call. For example, transferring the
taint from s to t on line 4 is handled by a normal flow
function. Note that s is also transferred to s since
after the statement s is still tainted.

• Call flow functions: are applied at each call state-
ment. They transfer the data-flow facts from the caller

scope to the scope of the callee. For example, on line 7,
t is mapped to y.

• Return flow functions: are also applied at each
call statement and behave inversely to the call flow
functions, mapping the facts back from the callee to
the caller.

• Call-to-return flow functions: are also applied at
each call statement. They transfer the facts that are
not affected by the call. For example, on line 7, u
is mapped to u. Sinks are also handled in the call-
to-return flow function. If the method m is a sink,
and if it leaks the tainted variable α, it is reported.
For our implementation, we use the sources and sinks
described in Rasthofer et al. [22].

A. Base Taint Analysis

We next present the flow functions of the base IFDS
analysis. We denote by 〈stmt〉(α) the flow function of stmt
applied to an access path α. The taint analysis is based
on the Jimple intermediate representation [23], which eases
the analysis, as it is a three-address code representation.
We simplify our presentation by assuming only single call
parameters and by only considering assignment and call
statements, as the other statements are irrelevant to taint
analysis.

Normal-flow function:

〈x← y〉(α) = {α} \ {x.∗} ∪ {x.λ | α = y.λ}
〈x← y ⊗ z〉(α) = {α} \ {x.∗} ∪ {x | α = y ∨ α = z}

〈other〉(α) = {α}

The normal-flow function is the identity function except
for assignment statements where one of the right-hand side
operands is tainted. For a direct assignment, we remove
all taints for the left operand (x and all of its fields),
and apply to its base variable the taints that exist for
the right operands and its fields (x.λ). In the case of a
binary operator ⊗ Jimple requires all operands to be local
varables and thus we simply taint the left operand if any
of the right operands are tainted.

Call-flow function:

〈x← a.m(p)〉(α) =

{α} if α is static ∨ α = 0

{this.λ} if α = a.λ

{arg.λ} if α = p.λ

∅ otherwise

For the call-flow function, taints for the base variable
and the parameters are propagated into the callee. They
are mapped to the this variable and formal-argument
name arg in the scope of the callee. Static variables are
propagated as well.

Return-flow function:

〈x← a.m(p)〉(α) =

{α} if α is static ∨ α = 0

{a.λ} if α.λ = this.λ

{p.λ} if α.λ = arg.λ ∧ |λ| > 0

{x.λ} if α.λ = retV al.λ

∅ otherwise

The return-flow function maps the this variable and ar-
guments back to the base variable and parameters of the
caller scope. Static variables are propagated back into the
caller.

Call-to-return-flow function:

〈x← a.m(p)〉(α) =

∅ if α is static ∨ α.λ = p.λ ∨
α.λ = a.λ

{α} \ {x.∗} ∪ {newTaints(m) |
α = 0 ∧ isSource(m)}

otherwise

The call-to-return-flow function ensures that the variables
that are affected by the call are not just propagated
across the call on the side of the caller. Static variables,
parameters, the base variable, are killed by returning ∅.
Their taint, as well as that of the overwritten variable
x, may be carried over by the corresponding return flow
function, depending on the implementation of the callee(s).
The function also propagates further such access paths not
referenced by the call. If the method m is a source method,
the newly tainted variables are added to the tainted set.

Sinks are also handled in the call-to-return flow function.
If the method m is a sink, and if it leaks the tainted
variable α, it is reported. For our implementation, we use
the sources and sinks described in Rasthofer et al. [22].

B. Layering the Taint Analysis

This paragraph details how we modify the base taint
analysis into a JIT analysis using the layers defined
in Section III-A. In order to use the general algo-
rithm presented in Section III-C, we define the fol-
lowing: isTrigger(s) = s.containsMethodCall() and
layer(s, i, l) = distance(s.callee, startPoint). The JIT
taint analysis should be paused at every call site, so we
mark method call sites as triggers. The propagation at
those call sites is continued in a subsequent task. The
layer that is assigned to a fact at a call site is determined
by the distance between the callee and the start point
of the analysis, which is the currently edited method.
The distance is defined in terms of the chosen layers (see
Section III-A). For example, if the analysis encounters a
call to a method that is in the same file but not the
same class as the starting point, the new task would be
assigned L4. As a result, one task creates as many tasks as
the number of call sites it contains. All of those new tasks
are added to the priority queue and executed in order of
distance to the starting point. To adapt the algorithm to
the IFDS framework, we apply the following changes:

• Every time a task is executed (line 6 in Algorithm 1),
the analysis creates a new IFDS instance starting at the
task’s start statement, and initializes it with the facts
contained in the task’s inSet. To reuse the previously
computed results, the state of the IFDS solver is carried
over from one IFDS instance to the next.

• The priority queue is initialized with the task {L1,

stmt, 0}, where stmt is the first statement of the
currently edited method.

• To pause the analysis at call sites and create a new task,
we overwrite the base analysis’ call-flow function:

〈stmt〉′(α) =

{
〈stmt〉(α) if stmt = task.startStmt

∅ otherwise

Returning ∅ ensures that the propagation of the data-
flow facts is stopped at all call sites, except when the
call is the start statement of the current task. This
corresponds to lines 13–16 in Algorithm 1. In addition to
modifying the out-set, the call-flow function also creates
new tasks. When the analysis is paused at a call site, it
collects the variables that need to be propagated further
(i.e., the parameters of the call, the static variables, and
the base variable of the call) into an inSet. The analysis
then creates a new task {layer(stmt), stmt, inSet},
and adds it to the priority queue to be executed later.
Those taints will be resolved when the analysis processes
the call of the newly created task.

