1909.07220v1 [cs.CR] 16 Sep 2019

arxXiv

Broken Metre:
Attacking Resource Metering in EVM

Daniel Perez
Imperial College London
London, United Kingdom
Email: daniel.perez@imperial.ac.uk

Abstract—Metering is an approach developed to assign cost to
smart contract execution in blockchain systems such as Ethereum.
This paper presents a detailed investigation of the metering
approach based on gas taken by the Ethereum blockchain. We
discover a number of discrepancies in the metering model such
as significant inconsistencies in the pricing of the instructions. We
further demonstrate that there is very little correlation between
the gas and resources such as CPU and memory. We find that
the main reason for this is that the gas price is dominated by the
amount of storage that is used.

Based on the observations above, we present a new type of
DoS attack we call Resource Exhaustion Attack, which uses these
imperfections to generate low-throughput contracts. Using this
method, we show that we are able to generate contracts with
a throughput on average 50 times slower than typical contracts.
These contracts can be used to prevent nodes with lower hardware
capacity from participating in the network, thereby artificially
reducing the level of centralization the network can deliver.

I. INTRODUCTION

Some blockchain systems support code execution to allow
arbitrary programs to take advantage of decentralized trust.
Ethereum and its virtual machine, the EVM, are probably the
most common approach of this sort. The notion of gas is used
for transfer-style transactions on Ethereum.

Additionally, gas-based metering was pioneered in the
Ethereum blockchain and was introduced for two reasons:
to create monetary incentives for miners who validate smart
contracts and to prevent Denial of Service (DoS) attacks on
the Ethereum network. The design of the metering system is
spelled out in the Ethereum yellow paper [47] and specifies
the cost of every instruction. However, the logic for matching
costs and instructions not only appears somewhat disconnected
to actual costs, but embeds fundamental limitations which have
shown cracks with what is known as EIP-150 [9], an update
to the Ethereum gas fees in response to several DoS attacks.

This paper is the first attempt to explore the design of the
EVM metering system in depth in order to understand both
how valid this approach is and how it may be possible to take
advantage of EVM design flaws.

A. Contributions

This paper makes the following contributions:

1) Exploration of metering in EVM: We identify
several important edge cases that highlight inherent

Benjamin Livshits
Imperial College London
London, United Kingdom

Email: b.livshits@imperial.ac.uk

flaws in EVM metering; specifically, we identify i)
EVM instructions for which the gas fee is too low
compared to their resources consumption; and ii)
cases of programs where the cache influences exe-
cution time by an order of magnitude.

2) Analysis of Ethereum main net: We explore the
history of executing 2.5 months worth of smart con-
tracts on the Ethereum blockchain and demonstrate
that the gas usage is only marginally correlated with
the usage of resources such as CPU and memory, and
that the gas cost is dominated by the EVM storage.

3) Resource Exhaustion Attacks (REA) contract gen-
eration strategy: We present a code generation strat-
egy able to produce REA attacks of arbitrary length.
Some of the complexity comes from the need to
produce well formed EVM programs which mini-
mize the throughput. We propose an approach which
combines empirical data and genetic programming in
order to generate contracts with low throughput. We
explore the efficacy of our strategy as a function of
the amount of time and effort our program generation
approach is allowed to take.

4) Experimental evaluation: We show that our REA
can abuse the imperfections in EVM’s metering ap-
proach. Our genetic programming technique is able
to generate programs which exhibit a throughput
of 1.25M after a single generation. A minimum in
our experiments is attained at generation 244 with the
block using around 7.9M gas and taking around 78
seconds. We show that our method can generate
contracts, which are on average more than 50 times
slower than typical contracts. Because node using
commodity hardware is unable to keep up under
REA, this allows the attacker to further compro-
mise the level of decentralization of the underlying
blockchain.

Paper Organization. The rest of the paper is organized as fol-
lows. In Section II, we provide background information about
Ethereum and its metering scheme, as well as a few examples
of how it has been exploited in the past. In Section III, we
present a few case studies based on measurements that we ob-
tained by re-executing the Ethereum main chain. In Section IV,
we use these measurements to evaluate the correlation between
gas and different resources such as CPU, memory and storage.
In Section V, we present our Resource Exhaustion Attacks
(REA) and the results we obtained. Finally, we present related

work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we briefly describe the Ethereum network
and the EVM. Then, we provide an in-depth explanation of
how the gas mechanism works and provide additional insights
into smart contract execution costs on the Ethereum main
network. Finally, we highlight some of the attacks which have
been performed by abusing the gas mechanism.

A. Ethereum and the Ethereum Virtual Machine (EVM)

The Ethereum [12] platform allows its users to run “smart
contracts” on its distributed infrastructure. Ethereum smart
contracts are programs which define a set of rules for the
governing of associated funds, typically written in a Turing-
complete programming language called Solidity [18]. The
Solidity code is compiled into EVM bytecode, a low level
bytecode designed to be executed by the EVM.

Once the EVM bytecode is generated, it is deployed on
the Ethereum blockchain by sending a transaction which only
purpose is to create a smart contract with the given code. To
execute a smart contract, a user can then send a transaction
to this contract. The sender will pay a transaction fee which
is derived from the contract’s computational cost, measured
in units of gas [47]. The fee itself is paid in Ether (ETHY),
the underlying currency of the Ethereum blockchain. When a
miner successfully mines a blocks, he receives the transaction
fee of all the transactions included in the block. We will
describe exactly how this transaction fee is computed in the
part of this section.

B. Metering in EVM

As briefly outlined in Section I, gas is a fundamental
component of Ethereum, and generally applicable to permis-
sioned and permissionless blockchain platforms that utilise a
distributed virtual machine for contract code execution. [44],
[6]. Gas is the main protection against Denial of Service
(DoS) attacks based on non-terminating or resource-intensive
programs. It is also used to incentivise miners to process
transactions by rewarding them with a fee computed based
on the resource usage of the transaction.

Gas cost. In the EVM, each transaction has a cost which is
computed in and expressed as gas. The cost is split into two
parts, a fixed base cost of 21,000 gas, and a variable execution
cost of the smart contract. Each instruction has a fixed gas cost
which has been set by the designers of the EVM [47], who
classify the instructions in multiple tiers of gas cost:

e Zero Tier (0 gas): Instructions to stop contract execu-
tion: STOP and RETURN

e Base Tier (2 gas): Most instructions used to read
some state of the VM, such as the current value of
the program counter, the caller, or value sent to the
contract

I'When converting ETH to USD, we use the exchange rate on 2019-05-12:
1 ETH = 200 USD. For consistency, any monetary amounts denominated in
USD are based on this rate.

PUSH1 0x02 ; very low tier (3 gas)
PUSH1 0x03 ; very low tier (3 gas)
MUL ; low tier (5 gas)
PUSH1 0x05 ; very low tier (3 gas)
SSTORE ; special tier (20k gas)

Fig. 1: Example gas cost of an EVM program

o Very Low Tier (3 gas): Instructions to operate on the
stack, such as PUSH and POP as well as fast arithmetic
operations such as ADD or SUB

e Low Tier (5 gas): More involved arithmetic instruc-
tions such as MUL, DIV or MOD.

o Mid Tier (8 gas): Combined arithmetic operations
such as ADDMOD and MULMOD, as well as the JUMP
instruction which is used to perform a jump.

e High Tier (10 gas): Only the JUMPI instruction,
which performs a conditional jump.

e Special Tier: Instructions of which the cost needs more
complex rules. For example, the cost of SSTORE,
which is used to store an element in storage, depends
on what the previous value was and what the next
value will be. If the previous value was zero and the
new value is non-zero, the instruction allocates storage
and costs 20,000 gas to execute. On the other hand, if
the previous value was non-zero and the new value is
zero, the instruction frees storage and 15,000 gas is
refunded.

The gas cost for a transaction in the EVM is the sum over the
cost of each instruction in the contract. For example, given
the program in Figure 1, the gas cost will be computed as
follow. PUSHI is in the Very Low Tier and therefore costs 3
gas. It is called 3 times in total and will therefore consume 9
gas. The arguments of PUSH1 do not consume any extra gas.
The MUL instruction is in the Low Tier and hence costs 5
gas. Finally, the SSTORE will store the result of 2 x 3 at
location 5 in the storage. SSTORE is in the Special Tier and has
slightly more complex pricing rules. Assuming the location in
the storage was previously 0, the instruction allocates storage
and will cost 20,000 gas. Therefore, this program will cost a
total of 20,014 gas to execute. Given the current pricing for
storage, the cost of the program is clearly dominated by the
storage operation.

