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Abstract

JavaScript is widely used in web-based applications and is increasing popular with devel-
opers. So-called ”browser wars” in recent years have focused on JavaScript performance,
specifically claiming comparative results based on benchmark suites such as SunSpider
and V8. In this paper we evaluate the behavior of JavaScript web applications from
commercial websites and compare this behavior with the benchmarks.

We measure three specific areas of JavaScript runtime behavior: 1) functions and
code; 2) heap-allocated objects and data; 3) events and handlers. We find that the bench-
marks are not representative of many real websites and that conclusions reached from
measuring the benchmarks may be misleading.

Specific examples of such misleading conclusions include the following: that web ap-
plications have many loops, that non-string objects in web applications are extremely
short-lived, and that web applications handle few events.

We hope our results will convince the JavaScript community to develop and adopt bench-
marks that are more representative of real web applications.

To reduce the total length of the paper, we have chosen to
shrink our figures substantially, and we recommend that
an interested reader view the document in color, preferably
with the ability to enlarge the figures as needed. Our in-
tent of including this much raw data is to allow interested
readers an opportunity to draw their own conclusions.
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1 Introduction

JavaScript is a widely used programming language that
is enabling a new generation of computer applications.
JavaScript is the scripting language used to program a
large fraction of all web content and many important web
sites, including Google, Facebook, and Yahoo, rely heav-
ily on JavaScript to make the pages more dynamic, inter-
esting, and responsive. Because JavaScript is so widely
used to enable Web 2.0, the performance of JavaScript
is now a concern of vendors of every major browser, in-
cluding Mozilla Firefox, Google Chrome, and Microsoft
Internet Explorer. The competition between major ven-
dors, also known as the ‘browser wars” [41], has inspired
aggressive new JavaScript implementations based on Just-
In-Time (JIT) compilation strategies [14].

Because browser market share is extremely important
to all companies competing in the web services mareket-
place, an objective comparison of the performance of dif-
ferent browsers is valuable to both consumers and service
providers. As a result, JavaScript benchmarks, including
SunSpider [40] and V8 [16], are widely used to evaluate
JavaScript performance (for example, see [23]). These
benchmark results are used to market and promote brow-
ers, and the benchmarks significantly influence the design
of JavaScript runtime implementations. As a result, per-
formance of JavaScript on the SunSpider and V8 bench-
marks has improved dramatically in the past two years.
Many technical people, including the benchmark develop-
ers themselves, acknowledge that benchmarks have limi-
tations and do not necessarily represent real application
behavior.

This paper examines the following question: How rep-
resentative are the SunSpider and V8 benchmarks suites
when compared with the behavior of real Javascript-based
web applications? More importantly, we examine how
benchmark behavior that differs significantly from real
web applications might mislead JavaScript runtime devel-
opers in the design of their runtimes. By instrumenting the
Internet Explorer 8 JavaScript runtime, we measure the
JavaScript behavior of 11 important web applications, in-
cluding GMail, Facebook, Amazon, and Yahoo. For each
application, we conduct a typical user interaction scenario
that uses the web application for a productive purpose
such as reading email, ordering a book, or finding travel
directions. We measure a variety of different program be-
haviors, ranging from the mix of operations executed, to
the mix of data types allocated, to the frequency and types
of events generated and handled.

Our results show that real web applications behave very
differently from the benchmarks and that there are definite
ways in which the benchmark behavior might mislead a
designer.

1.1 Contributions
The contributions of this paper include:

• We are the first to publish a detailed characteriza-
tion of JavaScript execution behavior in both real
web applications and the SunSpider and V8 bench-
marks. We measure three specific areas of JavaScript
runtime behavior: 1) functions and code; 2) heap-
allocated objects and data; 3) events and handlers.

• We conclude that the benchmarks are not represen-
tative of real applications in many ways, and that
tailoring a runtime to execute the benchmarks ef-
ficiently may not result in optimal performance of
real applications. Specifically, focusing on bench-
mark performance may result in overspecialization
for benchmark behavior that does not occur in prac-
tice, and in missing important optimization opportu-
nities that are present in the real applications but not
present in the benchmarks.

• We find that while the benchmarks are compute-
intensive and batch-oriented, real web applications
are largely event-driven with many thousands of
events being handled. Driven to provide high respon-
siveness, event handlers typically execute for only a
few milliseconds. As a result, functions rarely ex-
ecute many bytecode instructions, and long-running
loops are not common.

• We also find that the benchmarks’ use of heap-
allocated data is quite different from that of real
applications. Furthermore, JavaScript web applica-
tions use heap data in ways that are quite different
from previous reported measurements of Java appli-
cations. Specifically, strings and functions represent
a major part of all object allocation. We observe that
objects and arrays have lifetimes that are often signif-
icantly longer than strings, suggesting that collection
algorithms that assume most objects will die quickly
may be inefficient for JavaScript.

• While existing JavaScript benchmarks make mini-
mal use of event handlers, we find that they are ex-
tensively used in real web applications. The impor-
tance of responsiveness in web application design is
not captured adequately by any of the benchmarks
available today.

1.2 Paper Organization
The rest of the paper is organized as follows. Sec-
tion 2 provides background on JavaScript execution in
web browsers and our approach to measurement. Sec-
tion 3 describes our experimental design, including how
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and what we measured. Section 4 summarizes our main
experimental results. Section 5 considers broader impli-
cations of our measurements. Finally, Section 6 describes
related work and Section 7 concludes.

2 Background

JavaScript is a garbage-collected, memory-safe program-
ming language with a number of interesting proper-
ties [12]. Contrary to what one might conclude from
their names, Java and JavaScript have many differences.
Unlike class-based object-oriented languages like C# and
Java, JavaScript is a prototype-based language, influenced
heavily in its design by Self [39]. JavaScript became
widely used because it is standardized, available in every
browser implementation, and tightly coupled with the
browser’s Document Object Model [5].

JavaScript’s popularity has grown with the success of
the web. Scripts in web pages have become increas-
ingly complex as AJAX (Asynchronous JavaScript and
XML) programming has transformed static web pages
into responsive applications [20]. Web sites such as Ama-
zon, Gmail, and Facebook contain and execute significant
amounts of JavaScript code, as we document in this paper.
Web applications (or apps) are applications that are hosted
entirely in a browser and delivered through the web. Web
apps have the advantage that they require no additional in-
stallation, will run on any machine that has a browser, and
provide access to information stored in the cloud. Sophis-
ticated mobile phones, such as the iPhone, broaden the
base of Internet users, further increasing the importance
and reach of web apps.

In recent years, the complexity of web content has
spurred browser developers to increase browser perfor-
mance in a number of dimensions, including improving
JavaScript performance. Many of the techniques for im-
proving traditional object-oriented languages such as Java
and C# can and have been applied to JavaScript [14, 15].
Just-In-Time compilation has also been effectively ap-
plied, increasing measured benchmark performance of
JavaScript dramatically.

Because browser performance can significantly affect a
user’s experience using a web application, there is com-
mercial pressure for browser vendors to demonstrate that
they have improved performance. As a result, Java-
Script benchmark results are widely used in marketing
and in evaluating new browser implementations. The
two most widely used JavaScript benchmark suites are
SunSpider, a collection of small benchmarks available
from WebKit.org [40], and the V8 benchmarks, a col-
lection of seven slightly larger benchmarks published by
Google [16]. The benchmarks in both of these suites are
relatively small programs; for example, the V8 bench-

marks range from approximately 600 to 5000 lines of
code. While even the benchmark developers themselves
would admit that these benchmarks do not represent real
web application behavior, the benchmarks are still used as
a basis for tuning and comparing JavaScript implementa-
tions, and as a result have an important influence on the
effectiveness of those implementations in practice.

This paper is the first paper to characterize both the be-
havior of the JavaScript benchmarks and the behavior of
JavaScript in real web applications. We demonstrate that
the behavior of these benchmark suites is unrepresenta-
tive of the real applications in fundamental and impor-
tant ways. Further, we suggest how the benchmarks may
mislead designers both by encouraging optimizations that
are not important in practice and in missing opportunities
that are present in the real web applications but not in the
benchmarks.

Weak benchmarks have had a negative impact on lan-
guage implementations in the past. For example, the
SPECjvm98 benchmarks were widely used for many
years to evaluate Java implementations [9]. General
agreement within the Java community about the weak-
ness of the SPECjvm98 benchmarks led to the creation
of the DaCapo benchmark suite, which includes realistic
Java programs such as the Eclipse development environ-
ment [3]. One of our goals is to provide motivation and in-
sight regarding a similar more realistic set of benchmarks
for JavaScript.

3 Experimental Design

In this section, we describe the benchmarks and applica-
tions we used in this study and discuss what we measured.

3.1 Web Applications and Benchmarks

Figure 1 lists the 11 real web applications that we used
for our study1. These sites were selected because they
are both important sites that many users visit every day,
and because they represent a cross-section of diverse ac-
tivities. Specifically, our applications represent search
(google, bing), mapping (googlemap, bingmap), email
(hotmail, gmail), e-commerce (amazon, ebay), news
(cnn, economist), and social networking (facebook).
Part of our goal was to understand both the differences
between the real sites and the benchmarks as well as the
differences among different classes of real web applica-
tions. For the remainder of this paper, we will refer to the
different web sites using the names from Figure 1.

1Throughout this discussion, we use the terms web application and
web site interchangeably. When we refer to the site, we specifically
mean the JavaScript executed when you visit the site.
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Site URL Actions performed
amazon amazon.com Search for the book “Quantita-

tive Computer Architecture,” add to
shopping cart, sign in, and sign out

bing bing.com Type in the search query “New
York” and look at resulting images
and news

bingmap maps.bing.com Search for directions from Austin to
Houston

cnn cnn.com Read the front-page news
ebay ebay.com Search for a notebook, sign in, bid,

and sign out
economist economist.com Read the front-page news, view

comments
facebook facebook.com Log in, visit a friend’s page, browser

through photos and comments
gmail mail.google.com Sign in, check inbox, delete a mail

item, sign out
google google.com Type in the search query “New

York” and look at resulting images
and news

googlemap maps.google.com Search for directions from Austin to
Houston

hotmail hotmail.com Sign in, check inbox, delete a mail
item, sign out

Figure 1: Real web sites visited and actions taken.

The actions taken at each site represent the behav-
ior of a user on a short, but complete, visit to the site.
This approach is dictated partly by expedience—it would
be logistically complicated to measure long-term use of
each web application—and partly because we believe that
many applications are actually used in this way. For ex-
ample, search and mapping applications are often used for
targeted interactions. We leave studies of longer user ses-
sions with applications such as gmail and facebook for
future work.

In measuring the JavaScript benchmarks, we chose
to use the entire V8 benchmark suite, which comprises
7 programs, and selected programs from the SunSpider
suite, which consists of 26 different programs. In or-
der to reduce the amount of data collected and displayed,
for SunSpider we chose the longest running benchmark
in each of the 9 different classes—3d: raytrace, access:
nbody, bitops: nseive-bits, controlflow: recursive, crypto:
aes, date: xparb, math: cordic, regexp: dna, and string:
tagcloud.