• The normal, return, and call-to-return flow functions
remain the same as the base analysis.

Example: Applying Cheetah to the example in Fig. 1
results in the following steps (also shown in Fig. 6):

1) The user triggers the analysis at the main method.
Task T0 = {L1, line 3, {0}} is enqueued.

2) T0 is executed, resulting in the unlabeled edges.

a) Result A is found and reported
b) Task T1 = {L2, line 6, {0, s}} is created.
c) Task T2 = {L4, line 7, {0, t}} is created.

3) T1 is executed, resulting in the edges labeled with T1.
4) T2 is executed, resulting in the edges labeled with T2,

and B is reported.

V. Implementation Details

A. Analyzing Incomplete Code

A traditional whole-program analysis usually starts
from a main method, and propagates through the code
that is reachable from there. This approach is ill-suited
for the scenario of code development, where developers
often work on new features in incomplete programs that
may not even have a main method. Cheetah provides full
code coverage by artificially creating tasks that are not
naturally induced by following the call graph from edit
points. Each task instance implements the methods re-

quiredTasks and nextTask. The method requiredTasks

returns a list of all tasks with the same scope (in terms of

layers) as the current task, but with lower layer values. For
example, the required tasks of a class-specific task in L2
would induce the creation of tasks in L1 for each method of
that class. Before executing a task Cheetah then checks
that all of its required tasks have already been executed.
The method nextTask returns the task that should be
executed next, which is a duplicate of the current task,
with a higher layer value. For example, a task in L1 is
followed up by a task in L2 starting at the same method.
This is required if the current task does not naturally
create any further tasks. This approach enables Cheetah
to help software developers reason about unreachable code,
a property that a traditional IFDS-based taint analysis
does not provide.

B. Class Loading and Call Graph Construction

Traditionally, an IFDS-based analysis requires access to
all classes in a given program. It also requires a call graph
as input, which is typically constructed before the analysis
starts. Implementing Cheetah using this traditional ap-
proach would result in an unnecessary initial cost for class
loading and call-graph construction, which affects how
responsiveness Cheetah is to user interactions. We follow
a more suitable approach for Cheetah by only loading
the classes that are necessary to execute the current task
by calling the Soot method Scene.v().forceResolve()

on each of those classes. To construct the call graph,
Cheetah uses Soot’s OnTheFlyJimpleBasedICFG, which
is an on-demand algorithm that uses the class hierarchy to
resolve calls, similar to Class Hierarchy Analysis (CHA).
Our approach for class loading and call-graph construction
enables Cheetah to quickly deliver the results that are
computed in the early layers.

C. Android Lifecycle

Unlike Java programs, Android applications do not con-
tain a main method to start the analysis from. Various call-
backs create implicit data flows that should be modelled
by a sound analysis. Special Android components such
as activities, services, content providers, and broadcast
receivers have their own lifecycle, which is expressed by
overwriting lifecycle methods. The Android framework
calls those methods to start, stop, pause, resume, and
destroy the component.

To emulate the Android lifecycle and callbacks, Arzt et
al. [24] introduce a dummy main method that explicitly
calls all registered callbacks in all possible orders. However,
this approach is not useful in the context of a JIT analysis
such as Cheetah, because resolving callbacks in a class
requires loading it. Therefore, creating the dummy main
method for the whole application means loading all classes
when Cheetah is launched. This contradicts the class-
loading and call-graph construction strategy that Chee-
tah uses.

In Cheetah, we thus defer the creation of the dummy
main method to the last layer L8, when all the other tasks

have been executed. However, a component’s lifecycle
methods are typically declared in the same class, and
resolving such flows at the last layer is counter-intuitive,
especially when the component’s class is loaded as early
as layer L2. As a result, in layer L3, Cheetah creates
a component-specific, local dummy main method. Leaks
at this layer are resolved early, and only inter-component
flows are delayed to layer L8. The global dummy main
created at that last layer then calls the previously-created
local dummy main methods, instead of directly referring
to the callbacks.

D. Reporting Results

To report results useful to software developers, Chee-
tah provides a witness for each reported warning. To
track tainted paths, we augment our access paths with
more information, similar to Lerch et al. [25]. Each data-
flow fact holds its predecessor, its source statement, and
a list of neighbours. A loop-aware depth-first search then
provides one or more witnesses that show the path causing
the warning reported by Cheetah. We also use those
witnesses to compute locality metrics for our empirical
evaluation.

VI. Empirical Evaluation

We empirically evaluate Cheetah by comparing it to
Base, a traditional IFDS-based taint analysis through
answering the following research questions:

RQ1: How responsive is Cheetah compared to Base?
RQ2: How early does Cheetah report warnings?
RQ3: Are the initial findings of Cheetah easier to inter-

pret than later ones?
RQ4: What is the precision and recall of Cheetah and

Base compared to FlowDroid?

A. Experimental Setup

Both Cheetah and Base are implemented on top of
the Heros IFDS solver [21], based on Soot [26], and share
the same flow functions. Our benchmark consists of 14
Android applications selected from the most recent 100
applications in the F-Droid repository [27], such that each
application has a GitHub repository with more than one
commit. We then used Boa [28] to mine those repositories
and determine the methods that have been modified in
each commit. We then ran two experiments per applica-
tion. In the first experiment, we used the modified methods
in GitHub commits as the starting points for Cheetah
(hereafter, referred to as SPB).