It is important to note that, as the transaction has a base cost
of 21,000 gas, it will cost a total of 21,000+ 20,014 = 41,014
gas to execute the above transaction.

Ethereum Improvement Proposal (EIP) 150. Although the
cost of each instruction was decided when first designing
the EVM, the authors found that some costs were poorly
aligned with actual resource consumption. Particularly, 10-
heavy instructions tended to be to cheap, allowing for DOS
attacks on the Ethereum [10] blockchain. As a fix, EIP 150 [9]
was proposed and implemented, significantly increasing the
gas consumption of instructions which require to perform 10
operations, such as SLOAD or EXTCODESIZE. This change

revised the cost of under-priced instructions and prevented fur-
ther DoS attacks such as the one seen in September 2016 [11].
This briefly highlights the potential risks rooted in mismatches
between instructions and gas costs. While the above cases have
been fixed, it is unclear whether all potential issues have been
eradicated or not.

Gas price. Up to here, we have explained how the gas cost for
executing a contract are computed. However, the gas cost is not
the only element needed to compute the total execution cost of
a contract. When a transaction is sent, the sender can choose
a gas price, namely the amount of wei (1wei = 10~'® ETH)
that the sender is ready to pay per unit of gas. Miners will
usually prioritise transactions with high gas prices, as this will
increase the final fee they receive for processing a transaction.

Transaction fee. The transaction fee is the total amount of wei
that the sender of the transaction has to pay for the transaction.
It is obtained by multiplying the gas price by the gas cost. The
transaction fee is non-refundable: even if the transaction fails,
it will be paid.

C. Gas Statistics

Now that we presented the key points about metering in
the EVM, we provide numbers to give a better insight on how
much gas is usually consumed and for what price.

In Figure 2a and Figure 2b, we show respectively the
average gas consumption per block, the average gas price and
the price of Ether in USD. The data in all figures is aggregated
by week. We can see that the gas used went up from an average
of around 25,000 gas at the beginning of 2016 to an average
of around 55,000 gas at the beginning of 2018 with occasional
stronger oscillations. We assume the increase in the average
gas consumed is mostly due to the increase in the complexity
of smart contracts over time [50]. We would think that users
would tend to use less gas when the gas price is high but
looking at Figures 2a and 2b, the gas usage does not seem to
be correlated with the gas price.

To understand the behaviour of the gas price, we also plot
the price of Ethereum over time with a log-scaled y-axis in
Figure 2c. We can clearly see that the gas price peaks when
the Ethereum price increases. For example, there is a first
significant increase of the price of Ethereum at the beginning
of 2015 and that the gas price rises from 20 Gwei to more
than 70 Gwei. The same phenomenon can be observed around
January 2018 as well as May 2018. We hypothesise that the
reason behind this is that when the price increases, the network
activity tends to increase as well, generating higher demand:
more transactions to be processed. Given that the supply —
the throughput of the network — is mostly constant, the price
increases to adjust to this demand.

To give a sense of the transaction fees, we show a variety
of typical fees in Figure 3. The fees are divided depending
on their gas price and gas consumption. The Low gas price is
close to the lowest price that can be paid to get the transaction
accepted on the Ethereum blockchain. The High gas price
refers to the price that people would pay when they are
extremely eager to get their transaction included, for example

11Gwei = 109wei = 10~ 9ETH

when competing with other users to have a transaction included
first [36]. The basic transaction type refers to transactions
consuming only the base amount of gas, without executing any
instruction. This is typically the cost to send Ether to a contract
or another party. The gas intensive transaction type represents
computationally expensive transactions, for example, verifying
a zero-knowledge proof [41]. At the time of writing, the
maximum amount of gas which can be used in a single block
is 8,000,000, which means only 16 such transactions could be
included in a single block.

In Figure 4, we show the values of the gas price, gas used
and transaction fee. In order to obtain results reflecting the
current situation, we limit the analysis to recent blocks. We use
all the transactions sent to contracts between August 23rd 2018
and March 9th 2019. We find that the median gas price paid by
a transaction’s sender is around 8.5 Gwei', which is around 4
times more than the minimum possible fee. It is worth noting
that when paying the minimum possible fee, the probability for
the transaction to get included fast is low and the transaction
can therefore be delayed for several blocks: at the time of
writing, only a little more than 10% of the last 200 blocks
accepted a gas price of 2Gwei [17]. This explains that users
usually pay a higher fee to get their transaction included
faster. The median for the gas consumed is around 50,000
gas, indicating that most transactions perform relatively simple
computations. Indeed, the basic fee being 21,000, a simple
read followed by an allocation of storage would already result
in 46,000 gas. Overall, the median fee paid per transactions
is 0.0004 ETH which is around 0.08 USD.

D. Previously Known Attacks

The Ethereum network has been victim of several Denial
of Service (DoS) attacks due to instructions being underpriced.
We present two considerable DoS attacks which were per-
formed on the Ethereum network.

EXTCODESIZE attack. In September 2016, a DoS attack
was performed on the Ethereum network by flooding it with
transactions containing a very large number of EXTCODESIZE
instructions [11]. EXTCODESIZE is an instruction to retrieve
the size in bytes of a given contract’s code.

This attack happened because the EXTCODESIZE instruc-
tion was vastly underpriced. At the time of the attack, a
single execution of this instruction cost 20 gas, meaning
that one could perform around 1,500 instructions with less
than $0.01. Although by itself, this issue might seem benign,
EXTCODESIZE forces the client to search the contract on disk,
resulting in IO heavy transactions. The malicious transactions
took around 20 to 80 seconds to execute, compared to a few
milliseconds for the average transactions. We show the corre-
lation between the clock time and the gas used by transactions
during the period of the attack in Figure 5. Although this did
not create any issue on the consensus layer, it reduced the rate
of block creation by a factor of more than 2 times, with block
creation time peaking to more than 30s [21].

The Ethereum protocol was updated in EIP 150, with all
the software running Ethereum, to increase the price of the
EXTCODESIZE from 20 to 700 gas, making the aforemen-
tioned attack considerably more expensive to perform. Some

lelo

120000

~

100000

o

80000 -

w

60000

Gas used

40000+

Gas price (wei)
S

w

20000

N

04 . 1

O NP O, 0, PO >
B A AR RSN

Date

(a) Average gas used per block, aggregated

per week. per week.

(b) Average gas price per block, aggregated

1000
o
8 100
p=)
[
=
(=}
10
o
=
i
1
BRSNS\ - B\
e A e M SR R A O O P P PP D0 O
N0 O O VOV N v v v
Date 70>790%790% 90> 90> 90> 90> 90>"90> 10> 10

Date

(c) Log-scaled price of Ethereum over time.

Fig. 2: Statistics of gas usage, gas price and Ethereum price over time.

Gas price
Low High
Transaction type (2Gweil) (80Gwei)
Basic (21k gas) $0.01 $0.34
Gas intensive (500k gas) $0.20 $8.00

Fig. 3: Fees for different type of transactions. “Low” price is the lowest
possible price to have a transaction included while “High” a price someone
very eager to have his transaction included would pay.

Number of blocks: 1,133,621
Median gas price: 8.5 Gwei
Median gas used (by contracts): 48,398

Median transaction fee: 0.0004 ETH (0.08 USD)

Fig. 4: Median gas price, gas used and transaction fee from block 6198305
(Aug-23-2018) to block 7331927 (Mar-09-2019).

performance improvements were also made at the implementa-
tion level, allowing clients to process IO-intensive instructions
faster.

SUICIDE Attack. Shortly after the EXTCODESIZE attack,
another DoS attack involving the SUICIDE instruction was
performed [10]. The SUICIDE instruction kills a contract
and sends all its remaining Ether to a given address. If this
particular address does not exist, a new address would be newly
created to receive the funds. Furthermore, at the time of the
attack, calling SUICIDE did not cost any Ether. Given these
two properties, an attacker could create and destroy a contract
in the same transaction, creating a new contract each time at an
extremely low fee. This quickly overused the memory of the
nodes, and particularly affected the Go implementation [25]
which was less memory efficient [13].