3.2 Instrumenting Internet Explorer
This section describes the instrumentation framework that
we used to measure static and dynamic characteristics of
JavaScript programs. The framework is summarized and
illustrated in Figure 2. Our instrumentation platform is In-
ternet Explorer (IE), version 8, running on a 32-bit Win-
dows Vista operating system. While our results are in
some ways specific to IE, the methods described here can
be applied to other platforms with different browsers as
well.

\ie\jscript\*.cpp
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custom jscript.dll

custom trace files
website visits
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Figure 2: Instrumentation framework for measuring javascript
execution using Internet Explorer.

Our measurement system works as follows:

1. We start by instrumentating the C++ code that imple-
ments the IE8 JavaScript runtime. For IE, the code
that is responsible for executing JavaScript programs
is not bundled in the main IE executable. Instead, it
resides in a dynamic linked library, jscript.dll. Af-
ter performing the instrumentation, we recompiled
the engine source code to create a custom jscript.dll.
(see Step 1 in Figure 2).

2. Next, we create a local IE executable copy and bind
this executable to the jscript.dll that includes our in-
strumentation. We then visit the web sites and run
the benchmark programs described in the previous
section with our special version of IE. A set of bi-
nary trace files is created in the process of visiting
the web site or running a benchmark.

3. Finally, we use offline analyzers to process these cus-
tom trace files to obtain the results presented here.

The trace files we create range in size to a maximum
of 800 megabytes for the instruction traces and 140
megabytes for the object data traces. In Appendix B,
we present the trace file sizes for all the applications and
benchmarks.

3.3 Behavior Measurements
In studying the behavior of JavaScript programs, we con-
sider three broad dimesions: functions and code, objects
and data, and events and handlers. In each of these di-
mensions, we consider both static measurements (e.g.,
number of unique functions) and dynamic measurements
(e.g., total number of function calls). Our goal is to mea-
sure the logical behavior of JavaScript programs and to
avoid as much as possible specific characteristics of the
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IE8 implementation. Thus, whenever possible, we con-
sider aspects of the JavaScript source such as functions,
objects, and event handlers. As a result, our measure-
ments are mostly machine-independent; however, they are
not platform-independent. Because we measure aspects of
IE’s JavaScript engine, it is unavoidable that some partic-
ular characteristics are implementation-specific to that en-
gine (e.g., we count IE8 bytecodes as a measure of execu-
tion). Nevertheless, whenever it is possible to untie such
characteristics from the engine, we make assumptions that
we believe can be generalized to other JavaScript engines
as well. The following subsections discuss the specific
measurements we make in each of these areas.

3.3.1 Functions and Code

The JavaScript engine in IE8 interprets JavaScript source
after compiling it to an intermediate representation called
bytecode. The interpreter has a loop that reads each byte-
code instruction and implements its effect in a virtual ma-
chine. Because no actual machine instructions are gen-
erated in IE8, we cannot measure the execution of Java-
Script in terms of machine instructions. The bytecode in-
struction set implemented by the IE8 interpreter is a well-
optimized, traditional stack-oriented bytecode.

We count each bytecode execution as an “instruction”
and use the term bytecode and instruction interchangeably
throughout our evaluation. In our measurements, we look
at the code behavior at two levels, the function and the
bytecode level. Therefore, we instrument the engine at
the points when it creates script functions as well as in its
main interpreter loop. Prior work measuring architecture
characteristics of interpreters also measures behavior in
terms of bytecode execution [34].

3.3.2 Objects and Data

We are interested in the behavior of JavaScript objects that
reside in heap memory. We focus our measurements on
the four dominant data types: string, object, array, and
function.

Strings in JavaScript are immutable; their sizes can
never be changed after their creation. Strings are unique in
that they can be of both primitive and object type. We are
primarily interested in primitive strings, as string objects
are essentially wrappers around their primitive values. To
obtain properties of strings we are interested in, we hook
instrumentation code to points in the JavaScript engine
where strings are created. Strings are created either when
the source is translated or during the script runtime. The
former accounts for all string constants in the source and
the latter includes run-time operations that create strings
dynamically (e.g., concatenation, slice, toString, etc.).

In our measurements, to make our results more inde-
pendent of the IE8 implementation, we report string size
as the number of bytes that the string would occupy in
a naive implementation in which the result of every con-
catenation produced a new independent string. Good im-
plementations can and do improve on this approach, but
we chose to provide a measure of a simpler implemen-
tation, and as a result we may overestimate the size of
strings somewhat. One can infer the opportunities for op-
timizing the representatation of strings from our measures
of string operations presented in Section 4.2.4.

Arrays and objects hold references to other primitive
and object types. Therefore, to abstract our measurements
away from the IE8 implementation, we assume that the
size of each array or object element equals the natural
width of a machine pointer where the measurement is per-
formed. In our case, the natural pointer size is four bytes
and so we assume objects and arrays contain four bytes
per element.

Unlike strings, arrays and objects are mutable and can
grow and shrink dynamically. To accurately account for
this dynamic behavior, we provide instrumentation hooks
at points where arrays and objects are created, and also
at points where there are operations that affect their sizes.
Note that deleting an element in an array or object does
not alter the size of the array or object; the delete opera-
tion simply marks that element as undefined. Inserting an
element, however, does increase its size. To avoid grow-
ing arrays and objects too frequently, some implementa-
tions allocate a fixed minimum size to unintialized arrays
and objects. We use the IE8 implementation defaults in
these cases, which are too numerous to specify in detail
here.

One of the important aspects of object behavior is ob-
ject lifetime. For our measurements, we determine object
lifetime in a conservative way, using the time that objects
are garbage collected as the time that they are considered
dead. While this technique overestimates the lifetime of
objects [19] because it inherently ties estimated lifetimes
to the frequency of collection, we find that garbage col-
lections occur frequently enough in our implementation
that the lifetime estimates we obtain are accurate enough
to provide insights.

For functions, we report the memory allocated to func-
tions which includes the size of the source code plus the
compiled bytecode. We acknowledge that the size of the
bytecode is implementation dependent.

3.3.3 Events and Handlers

Event handling is an aspect of program behavior that is
largely unexplored in related work measuring C++ and
Java execution (e.g., see [11] for a thorough analysis of
Java execution). Most related work considers the behav-
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ior of benchmarks, such as SPECjvm98 [10] and SPEC-
cpu2000 [4], that have no interactive component. For
JavaScript, however, its current prevailing use is in client-
side web applications where such batch processing is
mostly irrelevant. In this scenario, the processing is rather
event-driven; JavaScript code runs in response to specific
user-initiated events such as a mouse click, becomes idle,
and waits for another event to process. Therefore, to com-
pletely understand behaviors of JavaScript that are rele-
vant to its current usage, we must look into the event-
driven programming model of JavaScript as well.

For our measurements, we provide hooks before and af-
ter event handling routines to measure characteristics such
as the number of events handled and the dynamic size of
each event handler in number of executed bytecode in-
structions.

4 Evaluation
In this section, we first consider the behavior of the Java-
Script functions and code, including the size of functions,
opcodes executed, etc. Next we consider the use of heap-
allocated objects, including the time-varying composition
of the heap and object lifetimes. Finally, we investigate
the use of events and event handlers in the applications.

4.1 Functions and Code Behavior
Properties of functions in JavaScript can have a significant
effect on implementation decisions, including JIT compi-
lation strategies, code representations, and optimization
techniques.

4.1.1 Static and Dynamic Function Size

We begin our discussion by looking at a summary of the
functions and behavior of the real applications and bench-
marks. Figure 3 summarizes our static and dynamic mea-
surements of JavaScript functions. In the figure, we show
the the following information:

• Static Unique Func. – The number of unique func-
tions loaded and compiled to bytecode by the appli-
cation.

• Static Source – The size of the uncompressed Java-
Script source code.

• Static Compiled – The size of the compiled byte-
code.

• Static Global Context – The number of unique
script tags in which JavaScript code appeared in the
application (i.e., unique global contexts).

• Dynamic Unique Func. – The number of unique
functions executed.

• Dynamic Total Calls – The total number of Java-
Script function calls executed.

• Dynamic Total Opcodes – The number of bytecodes
executed.

• Dynamic Opcodes/Call – The average number of
bytecodes executed per function call.

• Dynamic % Unique Exec. Func. – The ratio of
unique functions executed to unique functions com-
piled to bytecode.

The real web sites. This high-level characterization of
execution behavior already identifies a number of impor-
tant insights. First, we see that the real web applica-
tions comprise many functions, ranging from a low of
around 1,000 in google to a high of 10,000 in gmail.
The total amount of JavaScript source code associated
with these websites is significant, ranging from 200 kilo-
bytes to more than two megabytes of source. Most of
the JavaScript source code in these applications has been
“minified”, that is, had the whitespace removed and lo-
cal variable names minimized using available tools such
as JScrunch [13] or JSmin [8]. This source code is trans-
lated to the smaller bytecode representation, which from
the figure we see is roughly 60% the size of the source.

Of this large number of functions, in the last column,
we see that as many as 35–50% are not executed during
our use of the applications, suggesting that much of the
code delivered applies to specific functionality that we did
not exercise when we visited the sites. Code-splitting ap-
proaches such as Doloto [28] exploit this fact to reduce the
wasted effort of downloading and compiling cold code.

The number of bytecodes executed during our visits
ranged from around 400,000 to over 20 million. The most
compute-intensive applications were facebook, gmail,
and economist. As we show below, the large number of
executed bytecodes in economist is an anomaly caused
by a hot function with a tight loop. This anomaly also is
clearly visible from the opcodes/call column. We see that
economist averages over 180 bytecodes per call, while
most of the other sites average between 25 and 65 byte-
codes per call. These numbers are comparable to the av-
erage hardware instructions per call in C++ programs [4].
This low number suggests that most JavaScript functions
in these programs do not contain loops.