Each application has at least 26 unique SPB (min: 26,
max: 316, median: 127). We then ran Cheetah once
for each application, using 20 randomly selected SPB,
to obtain the actual sources and sinks. In the second
experiment, we ran Cheetah using those actual/known
sources as starting points for the analysis (hereafter, re-
ferred to as SPS). The starting point of Base is always
the dummy main method that it creates for the Android

application under analysis. We ran our experiments on
a 64-bit Windows 7 machine with one dual-core Intel Core
i7 2.6 GHz CPU running Java 1.8.0 102, and limited the
Java heap space to 1,024 MB.

B. Results

RQ1: How responsive is Cheetah compared to
Base? We have measured the time that Cheetah takes to
report the first, second, third, and last result when it starts
at SPB and compared them to those when it starts at SPS.
We have also compared these times to the time it takes
Base to report its final results. Fig. 7 shows, in log scale,
the total response time for those quantities, which includes
the overhead time taken by Cheetah to load and process
the initial set of classes. Across our benchmark, Cheetah
reports the first result in a median time of less than 1
second when it starts at SPB and a median of less than
0.5 seconds when it starts at SPS. These results are below
Nielsen’s 1 second recommended threshold for interactive
user interfaces, suggesting that Cheetah usually allows
the “user’s flow of thought to stay uninterrupted” [29].
Cheetah reports its last result in a median time of 9.16s
and 7.78s when it starts at SPB and SPS, respectively.
Both medians are larger than the median time of 2.13s that
Base takes to report its final results. This is attributed to
the fact that Cheetah is capable of analyzing parts of the
program that are not reachable from its main entry points,
a feature that traditional analyses such as Base do not
offer. We discuss in RQ4 why this feature is desirable for
real-life scenarios. Furthermore, using Cheetah, enables
the user to either continue her development tasks, or
addressing the first warnings that she gets.

Cheetah returns the first result in less than one second, allowing the
developer to remain focused.

RQ2: How early does Cheetah report warnings?
One of the main goals of Cheetah is to help software
developers detect bugs located around their working set
faster compared to using traditional analyses. This means
that Cheetah should ideally report most of its warnings
in earlier layers. Fig. 8 shows that, across our benchmark,
when Cheetah starts at SPB, a median of 38.97% of the
warnings is reported in L5 and a median of 44.12% in L6.
Starting at SPS, Cheetah reports a median of 32.56%
warnings in L5 and a median of 15.77% in L6. In such
a case, Cheetah reports more warnings in earlier layers:
a median of 4.58% in L1 and a median of 5.13% in L3.
This shows that if Cheetah is guided towards the points
of interest in a program, more warnings are reported
earlier. Therefore, starting at SPS is more optimal when
a user requires analysis updates, while fixing a particular
warning.

The process of computing the witness that accompanies
the reported warning times out in less than 1% of all the
cases (average: 0.81%, median: 0%). It is important to note

that, for those timeouts, Cheetah itself does not time out
while computing the warnings. Across our benchmark, no
results are reported in L7, because none of the applications
pass sensitive information through polymorphic calls. Sim-
ilarly, no warnings are reported in L8, because Cheetah
does not currently support inter-component flows.

Cheetah reports most of the warnings in L5 and L6. If directed to
known sources of bugs in a program, Cheetah reports more warnings
in earlier layers.

RQ3: Are the initial findings of Cheetah easier to
interpret than later ones? The quick response time of
Cheetah is only useful if the first few warnings that it
reports are easy to interpret by the user. Otherwise, the
user will spend most of her time trying to trace her way
through the program to fix that warning. We evaluate the
ease of interpretation of the initial warnings that Cheetah
reports by computing the trace length: the number of
statements between the source and the sink for a given
warning. Fig. 9 shows the trace lengths for the warnings
that appear in each layer of Cheetah. When Cheetah
starts at SPB, the length of the traces for the initial
layers L1-L4 is a median of 0, 1, 3, and 4 statements,
respectively. For later layers, more complex warnings are
reported. Therefore, the median length of the traces for
layers L5 and L6 is 26 and 22 statements, respectively.
Starting at SPS enables Cheetah to report warnings at
earlier layers. In such a case, the median length of the
traces that Cheetah reports for the initial layers L1–L4
is a median of 4, 1, 11, and 1 statements, respectively.

The initial leaks reported by Cheetah have shorter traces, making them
easier to interpret.

RQ4: What is the precision and recall of Chee-
tah and Base compared to FlowDroid? We com-
pare the precision and recall of Cheetah and Base to
FlowDroid, a highly precise taint analysis for Android
applications [24]. We use FlowDroid as our ground truth
to verify that both Cheetah and Base report correct
results. The Venn diagram in Fig. 10 depicts the results
found by each analysis for our benchmark applications.
Each point in the Venn diagram, indicated by both a color
and a number, represents a specific result that is found
in one application. Both Base and Cheetah find all the
warnings that are reported by FlowDroid, except for
four warnings that require handling threads and modeling
application layout, which are both currently not supported
in either tools. Across our benchmark, Base is less pre-
cise than FlowDroid as it reports 2.5x more warnings
(min: 1.5x, max: 8x, geometric mean: 2.54x). Since Base
and Cheetah have the same IFDS flow functions, they
both should have the same precision and recall when
compared to FlowDroid. However, Cheetah reports
3.6x more warnings compared to FlowDroid (min: 1.5x,
max: 28x, geometric mean: 3.58x). We have further inves-

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0
T

im
e

(s
ec

on
ds

)

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

Result 1 Result 2 Result 3 Last Result BASE

T
im

e
(s

ec
on

ds
)

Fig. 7: Time to report results (in
log scale) for Cheetah compared to
Base when starting at SPB (top) and
SPS (bottom).