A twofold fix was issued for this attack in EIP 150.
First, and most importantly, SUICIDE would be charged the
regular amount of gas for contract creation when it tried to
send Ether to a non-existing address. Subsequently, the price
of the SUICIDE instruction was increased from 0 to 5,000
gas. Again, these measures would make such an attack very
expensive.

80 -

[=)]
o
L
N oW ® O

N
o
[l o]
e @

Clock time (s)

Gas used le6

Fig. 5: Correlation between gas and clock time with DoS.

III. CASE STUDIES IN METERING

In this section, we instrument the C++ client of the
Ethereum blockchain, called aleth [20], and report some in-
teresting observations about gas dynamics in practice.

A. Experimental setup

Hardware. We run all of the experiments on a Google Cloud
Platform (GCP) [26] instance with 4 cores (8 threads) Intel
Xeon at 2.20GHz, 8 GB of RAM and an SSD with a 400MB/s
throughput. The machine runs Ubuntu 18.04 with the Linux
kernel version 4.15.0.

Software. To measure the speed of different instructions, we
fork the Ethereum C++ client, aleth. Our fork integrates the
changes to the upstream repository until Jun-26 2019. We
choose the C++ client for two reasons: first, it is one of the two
clients officially maintained by the Ethereum Foundation [1]
with geth [25]; second, it is the only of the two without runtime
or garbage collection, which makes measuring metrics such as
memory usage more reliable.

We add compile options to the original C++ client to allow
enabling particular measurements such as CPU or memory.
Our measurement framework is open-sourced® and available
under the same license as the rest of aleth.

Measurements. For all our measurements, we only take into
account the execution of the smart contracts and ignore the
time taken in networking or other parts of the software. We
use a nanosecond precision clock to measure time and measure
both the time taken to execute a single smart contract and the
time to execute a single instruction. To measure the memory
usage of a single transaction, we override globally the new and
delete operators and record all allocations and deallocations
performed by the EVM execution within each transaction. We
ensure that this is the only way used by the EVM to perform
memory allocation.

Given the relatively large amount of time it takes to re-
execute the blockchain, we only execute each measurement
once when re-executing. We ensure that we always have
enough data points, where enough in the order of millions
or more, so that some occasional imprecision in the measure-
ments, which are inevitable in such experiments, do not skew
the data.

In this section, the measurements are run between
block 5,171,468 (Feb-28-2018) and block 5,587,480 (May-10-
2018), except for the last part where all the benchmarks are
run at block 5,587,480.

B. Arithmetic Instructions

In this experiment, we evaluate the correlation between
gas cost and the execution time for simple instructions which
include absolutely no IO access. We use simple arithmetic
instructions for measurements, in particular the ADD, MUL,
DIV and EXP instructions.

In Figure 6a, we show the mean time of execution for
these instructions, including the standard deviation for each
measurement. We contrast these results with the gas cost of
the different instructions in Figure 6b. We see that although in
practice ADD and MUL have similar execution time, the gas cost
of MUL is 65% higher than the gas cost for ADD. On the other
hand, DIV, which costs the same amount of gas as MUL, is
around 5 times slower on average. EXP costs twice the price of
DIV but executes on average 40% faster. Another point to note
here is that DIV has a standard deviation much higher than the
other three instructions. Although we were expecting that for
such simple instructions the execution time would reflect the
gas cost, this does not appear to be the case in practice. We
will show in the coming sections that 1O related operations
tend to make things worse in this regard.

C. High-Variance Instructions in EVM

Here, we look at instructions which have a high variance
in their execution time. We summarize the instructions which
had the highest variance in Figure 7. There are two main
reasons why the execution time may vastly vary for the
execution of the same instruction. First, many instructions take
parameters, depending on which, the time it takes to run the

» w [=)] ~
o o o o
o o o o

Mean time (ns)
w
o
o

200 A
1001

(a) Mean time for arithmetic instructions.

]

2
=

ADD
DI
EXP

Instruction

Instruction Gas cost Mean time (ns) Throughput
(gas / ps)

ADD 3 82.20 36.50
MUL 5 96.96 51.57
DIV 5 476.23 10.50
EXP 10 287.93 34.73

(b) Execution time and gas usage for arithmetic instructions.

Fig. 6: Comparing execution time and gas usage of arithmetic instructions.

particular instructions can vary wildly. This is the case for
an instruction such as EXTCODECOPY. The second reason is
much more problematic and comes from the fact that some
instructions may require to perform some IO access, which
can be influenced by many different factors such as caching,
either at the OS or at the application level. The instruction
with the highest variance was BLOCKHASH. BLOCKHASH
allows to retrieve the hash of a block and allows to look
up to 256 block before the current one. When it does so,
depending on the implementation and the state of the cache,
the EVM may need to perform an IO access when executing
this instruction, which can result in vastly different execution
times. The cost of BLOCKHASH being currently fixed and
relatively cheap, 20 gas, it results in an instruction which is
vastly under-priced. It is worth noting that in the particular
case of BLOCKHASH, the issue has already been raised more
than two years ago in EIP 210 [14]. It discussed of changing
the price of BLOCKHASH to 800 gas but at the time of writing
the proposal is still in draft status and was not included in the
Constantinople fork® [29] as it was originally planned to be.

D. Memory Caches and EVM Costs

Given the high variance in execution time for some in-
structions, we evaluate the effects caching may have on EVM
execution speed. In particular, we evaluate both the speedup
provided by the operating system page cache and the speedup
across blocks provided by LevelDB LRU cache [24].

2URL anonymised for double blind review

3Hard fork which took place on Feb 28 2019 on the Ethereum main network

Instruction Mean Standard Measurements

time (us) deviation Count
BLOCKHASH 768 578 240,000
BALANCE 762 449 8,625,000
SLOAD 514 402 148,687,000
EXTCODECOPY 403 361 23,000
EXTCODESIZE 221 245 16,834,000

Fig. 7: Instructions with highest execution time variance.

30 A

= N N
vl o ul
L L L

Number of contracts

=
o
L

5

24 26 28 30
Speedup with cache (times)

Fig. 8: Comparing throughput with and without page: x axis is the relative
speed improvement and y axis is the number of contracts.

Page cache. First, we evaluate how the operating system page
cache influences the execution time by reducing the 10 latency.
We perform the experiment as follows:

1) Generate a contract
2) Run the code of the contract n times
3) Run the code of the contract n times but drop the

80

o
o
L

of blocks
— 14

15
— 16

Total execution time (s)
N
o
L

N
o
L

T T T

1 2 3 4 5 6 7 8 9
Execution number

Fig. 9: Measuring block execution speed with and without the effect of cache.

page cache between each run

We perform this for 100 different contracts and measure
the execution time for the versions with and without cache.
We generate relatively large contracts, which consume on
average 800,000 gas each. Although the method is somewhat
crude, it provides a good approximation of the extent to which
the state of the page cache influences the execution time of a
contract. In Figure 8, we show a distribution of the contracts
throughput in terms of gas per second, with and without cache.
We see that contracts execute between 24 and 33 times faster
when using the page cache, with more than half of the contracts
executing between 27 and 29 times faster. This vast difference
in the execution speed is due to IO operations, which use
LevelDB [23], a key-value store database, under the hood.
LevelDB keeps only a small part of its data in memory and
therefore needs to perform a disk access when the data was not
found in memory. If the required part of the data was already in
the page cache, no disk access will be required. When keeping
the page cache, all the items seen by the contract recently will
already be available in cache, eliminating the need for any disk
access. On the other hand, if the caches are dropped, many IO
related operations will result in a disk access, which explains
the speedup. We notice that in the contracts with the highest
speedup, BLOCKHASH, BALANCE and SLOAD are in the most
frequent instructions. It is worth noting that if the generated
contracts are small enough, most of the data will be in memory
and dropping the page cache will have much less effect on
the runtime. Indeed, when running the same experiment with
contracts consuming on average 100,000 gas, only a 2 times
average speedup has been observed.