In considering the behavior of economist specifically,
we looked at the hottest function in the application and
found code which accounts for over 50% of the total byte-
codes executed in our visit to the website (see Figure 4).
From what we can infer, this function loops over the el-
ements of the DOM looking for elements with a specific
node type and placing those elements into an array. Given
that the DOM can be quite large, using an interpreted loop
to gather specific kinds of elements can be quite expensive
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Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

amazon 1,833 692,173 312,056 210 808 158,953 9,941,596 62.54 44.08%

bing 2,605 1,115,623 657,118 50 876 23,759 1,226,116 51.61 33.63%

bingmap 4,258 1,776,336 1,053,174 93 1,826 274,446 12,560,049 45.77 42.88%

cnn 1,246 551,257 252,214 124 526 99,731 5,030,647 50.44 42.22%

ebay 2,799 1,103,079 595,424 210 1,337 189,805 7,530,843 39.68 47.77%

economist 2,025 899,345 423,087 184 1,040 116,562 21,488,257 184.35 51.36%

facebook 3,553 1,884,554 645,559 130 1,296 210,315 20,855,870 99.16 36.48%

gmail 10,193 2,396,062 2,018,450 129 3,660 420,839 9,763,506 23.20 35.91%

google 987 235,996 178,186 42 341 10,166 427,848 42.09 34.55%

googlemap 5,747 2,024,655 1,218,119 144 2,749 1,121,777 29,336,582 26.15 47.83%

hotmail 3,747 1,233,520 725,690 146 1,174 15,474 585,605 37.84 31.33%
(a) Real web application summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

richards 67 22,738 7,617 3 59 81,009 2,403,338 29.67 88.06%

deltablue 101 33,309 11,263 3 95 113,276 1,463,921 12.92 94.06%

crypto 163 55,339 31,304 3 91 103,451 90,395,272 873.80 55.83%

raytrace 90 37,278 15,014 3 72 214,983 5,745,822 26.73 80.00%

earley 416 203,933 65,693 3 112 813,683 25,285,901 31.08 26.92%

regexp 44 112,229 35,370 3 41 96 935,322 9742.94 93.18%

splay 47 17,167 5,874 3 45 678,417 25,597,696 37.73 95.74%
(b) V8 benchmark summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique
Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

3d-raytrace 31 14,614 7,419 2 30 56,631 5,954,264 105.14 96.77%

access-nbody 14 4,437 2,363 2 14 4,563 8,177,321 1,792.09 100.00%

bitops-nsieve 6 939 564 2 5 5 13,737,420 2,747,484.00 83.33%

controlflow 6 790 564 2 6 245,492 3,423,090 13.94 100.00%

crypto-aes 22 17,332 6,215 2 17 10,071 5,961,096 591.91 77.27%

date-xparb 24 12,914 5,341 4 12 36,040 1,266,736 35.15 50.00%

math-cordic 8 2,942 862 2 6 75,016 12,650,198 168.63 75.00%

regexp-dna 3 108,181 630 2 3 3 594 198.00 100.00%

string-tagcloud 16 321,894 55,219 3 10 63,874 2,133,324 33.40 62.50%
(c) SunSpider benchmark summary.

Figure 3: Summary measurements of web applications and benchmarks.
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function(a,b) {

var i=0,elem,pos=a.length;

if (D.browser.msie) {

while (elem=b[i++])

if (elem.nodeType!=8) a[pos++]=elem;

} else {

while(elem=b[i++]) a[pos++]=elem;

}

return a

}

Figure 4: Hot function in the economist web site.

to compute. An alternative, more efficient implementation
might use DOM APIs like GetElementById to find the
specific elements of interest directly.

In contrast to economist, google is of particular inter-
est in this study because, being the most visited and lucra-
tive site on the entire web, one can assume that the Java-
Script content on that site has received the utmost scrutiny.
google is also known for its clean home page and respon-
siveness, suggesting that no effort has been spared in par-
ing out any unnecessary code execution. Despite this fact,
we observe that 200 kilobytes of code is delivered during
our google visit and 400,000 opcodes are executed.

On a final note, in column five of Figure 3 we show
the number of instances of separate script elements that
appeared in the web pages that implemented the applica-
tions. We see that in the real applications, there are many
such instances, ranging to over 200 in ebay. We specu-
late that in some cases these different instances of script
represent different sources of code content, perhaps rep-
resenting independent authorship in the form of reusable
modules. In any case, this diversity indicates that there
are many sources of script code in these applications and
that the code is intertwined with the many other DOM el-
ements in the web pages.

The benchmarks. In Figure 3, we also see the summary
of the V8 and SunSpider benchmarks. We see immedi-
ately that the benchmarks are much smaller, in term of
both source code and compiled bytecode, than the real
applications. Furthermore, the largest of the benchmarks,
string− tagcloud, is large not because of the amount
of code, but because it contains a large number of string
constants. Of the benchmarks, earley has the most real
code and is an outlier, with 400 functions compared to the
average of the rest, which is well below 100 functions.
These functions compile down to very compact bytecode,
often more than 10 times smaller than the real applica-
tions. Looking at the fraction of these functions that
are executed when the benchmarks are run, we see that
in many cases the percentage is high, ranging from 55–
100%. The benchmark earley is again an outlier, with
only 27% of the code actually executed in the course of

running the benchmark.
The opcodes per call measure also shows significant

differences with the real applications. Some of the
SunSpider benchmarks, in particular, have long-running
loops, resulting in high average bytecodes executed per
call. Other benchmarks, such as controlflow, have ar-
tificially low counts of opcodes per call. Finally, none
of the benchmarks has a significant number of distinct
contexts in which JavaScript code is introduced (global
scope), emphasizing the homogeneous nature of the code
in each benchmark.

Lessons. We summarize the findings from Figure 3 here:

• Real applications have a significant amount of code
from many sources.

• Source code is often not executed, in which case run-
time efforts to translate that code is wasted.

• Many functions return after executing only tens of
bytecodes. This point is supported more fully in Sec-
tion 4.3.

• The V8 benchmarks are more representative of the
real applications than the SunSpider benchmarks,
and of those, earley is the most representative.

4.1.2 Opcode Distribution

We examined the distribution of opcodes that each of the
real applications and benchmarks executed. To do this,
we counted how many times each of the 160 different
opcodes was executed in each program and normalized
these values to fractions. We then compared the 160-
dimensional vector generated by each real application and
benchmark.

Our goal was to characterize the kinds of operations
that these programs perform and determine how represen-
tative the benchmarks are of the opcode mix performed
by the real applications. We were also interested in under-
standing how much variation exists between the individ-
ual real applications themselves, given that they are them-
selves quite diverse.

To compare the resulting vectors, we used Princi-
pal Component Analysis (PCA) [21] to reduce the 160-
dimensional space to 2 principal dimensions. Figure 6
shows the result of this analysis. In the figure, we see the
three different program collections (real, V8, and SunSpi-
der) indicated in different colors (blue, red, and green, re-
spectively). The figure shows that the real sites cluster in
the center of the graph, showing relatively small variation
among themselves. For example, cnn and bingmap, very
different in their functionality, cluster quite closely. In
contrast, both sets of benchmarks are more widely dis-
tributed, with several obvious outliers. For SunSpider,
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(a) PCA clustering. (b) Legend.

Figure 5: Opcode frequency distribution comparison.

controlflow is clearly different from the other applica-
tions, while in V8, regexp sits by itself. Surprisingly, few
of the benchmarks overlap the cluster of real applications,
with earley being the closest in overall opcode mix to
the real applications. While we expect some variation in
the behavior of a collection of smaller programs, what is
most surprising is that almost all of the benchmarks have
behaviors that are significantly different than the real ap-
plications. Furthermore, it is also surprising that the real
web applications cluster as tightly as they do. This re-
sult suggests that while the external functionality provided
may appear quite different from site to site, much of the
work being done in JavaScript on these sites is quite simi-
lar. We revisit this point later when we examine the event
handling behavior of the applications.

Figure 6 provides another view of this comparison. The
figure presents the results of hierarchical clustering ap-
plied to all the programs in all the suites. We see the same
clustering behavior in this view.

Of the benchmarks, we see that earley is again among
the most representative. The benchmark math− cordic
also has an instruction mix quite close to the real applica-
tion cluster. We also see that several of the benchmarks
cluster among themselves. For example, richards and
deltablue are quite close.

4.1.3 Function Size Distribution

Figure 7 shows the distribution of static function sizes
in the real applications and the benchmarks. The figure
shows the cumulative size of all functions plotted on the
y-axis, with the individual functions sorted by increasing
size on the x-axis. These figures highlight our earlier con-

clusion that the benchmarks are far smaller than the real
applications. Furthermore, we see that there are many
small functions in the real applications, with half the total
functions fitting within 200 kilobytes across all real appli-
cations. Again, earley is the most representative of the
benchmarks in terms of the distribution of function sizes
and total size.

To better understand the sizes of individual functions,
we plot the distribution of static function sizes in Fig-
ure 8. The figure shows the size of all functions plotted on
the y-axis, with the individual functions sorted by increas-
ing size on the x-axis. This figure tells us what percentile
of functions are larger than a certain size. From the fig-
ure, we see that the distribution of static function sizes is
quite similar across the program suites. The median size
appears to be around 100 bytes in real applications and
in V8. In terms of the larger functions, we see that the
95th percentile range for the real applications is from 500
to 1000 bytes. These results suggest that while the total
amount of code is greatly different in the real applications,
in both benchmarks and real applications the vast majority
of JavaScript functions are relatively small.

4.1.4 Hot Function Distribution

More important than the static function size distribution
is the distribution and total size of hot functions in the ap-
plications. This characteristic determines how much code
needs to be highly optimized and how much memory that
code will occupy. Figure 9 shows the distribution of hot
functions in the real applications (split into two subfig-
ures, a and b), the V8 benchmarks, and the SunSpider
benchmarks. Each figure shows the cumulative contribu-
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Figure 6: Opcode frequency distribution comparison. Key: Real web sites 1:amazon 2:bing 3:bingmap 4:cnn 5:ebay 6:economist
7:facebook 8:gmail 9:google 10: googlemap 11:hotmail V8 12:richards 13:deltablue 14:crypto 15:raytrace 16:earley 17:regexp
18:splay 1:earley 19:v8 aggregate SunSpider 20: 3d-raytrace 21: access-nbody 22: bitops-nsieve 23: controlflow 24: crypto-aes
25: date-xparb 26: math-cordic 27: regexp-dna 28: string-tagcloud 29: SunSpider aggregate
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(a) Real web application function size distribution.

(b) V8 benchmark function size distribution.

Figure 7: Static cumulative function size distribution.
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(a) Real web application function size distribution. (b) V8 benchmark function size distribution.

(c) SunSpider benchmark function size distribution.

Figure 8: Static function size distribution.
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(a) Real web application hot function distribution (1). (b) Real web application hot function distribution (2).

(c) V8 benchmarks hot function distribution. (d) SunSpider benchmarks hot function distribution.

Figure 9: Hot function distribution.
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tion of each function, sorted by hottest functions first on
the x-axis, to normalized total opcodes executed on the
y-axis. We truncate the x-axis (not considering all func-
tions) in some cases to get a better view of the left end
of the curve. The figures show that all programs, both
real applications and benchmarks, exhibit high code lo-
cality, with a small number of functions accounting for
a large majority of total execution. In the real applica-
tions, 80% of total execution is covered by 50 to 150 func-
tions, while in the benchmarks, at most 10 functions are
required. Some of the real applications are even more
highly skewed. As mentioned, economist has a single
function that accounts for more than 50% of total execu-
tion. The facebook benchmark also has some very hot
functions, which we consider in more detail when dis-
cussing event handling.

4.1.5 Code Behavior Discussion

We have considered static and dynamic measures of Java-
Script program execution, and discovered numerous im-
portant differences between the behaviors of the real ap-
plications and the benchmarks. Here we discuss how
these differences might lead designers astray when build-
ing JavaScript engines that optimize benchmark perfor-
mance.