0

10

20

30

40

50

60

70

80

90

100

W
ar

ni
ng

s
(%

)

0

10

20

30

40

50

60

70

80

90

100

L1 L2 L3 L4 L5 L6 L7 L8 Timeout

W
ar

ni
ng

s
(%

)

Fig. 8: Percentage of warnings that
appear in each layer when Cheetah
starts at SPB (top) and SPS (bot-
tom).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Tr
ac

e
Le

ng
th

 (

st
at

em
en

ts
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

L1 L2 L3 L4 L5 L6 L7 L8

Tr
ac

e
Le

ng
th

 (

st
at

em
en

ts
)

Fig. 9: The length of the traces for
the warnings that appear in each layer
when Cheetah starts at SPB (top)
and SPS (bottom).

FlowDroid

CHEETAH ❽ ❽ ❿ ❿

❶ ❶ ❶ ❶ ❶ ❶ ❷ ❷ ❷ ❷ ❷

❶ ❶ ❶ ❶ ❶ ❷ ❼ ❽ ❽ ❽ ❾

❶ ❶ ❶ ❶ ❶ ❾ ❾ ❾ ❿ ❿ ❿

❶ ❶ ❶ ❶ ❶ ⓫ ⓫ ⓬ ⓬ ⓬ ⓬

❷ ❸ ❸ ❸ ❸ ⓬ ⓭ ⓭

❸ ❸ ❸ ❸ ❸ ❶ ❶ ❶ ❶ ❶ ❶

❹ ❹ ❹ ❺ ❺ ❶ ❷ ❷ ❷ ❷ ❷

❺ ❺ ❺ ❺ ❺ ❷ ❷ ❸ ❹ ❼ ❼

❺ ❺ ❺ ❺ ❻ ❽ ❽ ❽ ❽ ❽ ❽

❻ ❻ ❻ ❻ ❻ ❽ ❽ ❾ ❾ ❿ ❿

❻ ❻ ❽ ❽ ❽ ❿ ❿ ❿ ❿ ❿ ❿

❽ ❽ ❽ ⓬ ⓬ ❿ ⓫ ⓫ ⓫ ⓫ ⓫

⓭ ⓭ ⓭ ⓭ ⓭ ⓫ ⓫ ⓬ ⓬ ⓬ ⓭

⓭ ⓮ ⓮ ⓮ ⓮ ⓮

⓮ ⓮ BASE

❶ aarddict

❷ PuppyFrame

❸ AsciiCam

❹ CamTimer

❺ portal-timer

❻ PixelKnot

❼ aGrep

❽ campyre

❾ android-file-beam

❿ AppBak

⓫ ATimeTracker

⓬ Kaleidoscope

⓭ WorldClock

⓮ TeaTimer

Fig. 10: Analysis results and their intersections as a Venn
diagram.

tigated the issue, and confirmed that all of these warnings
stem from the fact that Cheetah is capable of analyzing
parts of the application that are unreachable from the
program entry points. In real life, developers may be
working on some code that is still unreachable from the
program entry points. Cheetah analyzes those parts of
the codebase to provide the user with a more relevant
result set than traditional analyses such as Base. To
achieve that, we create artificial tasks that guide Cheetah
to analyze those parts of the program, and add them to
the priority queue that Cheetah processes.

1

2

3

Fig. 11: GUI elements of Cheetah.

Base and Cheetah have the same precision and recall compared to
FlowDroid. However, Cheetah can analyze parts of the program that
are more relevant to the user.

VII. Graphical User-Interface

Reporting results while the code is modified and the
analysis still runs in the background requires a careful
handling of warnings. If no care is taken, warnings literally
become moving targets, shifting around in result lists as
new warnings are found and others are fixed, becoming
confusing for the developer. Fig. 11 illustrates the GUI fea-
tures of Cheetah, which have been introduced to support
reporting warnings over time. These features, described
below and highlighted with numbers in the figure, were
inspired by the observations made during our pilot study.

1. Views: To avoid overwhelming the users by showing
them all warnings and their details information in one
place, we separate the warning information into two

views: overview and detail. The first view provides a
list of all reported data leaks, while second view presents
the path details of the warning selected in the overview
view. The detail view provides a compact summary of
the leak, offloading the amount of information contained
in the overview view.

2. Color-coded warnings: Warnings in Cheetah can
have three states: active (confirmed by the latest anal-
ysis run), computing (found by the previous run of the
analysis, and not yet confirmed by the current run),
and fixed. We display active warnings in black and
computing warnings in gray. Fixed warnings are kept
grayed out for one run of the analysis, and removed from
the view at the next run, thus providing a light history
of fixed leaks. This allows users to quickly check if a fix
was effective.

3. Descriptive icons: Cheetah displays source and sink
icons on the left gutter. When a warning in the overview
view is grayed out, the corresponding icons are also
grayed out. Tooltips provide additional information on
the particular leaks the icons refer to.

4. Other features: A few features that are not JIT-
specific have been provided for the sake of clarity, such
as highlighting the path of the leak the user is currently
examining, and introducing unique identifiers to help
users identify the leaks they are interested in.

5. Seamless run: To integrate the tool into the develop-
ment environment, we chose to trigger the tool every
time the project is built. Cheetah hooks into Eclipse’s
incremental builder, and re-runs the analysis starting
from the method that currently has the focus.

VIII. User Studies

In order to evaluate how a JIT analysis integrates
into the development workflow compared to a traditional
batch-style analysis, we conducted a user study using
Cheetah and Base.