Caching across blocks. In the next experiment, instead of
measuring the cache impact by running a single contract mul-
tiple times, we evaluate how the cache impacts the execution
time across blocks. In particular, we measure how many blocks
need to be executed before the data cached during the previous
execution of a contract gets evicted from the different caches.
To do so, we perform the following experiment.

1) Generate n blocks, with different contracts in each

2) Execute sequentially all the blocks and measure the
execution time

3) Repeat the previous step m times in the same process,
and record how the execution speed evolves

We set m to 10 and we try different values for n to see how
many blocks are needed for the cache not to provide anymore
speedup. We find that in our setup, assuming the blocks are
full (i.e. close to the gas limit in term of gas), 16 blocks are
enough for the cache not to provided anymore speedup. We
plot the results for n = 14, n = 15 and n = 16 in Figure 9.
When n = 14, we see that the second execution is much
faster than the first one, and that after the third execution, the
execution time stabilizes at around 6s to execute the 14 blocks.
For n = 15, the execution time takes longer to decrease, but
eventually also stabilizes around the same value. It is slightly
higher than when n = 14 because it has one more block to
execute. However, once we reach n = 16, we see that the
execution time hardly decreases and stays stable at around 85s.
We conclude that at this point, almost nothing that was cached
during the previous execution of the block is still cached when
re-executing the block.

E. Summary

In this section, we empirically analyzed the gas cost and
resource consumption of different instructions. To summarize:

e We see that even for simple instructions, the gas
cost is not always consistent with resource usage.
Indeed, even for instruction with very predictable
speed, such as arithmetic operations, we observe that
some instructions have a throughput 5 times slower
than others.

e We notice that while most instructions have a rela-
tively consistent execution speed, other instructions
have large variations in the time it takes to execute.
We find that these instructions involve some sort of
IO operation.

e Finally, we demonstrate the effect that the page cache
has on the execution speed of smart contracts and then
show the typical number of blocks for which the page
cache still provides speed up.

e Overall, we see that beyond some pricing issue, the
metering scheme used by EVM does not allow to
express the complexity inherent to IO operations.

IV. ANALYSIS OF GAS CONSUMPTION

In this section, we analyze the gas consumption of
Ethereum smart contracts and try to correlate it with different
system resources, such as memory, CPU and storage. To mea-
sure the consumption, we re-execute the Ethereum blockchain
with a patched version of the Ethereum C++ client [20] and
collect information about resources for each contract invoca-
tion. As described in Section II, EIP 150 influenced the price of
many storage related operations, which affected the gas cost of
transactions. Therefore, we perform our experiments on a set
of 100,000 blocks before EIP 150 and a set of 100,000 blocks
after EIP 150. EIP 150 was introduced at height 2,463,000. We
arbitrarily use block 1,400,000 to block 1,500,000 for mea-
surements before EIP 150 and block 2,500,000 to 2,600,000
for measurements after EIP 150. Although the block numbers
are arbitrary, we assume that the sample of 100,000 blocks
which roughly corresponds to two weeks, is large enough to
obtain reliable data.

Below, we denote the gas usage for a transaction as G. All
the figures in this section include bands marking a confidence
interval of 95%.

A. Memory Usage

We note M the amount of memory allocated and M_ the
amount of memory deallocated. We compute the extra amount
of memory allocated M = M, — M_ to execute a particular
transaction, that is, the difference between the total amount of
memory allocated and the total amount of memory deallocated.

An important point is that contracts which allocate storage
in any way, may it be with SSTORE instructions or LOG
instructions, will see their memory overhead increase, as this
extra storage will stay in memory even after the execution
of the contract. Although this is not a perfect measurement,
as part of the memory may be released later on during the

le6

Memory intensive
® False
True

3.04

2.54

~N
=3

Gas used
®

0.5+

0.0+

0.0 0.5 1.0 15 2.0 25
Memory allocated (B) le5

(a) Pre EIP 150 correlation between gas and memory
usage.

le6

Memory intensive
® False
True

3.04

2.54

Gas used
g
o

=
wn

0.5+

0.0

0.0 0.5 1.0 15 2.0 25
Memory allocated (B) 1le5

(b) Post EIP 150 correlation between gas and memory
usage.

Phase Executions Pearson Gas/byte
set score
E 0.545 3.96
Pre EIP 150 Eypyg 0.773 1.80
E\ Eyg 0.633 4.96
E 0.755 7.67
Post EIP 150 FE\r 0.902 4.16
E\ Eyg 0.907 11.7

(c) Relation between allocated memory and gas usage.

Fig. 10: Correlation between gas and memory usage.

execution of the transaction, it does give a proxy measure
of how a particular contract execution affects the memory
usage of the client. It is also worth noting that some contracts
may also release more memory than they allocate, if, for
example, a contract self-destructs itself. As we want to focus
on how execution can consume resources, we filter contracts
where M < 0.

We first compute the Pearson correlation coefficient* [7]
between the extra memory allocated and the gas usage. For
contracts prior to EIP 150, we obtain a score 0.545 which
shows that, although a positive correlation exists between
memory and gas usage, the correlation is fairly weak. As
described in Section II, EIP 150 influenced widely the price of
all storage related operations, which vastly affect the results
obtained for memory usage. Indeed, the Pearson correlation
coefficient we obtain for post EIP 150 data is 0.766. This
shows that the correlation between memory and gas usage is
vastly greater after EIP 150.

The data we obtain suggest that there are different trends
in terms of correlation between gas and memory usage. There-
fore, we decide to separate the data in two categories to try
to isolate the two trends. We first compute the ratio of extra
memory allocated per gas used: Ry;/¢ = M/G. The higher
the ratio is, the lower a transaction is paying to consume
memory. We then split in 10 quantiles and assign the quantile
with the highest ratio Ry/q, that is, the quantile paying the
less gas for memory, as being “Memory intensive”. We define
E the set of all executions and Fj;; as the set of “memory
intensive” executions.

We plot our results pre and post EIP 150 in Figure 10a
and in Figure 10b. We also show the correlation scores we
obtain as well as the relation between gas usage and memory
usage in Figure 10c. The gas/byte column represents the cost
in gas to allocate one extra byte of memory and is inferred by
performing a linear regression on the data.

There are several interesting points to note about the
results. First, EIP 150 resulted in a significant increase in the
price of gas per memory, which had the effect of increasing
the correlation between these two variables. Second, after
EIP 150, the difference between normal and memory intensive
contracts becomes more visible, with the gas per byte cost
going from 4.16 for memory intensive contract executions up
to 11.7 for others. Nevertheless, both type of contracts have a
high correlation score between gas and memory allocated. This
shows that there are important discrepancies on how pricing is
done for consumed memory depending on the characteristics
of the contract being executed.

B. CPU Usage

We analyze the correlation between the gas usage and
the CPU usage for each transaction. As for the memory
measurements, we use our instrumented C++ client and record
the number of clock ticks used by the thread executing the
transaction. We use this clock time as a proxy for the CPU
usage.

Again, we compute the Pearson correlation score between
the CPU and gas usage. The score for contract executions
before EIP 150 is 0.528 while the score after EIP 150 is 0.507.
This score implies a low positive correlation between the
two variables. This comes from the fact that the instructions
touching to storage are very expensive, thus dominating the
cost of other instructions. The score most likely got lower
after EIP 150 because storage related operations got more
expensive.

4Pearson score of 1 means perfect positive correlation, 0 means no corre-
lation

le7
1.21

Type
® PreEIP150
Post EIP150
1.01
0.8
el
Q
(%}
=]
n 0.6
©
]
0.4
0.2
0.0 T T T

0.0 0.2 0.4 0.6 0.8 1.0
Clock time (s)

Fig. 11: Correlation between gas and CPU usage.

le6

3.0 1 g

2.5

N
)
!

Gas used
=
w
L

1.0 1 [4
©

05{ iy

Type
® Pre EIP150
Post EIP150

0.0

0 10 20 30 40 50 60
Storage allocated

Fig. 12: Correlation between gas and storage usage.

We plot the relation between the CPU and gas usage before
and after EIP 150 in Figure 11. Although the correlation
is fairly low, it is interesting to see that with EIP 150, as
a consequence of storage related operation increasing, the
relative cost of CPU has decreased.