First, we note a significant difference in the code size of
the benchmarks and real applications. Real web applica-
tions have large code bases, containing thousands of func-
tions from hundreds of individual script elements. Much
of this code is never or rarely executed, meaning that ef-
forts to compile, optimize, or tune this code are unneces-
sary and can be expensive relative to what the benchmarks
would indicate. JITing ten kilobytes of JavaScript source
will happen much faster than JITing two megabytes. We
also observe that a substantial fraction of the downloaded
code is not executed in a typical interaction with a real
application. Attempts to avoid downloading this code,
or minimizing the resources that it consumes once it is
downloaded, will show much greater benefits in the real
applications than in the benchmarks.

Second, we observe that based on the distribution of
opcodes executed, benchmark programs represent a much
broader and skewed spectrum of behavior than the real
applications, which are quite closely clustered. Tuning a
JavaScript engine to run controlflow or regexp may
improve benchmark results, but tuning the engine to run
any one of the real applications is also likely to signifi-
cantly help the other real applications as well. Surpris-
ingly, few of the benchmarks approximate the instruction
stream mix of the real applications, suggesting that there
are activities being performed in the real applications that
are not well emulated by the benchmark code. When we
discuss events in Section 4.3, we revisit this point.

Third, we observe that each individual function exe-
cution in the real applications is relatively short, which
mirrors previous measurements of object-oriented pro-
grams. Because these applications are not compute-
intensive, benchmarks with high loop counts, such as
bitops− nsieve, distort the benefit that loop optimiza-
tions will provide in real applications. Because the bench-
marks are batch-oriented to facilitate data collection, they
fail to match a fundamental characteristic of all real web
applications—the need for responsiveness. The very na-
ture of an interactive application prevents developers from
writing code that executes for long periods of time with-
out interruption.

Finally, we observe that a tiny fraction of the code
accounts for a large fraction total execution in both the
benchmarks and the real applications. The size of the hot
code differs by one to two orders of magnitude between
the benchmarks and applications, but even in the real ap-
plications the hot code is still quite compact.

4.2 Object Allocation Behavior

We now consider the allocation behavior and object life-
times in the JavaScript programs. JavaScript is a type-safe
language with garbage collection, which can have signif-
icant memory overheads and CPU costs. Complicating
this management is the fact that the DOM interface in
JavaScript can create numerous cross domain references
to objects (DOM to JavaScript and vice versa) leading
to memory leaks in many commercial browsers. In this
study, we omit the DOM interaction and focus entirely on
objects in JavaScript, leaving studying that interaction for
future work.

We first consider the number and distribution of types
allocated by JavaScript programs. We then drill down on
the String type, which is especially important, as we show.
Next we consider the evolution of the heap over time in
our applications, and finally, we consider object lifetimes.

4.2.1 Object Allocation Rates

One of the most important aspects of object behavior in
JavaScript is the allocation rate. Here we compare the al-
location rate of the real applications and the benchmarks.

Real web sites. Figure 10 summarizes the object allo-
cation behavior of the real applications and benchmarks.
Each row shows the total bytes allocated to specific types
by that application. In Appendix C, we show the same
data in terms of objects allocated (instead of bytes allo-
cated).

The figure shows that our real applications allocate a
significant amount of memory, ranging from one to almost
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Script Func Arrays String Native Func Date Objects Others Total

amazon 3,092,649 877,060 6,815,942 14,848 50,240 6,442,936 18,272 17,311,947

bing 1,712,152 12,876 2,400,828 4,800 50,400 88,432 1,440 4,270,928

bingmap 8,614,419 186,224 9,243,964 2,848 40,576 1,834,048 6,016 19,928,095

cnn 854,749 28,724 2,107,978 13,984 4,640 368,044 13,280 3,391,399

ebay 7,576,009 127,320 3,132,490 16,800 11,648 994,412 14,976 11,873,655

economist 980,027 2,092,148 5,656,640 7,616 4,736 776,844 57,312 9,575,323

facebook 3,197,424 180,100 9,459,048 15,104 10,688 2,120,732 73,536 15,056,632

gmail 2,987,271 289,068 5,294,964 4,480 34,144 1,121,408 2,528 9,733,863

google 656,552 43,340 582,148 8,192 1,728 55,152 5,888 1,353,000

googlemap 3,602,156 450,048 4,626,230 2,496 186,848 4,188,932 15,392 13,072,102

hotmail 1,384,202 22,632 1,382,342 11,296 3,840 166,096 4,096 2,974,504
(a) Object allocation summary in real applications (bytes allocated).

Script Func Arrays String Native Func Date Objects Others Total

richards 7,656 472 448 416 128 2,404 64 11,588

deltablue 11,359 4,488 1,772 480 64 80,968 64 99,195

crypto 31,313 38,236 13,162 640 352 74,752 64 158,519

raytrace 15,751 44 478 640 64 3,192,276 64 3,209,317

earley 2,867,672 12,692 442,332 992 192 6,833,032 64 10,156,976

regexp 35,373 868,076 13,187,868 576 64 432,536 64 14,524,557

splay 5,874 11,091,216 25,586,804 352 288 4,943,620 64 41,628,218
(b) Object allocation summary in V8 benchmarks (bytes allocated).

Script Func Arrays String Native Func Date Objects Others Total

3d-raytrace 7,419 131,360 36,520 288 96 1,384 64 177,131

access-nbody 2,864 80 154 128 64 740 64 4,094

bitops-nsieve 564 20,000 154 96 64 32 32 20,942

controlflow 564 0 158 64 64 32 32 914

crypto-aes 11,759 353,344 47,640 512 96 64 64 413,479

date-xparb 5,341 124 238,662 544 96 640,300 32 885,099

math-cordic 862 48 154 96 128 32 32 1,352

regexp-dna 630 576 8,019,186 224 64 712 0 8,021,392

string-tagcloud 55,219 50,004 2,584,560 640 64 30,168 64 2,720,719
(c) Object allocation summary in SunSpider benchmarks (bytes allocated).

Figure 10: Summary of object allocations by type.
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twenty megabytes of data, in the relatively short interac-
tions we had with them. As with bytecode execution be-
havior, google is the most lean of the applications, while
bingmap and amazon allocate the most data. Of the real
applications that have the most application-like character-
istics, bingmap, facebook, gmail, and googlemap, we
see that allocating megabytes of data in a short period of
time is common.

Benchmarks. The overall allocation of the bench-
mark programs is highly variable, with many bench-
marks hardly allocating any data at all (e.g., richards
deltablue, controlflow, math− cordic, etc.) and
others allocating ten or more megabytes (e.g., earley,
splay, and regexp). Only six of the benchmarks allocate
more data than google, the real application that allocates
the least data. The SunSpider benchmarks, in particular,
have total allocation behavior that is highly unrepresenta-
tive of the real applications, and as a result, performance
comparisons based on them will be highly skewed to the
performance of code execution without regard to the ef-
ficieny of the object representation or memory manage-
ment. Some of the V8 bechmarks are more representative
in this regard. Benchmarks such as splay were probably
chosen specifically to test the performance of the Java-
Script engine’s allocation performance, and they do allo-
cate an amount of data that is comparable to that of our
real applications. Nevertheless, based on total allocation
alone, one can conclude that results from the benchmark
suites are likely to mislead JavaScript engine designers
about the importance of memory allocation in their im-
plementations.

Lessons. One conclusion that can be reached across both
the real applications and the benchmarks is that the only
object types of significance are script functions, strings,
arrays, and objects. The other types rarely, if ever con-
tribute substantively to the overall memory allocation of
the applications.

Another conclusion we can reach from the real web ap-
plications is that many make substantial use of all four
major data types, with the mix of types varying between
the applications.

4.2.2 Object Type Distribution

We now consider the mix of types allocated by the pro-
grams in more detail. Figure 11 illustrates the fraction of
total objects allocated to different types for all the pro-
grams considered.

Real web sites. The graphs show that in the real applica-
tions the most frequently allocated data types are strings
and script function objects. Recall that in many real ap-
plications the script functions often require one to two

megabytes of source code, and as a result, represent a
major fraction of total heap allocation in our scenarios.
Strings represent the bulk of the remaining data allocated
in most real applications, with objects contributing a sig-
nificant fraction in amazon and googlemap.

Strings are particularly important in JavaScript because
a major function of JavaScript is to rewrite DOM elements
for rendering in the browser. Surprisingly, for the most
part, arrays and objects play a relatively minor role in to-
tal allocation. Arrays are only prominent in economist,
and we hypothesize that this heavy use is caused by the
same hot function listed above. These results suggest the
runtime representation and garbage collection of strings
and script functions will have a major impact on overall
JavaScript engine performance.

If we were to consider longer interaction sequences
with these applications, we might imagine that the rela-
tive importance of script functions would diminish. This
would happen because over time, once all the code for
the application has been loaded, no further script func-
tions need to be allocated, whereas strings, objects, and
arrays would continue to be. This may well be the case
for some of these applications, but, as we show when we
consider the size of the live heap, many JavaScript heaps
don’t live long enough to allocate a substantial quantity
of non-script data. This is especially true for applications
based on a Web 1.0 design, where page transitions happen
frequently when you interact with the application (see the
discussion in Section 5.6).

Benchmarks. By contrast, the benchmark programs have
quite different mixes of object types. Considering the
five benchmarks with more than one megabyte of allo-
cation (string− tagcloud, regexp− dna, raytrace,
earley, regexp, and splay), we see that object alloca-
tion in these programs is highly bimodal, with almost all
allocations being either strings (in string− tagcloud,
regexp, regexp− dna, and splay) or objects (in
raytrace and earley). Script functions represent a sig-
nificant fraction of total allocation only in earley. Arrays
play a significant role only in splay.

4.2.3 Type Distribution Clustering

In Figure 12 we apply the same analysis we applied to the
distribution of opcodes to the distribution of data types.
The figure again shows that the real applications are clus-
tered tightly together, indicating that the mix of object
types from one real application to the next is quite similar,
as we have seen. As with the opcode frequency distribu-
tion, the benchmark programs are much more diverse and
skewed.

In this case, none of the benchmarks is very close to
the real applications, with earley diverging significantly
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(a) Object allocation distribution in real applications.
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(b) Object allocation distribution in the V8 benchmarks.
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(c) Object allocation distribution in the SunSpider benchmarks.

Figure 11: Distribution of objects allocated by type.
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(a) PCA clustering. (b) Legend.

Figure 12: Data type distribution comparison.

Figure 13: Type Frequency Distribution Comparison. Key: Real websites 1:amazon 2:bing 3:bingmap 4:cnn 5:ebay 6:economist
7:facebook 8:gmail 9:google 10: googlemap 11:hotmail V8 12:richards 13:deltablue 14:crypto 15:raytrace 16:earley 17:regexp
18:splay 1:earley 19:v8 aggregate SunSpider 20: 3d-raytrace 21: access-nbody 22: bitops-nsieve 23: controlflow 24: crypto-aes
25: date-xparb 26: math-cordic 27: regexp-dna 28: string-tagcloud 29: SunSpider aggregate
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because of its relative overuse of object data and lack of
strings. Figure 13 shows the same data in a hierarchical
clustering. Both results show that the type frequency of
the benchmark aggregates is closer the the real applica-
tions than most of the individual benchmarks.