We first conducted a pilot study with 11 participants
of mixed skill and experience levels, in both Android
development and static analysis tools (including profes-
sional developers and Android security analysts). The
outcomes of this study were mixed, as most participants
were somewhat distracted by our initial GUI prototype
for the JIT analysis. One specific issue was the overview
view that kept changing as new results were computed,
making it impossible to track a particular warning, and
for which we introduced the graying system presented in
Section VII. We fixed the issues reported by the initial
batch of participants and repeated the study, with better
results.

Participants: The actual study included 18 participants
of varying backgrounds (9 academics and 9 professional
code developers), and of different skill levels in terms
of Android development and knowledge of taint tracking
static analysis tools. In the following, we identify them as

P1 . . . P181.

Task: To make the conditions of the study as close to day-
to-day development activities as possible, the participants
were asked to perform a development task: removing code
duplicates in an Android applications. Their secondary
goal was to keep the number of data leaks to a minimum,
while they were coding. Cheetah or Base were provided
as Eclipse plugins to help them with detecting potential
data leaks. Data cleansing/sanitization APIs were pro-
vided to prevent potential leaks.

Protocol: The participants performed the task a total of
four times. They switch the Eclipse plugin in the middle,
after the first two times. We randomized the use of plugins,
so that half of the participants started with Cheetah and
the other half, with Base. For each tool, the participants
first worked with a small Android application to get used
to the IDE and the plugin. They then proceeded on to a
bigger real-life application. Afterward, we asked the partic-
ipants to fill a comparative survey, and interviewed them
in person. The full list of survey questions, participants’
responses and the interview protocol are provided online2.

Test applications: The same two applications (small and
big) were used for both tools across all participants. The
small one is an artificial Android app designed to showcase
the tool’s features. The real-life application is Bites, a basic
cookbook app, taken from F-Droid3. Because each task
had to be completed in a limited amount of time (10 min-
utes), we modified the application to arrange for some code
duplications around existing data leaks. This effectively
forced the users to interact with the analysis tools more
often, which is what lacked in the pilot study. Unlike the
pilot study, we also chose to keep the same two applications
for both tools, so that the users would not need to relearn
the code itself, spending more time using the plugins.

GUI: To avoid a GUI-induced bias, the GUI used for
Base is almost identical to Cheetah’s. For this user
study, Base analysis emulates a batch-style tool, similar
to HP Fortify’s Eclipse plugin [6]. The analysis is not
triggered on code build, but instead by pressing a button.
A popup then blocks the GUI, to prevent the user from
modifying the code, while the analysis is executing. All
results are shown at the same time, after the analysis
finishes. The warnings are displayed in the order in which
they are found. For both tools, we disallowed participants
to reorder the warnings presented in the warning view,
to evaluate the efficiency of Cheetah’s built-in ordering
strategy.

1We ignore P17, as (s)he used the analyses in a manner that
triggered a UI bug, and was unable to properly perform the tasks.

2https://blogs.uni-paderborn.de/sse/files/2016/08/
JITA_UserStudy.pdf

3https://f-droid.org/wiki/index.php?title=caldwell.
ben.bites

https://blogs.uni-paderborn.de/sse/files/2016/08/JITA_UserStudy.pdf
https://blogs.uni-paderborn.de/sse/files/2016/08/JITA_UserStudy.pdf
https://f-droid.org/wiki/index.php?title=caldwell.ben.bites
https://f-droid.org/wiki/index.php?title=caldwell.ben.bites

A. Survey Results

Format: After the development tasks, the participants
filled a survey comprised of 29 questions designed to
assess the merits of the two approaches. In the survey,
participants provided some open-ended comments and
compared Cheetah to Base. Participants also answered
several 5-point Likert-type questions from the System
Usability Scale (SUS) [30], a questionnaire designed to
measure the effectiveness and efficiency of a system. Fi-
nally, participants rated both tools using a Net Promoter
Score (NPS) [31], a 11-point Likert scale measuring their
likelihood of recommending the tool to a friend.

Results: Overall, participants responded positively to
Cheetah. Among participants who rated both Cheetah
and Base on the NPS question (n = 16), Cheetah’s
mean score was 7.4 (out of 10) as compared with a mean
score of 2.7 for Base. According to the aggregated SUS
scores, 12 participants rated Cheetah higher than Base.
Using a Wilcoxon Signed-Rank test [32], we observed
significant (p < .05) differences between these aggregated
scores and participant’s responses on 4 of the individual
SUS questions. Compared with Base, participants were
less likely to find Cheetah unnecessarily complex (-
.6 mean response), or cumbersome (-.6 mean response).
Further, participants responded that they were more likely
to use Cheetah frequently (+.7 mean response) and were
more likely to find its functions well-integrated (+.5 mean
response).

B. Interview Results

Format: After filling the survey, participants were inter-
viewed individually. We asked them to detail their expe-
rience of the tools, focusing on the perceived differences,
in particular concerning waiting times, integration of the
tools in the IDE, and warning ordering. The interviews
lasted 14 minutes in average, ranging from 10 minutes to
23 minutes. We present below the notable comments and
behavior observed during the overall study, organized by
user interface features.

Quick updates: In total, 12 participants found Chee-
tah’s quick updates useful, noting this feature as the main
advantage of the tool. Professional developers in partic-
ular, noted that this system was “much more comfortable,

and what I would expect in the Eclipse environment” (P7). As
a result, after starting the analysis, those 12 participants
resumed their tasks as soon as the update they expected
was confirmed. The other 5 participants did not notice or
act upon seeing the updated warnings, which we detail in
a later paragraph.

