
Nozzle: A Defense Against Heap-spraying

Code Injection Attacks

Paruj Ratanaworabhan
Cornell University

Ithaca, NY

Benjamin Livshits and Benjamin Zorn
Microsoft Research

Redmond, WA

November 19, 2008

Microsoft Research Technical Report MSR-TR-2008-176

noznoz
zlezle
1

Abstract

Heap spraying is a new security attack that significantly increases
the exploitability of existing memory corruption errors in type-unsafe
applications. With heap spraying, attackers leverage their ability to
allocate arbitrary objects in the heap of a type-safe language, such as
JavaScript, literally filling the heap with objects that contain danger-
ous exploit code. In recent years, spraying has been used in many real
security exploits, especially in web browsers. In this paper, we describe
Nozzle, a runtime monitoring infrastructure that detects attempts
by attackers to spray the heap. Nozzle uses lightweight emulation
techniques to detect the presence of objects that contain executable
code. To reduce false positives, we developed a notion of global “heap
health”.

We measure the effectiveness of Nozzle by demonstrating that
it successfully detects 12 published and 2,000 synthetically generated
heap-spraying exploits. We also show that even with a detection
threshold set six times lower than is required to detect published ma-
licious attacks, Nozzle reports no false positives when run over 150
popular Internet sites. Using sampling and concurrent scanning to re-
duce overhead, we show that the performance overhead of Nozzle is
less than 7% on average. While Nozzle currently targets heap-based
spraying attacks, its techniques can be applied to a more general class
of attacks in which an attacker attempts to fill the address space with
dangerous code objects.

2

1 Introduction

In recent years, security improvements in systems, including more secure
programming practices, stack protection [9], improved heap allocation lay-
outs [6, 19], address space layout randomization [7, 31], and data execution
prevention [20], have made it increasingly difficult for attackers to com-
promise systems. New attacks, primarily focused on exploiting memory
corruptions in the heap, are now popular [25].

Heap spraying, originally proposed by SkyLined [33], is a security attack
using a strategy of allocating many objects containing the attacker’s exploit
code in an application’s heap. Heap spraying requires that an attacker use
another security exploit to trigger an attack, but the act of spraying greatly
simplifies the attack and increases its likelihood of success.

Heap spraying is an unusual security exploit in that the actions taken
by the attacker in the spraying part of the attack are legal and type safe.
Thus code executing in a type-safe language such as JavaScript, Java, or
C# can be used to perform the spray. Since its introduction in 2004, heap
spraying has been used widely to simplify exploits of security vulnerabilities
in web browsers. Recently, variants of spraying attacks have been proposed,
where the attack is set up so that data such as compiled bytecode, ANI
cursors [21], and thread stacks are interpreted as code [35].

In this paper, we describe Nozzle, a runtime infrastructure that detects
heap spraying attacks by exploiting the fact that spraying places many copies
of objects with specific characteristics into the heap. Nozzle uses a combi-
nation of methods including statistics, object examination, and lightweight
emulation to estimate whether a given object is part of a spraying attack.
Because heap spraying involves large-scale changes to the heap contents,
we exploit this characteristic to reduce our false positive and false negative
detection rates. We develop a general notion of global “heap health” based
on the measured attack surface of the heap contents.

Because Nozzle only examines object contents and requires no changes
to the object or heap structure, it can easily be integrated into both na-
tive and garbage-collected heaps. In this paper, we implement Nozzle by
intercepting calls to the memory manager in the Mozilla Firefox browser
(version 2.0.0.16). Because browsers are the most popular target of heap
spray attacks, it is crucial for a successful spray detector to both provide
very high successful detection rates and very low false positive rates.

3

1.1 Contributions

This paper makes the following contributions:

• We propose the first effective technique for detecting heap-spraying
attacks through lightweight runtime interpretation and introduce the
concept of attack surface area.

• We show that existing published NOP sled detection techniques have
high false positive rates when applied to heap objects and we describe
effective techniques that dramatically lower the false positive rate in
this context.

• Measuring Firefox interacting with popular web sites and published
heap-spraying attacks, we show that Nozzle successfully detects 100%
of 12 published and 2,000 synthetically generated heap-spraying ex-
ploits. We also show that even with a detection threshold set six
times lower than is required to detect known malicious attacks, Noz-
zle reports no false positives when run over 150 popular Internet sites.

• Using sampling and concurrent scanning to reduce overhead, we show
that the performance overhead of Nozzle is less than 7% on average.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 provides background
on heap spraying attacks. Section 3 provides an overview of Nozzle and
Section 4 goes into the technical details of our implementation. Section 5
summarizes our experimental results. Section 6 considers broader impli-
cations of memory spraying attacks. Section 7 describes related work and
Section 8 concludes. Appendix 8 provides some additional results.