4.2.4 Creation and Use of Strings

Because strings are such an important data type in Java-
Script, we drill down further to understand how these
strings are created. In Figure 14, we identify how the al-
located strings observed in our benchmarks were created.
The sources we considered include having the string ap-
pear as a constant in the source, being the concatenation
of two strings, and other operations (substring, find char-
acter, etc. The figure shows that in the real applications,
a significant fraction of all strings are constant strings
(20-50%), while concatenation is a significant source in
some applications, but not all. Of the real applications,
only google fails to allocate less than a megabyte of
string data. Of the four benchmarks that allocate more
than a megabyte of string data (string− tagcloud,
regexp− dna, regexp, and splay), we see that concate-
nation plays a major role only in string− tagcloud,
and string constants play almost no role in regexp.

4.2.5 Live Heap Contents

We now consider how the contents of the heap vary as
a function of time and data type. As already discussed,
the only types that account for a substantial fraction of
allocation are functions, strings, objects, and arrays, and
we show the number of live bytes of these types in the
following figures. Because we are only able to tell if an
object is dead when it is garbage collected, our results are
accurate only up to the granularity of garbage collection
events, which are visible in the figures as a drop in the
“combined” line. In this section, we focus on specific ap-
plications to illustrate important observations. We include
figures for all the applications and benchmarks in Appen-
dix A.

Real web sites. We start by considering the live heap in
gmail, facebook, and amazon (Figure 15. Each figure
shows live bytes of data as a function of time. For these
results, we measure time as a function of bytes allocated
by the applications. Thus, the figure for gmail shows a
steady growth of the heap over time, with occasional re-
ductions, indicating the onset of garbage collections. In
addition to the combined line, we include lines indicat-
ing live bytes of each individual type. We can learn much
about how an application is implemented by examining
these graphs. gmail, for example, is implemented for the
most part as a single web page in which JavaScript execu-
tion rewrites the page to present additional data as the user

interacts with it. Amazon, on the other hand (somewhat
out of necessity, since some of the interactions need to
be secured), is implemented as a series of pages that the
user interacts with in sequence. As a result, in amazon,
we see a number of instances where the entire JavaScript
heap is completely discarded and a new heap created im-
mediately. Facebook represents a combination of these
two behaviors, in which there is one page interaction with
significant heap activity (likely caused by the login page),
after which that heap is discarded and another heap is cre-
ated and used for the rest of the session.

We now drill down on the results for each application.
In gmail, we see that the heap grows overall, but that
garbage collections reduce the size substantially on sev-
eral occasions. We also see that the major data reclaimed
by these collections is string data, and that the amount of
live function and object data does not change much after a
collection. Both function and object data increase gradu-
ally during the session, contributing to the overall growth
of the heap, but string data represents a large fraction of
data throughout the execution.

The amazon application is quite complicated and very
different than gmail. We see that our session involved
a number of different page visits, each of which required
a new heap to be reconstructed from scratch. In some
cases the size of the heap that is created and discarded is
relatively large (more than a megabyte). There are several
instances where the heap spikes with quite similar content
distributions, suggesting that there is a significant amount
of overlap in content between the page visits.

Unlike with gmail, objects represent a substantial frac-
tion of all allocation in amazon, comparable in size to
strings. Arrays are also quite important, at least on one
of the pages visited. amazon illustrates that JavaScript is
also heavily used in the web sites that are not exactly “ap-
plications” in the way that we think of gmail, facebook,
or googlemap. A key difference between amazon and
gmail is that the heaps in amazon are relatively short-
lived. In such an application, the traditional way of think-
ing about object lifetimes (short versus long-lived) does
not necessarily make any sense at all given that the en-
tire heap is short-lived. In such cases, avoiding collec-
tion completely is possibly the best strategy. The fact that
amazon appears to reconstruct the same or similar heap
state again and again suggests that there are interesting
implementation opportunities that have not been consid-
ered or proposed in the literature. Specifically, caching
compiled functions across page loads might benefit sites
like amazon. Caching data state across loads may also be
possible and beneficial.

The facebook live heap graph shows that this ap-
plication combines elements we see both in amazon
and gmail. Much of the interation takes place on one
page, and then a page transition occurs, such as visiting
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(a) String Usage in Real Applications
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(b) String Usage in the V8 Benchmarks
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(c) String Usage in the SunSpider Benchmarks

Figure 14: Distribution of String Creation Operations
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(a) Live heap for gmail (b) Live heap for Facebook

(c) Live heap for Amazon

Figure 15: Live heap contents as a function of time in real applications.
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function GeneratePayloadTree(depth, key) {

if (depth == 0) {

return {

array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

string : ’String for key ’ + key + ’ in leaf node’

};

} else {

return {

left: GeneratePayloadTree(depth - 1, key),

right: GeneratePayloadTree(depth - 1, key)

};

}

}

Figure 17: Major source of memory allocation in splay

a friend’s page, and another complex interaction takes
place. In facebook, we see that strings are the most
volatile data type, with objects and functions contribut-
ing little to the space reclaimed during garbage collection.
Like amazon, there appear to be similarities in the amount
of code allocated in the two main pages that we observe
in the figure, suggesting that caching the compiled code
across the page transitions would avoid effort. Given the
similarity of the live heap figures between gmail and
facebook, we believe that this pattern is probably typi-
cal of many modern Web 2.0 applications and that Java-
Script engines should be tuned to execute this mix of type
allocations efficiently.

Benchmarks. We show the live heap graphs for four
of the allocation-intensive benchmarks in Figure 16 The
figure shows that the evolution of the live heap in these
allocation-intensive benchmarks is very different than that
in the real applications. earley has a two-phase behavior
with a function-intensive first phase, and then an object-
intensive second phase. While earley does have short-
lived objects (for example, functions) we can see from the
growing heap that many of the objects allocated in the
second phase are long-lived. regexp and raytrace both
have highly uniform allocation-intensive behavior focus-
ing almost entirely on short-lived objects. Finally, splay
allocates a significant amount of memory in a very uni-
form pattern, but does not free it. The source of this allo-
cation is a single recursive function in the benchmark (see
Figure 17). We also note that splay is to most allocation-
intensive of all the V8 and SunSpider benchmarks. The
ideal garbage collector for splay would be one that never
runs.

Lessons.

• The real applications allocate a diverse collection of
strings, functions, objects and arrays with strings be-
ing the most short-lived and functions being the most
long-lived.

• Some real applications have short-lived heaps that
are destroyed when one page is unloaded and regen-
erated when a new page is loaded.

• Live heap contents in the benchmarks do not reflect
real applications.

• Using splay as a memory-allocation intensive
benchmark is likely to mislead implementers in their
GC design decisions.

4.2.6 Object Lifetimes

In this section, we consider the lifetime distribution of
objects allocated in the different programs. We first con-
sider the overall lifetime distribution curves, and then drill
down looking at specific applications.

The real web sites. Figure 18 shows the object lifetime
distributions in the real applications and in the V8 bench-
marks. Results for SunSpider are similar to V8 and in-
cluded in Appendix D. The figure shows that both the
real applications and the benchmarks are bimodal. Both
groups of programs have outliers (gmail for the real ap-
plications and earley and splay in the V8 benchmarks)
in which objects are significantly longer lived the in the
other applications. In the real applications, except for
gmail, about 20% of the objects live from 500 to 1
megabyte of allocation. In the V8 benchmarks, we see
that in all the applications except earley, objects are ex-
tremely short-lived, with 20% living less then 50 kilobytes
on average. Both raytrace and regexp, which allocate
the most objects of the benchmarks, have smooth curves
but very short object lifetimes, which supports the alloca-
tion behavior we observed in the previous section.

Figure 19 shows the object lifetime distribution by type
in gmail, facebook, bing, and earley. The figure
shows how the lifetime distribution varies by object type
in the applications. In the figure, the x-axis represents ob-
ject ages in bytes, and the scale of the axis is chosen so
that the total number of bytes allocated by the application
occurs at the right end of the axis. Thus, for example,
in facebook, because the application is split relatively
evenly across two pages, most objects live at most half
the total bytes allocated by the application.

The three real applications, gmail, facebook, and
bing, have a number of similarities: 1) strings are the
shortest-lived, and functions are the longest-lived; 2) ob-
jects and arrays are in between functions and strings, with
objects being the longest lived type next to functions. This
mirrors our view of the live heap results, where garbage
collections had little impact on the live heap contribution
of objects. Objects are surprisingly long-lived in both
gmail and bing, where we see that 20-30% of the ob-
jects live at least half the duration of the application.
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(a) Live heap for V8 earley. (b) Live heap for V8 regexp.

(c) Live heap for V8 raytrace. (d) Live heap for V8 splay.

Figure 16: Live Heap contents as a function of time in benchmarks.
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(a) Object lifetime distribution in real applications.

(b) Object lifetime distribution in V8 benchmarks.

Figure 18: Overall object lifetime distributions in real applications and V8.
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(a) Object lifetime distribution by type in gmail. (b) Object lifetime distribution by type in facebook.

(c) Object lifetime distribution by type in bing. (d) Object lifetime distribution by type in earley.

Figure 19: Object lifetime distribution by type in selected applications.
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The earley application, one of the most complex
benchmarks, the other hand, has relatively simple behav-
ior. earley allocates many short-lived function objects
in its first phase, and then accumulates many longer-lived
objects in the second phase. The result is that the over-
all lifetime distribution is quite skewed to older objects.
As with the real applications, strings in earley are very
short-lived.

4.2.7 Object Allocation Discussion

We have considered the object allocation behavior of the
real applications and the benchmarks, and found signifi-
cant differences.

• First, we observed that the mix of types allocated by
the real applications is much different than most of
the benchmarks, containing a large quantity of script
functions and strings. Objects are less frequently al-
located in the real applications and the lifetime of
objects is considerably longer then that of strings in
many cases. The fact that arrays and objects have rel-
atively long lifespans in the real applications may re-
flect an attempt by the application developer to avoid
allocating objects to reduce the garbage collection
overhead in the application. In any case, we fail to
observe this type distribution in most of the V8 and
SunSpider benchmarks.

• Second, our analysis of the contents of the live heaps
suggests that current web applications fall into two
categories: those with page transitions that clear the
JavaScript heap, and those that do not. In applica-
tions that do not have many page transitions, such as
gmail, we observe that arrays and objects are rel-
atively long-lived compared to strings. Of applica-
tions with many page transitions, such as amazon,
by definition almost all objects are short-lived. Such
sites do not require sophisticated memory manage-
ment and would benefit most from a very fast and
simple allocator. Being able to predict what class
a site falls into and using an appropriate allocator
might have performance benefits.