C. Storage Usage

To analyze the storage usage, we analyse the number of
EVM words (256 bits) of storage allocated per transactions.
Here, we define a word to have been allocated if its value
before a transaction was 0 and its value after the transaction
was not. Conversely, a word has been deallocated if its value
before a transaction was non-zero and its value after is 0.
Both of these costs are formally defined in Ethereum [47] and
the main goal of this experiment is to see by how much the
storage allocation dominates the total gas cost. The number of
allocations made during a single execution can be negative, if

Pearson

Phase Resources
score
Memory/CPU 0.591
Storage/CPU 0.725
Pre EIP 150 Storage/Memory 0.845
Storage/Memory/CPU 0.759
Memory/CPU 0.741
Storage/CPU 0.837
Post EIP 150 Storage/Memory 0.938
Storage/Memory/CPU 0.893

Fig. 13: Multivariate correlation between gas and resources.

more words are deallocated than allocated. Again, as we focus
on the resource usage, we filter out this type of executions.

We compute the Pearson’s correlation before and after
EIP 150 and obtain respectively 0.821 and 0.907. This shows
that there is, as expected, a strong positive correlation between
the amount of storage allocated and the gas cost during a single
execution. We plot the relation between the storage allocated
and the gas used before and after EIP 150 in Figure 12.
Although EIP 150 increased the price for a lot of storage
related instructions, it changed neither the price of allocating a
new value, nor the reimbursement received when deallocating
a value. This explains that, unlike for memory, the cost does
not go up after EIP 150. An interesting point to notice is that
the execution cost does not split into two different gas usage
trends as they do with memory, which suggests that the storage
cost is not what is creating this effect for the extra memory
allocated.

D. Multi-variate Correlation

Instead of simply using a bi-variate correlation between
gas consumption and a resource, we try to correlate gas
consumption to multiple resources at a time. To compute the
multi-variate correlation between multiple resources and the
gas usage, we proceed as follow.

Given n measures for m resources 71, , 7y, W& note
Ry, , R,, the vectors of measures for each resource, which
will each have a dimension of n. We first use equation 1 to
normalize each vector R; to a new vector R so that each
vector R, has a mean of 0 and a standard deviation of 1. We
note R; the mean of R; and o R, its standard deviation.

o))

OR;

We then concatenate vectors R}, --- , R;, into a n X m matrix
M and use a principal component analysis [2] to reduce the
dimension of M to n x 1. The vector we obtain represent the
aggregated usage of the different resources. We finally compute
the Pearson’s correlation score between this vector and the gas

used. We show the results we obtain in Figure 13.

Overall we find that for both pre- and post-EIP 150 mea-
surements the aggregation of memory and storage correlates
best with gas usage. On the opposite, the CPU usage seem to

Phase Resource Pearson
score

Memory 0.773

CPU 0.528

Pre EIP 150 Storage 0.775
Storage/Memory 0.845

Memory 0.755

CPU 0.507

Post EIP 150 Storage 0.907
Storage/Memory 0.938

Fig. 14: Correlation between gas and resources.

be adding more noise than information and adding the CPU
usage always result in a lower correlation than without it.

E. Summary

Overall, we have seen that the gas usage is dominated
by the storage allocated, which can also be approximated
reasonably well by the memory allocation during a single
contract execution. On the other hand, given the high cost
of storage, we find that CPU usage and gas usage correlate
poorly. We summarize all bi-variate correlations as well as the
best performing multivariate correlation in Figure 14.

V. ATTACKING THE METERING MODEL OF EVM

In light of the results we obtained in the previous sections,
we hypothesize that it is possible to construct contracts which
use a low amount of gas compared to the resources they use.

A. Constructing Resource Exhaustion Attacks

In particular, as we showed in Section IV that the gas
consumption is dominated by the storage allocated but is not
as much affected by other resources such as the clock time.
Therefore, we decide to use the clock time as a target resource
and look for contracts which minimize the throughput in terms
of gas per second. We can formulate this as a search problem.

Problem formulation. We want to find a program which
has the minimum possible throughput, where we define the
throughput to be the amount of gas processed per second. Let
I be the set of EVM instructions and P be the set of EVM
programs. A program p € P is a sequence of instructions
Ii,---, 1, where all I, € I. Let £ : P — R be a function
which takes a program as an input and outputs its execution
time and g : P — N be a function which takes a program
as input and outputs its gas cost. We define our function to
minimize f : P — R, f(p) = g(p)/t(p). Our goal is to find
the program pgowest Such that

Dslowest — arg mln(f(P)) (2)
peEP

The search space for a program of size n is |I|™. Given
[T) & 100, the search space is clearly too large to be explored
entirely for any non-trivial program. Therefore, we cannot

simply go over the space of possible programs and instead
approximate the solution.

Search strategy. With the problem formulated as a search
problem, we now present our search strategy. We decide to
design the search as a genetic algorithm [46]. The reasons for
this choice are as follow:

e we have a well-defined fitness function f

e we have promising initialization values, which we will
discuss below

e programs being a sequence of instructions, cross-over
and mutations can be designed efficiently

e generated programs need to be syntactically correct
but do not need to be semantically meaningful, making
the cross-over and mutations more straightforward to
design

We will now discuss in details how we design the initial-
ization, cross-over and mutations of our genetic algorithm.

Program construction. Although our programs do not need
to be semantically meaningful, they need to be executed suc-
cessfully on the EVM, which means that they must fulfill some
conditions. First, an instruction should never try to consume
more values than the current number of elements on the stack.
Second, instructions should not try to access random part of
the EVM memory, otherwise the program could run out of
gas straight away. Indeed, when an instruction reads or writes
to a place in memory, the memory is “allocated” up to this
position and a fee is taken for each allocated memory word.
This means that if MLOAD would be called with 2!%° as an
argument, it would result in the cost of allocating 2!°° words
in memory, which would result in an out of gas exception. We
design the program construction so that all created programs
will never fail because of either of the previous reasons.

We first want to ensure that there are always enough
elements on the stack to be able to execute an instruction.
The instructions requiring the least number of elements on the
stack are instructions such as PUSH or BALANCE which do
not require any element, and the element requiring the most
number of elements on the stack is SWAP 16 which requires 17
elements to be on the stack. We define the functions function
a : I — N which returns the number of arguments consumed
from the stack and » : I — N which returns the number
of elements returned on the stack for an instruction I. We
generate 18 sets of instructions using Equation 3.

Ve [0,17], I, ={I | I € TAna(l) < n} 3)

For example, the set I3 is composed of all the instructions
which require 3 or less items on the stack. We will use
these sets in Algorithm 1 to construct the initial programs
but before, we need to define the functions we use to control
memory access. For this purpose, we define two functions to
handle these. First, uses_memory : I — {0,1} returns 1
only if the given instruction accesses memory in some way.
Then, prepare_stack : P x I — P takes a program and an
instruction and ensures that all the arguments of the instruction
which influence which part of memory is accessed are below

10

a relatively low value, that we arbitrarily set to 255. To ensure
this, prepare_stack adds POP instruction for all arguments
of I and add the exact same number of PUSH1 instructions
with a random value below the desired value. For example, in
the case of MLOAD, a POP followed by a PUSH1 would be
generated.

Using the sets I,,, the uses_memory and prepare_stack
functions, we use Algorithm 1 to generate the program. We
assume that the biased_sample function returns a random
element from the given set and will discuss how we instantiate
it in the next section.

Algorithm 1 Initial program construction

function GENERATEPROGRAM(size)
P+ () > Initial empty program
s+ 0 > Stack size
for 1 to size do
I < biased_sample(I;)
if uses_memory(I) then
P « prepare_stack(P,I)
end if
P+P-(I)
s+ s+ (r(I) —a(l))
end for
return P
end function

> Append [to P

Initialization. As the search space is very large, it is important
to start with good initial values so that the genetic algorithm
can search for promising solutions. For this purpose, we use the
result of the results we presented in Section III, in particular,
we use the throughput measured for each instruction. We define
a function throughput : I — R which returns the measured
throughput of a single instruction. When randomly choosing
the instructions with biased_sample, we want to have a higher
probability of picking an instruction with a low throughput but
want to keep a high enough probability of picking a higher
throughput instruction to make sure that these are not all
discarded before the search begins. We define the weight of
each instruction and then its probability with equations 4 and 5.