Integration in the development workflow: Partici-
pants noted that Cheetah’s seamless run feature made
it better integrated into Eclipse: “it integrates well into the

Eclipse build-on-save paradigm” (P2). This resulted in a“more

fluent workflow” (P9), as opposed to Base, which proved

more interruptive to the participants: “having to wait inter-

rupts the coding and thinking process”(P6). P4 explained from
their personal experience with UI-blocking compilation
tools that they “do a context switch in your head. [...] When

you are back to the actual work, you might have forgotten what

you wanted to do”. In summary, participants felt that for
code development, Cheetah was less interruptive, as it
allowed them to deviate less from their coding tasks.

Ordering: Seven participants complained about the ran-
dom ordering offered by Base, saying that they would like
to be able to “sort the leaks by source, sink, line number” (P6).
No such complaints were made for Cheetah, regardless of
the order in which the participants used the tools, which
indicates that the ordering provided by the chosen layers
was not harmful to the participants’ performance. P8, a
professional Android developer,“felt like there was an ordering

by class for [Cheetah]”, and commented: “When I’m in one

class, I get familiar with it, and when I click on a warning, it

takes me to a completely different class, and I have to get used

to it again”. P18 in particular, dealt with the leaks in the
proposed order. P18 fixed all leaks when using Cheetah,
but skipped most of the first warnings when using Base
after deeming their traces“too long”. We see that reporting
warnings following our priority layers positively affects
participant performance and integrates more discretely in
their development workflow.

Performance: Two expert participants expressed perfor-
mance concerns about Cheetah running too often on big
projects: “if the analysis affects the performance, I would like

to have a button to control it” (P13). Also, 5 participants
felt “the analysis was slowing the IDE down” (P13), as it took
more time to compute all results than Base. We note that
Cheetah is fully computed in the background, and was
given enough memory to not interfere with the UI thread.

Waiting times: During the study, five participants waited
until Cheetah terminated before starting to look at the
results. One participant wanted to have a full overview
of all warnings at each code change. Another one started
fixing leaks starting from the bottom of the list; those
were always reported at the latest layers. The other three
participants were frequent users of blocking analysis tools.
They automatically chose to not touch the code while
Cheetah was computing, wanting to “avoid errors when

intermediate results are computed [...] while the analysis is in an

unclean state” (P15).

Graying system: The graying system was deemed useful
by some participants: “I had the impression I did something”

(P16), “History is useful” (P9), but it proved confusing to
others, as they still had trouble finding out if a fix was
successful. Some noted that the “color of the fixed issue

should be different [than a computing issue’s]” (P4), others,
that it was“disturbing because results changed”statuses during
the analysis (P6). This prompted them to wait until the
overview view (or the part of the view where their warning
was located) stabilized. P1 noted that the feedback given

by the tool on a change “should be more prominent”. To see
if a leak was fixed, some participants relied on the gutter
icons instead: “The sink [icon] has now disappeared, that’s a

good thing” (P5).

Comparison: During the interviews, we asked the par-
ticipants in which cases Cheetah would be more useful
than Base and vice-versa.

• 12 participants reported Cheetah would be best suited
for code development. P9, in particular, noted that it
would make the development task slightly harder, but
it would “force me to write better code from scratch”. 2
participants expressed concerns for big projects because
“if it has a big impact on the CPU, it might be annoying and I

might not be as productive” (P4).
• 11 participants noted that Base should be used in-

frequently, for example, “after a milestone” (P9), or in
situations where debug and coding are separated, such
as “creating reports for software” (P7). No participants
reported they would use Base for code development.

12 out of 17 participants preferred Cheetah for code development due
to its quick updates, although concerns were expressed about CPU
overhead and UI details. Cheetah’s inherent ordering also helps code
developers for bug fixing tasks.

IX. Limitations and Future Work

Incremental Analysis: Previous approaches at improv-
ing the responsiveness of an analysis include incremental
analyses, which only compute analysis changesets at each
code modification introduced by the user. A full analysis
is required from time to time, especially when the user
makes impactful changes to the code. In those cases, the
analysis remains as slow as a standard analysis, while the
performance of a JIT analysis remains consistent over all
runs. The main drawback of Cheetah is that it fully
recomputes the whole analysis every time it is rerun.
Incrementalizing Cheetah would effectively address this
drawback, and result in an analysis that is fully responsive,
while still providing the code developer with useful results
first.

Layering System: As mentioned in Section III-C, prior-
ity layers should be chosen carefully to provide a complete
and disjoint partitioning of the base analysis’ in-set at any
statement. Defining a correct and useful set of layers is not
an easy task, and we plan to improve on how to do such
a thing.

Non-distributive problems: Section III-C shows how
to lift a base analysis into a JIT analysis. Because facts
are separated at line 15, the analysis problem must
be distributive in order to use the proposed algorithm.
Changes could be added to the algorithm to support non-
distributive problems, which we plan to include in future
work.

X. Related Work

Given the vast amount of research on static analysis,
we focus this section quite narrowly, highlighting the
interactions between static analysis tools and developers.

A. Human Aspects of Static Analysis Tools

Several researchers have conducted studies of develop-
ers’ usage of static analysis tools. Sadowski et al. [33]
found that most Google developers reported that static
analysis warnings were usable. Phang et al. [34] found
that a program flow visualization tool helped developers
quickly triage warnings. Ayewah and Pugh [35] found that
checklists helped developers consistently evaluate warn-
ings. In an experiment, Smith et al. [10] characterized the
information needs of developers while addressing warnings.
In contrast, our work focuses on smoothly integrating
static analysis warnings into developers’ workflows.