• Finally, in considering object lifetimes, we see that
strings are by far the shortest lived types in Java-
Script and that functions are commonly long-lived.
Except for earley and splay, object lifetimes in the
V8 and SunSpider benchmarks are extremely short-
lived, suggesting that performance results of these
benchmarks will not reliably reflect the effectiveness
of the JavaScript engine’s memory management im-
plementatation. Even in earley, object lifetimes are
significantly shorter than is observed in many of the
real web applications, while in splay objects are al-
most never freed.

4.3 Event Behavior

In this section, we consider the event-handling behavior of
the JavaScript programs. We observe that handling events
is commonplace in the real applications and almost never
occurs in the benchmarks. Thus the focus of this section
is on characterizing the handler behavior of the real appli-
cations.

Before discussing the results, it is important to explain
how handlers affect JavaScript execution. In some cases,
handlers are attached to events that occur when a user
interacts with a web page. Handlers can be attached to
any element of the DOM, and interactions such as click-
ing on an element, moving the mouse over an element,
etc., can cause handlers to be invoked. Handlers also are
executed in other circumstances. For example, handlers
can be run when a timer timeouts, when a page loads, or
called when an asynchronous XMLHttpRequest is com-
pleted. To fully understand the constraints on writing han-
dlers, it is also important to know that in current browsers,
such as Internet Exlorer and Firefox, JavaScript has a non-
preemptive execution model. Once a JavaScript handler
is started, the rest of the browser thread for that particular
web page is stalled until it completes. To achieve the goal
of being a compelling interactive application, current web
applications structure user interaction by attaching short-
running handlers to DOM elements (as we document be-
low). A handler that takes a significant amount of time
to execute will make the web application appear sluggish
and non-responsive.

Web applications also invoke JavaScript code in con-
texts that are not handlers. For example, when JavaScript
source is processed as part of parsing the web page, it is
also executed.

Figure 20 presents measures of the event handling be-
havior in the real applications and the V8 benchmarks2.
We see that the number of events handled by the real
applications is quite significant (typically thousands of
events) where the benchmarks handle only a small num-
ber. Furthermore, we see that a substantial fraction of all
bytecodes executed by the real applications occur in han-
dler functions. As mentioned, handlers are called in many
different contexts. The unique events column indicates
the number of unique contexts in which handlers were in-
voked. These typically number in the hundreds. We see
the diversity of the collection of handlers in the results
comparing the mean, median, and maximum of handler
durations for the real applications. Some handlers run for
a long time, such as in cnn, where a single handler ac-
counts for a significant fraction of the total JavaScript ac-
tivity. Many handlers execute for a very short time, how-
ever. The median handler duration in amazon, for exam-
ple, is only 8 bytecodes. amazon is also unusual in that

2SunSpider results are similar to V8 results, so we omit them here.
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# of unique executed instructions % of handler handler size
events events handler total instructions average median maximum

amazon 6,424 224 7,237,073 9,941,596 72.80% 1,127 8 1,041,744

bing 4,370 103 598,350 1,226,116 48.80% 137 24 68,780

bingmap 4,669 138 8,274,169 12,560,049 65.88% 1,772 314 281,887

cnn 1,614 133 4,939,776 5,030,647 98.19% 3,061 11 4,208,115

ebay 2,729 136 7,463,521 7,530,843 99.11% 2,735 80 879,798

economist 2,338 179 21,146,767 21,488,257 98.41% 9,045 30 270,616

facebook 5,440 143 17,527,035 20,855,870 84.04% 3,222 380 89,785

gmail 1,520 98 3,085,482 9,763,506 31.60% 2,030 506 594,437

google 569 64 143,039 427,848 33.43% 251 43 10,025

googlemap 3,658 74 26,848,187 29,336,582 91.52% 7,340 2,137 1,074,568

hotmail 552 194 474,693 585,605 81.06% 860 26 202,105
(a) Event handler characteristics in real applications.

# of unique executed instructions
events events handler total

richards 8 6 2,403,333 2,403,338

deltablue 8 6 1,463,916 1,463,921

crypto 11 6 86,854,336 86,854,341

raytrace 8 6 5,745,817 5,745,822

earley 11 6 25,285,896 25,285,901

regexp 8 6 935,317 935,322

splay 8 6 25,597,691 25,597,696
(b) Event handler characteristics in the V8 benchmarks.

Figure 20: Summary of event handler characteristics.

it has the highest number of events. Such short-duration
handlers probably are invoked, test a single value, and
then return.

These results demonstrate that handlers are written so
that they almost always complete in a short time. For ex-
ample, in bing and google, both highly optimized for
delivering search results quickly, we see low average and
median handler times. In the economist, in which we ob-
served a high average function call overhead, we see that
many of the handlers are very fast (30 bytecode median)
while many must also be quite slow (raising the average
to 9,000 bytecodes per handler).

It is also clear that google, bing, and facebook have
taken care to reduce the duration of the longest handler,
with the maximum of all three below 100,000 bytecodes.

We now consider the distribution of handler durations
in more detail. Figure 21 shows the cumulative distribu-
tion of handler durations. The x-axis depicts the instances
of handler durations, sorted by smallest first and normal-
ized to one. The y-axis depicts the total cumulative byte-
codes executed by handlers with duration equal or less
than the x-axis value. For example in the first figure, we
see that for googlemap, the shortest 80% of handlers ac-
count for a total of about 5 million instructions and the
remaining 20% account for another 20 million more. The
(a) figure shows the entire y-axis range, and the (b) figure
zooms in on the y-axis to illustrate the sharpness of the

knee of the curve better. The important conclusion from
these figures is that there are many instances of short han-
dlers executing in these applications, but that the major-
ity of total instructions are executed in the longer running
handlers. googlemap, bingmap, and facebook appear
to have the least skew in their handler distributions, in
some instances because they have taken care to reduce the
execution time of the longest running handlers (e.g., in
facebook and bingmap) and in other instances because
the amount of work done during many handler events is
substantial (e.g., in googlemap).

Figure 22 illustrates the distribution of handler dura-
tions for each of the applications. As with the previous
figure, we show the handler instances sorted by duration
on the x-axis and on the y-axis, we plot the actual dura-
tion (not the cumulative duration). As we saw previously
from the medians, most invocations are short. This figure
provides additional context to understand the distribution.
For example, we can determine the 95th percentile han-
dler duration by drawing a vertical line at 0.95 and seeing
where each line crosses it. The figure also illustrates that
the durations in many of the applications reach plateaus,
indicating that there are many instances of handlers that
execute for the same number of instructions. For exam-
ple, we see a significant number of bingmap instances
that take 1,500 instructions to complete.
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(a) Event handler characteristics in the real applications. (b) Event Handler Characteristics (Y-axis zoomed)

Figure 21: Distribution of cumulative handler durations.

Figure 22: Distribution of handler durations.

5 Discussion

We have reviewed the behavior of both real JavaScript ap-
plications and benchmarks in a number of different ways,
and determined that the benchmarks behave quite differ-
ently than the real applications. In this section, we re-
view design decisions made by JavaScript engine design-
ers (JEDs) and discuss what impact our results might have
on the design process. We also speculate about current
trends toward increasing JavaScript application complex-
ity and how such trends might impact JavaScript engine
design choices.

5.1 Trends

Application Complexity: While we have focused our
current efforts on some of the most popular and complex
web applications currently deployed, we believe that im-

portant web applications of the future are likely to be in-
creasingly large and complex. For instance, Office 2010
Web Apps are likely to be some of the most complex de-
ployed web applications to date [6]. This trend will almost
certainly increase the disparity between the benchmarks
and real applications that we have documented in this pa-
per, further reducing the value of the benchmark results in
guiding design decisions.

The Mobile Web: We also believe that the Mobile Web,
the part of the web that is accessed from mobile devices
such as smartphones like the iPhone, is likely to have a
significant impact on the design of future web applica-
tions. Mobile devices are more compute- and memory-
constrained than existing desktop and laptop computers,
and power consumption is a significant constraint for
these devices. Web application developers will need to
tailor their web content to perform well on mobile devices
and in many cases develop alternate content for them.
For example, the Facebook application accessed via the
iPhone browser is very different than Facebook accessed
from a desktop computer. Improvements in JavaScript en-
gine implementations on mobile devices will enable user
experiences closer to the desktop experience. While we
have not currently studied the JavaScript behavior of mo-
bile web applications, we leave such as study for future
work. Studies like ours that document what real mobile
web applications look like would be a valuable guide for
JEDs designing virtual machines for mobile devices.

Frameworks: There are many JavaScript libraries and
frameworks such as jQuery and prototype.js already
being used to build web applications. We did not make
an effort to categorize the web sites we investigated to
identify which frameworks were used to construct them.
It would be an interesting to understand the impact of
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particular frameworks on the metrics we consider. Some
would certainly have more events, or uses of messages,
etc. Based on the diversity of sources of JavaScript con-
tent that we document from the real sites (often more
than 100 different contexts in which JavaScript is intro-
duced), it is likely that now and in the future many inter-
esting web applications will draw source content from nu-
merous frameworks. It remains to be seen whether over
time, as web application development matures, some of
these frameworks will dominate and benefit from possi-
ble JavaScript engine support.

Similarly, many web applications, both in our sample
and otherwise, are produced by automatically generating
JavaScript code from other languages using a toolkit such
as GWT [17] or Volta [30]. We suspect that such gen-
erated code might have properties different from hand-
written code, however, we leave the study of aspects of
machine-generated JavaScript programs for future work.

5.2 Object Model

Designers of any virtual machine have to think about how
to represent objects, pointers, etc., to achieve compact
representations and high performance. JEDs have to also
consider the complex interaction between JavaScript ob-
jects, the DOM, and native browser objects, adding con-
siderable complexity to the overall design. Further, JEDs
have the additional complexity of efficiently implement-
ing an object model in the presence of prototype-based
language. Unfortunately, our current results do not speak
directly to either issues related to the JavaScript/DOM in-
teraction, or the efficient implementation of JavaScript in
the absence of declared classes. Our results do show that
a large fraction of all objects managed by the JavaScript
runtime are code objects and that many of the remaining
objects are strings.

As a result, an efficient implementation of string cre-
ation and concatenation are likely to provide a significant
performance benefit, as documented elsewhere [7]. Like-
wise, source code, functions, and bytecodes account for a
substantial fraction of overall allocation. Streamlining the
implementation of these objects for reduced memory foot-
print in the common case of cold code would be benefi-
cial. Similarly, code sharing with a copy-on-write scheme
might prove helpful in a browser that has multiple concur-
rently open tabs.

We observed that web sites like Amazon and Ebay
tear down and reconstruct significant heaps on every page
visit, resulting in significant wasted effort. This real web
behavior is a relatively recent phenomenon, and as a re-
sult we are not aware of any virtual machines optimized
for this case. We believe that JavaScript virtual machines
that are designed for speculatively retaining part of their
heap contents between page visits might improve overall

performance in cases where the user visits multiple pages
within the same web application.