1
W(I €)= log <1 + tmmghput(l)) @

___ W@

P(Iel,)= m

&)

Given that the throughput can have orders of magnitude of
difference among instructions, the log in Equation 4 is used to
avoid assigning a probability to close to O to an instruction.

Cross-over. We now want to define a cross-over function over
our search-space, a function which takes as input two programs
and returns two programs, i.e. cross_over : P x P — P x
P, where the output programs are combined from the input
programs. To avoid enlarging the search space with invalid
programs, we want to perform cross-over such that the two
output programs are valid by construction. As during program
creation, we must ensure that each instruction of the output

program will always have enough elements on the stack and
that it will not try to read or write at random memory locations.

For the memory issue, we simply avoid modifying the
program before an instruction manipulating memory or one of
the POP or PUSH1 added in the program construction phase.
For the second issue, we make sure to always split the two
programs at positions where they have the same number of
elements on the stack.

We show how we perform the cross-over in Algorithm 2. In
the CREATESTACKSIZEINDEX function, we create a mapping
from a stack size to a set of program counters where the stack
has this size. In the CROSSOVER function, we first create this
mapping for both program and randomly choose a stack size
to split the program. We then randomly choose a location from
each program with the selected stack size. Note that here,
sample assigns the same probability to all elements in the set.
Finally, we split each program in two at the chosen position,
and cross the programs together.

Algorithm 2 Cross-over function

function CREATESTACKSIZEMAPPING(P)
S ¢ empty mapping
pc 0
s+ 0
for [in P do
if s ¢ S then

Sls] — {}

end if
S[s] <= S[s] U{pc}
s s+ (r(I) —a(l))
pc < pc+1

end for
return S

end function

function CROSSOVER(Py, P»)
S1 + CREATESTACKSIZEMAPPING(P;)
So < CREATESTACKSIZEMAPPING(Ps)
S+ S1NSy > Intersection on keys
s < sample(S)
i1 < sample(Si]s])
ig < sample(Sa]s])
PH, P12 — split_at(Pl, il)
Pgl, Py +— split_at(P% ZQ)
P{ < P11 - Py
Py < P51 - Pio
return P|, P}

end function

> Concatenate

Mutation. We use a straightforward mutation operator. We
randomly choose an instruction / in the program where [is
not one of the POP or PUSHI1 instructions added to handle
memory issues previously discussed. We generate a set M of
replacement candidate instructions defined as follow.
M[Z{I/ |]/E]Ia([)/\’f’<1/):’l"(l)} (6)

In other terms, the replacement must require at most the
same number of elements on the stack and put back the

same number as the replaced instruction. Then, we replace
the instruction I by I’, which we randomly sample from Mj.

11

= = N N
o o o o

Throughput (Mgas/s)

o
n

0.0+

100 150 200 250

Generation number

50

o4

Fig. 15: Evolution of the average contract throughput as a function of the
number of generations.

801

Execution time (s)
= N w > (6,1 [e)] ~
o o o o o o o

o

0 2 4 6 8
Gas used (Mgas)

Fig. 16: Execution time as a function of number of most effective synthetic
contracts within a block; separate lines for different machines are shown.

If I had POP or PUSH1 associated with it to control memory,
we remove them from the program. Finally, if I’ uses memory,
we add the necessary instructions before it.

B. Effectiveness of Attacks with Synthetic Contracts

We want to measure the effectiveness of our approach to
produce Resource Exhaustion Attacks. To do so, we want to
generate contracts and benchmark them while mimicking the
behavior of a regular full validating node as much as possible.
To do so, we execute all the programs produced within every
generation of our genetic algorithm, as if they were part of a
single block. We use the following steps to run our genetic
algorithm.

1) Clear the page cache;

PUSH9 0x57¢c2b11309b96b4c59
BLOCKHASH

SLOAD

CALLDATALOAD

PUSH7 0x25dfb360fa775a

BALANCE

MSTORES8

PUSH10 0x49f8c33edeeabac2fe8a

PUSH14 0x1ldl8ebece8blcdbeabeb485abbla
BALANCE
POP ;
POP

POP

PUSH1 0xf7
PUSH1 0xf7
PUSH1 0xf7
CALLDATACOPY

PUSH7 0x421437ba67fele
ADDRESS

BLOCKHASH

prepare call to CALLDATACOPY

Fig. 17: Bytecode snippet generated by our genetic programming. Instructions
in bold involve some sort of IO operations.

2) Warm up caches by generating and executing
randomly-generated contracts

3) Generate the initial set of program;

4) Run the genetic algorithm for n generation.

An important point here is that when running the genetic algo-
rithm, we only want to execute each program once, otherwise
every IO access will already be cached and it will invalidate
the results, as this is not what would happen when a regular
validating node execute contracts. However, we of course do
want to execute the measurements multiples time to be able to
measure the execution time standard deviation. To work around
these two requirements, we save all the programs generated
while we run the experiment and once the experiment has
finish running, we re-run all the programs in the exact same
order. We combine these results to compute the mean and
standard deviation of the execution time.

Generated bytecode. Before discussing the results further, we
show a small snippet of bytecode generated by our genetic pro-
gramming method in Figure 17. We highlight the instructions
which involve IO operations in bold and show the instructions
which have for only purpose to keep the stack consistent in a
smaller font. We can see that there is a large number of 10
related instructions, in particular BLOCKHASH and BALANCE
shows up multiple times. Although the fee of BALANCE has
been revised from 20 to 400 in EIP 150, this suggests that
the instruction is still under-priced. In the snippet, we also
see that the stack is cleared and replaced with small val-
ues before calling CALLDATACOPY. This corresponds to the
prepare_stack function described in the program construction
section: to avoid CALLDATACOPY to read very far away in
memory, which would make the program run out of gas, the
arguments are replaced with small values.

Generating low-throughput contracts. We show how the
throughput of the lowest performing contract evolved with the

12

number of generations in Figure 15. The line represent the
mean of the measurements and the band represents the standard
deviation of the measurements. The measurements are run 3
times. Except from one point in the first measurements, overall
the standard deviation remains relatively low.

We can see that during the first generations, the throughput
is around 1.25M gas per second, which is already fairly low
given that the average throughput for a transaction on the
same machine is around 20M gas per second. This shows
that our initialization is effective. The throughput decreases
very quickly in the first few generations, and then steadily
decreases down to around 300 K gas per second, which is more
than 60 slower than the average transaction. After about 20
generations, the throughput more or less plateaus.

Exploring the minimum. The minimum in our experiments
is attained at generation 244. At this point, the block uses in
total approximately 7.9 M gas and takes around 78 seconds
to execute. We show in Figure 16 how the execution time
increases with the amount of gas consumed within the block.
Given that an Ethereum block is produced roughly every 13
seconds, this means that 6 new blocks would have been created
by the time the node finished validating this one.

C. REA as a Form of DoS

One of the key value proposition of Ethereum, and the
base of its security model, is decentralisation of full nodes
(and miners but this is out of scope) [12], [22]. The current
requirements to run a full node on the Ethereum main net are
low enough for most commodity hardware to be able to keep
up without issue. The only point mentioned by the Ethereum
developers is that running a full node requires an SSD [42].
Although there is currently no official documentation on other
requirements, other sources estimate the minimum required
memory to be about 8GB [39], [38], [37].

The main consequence of such an attack would be that
full nodes running commodity hardware, with specs similar
as the one we used in our experiments, would not be able
to stay into sync with the network. Assuming a gas price of
2Gwei, an attacker could put such full nodes out of sync for
almost 78 seconds by spending only about $3.20. Although it
is hard to predict how miners would react, in theory this means
that a budget of roughly $148.00 is enough to put full nodes
out of sync for more than one hour. Even if the full nodes
would eventually catch up, this would make them unusable
for activities where being up to sync is a requirement. Given
the incentive of running a full node are already limited [40],
we hypothesise that this could reduce even further the number
of full nodes and thereby increase the centralisation of the
network.