Several human studies have highlighted challenges re-
lated to workflow integration. Johnson et al. [8] recorded
interviewees stressing the importance of integrating static
analysis into their workflows. Lewis et al. [11] found that
almost all interviewed developers agreed that static analy-
sis should not disrupt their workflow. Through interviews
and surveys, Xiao et al. [36] and Witschey et al. [37] found
that developers whose security tools help them do their
work quickly report being more likely to adopt those tools.
Christakis and Bird [38] interviewed and surveyed Mi-
crosoft developers, who complained that existing tools are
too slow and do not fit into their workflow. Accordingly,
our work aims to address workflow integration problems
by providing relevant static analysis results quickly.

B. Warning Prioritization

Researchers have proposed several ways to prioritize
which static analysis warnings developers should address
first. Industrial tools tend to use heuristics, such as in
FindBugs [39], which classifies warnings as low, medium,
or high priority. Surveying the research, Muske and Sere-
brenik [40] organize prioritization approaches into three
main categories: statistical, historical, and user-feedback.
As an example of a user-feedback based approach, Heck-
man and Williams [41] use machine learning to prioritize
actionable warnings over unactionable ones. As an exam-
ple of a history-aware approach, Kim and Ernst [42] use
code history to prioritize defects. Other approaches do not
easily fit into these categories. For example, Shen et al. [43]
deprioritize predicted false positives, then use developer
feedback for future prioritization. As another example,
Liang et al. [44] use resource leak defect patterns to
prioritize potential resource leaks. While prior approaches
prioritize using the warning or the code, our approach
instead (1) prioritizes using a developer’s working context,
and (2) uses that context to guide the analysis itself.

C. Incremental Presentation

Several prior researchers have investigated how to incre-
mentally present analysis results to the user. For example,
Parfait [14], [15] runs an initial bug detector then cas-
cades different analyses in layers of an increasing order of
complexity, and a decreasing order of efficiency to confirm
the initial findings. Unlike Cheetah, one layer in Parfait
may invalidate some of the bugs that a previous layer has
already reported. On the other hand, in Cheetah, each
layer uses previously computed information to detect new
bugs and does not invalidate previously reported warnings,
minimizing the disruption in the developer workflow.

Cheetah reports warnings in a similar way to how
Eclipse’s incremental compiler reports errors to a user
while editing source files [45]. This is the same approach
used by ASIDE [46], an Eclipse plugin that detects security
vulnerabilities in Java programs. ASIDE incrementally
reports errors to the user by only analyzing recent code
changes. Although Cheetah is a whole-program analysis,
it still incrementally reports warnings to the user by
starting at specific points of interest in the program (e.g., a
recently modified method). However, we plan to introduce
incremental analysis to Cheetah in the future to improve
the responsiveness of its later layers L5-L8.

XI. Conclusion

We have presented the novel concept of JIT analysis,
which interleaves the processes of code development, static
analysis execution, and bug fixing, by layering the static
analysis approach. We have shown how to obtain a JIT
analysis by modifying a base distributive data-flow analy-
sis with minimal changes, using a layering system. Chee-
tah, an implementation of a JIT taint analysis for finding
privacy leaks in Android apps, has been evaluated on real-
world Android benchmarks. Our empirical results, survey
results, and a detailed user study show that Cheetah’s
quick updates and ordering strategy make it particularly
well-suited for integrating bug fixing within the natural
flow of code development.

Acknowledgments

This research was supported by a Fraunhofer Attract
grant as well as the Heinz Nixdorf Foundation. This ma-
terial is also based upon work supported by the National
Science Foundation under grant number 1318323.

References

[1] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A
static analyzer for finding dynamic programming errors. SPE,
30(7):775–802, 2000.

[2] PREfast. https://msdn.microsoft.com/en-us/library/
ms933794.aspx.

[3] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik
Gabi, Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn,
Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In NFM, volume 9058 of
Lecture Notes in Computer Science, pages 3–11. Springer, 2015.

[4] Cristiano Calcagno and Dino Distefano. Infer: An automatic
program verifier for memory safety of C programs. In NASA
Formal Methods, volume 6617 of Lecture Notes in Computer
Science, pages 459–465. Springer, 2011.

[5] Infer. A static analyzer for mobile apps. http://fbinfer.com.
[6] HP Fortify. http://www8.hp.com/us/en/software-

solutions/static-code-analysis-sast/.
[7] Coverity. http://www.coverity.com/.
[8] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and

Robert W. Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In ICSE, pages 672–681, 2013.

[9] Nathaniel Ayewah and William Pugh. The Google FindBugs
fixit. In ISSTA, pages 241–252, 2010.

[10] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill
Chu, and Heather Richter Lipford. Questions developers ask
while diagnosing potential security vulnerabilities with static
analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages
248–259, New York, NY, USA, 2015. ACM.

[11] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu,
Rong Ou, and E. James Whitehead Jr. Does bug prediction
support human developers? Findings from a Google case study.
In ICSE, pages 372–381, 2013.

[12] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and
Robert Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In Software Engineering (ICSE),
2013 35th International Conference on, pages 672–681. IEEE,
2013.

[13] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan
Fulton, Seth Hallem, Charles-Henri Gros, Asya Kamsky, Scott
McPeak, and Dawson R. Engler. A few billion lines of code
later: using static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[14] Cristina Cifuentes. Parfait - A scalable bug checker for C code.
In SCAM, pages 263–264, 2008.

[15] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan Hawes, and
Manuel Valdiviezo. Transitioning Parfait into a development
tool. IEEE Security & Privacy, 10(3):16–23, 2012.

[16] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
droid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation,
OSDI’10, pages 393–407, 2010.

[17] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan,
and Omri Weisman. Taj: effective taint analysis of web applica-
tions. In ACM Sigplan Notices, volume 44, pages 87–97. ACM,
2009.