5.3 Code Generation

Recent web postings have placed emphasis on the exe-
cution performance of JavaScript code in recent browser
releases, and significant improvements in benchmark per-
formance have been achieved [32]. A key element of this
performance improvement is the use of Just-In-Time com-
piler technology to generate efficient code for the tight
loops present in some of the benchmarks. Many research
approaches to JIT compilation have been proposed and
evaluated in the context of Java implementations, most
notably IBM’s Jikes RVM [1] and the Java JIT imple-
mented by Suganama et al. at the IBM Tokyo Research
Lab. [36].

JavaScript implementors have demonstrated that these
same techniques are also effective in the context of Java-
Script runtimes, with the current implementations of
Google Chrome’s V8 browser, Apple’s Safari browser and
Mozilla’s Firefox browser. What has not been demon-
strated to date is the degree to which the ideas that have
proven effective in Java JIT implementations are also ef-
fective in JavaScript. Notably, Java implementations for
the most part are executed in a server environment, with
potentially long-running applications.

One of the key insights from our work is that the
amount of JavaScript typically handled by a real web ap-
plication is one to two orders of magnitude larger than
any of the benchmarks currently being used. As a result,
the benchmarks may fail to identify a number of perfor-
mance issues with current implementations. These issues
include the time to JIT code and the amount of memory
required to store JITed code. A very simple way to im-
prove current benchmarks in this regard would be to in-
clude a megabyte of extra unused source code with each
benchmark as a way to understand how the compiler han-
dles larger quantities of little-used code. We also have
identified real web application behaviors, such as amazon,
where the time spent on a particular page does not neces-
sarily warrant the effort to generate high quality code. On
the other end of the spectrum, the benchmarks also fail to
demonstrate the effectiveness of the existing JITs in cases
where a user remains using a web application for longer
periods of time. Issues such as code cache management
become important in such scenarios because the amount
of code used will grow monotonically over time.

Our results also suggest that the value of optimizing
tight loops over integer data is over-emphasized in the
benchmark programs. We suspect that most real web ap-
plications have few long-running loops. With opcodes per
call averaging 20-50 instructions, JavaScript applications
will likely see benefit from effective inlining approaches,
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which have also been demonstrated in Java (e.g., see [37]).

5.4 Memory Management

Much research has been done on improving the overhead
and pause times of garbage collection algorithms in many
languages, including Java. Key concerns of GC design-
ers include the distribution of GC-related pauses and their
impact on application responsiveness, application mem-
ory footprint, GC execution overhead, and data reference
locality. To date, memory management implementations
in JavaScript engines have not been highly optimized and,
because of issues related to pointers from the JavaScript
heap to the DOM, often prone to memory leaks [2]. Some
versions of browsers, for purposes of compatibility with
the DOM, have implemented JavaScript object allocation
as calls to the underlying C runtime allocator, prevent-
ing the performance benefits that bump-pointer allocation
provides [18].

We have shown that the JavaScript benchmarks have
highly uncharacteristic memory allocation behavior, when
they allocate much memory at all. As a result, we be-
lieve that the current benchmarks underplay the impor-
tance of the JavaScript memory management implementa-
tion and if they continue to be used for performance com-
parisons, will incorrectly skew JavaScript implementa-
tions away from sophisticated memory management. We
note in passing that the performance measures reported
by the SunSpider and V8 benchmarks do not in any way
reflect the memory size of the browser process, thus es-
sentially eliminating any need to optimize memory usage
for good benchmark scores. Given the status quo, the best
strategy for getting high scores on these benchmarks is to
turn off garbage collection completely as they are execut-
ing, as any time spent in GC will penalize the resulting
execution time.

Our measurements indicate that strings are far more im-
portant in JavaScript than in previous managed languages
such as C# and Java. Furthermore, we observe that the
benchmarks also do not accurately reflect the degree to
which managing function objects has an impact on mem-
ory usage and collector efficiency. We have also observed
that in single-page web applications, such as gmail, many
objects and arrays have relatively long lifetimes compared
to strings. We believe that further study is required to un-
derstand the allocation behavior of long-lived web appli-
cations. One interesting difference between object behav-
ior in Java and JavaScript is that a significant part of the
structured data in JavaScript is explicitly held in the DOM
elements, shifting the balance of the JavaScript allocation
to interfacing with the DOM and external web sites with
strings.

5.5 Tools

Our measurements have highlighted a number of behav-
iors in both the benchmarks and the real web sites that
are unrepresentative and likely inefficient. For example,
we observed a long-running loop in the economist web
site and we observed that the V8 benchmark splay fails
to free any of the large amount of memory it allocates.
It is likely that such inefficiencies exist in such important
benchmarks and applications because the tools to expose
these inefficiencies are unavailable to many developers.
We believe that if the kinds of information we report in
this paper were easily available to many web application
developers, the efficiency of JavaScript in web applica-
tions overall would likely increase. We believe that in-
formation about event handler frequencies, durations, and
timing would be of considerable interest, especially with
respect to efforts to increase application responsiveness.

While tools such as AjaxScope [24] use JavaScript
source code rewriting to dynamically profile web pages,
our measures, taken by directly instrumenting the Java-
Script engine itself, provide a finer-grain view of Java-
Script execution. Our approach was also facilitated by
our ability to modify the JavaScript interpreter loop, giv-
ing us a natural virtual unit of execution (the bytecode) to
report measures of execution time. We recommend that
future JavaScript engines be constructed in such a way
that hooks providing information similar to what we re-
port be provided in the implementation.

5.6 What is a Web Application?

The live heap graphs presented in Section 4.2.5 also pro-
vide insight about design choices made by web site devel-
opers and illustrate that the relationship between a “web
application” and a set of pages depends on the implemen-
tation. For example, Figure 23 shows the live heap graphs
for google and bing. These two web sites offer very sim-
ilar functionality and we performed the same sequence of
operations on them during our visit.

We see from our measurements of the JavaScript heap,
however, that the implementations of the two applications
is very different, with google being implemented as a se-
ries of visits to different pages, and bing implemented as
a single page visit. The benefit of the bing approach is
highlighted in this case by looking at the right hand side
of each subfigure. In google, we see that the contents of
the JavaScript heap, including all the functions, is recre-
ated repeatedly during our visit, whereas in the bing heap,
the functions are allocated only once. We also note that
the heap size of the google heap is significantly smaller
than the bing heap. These significant differences might
either be a result of Google making a conscious decision
that their approach has efficiencies or, given that the bing
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(a) Live heap for google. (b) Live heap for bing.

Figure 23: Live heap contents as a function of time for two search applications.

search application was implemented in recent years, and
therefore is likely to be more influence by the AJAX pro-
gramming model, it may be a historical artifact.

6 Related Work
There have been many efforts to measure the behavior of
programs over the years, most recently focused on Java.
Understanding program behavior, including memory allo-
cation, is necessary to design better compilers, runtimes,
and hardware to support executing programs written in a
language. Important algorithmic concepts, such as branch
prediction, instruction and data caching, and generational
garbage collection, all result directly from observing the
behavior of real programs.

6.1 JavaScript and Dynamic Languages

There are surprisingly few papers measuring specific as-
pects of JavaScript behavior, despite how widely used it
is in practice. A very recent paper by Lebresneet al. mea-
sures aspects of the use of dynamic aspects of JavaScript
programs in actual use [27]. While their goals are very
different from ours (their purpose is to develop a type sys-
tem for JavaScript), some of their conclusions are similar.
Specifically, they look closely at how objects use the pro-
totype chain in real applications. Like us, they consider
V8 benchmarks as well as real web sites and find dif-
ferences between the benchmarks and real sites. Unlike
us, they do not provide a comprehensive analysis of Java-
Script behavior along the axes we consider (code, data,
and events).

One closely related paper focuses on the behavior of
interpreted languages. Romer et al. [34] consider the run-
time behavior of several interpreted languages, including

Tcl, Perl, and Java, and show that architectural character-
istics, such as cache locality, is a function of the interpret
itself and not the program that it is interpreting. While
the paper does provide some insights into the mix of ab-
stract instructions being executed, it does not specifically
consider object allocation or event handling as we do.

6.2 Java and C#

Dieckmann and Holzle consider the memory allocation
behavior of the SPECJVM Java benchmarks [10]. They
consider object type, live heap composition, and object
lifetime as we do. One of our goals was to mirror Dieck-
mann’s and Holzle’s work for the JavaScript language,
since JavaScript and Java are very different languages. In
terms of differences, they do not examine other aspects of
Java behavior such as code execution or exception han-
dling. Finally, the do not examine differences between
Java benchmarks and real Java applications. While Dieck-
mann and Holzle consider SPECJVM to represent real-
world applications, a strong motivation for the creation
of the DaCapo Java benchmark suite [3] was the under-
standing that SPECJVM was not representative of more
complex Java applications. We have the fortune of being
able to measure real JavaScript applications directly and
report on their behavior.

A number of papers have examined the memory refer-
ence characteristics of Java programs [10, 25, 33, 35, 38]
specifically to understand how hardware tailored for Java
execution might improve performance. The complex in-
teraction between reference locality, high allocation rates,
garbage collection, and concurrency creates a fruitful do-
main for research and innovation. Also, because both
Java and JavaScript are garbage collected, studies of Java
memory behavior can to some degree also inform hard-
ware design to support JavaScript. However, we have also
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observed that there are significant differences between
JavaScript memory allocation and Java as well, for exam-
ple, in the way in that strings play a major role. It is likely
that more detailed studies of JavaScript execution are war-
ranted to understand how effective hardware or runtime
support can improve performance over existing methods.

Doufour et al. present a framework for categorizing
the runtime behavior of programs using precise and con-
cise metrics [11]. They classify behavior in terms of five
general categories of measurement: size, data structures,
polymorphism, memory use, and concurrency. They go
on to report measurements of a number of Java appli-
cations and benchmarks and use their result to classify
the programs into more precise categories. Our measure-
ments correspond to some of the metrics mentioned by
Doufour et al., although we do not do as systematic a job
of categorization as they do. We consider some dimen-
sions of execution that they do not, such as event handler
metrics, and compare benchmark behavior with real ap-
plication behavior.

Compared to the abundance of papers measuring dif-
ferent aspects of Java behavior, there are relatively few
papers documenting C# program behavior. Kassim et
al. [22] focus on micro-benchmarks performance in C#.
Krintz maintains links to a collection of C# benchmarks,
some of which are transcribed versions of Java bench-
marks [26].

6.3 C and C++
Our work also follows from previous work comparing the
code behavior and object allocation of C and C++ pro-
grams. Calder et al. [4] measure a large range of metrics
in a collection of C and C++ programs and conclude that
C++ programs, especially when written to take advantage
of the object-oriented features of C++, behave differently
than C programs.

Specifically, C++ programs have many more procedure
calls, execute more loads and stores, and allocate more
dynamic memory. We examine a number of similar met-
rics in JavaScript programs, including metrics such as
event handling, which were not considered in previous
work. Because JavaScript often executes in the context of
a browser, our work also identifies web application prop-
erties that have previously not been presented.