VI. RELATED WORK

There has been a great deal of attention focused on the
correctness of smart contracts on blockchains, especially, the
Ethereum blockchain. Some of the vulnerability types have
to do with gas consumption, but not all. There has been
relatively little attention given to the organization of metering
for blockchain systems. We will first present research focusing
on smart contract issues, and then highlight the work that
focuses on metering at the smart contract level. We will then

present research focusing on metering at the virtual machine
level — EVM in the case of Ethereum.

A. Smart Contracts

Major contracts vulnerabilities have been observed in re-
cent years [5] with sometimes multiple millions of dollars
worth of Ether at stake [43], [34]. One of the most famous
exploit on the Ethereum blockchain was The DAO exploit [35],
where an attacker used a re-entrancy vulnerability [32], [31]
to drain funds out of The DAO smart contract. The attacker
managed to drain more than 3.5 million of Ether, which would
now be worth more than 700.00 million USD. Given the
severity of the attack, the Ethereum community decided to
hard-fork the blockchain, preventing the attacker to benefit
from the Ether he had drained.

In order to prevent such exploits, many different tools have
been developed over the years to detect vulnerabilities in smart
contracts [28]. One of the first tools which have been developed
is Oyente [32]. It uses symbolic execution to explore smart
contracts execution pass and then uses an SMT solver [19] to
check for several classes of vulnerabilities. Many other tools
covering the same or other classes of vulnerabilities have also
been developed [31], [8], [45], [30] and are usually based either
on symbolic execution or static analysis methods such as data
flow or control flow analysis. Some smart contract analysis
tools have also focused more on analyzing vulnerabilities
related to gas [27], [15], [4]. We present some of these tools
in the next subsection.

B. Gas Usage and Metering

Recent work by Yang et al. [48] have recently empirically
analyzed the resource usage and gas usage of the EVM in-
structions. They provide an in-depth analysis of the time taken
for each instructions both on commodity and professional
hardware. Although our work was performed independently,
the results we present in Section III seem to concur mostly
with their findings.

Other related themes have also been covered in the liter-
ature. One of the large theme is optimization of gas usage
for smart contracts. Another one is estimating, preferably
statically, the gas consumption of smart contracts.

Gas Usage Optimization: Gasper [15] is one of the first
paper which has focused on finding gas related anti-patterns for
smart contracts. It identifies 7 gas-costly patterns, such as dead
code or expensive operations in loops, which could potentially
be costly to the contract developer in terms of gas. Gasper
builds a control flow graph from the EVM bytecode and uses
symbolic execution backed by an SMT solver to explore the
different paths that might be taken.

MadMax [27] is a static analysis tool to find gas-focused
vulnerabilities. Its main difference with Gasper from a func-
tionality point of view is that MadMax tries to find patterns
which could cause out-of-gas exceptions and potentially lock
the contract funds, rather than gas-intensive patterns. For
example, it is able to detect loops iterating on an unbounded
number of elements, such as the numbers of users, and which
would therefore always run out of gas after a certain number
of users. MadMax decompiles EVM contracts and encodes

13

properties about them into Datalog to check for different
patterns. It is performant enough to analyze all the contracts
of the Ethereum blockchain in only 10 hours.

Gas Estimation: Marescotti et al. [33] propose two al-
gorithms to compute upper-bound gas consumption of smart
contracts. It introduces a “gas consumption path” to encode
the gas consumption of a program in its program path. It uses
an SMT solver to find an environment resulting in a given
path and computes its gas consumption. However, this work is
not implemented with actual EVM code and is therefore not
evaluated on real-world contracts.

Gastap [4] is a static analysis tool which allows to compute
sound upper bounds for smart contracts. This ensures that if
the gas limit given to the contract is higher than the computed
upper-bound, the contract is assured to terminate without out-
of-gas exception. It transforms the EVM bytecode and models
it in terms of equations representing the gas consumption
of each instructions. It then solves these equations using the
equation solver PUBS [3]. Gastap is able to compute gas upper
bound on almost all real world contracts it is evaluated on.

C. Virtual Machines and Metering

Zheng et al. [49] propose a performance analysis of several
blockchain systems which leverage smart contracts. Although
the analysis goes beyond smart contracts metering, with
metrics such as network related performance, it includes an
analysis about smart contracts metering at the virtual machine
level. Notably, it shows that some instructions, such as DIV
and SDIV, consume the same amount of gas while their
consumption of CPU resource is vastly different.

Chen et al. [16] propose an alternative gas cost mecha-
nism for Ethereum. The gas cost mechanism is not meant
to replace completely the current one, but rather to extend
it in order to prevent DoS attacks caused by under-priced
EVM instructions. The authors analyze the average number of
execution of a single instruction in a contract, and model a gas
cost mechanism to punish contracts which excessively execute
a particular instruction. This gas mechanism allows normal
contracts to almost not be affected by the price changes while
mitigating spam attacks which have been seen on the Ethereum
blockchain [11].

VII. CONCLUSION

In this work, we investigated the validity of the metering
approach based on gas consumed by the Ethereum blockchain.
We first re-executed the Ethereum blockchain for 2.5 months
and showed some significant inconsistencies in the pricing of
the EVM instructions. We confirmed that although discussed
by the community, BLOCKHASH remains vastly under-priced.
We further explored various other design weaknesses, such as
gas costs for arithmetic EVM instructions and cache depen-
dencies on the execution time. Additionally, we demonstrated
that there is very little correlation between gas and resources
such as CPU and memory. We found that the main reason for
this is that the gas price is dominated by the amount of sforage
used.

Finally, we presented a new attack called Resource Ex-
haustion Attack which uses these imperfections to generate

low-throughput contracts. Our genetic programming technique
is able to generate programs which exhibit a throughput of
around 1.25M gas after a single generation. A minimum in our
experiments is attained at generation 244 with the block using
around 7.9M gas and taking around 78 seconds. We showed
that we are able to generate contracts with a throughput on
average 50 times slower than typical contracts. These contracts
can be used to prevent nodes with lower hardware capacity
from participating in the network entirely, thereby artificially
reducing the level of centralization the network can deliver.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES
Ethereum - github. https://github.com/ethereum, 2019.
cessed 08-September-2019].

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics, 2(4):433-459, 2010.

[Online; ac-

Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Au-
tomatic Inference of Upper Bounds for Recurrence Relations in Cost
Analysis. In Maria Alpuente and Germdn Vidal, editors, Static Analysis,
pages 221-237, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Elvira Albert, Pablo Gordillo, Albert Rubio, and Ilya Sergey. GASTAP:
A Gas Analyzer for Smart Contracts. CoRR, abs/1811.1, nov 2018.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on Ethereum smart contracts (SoK). In POST, 2017.

Block.one. About EOSIO. https://eos.io/about-us/, 2019.
accessed 04-June-2019].

Sarah Boslaugh. Statistics in a nutshell: A desktop quick reference.
O’Reilly Media, Inc.", 2012.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. CoRR, abs/1809.03981,
2018.

Vitalik Buterin. EIP 150: Gas cost changes for 10-heavy operations
https://eips.ethereum.org/EIPS/eip-150. [Online; accessed 05-June-
2019].

Vitalik Buterin. Geth nodes under attack again. https:
/Iwww.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_

[Online;

"

attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea. [Online;
accessed 4-April-2019].
Vitalik Buterin. Transaction spam attack: Next Steps. https://blog.

ethereum.org/2016/09/22/transaction-spam-attack-next-steps/. [Online;
accessed 4-April-2019].

Vitalik Buterin. A next-generation smart contract and decentralized
application platform. Ethereum, (January):1-36, 2014.

Vitalik Buterin. Geth nodes under attack again (geth issue).
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_
under_attack_again_we_are_actively/d8ebsad/, 2016. [Online; accessed
05-September-2019].

Vitalik Buterin. EIP 210. https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-210.md, 2019. [Online; accessed 20-July-2019].

Ting Chen, Xiaoqgi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. SANER 2017 - 24th
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, pages 442-446, 2017.

Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo,
Man Ho Au, and Xiaosong Zhang. An adaptive gas cost mechanism
for ethereum to defend against under-priced dos attacks. In Joseph K.
Liu and Pierangela Samarati, editors, Information Security Practice and
Experience, pages 3—24, Cham, 2017. Springer International Publishing.