[18] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian
Erdweg, and Mira Mezini. Towards secure integration of cryp-
tographic software. In Onward!, pages 1–13. ACM, 2015.

[19] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise
interprocedural dataflow analysis via graph reachability. In
POPL, pages 49–61, 1995.

[20] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
Java bytecode using the Soot framework: Is it feasible? In CC,
pages 18–34, 2000.

[21] Eric Bodden. Inter-procedural data-flow analysis with IFD-
S/IDE and soot. In Proceedings of the ACM SIGPLAN Interna-
tional Workshop on State of the Art in Java Program analysis,
SOAP, pages 3–8. ACM, 2012.

[22] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-
learning approach for classifying and categorizing android
sources and sinks. In 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014.

[23] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren.
The soot framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infrastructure Workshop (CETUS
2011), volume 15, page 35, 2011.

[24] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. FlowDroid: Precise context,

https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://msdn.microsoft.com/en-us/library/ms933794.aspx
http://fbinfer.com
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www.coverity.com/

flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’14, pages 259–269, New York, NY, USA, 2014. ACM.

[25] Johannes Lerch, Johannes Späth, Eric Bodden, and Mira
Mezini. Access-path abstraction: Scaling field-sensitive data-
flow analysis with unbounded access paths (T). In Myra B.
Cohen, Lars Grunske, and Michael Whalen, editors, 30th
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015, pages 619–629. IEEE Computer Society, 2015.

[26] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot - a java bytecode
optimization framework. In Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research,
CASCON ’99, pages 13–, 1999.

[27] F-Droid. Free and Open Source Android App Repository.
https://f-droid.org.

[28] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N.
Nguyen. Boa: a language and infrastructure for analyzing ultra-
large-scale software repositories. In ICSE, pages 422–431. IEEE
Computer Society, 2013.

[29] Jakob Nielsen. Usability engineering. Elsevier, 1994.
[30] John Brooke et al. Sus-a quick and dirty usability scale.

Usability evaluation in industry, 189(194):4–7, 1996.
[31] Frederick F Reichheld. The one number you need to grow.

Harvard business review, 81(12):46–55, 2003.
[32] Frank Wilcoxon. Individual comparisons by ranking methods.

Biometrics bulletin, 1(6):80–83, 1945.
[33] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söder-

berg, and Collin Winter. Tricorder: Building a program anal-
ysis ecosystem. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 598–608.
IEEE, 2015.

[34] Yit Phang Khoo, Jeffrey S Foster, Michael Hicks, and Vibha
Sazawal. Path projection for user-centered static analysis tools.
In Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pages
57–63. ACM, 2008.

[35] Nathaniel Ayewah and William Pugh. Using checklists to review
static analysis warnings. In Proceedings of the 2nd Interna-
tional Workshop on Defects in Large Software Systems: Held in
conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2009), pages 11–15.
ACM, 2009.

[36] Shundan Xiao, Jim Witschey, and Emerson R. Murphy-Hill.
Social influences on secure development tool adoption: why
security tools spread. In CSCW, pages 1095–1106, 2014.

[37] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-
Hill, Chris Mayhorn, and Thomas Zimmermann. Quantifying
developers’ adoption of security tools. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 260–271, New York, NY, USA, 2015.
ACM.

[38] Maria Christakis and Christian Bird. What developers want
and need from program analysis: An empirical study.

[39] Findbugs. http://findbugs.sourceforge.net.
[40] Tukaram Muske and Alexander Serebrenik. Survey of ap-

proaches for handling static analysis alarms. In SCAM, 2016.
[41] Sarah Heckman and Laurie Williams. A model building pro-

cess for identifying actionable static analysis alerts. In 2009
International Conference on Software Testing Verification and
Validation, pages 161–170. IEEE, 2009.

[42] Sunghun Kim and Michael D Ernst. Which warnings should i
fix first? In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages
45–54. ACM, 2007.

[43] Haihao Shen, Jianhong Fang, and Jianjun Zhao. Efindbugs:
Effective error ranking for findbugs. In 2011 Fourth IEEE
International Conference on Software Testing, Verification and
Validation, pages 299–308. IEEE, 2011.

[44] Guangtai Liang, Qian Wu, Qianxiang Wang, and Hong Mei. An
effective defect detection and warning prioritization approach

for resource leaks. In 2012 IEEE 36th Annual Computer
Software and Applications Conference, pages 119–128. IEEE,
2012.

[45] Andrew Jensen Ko and Brad A. Myers. Barista: An implemen-
tation framework for enabling new tools, interaction techniques
and views in code editors. In CHI, pages 387–396. ACM, 2006.

[46] Jing Xie, Heather Lipford, and Bei-Tseng Chu. Evaluating
interactive support for secure programming. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, pages 2707–2716, New York, NY, USA, 2012.
ACM.

https://f-droid.org
http://findbugs.sourceforge.net

	Introduction
	Overview
	Examples of JIT Analyses

	JIT Analysis Through Layering
	A Possible Choice of Layers for Android Applications
	Layered Analysis Examples
	Layering an Existing Analysis

	CHEETAH: A JIT Taint Analysis
	Base Taint Analysis
	Layering the Taint Analysis

	Implementation Details
	Analyzing Incomplete Code
	Class Loading and Call Graph Construction
	Android Lifecycle
	Reporting Results

	Empirical Evaluation
	Experimental Setup
	Results

	Graphical User-Interface
	User Studies
	Survey Results
	Interview Results

	Limitations and Future Work
	Related Work
	Human Aspects of Static Analysis Tools
	Warning Prioritization
	Incremental Presentation

	Conclusion
	References