6.4 Benchmarking
Several papers have attempted to improve the quality of
Java benchmarks. The Java Grande benchmarks are a
collection of Java programs with a focus on numerical
computations that are used in evaluating the effective-
ness of a particular Java implementation for high perfor-
mance computing [29]. The most notable general pur-

pose benchmark suite in the category, the DaCapo bench-
marks [3], have largely superceded the SPECJVM bench-
marks as the benchmarks of choice for evaluating research
on Java implementations. The authors of this suite make
the compelling case that doing effective research on the
Java platform requires benchmarks that are both real and
more complex than benchmark suites used to evaluate lan-
guages like C, C++, and Fortran. One of the goals of our
work is to establish a baseline of understanding that can
inform the creation of JavaScript benchmarks that parallel
the DaCapo benchmarks for the Java language.

A number of papers have benchmarked browsers,
which include the JavaScript subsystem. Nielson et al.
measure the performance of four popular browsers in di-
mensions that include JavaScript, rendering, and what
they call AJAX tests, which include GET and POST per-
formance and the performance of the DOM APIs [31]. To
measure JavaScript performance, they rely on the SunSpi-
der benchmarks, “...well recognized as a reliable measure
of a browser’s JavaScript performance”.

7 Conclusions

We have presented the first detailed measurements of
the behavior of JavaScript applications, including widely-
used and commercially important web applications and
sites such as GMail and Facebook, as well as the Java-
Script benchmark suites, SunSpider and V8, which are
widely used to report the performance of JavaScript en-
gines. Because web applications reveal all their client
JavaScript code to the browser, we have the unprece-
dented opportunity to provide detailed behavior measure-
ments of live commercial applications. We have measured
three specific areas of JavaScript runtime behavior:

1. Functions and code;

2. Heap-allocated object and data;

3. Event and handlers.

Our results show that JavaScript web applications are
large, complex, and highly interactive programs. Fur-
thermore, while the functionality they implement varies
significantly (search, mail, e-commerce), we also observe
that the real applications have much in common with each
other as well.

In contrast, the JavaScript benchmarks are fleetingly
small, and behave in ways that are significantly different
than the real applications. We have documented numer-
ous differences in behavior, and we conclude from these
measured differences that results based on the bench-
marks may mislead JavaScript engine implementers. Fur-
thermore, we observe interesting behaviors in real Java-
Script applications that the benchmarks fail to exhibit,
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suggesting that previously unexplored optimization strate-
gies may be productive in practice.

Our measurements suggest a number of valuable
follow-up efforts. These include working on building a
more representative collection of benchmarks, modifying
JavaScript engines to more effectively implement some of
the real behaviors we observed, and building developer
tools that expose the kind of measurement data we report.
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A Heap Statistics

In this appendix, we present our measurements of the
live heap over time and object lifetime distribution for all
real applications and benchmarks (see Figures 24 to 35).
While we highlighted certain aspects of behavior in the
body of the paper, here the reader can investigate the full
range of behaviors exhibited. These figures serve to fur-
ther highlight to contrasting complexity of the real appli-
cations and the benchmarks.

B Trace Statistics

The results presented in this paper were extracted from ex-
ecution traces that our instrumentation system provides.
The binary-encoded traces contain much more informa-
tion than we have presented here. In this section, we show
the full trace sizes to provide an indication how much data
was collected.

In the case of instruction execution, our traces capture
information about the bytecodes executed and the order
of execution. In the case of object allocation, our traces
identify the point at which objects are allocated and freed
when the garbage collector determines that they are no
longer usable.

C Object Allocation Rates

Figure 37 presents the total number of objects allocated
by type in the real applications and benchmarks.

Instruction trace size Data trace size
amazon 114,446,160 21,512,000
bing 17,106,480 4,342,912
bingmap 197,601,120 25,622,896
cnn 71,806,320 8,759,248
ebay 136,659,600 14,399,584
economist 83,924,640 57,689,424
gmail 303,004,080 8,396,720
google 7,319,520 1,387,504
googlemap 807,679,440 31,056,496
hotmail 11,141,280 1,938,192
facebook 151,426,800 20,036,480

min 7,319,520 1,387,504
max 807,679,440 57,689,424

(a) Real Application Summary

Instruction trace size Data trace size
richards 58,326,480 1,629,952
deltablue 81,558,720 578,512
crypto 71,714,160 10,888,288
raytrace 154,787,760 7,997,664
earley 585,851,760 19,635,536
regexp 69,120 13,583,840
splay 488,460,240 140,354,000

min 69,120 578,512
max 585,851,760 140,354,000

(b) V8 Application Summary

Instruction trace size Data trace size
3d-raytrace 40,774,320 1,022,416
access-nbody 3,285,360 5,404,880
bitops-nsieve 3,600 672
controlflow 176,754,240 560
crypto-aes 7,236,720 960,352
date-xparb 25,948,800 6,345,136
math-cordic 54,011,520 992
regexp-dna 2,160 12,336
string-tagcloud 45,989,280 3,131,344

min 2,160 560
max 176,754,240 6,345,136

(c) SunSpider Application Summary

Figure 36: Trace file sizes.
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(a) amazon (b) bing

(c) bingmaps (d) cnn

(e) ebay (f) economist

Figure 24: Live heap object composition over time (real sites part 1).
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(a) facebook (b) gmail

(c) google (d) googlemap

(e) hotmail

Figure 25: Live heap object composition over time (real sites part 2).
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(a) crypto (b) deltablue

(c) earley (d) raytrace

Figure 26: Live heap object composition over time (V8 part 1).
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(a) regexp (b) richards

(c) splay

Figure 27: Live heap object composition over time (V8 part 2).
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(a) draytrace (b) access− nbody

(c) bitops− nsieve (d) controlflow

(e) crypto− aes (f) date− xparb

Figure 28: Live heap object composition over time (SunSpider part 1).
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(a) math− cordic (b) regexp− dna

(c) string− tagcloud

Figure 29: Live heap object composition over time (SunSpider part 2).
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(a) amazon (b) bing

(c) bingmap (d) cnn

(e) ebay (f) economist

Figure 30: Heap object age (real sites 1).
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(a) facebook (b) gmail

(c) google (d) googlemap

(e) hotmail

Figure 31: Heap object age (real sites 2).
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(a) crypto (b) deltablue

(c) earley (d) raytrace

Figure 32: Heap object age (V8 part 1).
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(a) regexp (b) richards

(c) splay

Figure 33: Heap object age (V8 part 2).
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(a) 3− draytrace (b) access− nbody

(c) bitops− nsieve (d) controlflow

(e) crypto− aes (f) date− xparb

Figure 34: Heap object age (SunSpider part 1).
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(a) math− cordic (b) regexp− dna

(c) string− tagcloud

Figure 35: Heap object age (SunSpider part 2).
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Script
Func

Arrays String Native
Func

Date Objects Others Total

amazon 24,156 34,620 209,876 464 1,570 38,326 571 309,583
bing 11,384 1,876 46,519 150 1,575 2,432 45 63,981
bingmap 46,767 19,659 330,987 89 1,268 39,898 188 438,856
cnn 6,895 2,366 47,239 437 145 2,729 415 60,226
ebay 38,984 20,987 157,359 525 364 46,801 468 265,488
economist 5,811 6,317 349,855 238 148 6,581 1,791 370,741
facebook 25,381 24,047 212,081 472 334 57,777 2,298 322,390
gmail 21,532 16,601 37,180 140 1,067 22,965 79 99,564
google 4,499 3,205 16,841 256 54 1,875 184 26,914
googlemap 37,620 54,619 250,566 78 5,839 148,029 481 497,232
hotmail 9,089 2,166 24,079 353 120 5,101 128 41,036

(a) Real Application Summary

Script
Func

Arrays String Native
Func

Date Objects Others Total

richards 70 22 29 13 3 64 2 203
deltablue 111 838 342 15 2 2,345 2 3,655
crypto 166 181 1,784 20 9 264 2 2,426
raytrace 110 9 34 20 2 66,667 2 66,844
earley 8,548 312 36,871 31 5 276,023 2 321,792
regexp 45 37,279 139,383 18 2 36,006 2 212,735
splay 47 273,925 821,789 11 8 566,658 2 1,662,440

(b) V8 Application Summary

Script
Func

Arrays String Native
Func

Date Objects Others Total

3d-raytrace 31 10,665 910 9 3 83 1 11,702
access-nbody 17 4 4 4 2 26 1 58
access-nsieve 6 3 4 3 2 0 0 18
bitops-nsieve 6 1 4 3 2 0 0 16
controlflow 6 0 4 2 2 0 0 14
crypto-aes 190 21,352 3,588 16 3 1 1 25,151
date-xparb 24 4 67,342 17 3 20,008 0 87,398
math-cordic 8 1 4 3 4 0 0 20
regexp-dna 3 10 195 7 2 10 0 227
string-tagcloud 16 10,002 25,293 20 2 2,509 1 37,843

(c) Sunspider Application Summary

Figure 37: Allocated object summary.
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Figure 38: Overall object lifetime distributions in SunSpider.

D SunSpider Object Lifetimes
Figure 38 shows the object lifetime distributions for the
SunSpider benchmarks.
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J. Vitek. Understanding the dynamics of JavaScript. In
Proceedings for the Workshop on Script to Program Evo-
lution, pages 30–33, 2009.

[28] B. Livshits and E. Kiciman. Doloto: code splitting for
network-bound web 2.0 applications. In M. J. Harrold
and G. C. Murphy, editors, Proceedings of the Interna-
tional Symposium on Foundations of Software Engineer-
ing, pages 350–360. ACM, 2008.

[29] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analy-
sis and development of Java Grande benchmarks. In Pro-
ceedings of the ACM Conference on Java Grande, pages
72–80, 1999.

[30] Microsoft Corporation. Microsoft Live Labs Volta. http:
//labs.live.com/volta/, 2007.

[31] J. Nielson, C. Williamson, and M. Arlitt. Benchmarking
modern browsers. In Proceedings IEEE Workshop on Hot
Topics in Web Systems and Technologies. IEEE, 2008.

[32] R. Paul. Firefox to get massive Java-
Script performance boost. http://

arstechnica.com/open-source/news/2008/

08/firefox-to-get-massive-javascript-\
performance-boost.ars, Aug. 2008.

[33] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Siva-
subramaniam, J. Rubio, and J. Sabarinathan. Java runtime
systems: Characterization and architectural implications.
IEEE Trans. Computers, 50(2):131–146, 2001.

[34] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A.
Wong, J.-L. Baer, B. N. Bershad, and H. M. Levy. The
structure and performance of interpreters. In Proceed-
ings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 150–159, Oct. 1996.

[35] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Charac-
terizing the memory behavior of Java workloads: a struc-
tured view and opportunities for optimizations. In Pro-
ceedings of the International Conference on Measurement
and Modeling of Computer Systems, pages 194–205, 2001.

[36] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-in-Time Compiler. IBM
Systems Journal, 39(1):175–193, 2000.

[37] T. Suganuma, T. Yasue, and T. Nakatani. An empirical
study of method in-lining for a java just-in-time compiler.
In Proceedings of the Java Virtual Machine Research and
Technology Symposium, pages 91–104. USENIX, 2002.
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