Concourse Open Community. Eth gas station. https://ethgasstation.info/
calculatorTxV.php, 2019. [Online; accessed 09-September-2019].

Chris Dannen. [Introducing Ethereum and Solidity: Foundations of
Cryptocurrency and Blockchain Programming for Beginners. Apress,
Berkely, CA, USA, Ist edition, 2017.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337-340. Springer, 2008.

14

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Ethereum community. cpp-ethereum. http://www.ethdocs.org/en/latest/
ethereum- clients/cpp-ethereum/. [Online; accessed 1-May-2019].

Etherscan. Ethereum average block timechart. https://etherscan.io/chart/
blocktime, 2019. [Online; accessed 09-September-2019].

Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and
Emin Giin Sirer. Decentralization in bitcoin and ethereum networks.
CoRR, abs/1801.03998, 2018.

Sanjay Ghemawat and Jeff Dean. Leveldb. https://github.com/google/
leveldb, 2011. [Online; accessed 05-August-2019].

Sanjay Ghemawat and Jeff Dean. Leveldb documentation.
https://github.com/google/leveldb/blob/master/doc/index.md#cache,
2011. [Online; accessed 05-August-2019].

The go-ethereum Authors. Official go implementation of the ethereum
protocol. https://github.com/ethereum/go-ethereum/, 2019. [Online;
accessed 25-August-2019].

Google. Google compute engine documentation. https://cloud.google.
com/compute/docs/, 2019. [Online; accessed 08-September-2019].

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. MadMax: Surviving Out-of-Gas
Conditions in Ethereum Smart Contracts. SPLASH 2018 Oopsla,
2(October), 2018.

Dominik Harz and William Knottenbelt. Towards Safer Smart Con-
tracts: A Survey of Languages and Verification Methods. arXiv preprint
arXiv:1809.09805, 2018.

Hudson Jameson. Ethereum Constantinople Upgrade Announce-
ment. https://blog.ethereum.org/2019/01/1 1/ethereum-constantinople-
upgrade-announcement/, 2019. [Online; accessed 05-July-2019].

Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pages 259-269, New York, NY, USA, 2018. ACM.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
analyzing safety of smart contracts. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Cali-
fornia, USA, February 18-21, 2018, 2018.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making Smart Contracts Smarter. In CCS, 2016.

Matteo Marescotti, Martin Blicha, Antti E J Hyvérinen, Sepideh Asadi,
and Natasha Sharygina. Computing Exact Worst-Case Gas Consump-
tion for Smart Contracts. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, pages 450-465, Cham, 2018. Springer
International Publishing.

Max Galka. Multisig wallets affected by the Parity wallet bug. https:
//github.com/elementus-io/parity-wallet-freeze. [Online; accessed 21-
January-2019].

Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista,
Elgar Gong, Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and
Marek Laskowski. Understanding a revolutionary and flawed grand
experiment in blockchain: The dao attack. Journal of Cases on
Information Technology (JCIT), 21(1):19-32, 2019.

Kevin Owocki. A brief history of gas prices on ethereum. https:/
gitcoin.co/blog/a-brief-history-of- gas-prices-on-ethereum/, 2018. [On-
line; accessed 05-August-2019].

Palau, Albert. Analyzing the hardware requirements to be an ethereum
full validated node. https://medium.com/coinmonks/analyzing-
the-hardware-requirements- to-be-an-ethereum-full- validated-node-
dc064£167902, 2019. [Online; accessed 08-September-2019].

PegaSys. Pantheon ethereum client system requirements.
http://docs.pantheon.pegasys.tech/en/latest/How To/Get- Started/System-
Requirements/, 2019. [Online; accessed 08-September-2019].

Petrov, Andrev. An economic incentive for running ethereum
full nodes. https://medium.com/vipnode/an-economic-incentive-for-
running-ethereum-full-nodes-eccOc9ebe22, 2018. [Online; accessed 08-
September-2019].

Pitts, Jamie. Incentives for running full ethereum nodes. https:
/lethresear.ch/t/incentives-for-running-full-ethereum-nodes/1239, 2019.
[Online; accessed 08-September-2019].

https://github.com/ethereum
https://eos.io/about-us/
https://eips.ethereum.org/EIPS/eip-150
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/d8ebsad/
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/d8ebsad/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://ethgasstation.info/calculatorTxV.php
https://ethgasstation.info/calculatorTxV.php
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb/blob/master/doc/index.md#cache
https://github.com/ethereum/go-ethereum/
https://cloud.google.com/compute/docs/
https://cloud.google.com/compute/docs/
https://blog.ethereum.org/2019/01/11/ethereum-constantinople-upgrade-announcement/
https://blog.ethereum.org/2019/01/11/ethereum-constantinople-upgrade-announcement/
https://github.com/elementus-io/parity-wallet-freeze
https://github.com/elementus-io/parity-wallet-freeze
https://gitcoin.co/blog/a-brief-history-of-gas-prices-on-ethereum/
https://gitcoin.co/blog/a-brief-history-of-gas-prices-on-ethereum/
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
http://docs.pantheon.pegasys.tech/en/latest/HowTo/Get-Started/System-Requirements/
http://docs.pantheon.pegasys.tech/en/latest/HowTo/Get-Started/System-Requirements/
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22
https://ethresear.ch/t/incentives-for-running-full-ethereum-nodes/1239
https://ethresear.ch/t/incentives-for-running-full-ethereum-nodes/1239

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]

[49]

[50]

Dani Putney. The aztec protocol: A zero-knowledge privacy sys-
tem on ethereum. https://www.ethnews.com/the-aztec-protocol-a-zero-
knowledge- privacy-system-on-ethereum, 2018. [Online; accessed 23-
August-2019].

Schmideg, Adam. go-ethereum faq. https://github.com/ethereum/go-
ethereum/wiki/FAQ, 2018. [Online; accessed 08-September-2019].

Us Securities and Exchange Commission. Report of Investigation
Pursuant to Section 21(a) of the Securities Exchange Act of 1934: The
DAO. Technical report, U.S. Securities and Exchange Commission,
2017.

Tezos. About Tezos. https://tezos.com/learn-about-tezos, 2019. [Online;
accessed 04-June-2019].

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Biinzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS 18, pages

67-82, New York, NY, USA, 2018. ACM.

Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65-85, 1994.

Gavin Wood. Ethereum yellow paper, 2014.

Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli.
Empirically Analyzing Ethereum’s Gas Mechanism. CoRR, abs/1905.0,
2019.

P Zheng, Z Zheng, X Luo, X Chen, and X Liu. A Detailed and Real-
Time Performance Monitoring Framework for Blockchain Systems. In
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), pages 134—
143, may 2017.

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller,
and Michael Bailey. Erays: Reverse Engineering Ethereum’s Opaque
Smart Contracts. 2018.

15

https://www.ethnews.com/the-aztec-protocol-a-zero-knowledge-privacy-system-on-ethereum
https://www.ethnews.com/the-aztec-protocol-a-zero-knowledge-privacy-system-on-ethereum
https://github.com/ethereum/go-ethereum/wiki/FAQ
https://github.com/ethereum/go-ethereum/wiki/FAQ
https://tezos.com/learn-about-tezos

	I Introduction
	I-A Contributions

	II Background
	II-A Ethereum and the Ethereum Virtual Machine (EVM)
	II-B Metering in EVM
	II-C Gas Statistics
	II-D Previously Known Attacks

	III Case Studies in Metering
	III-A Experimental setup
	III-B Arithmetic Instructions
	III-C High-Variance Instructions in EVM
	III-D Memory Caches and EVM Costs
	III-E Summary

	IV Analysis of Gas Consumption
	IV-A Memory Usage
	IV-B CPU Usage
	IV-C Storage Usage
	IV-D Multi-variate Correlation
	IV-E Summary

	V Attacking the Metering Model of EVM
	V-A Constructing Resource Exhaustion Attacks
	V-B Effectiveness of Attacks with Synthetic Contracts
	V-C REA as a Form of DoS

	VI Related Work
	VI-A Smart Contracts
	VI-B Gas Usage and Metering
	VI-C Virtual Machines and Metering

	VII Conclusion
	References