2 Background

Heap spraying has much in common with existing stack and heap-based
code injection attacks. In particular, the attacker attempts to inject code
somewhere in the address space of the target program, and through a mem-
ory corruption exploit, coerce the program to jump to that code. Because
the success of stack-based exploits has been reduced by the introduction of
numerous security measures, heap-based attacks are now common. Inject-
ing and exploiting code in the heap is more difficult for an attacker than
placing code on the stack because the addresses of heap objects are less
predictable than those of stack objects. Techniques such as address space

4

sprayed heap area

0x0d0d0d

object of type T

vtable for T

Indirect call to sprayed heap

method m1

method m2

Figure 1: Schematic of a Heap Spraying Attack.

layout randomization [7, 31] further reduce the predictability of objects on
the heap. Attackers have adopted several strategies for overcoming this
uncertaintly [34], with heap spraying the most successful approach.

Figure 1 illustrates a common method of implementing a heap-spraying
attack. Heap spraying requires a memory corruption exploit, as in our ex-
ample, where an attacker has corrupted a vtable method pointer to point
to an incorrect address of their choosing. At the same time, we assume
that the attacker has been able, through entirely legal methods, to allocate
objects with contents of their choosing on the heap. Heap spraying relies
on populating the heap with a large number of objects containing the at-
tacker’s code, assigning the vtable exploit to jump to an arbitrary address
in the heap, and relying on luck that the jump will land inside one of their
objects. To increase the likelihood that the attack will succeed, attackers
usually structure their objects to contain an initial NOP sled (indicated in
white) followed by the code that implements the exploit (commonly referred
to as shellcode, indicated with shading). Any jump that lands in the NOP
sled will eventually transfer control to the shellcode. Increasing the size of
the NOP sled and the number of sprayed objects increases the probability
that the attack will be successful.

Heap spraying requires that the attacker control the contents of the heap
in the process they are attacking. There are numerous ways to accomplish
this goal, including providing data (such as a document or image) that when
read into memory creates objects with the desired properties. An easier ap-
proach is to take advantage of scripting languages to allocate these objects

5

1. <SCRIPT language="text/javascript">
2. shellcode = unescape("%u4343%u4343%...");
3. oneblock = unescape("%u0D0D%u0D0D");
4.
5. var fullblock = oneblock;
6. while (fullblock.length<0x40000) {
7. fullblock += fullblock;
8. }
9.
10. sprayContainer = new Array();
11. for (i=0; i<1000; i++) {
12. sprayContainer[i] = fullblock + shellcode;
13. }
14. </SCRIPT>

Figure 2: A typical JavaScript heap spray.

directly. Browsers are particularly vulnerable to heap spraying because Java-
Script embedded in a web page authored by the attacker greatly simplifies
such attacks.

Example 1. The example shown in Figure 2 is modeled after a previously
published heap-spraying exploit [37]. While we are only showing the Java-
Script portion of the page, this payload would be typically embedded within
an HTML page on the web. Once a victim visits the page, the JavaScript
payload is automatically executed.

Lines 2 allocates the shellcode into a string, while lines 3–8 of the Java-
Script code are responsible for setting up the spraying NOP sled. Lines 10–13
create JavaScript objects each of which is the result of combining the sled
with the shellcode. It is quite typical for published exploits to contain a
long sled (256 KB in this case). Similarly, to increase the effectiveness of
the attack, a large number of JavaScript objects are allocated on the heap,
1,000 in this case. Figure 13 in Section 5 provides more information on
previously published exploits.

3 Overview

Despite the popularity of type-safe languages such as Java, C#, and Java-
Script, the recent upsurge in heap-spraying attacks demonstrates that lan-

6

Browser process

Browser heapbrowser threads Nozzle detector

A
llo

ca
ti

o
n

 h
is

o
ry

NOZZLE threads

Figure 3: Nozzle system architecture.

guage type safety is not a panacea. Unfortunately, traditional signature-
based pattern matching approaches used in the intrusion detection litera-
ture are not very effective when applied to detecting heap-spraying attacks.
This is because in a language as flexible as JavaScript it is easy to hide the
attack code by either using encodings or making it polymorphic; in fact,
most JavaScript worms observed in the wild use some form of encoding to
disguise themselves [18, 29]. As a result, effective detection techniques typ-
ically are not syntactic. They are performed at runtime and employ some
level of semantic analysis or runtime interpretation. Hardware support has
even been provided to address this problem, with widely used architecures
supporting a “no-execute bit”, which prevents a process from executing code
on specific pages in its address space [20]. We discuss why such support is
not always effective in Section 7. In this paper, we consider systems that use
the x86 ISA running the Windows operating system, a ubiquitous platform
that is a popular target for attackers.

3.1 Lightweight Interpretation

Unlike previous security attacks, a successful heap-spraying attack has the
property that the attack influences the contents of a large fraction of the
heap. We propose a two-level approach to detecting such attacks: scan-
ning objects locally while at the same time maintaining heap health metrics

7

globally.
At the individual object level, Nozzle performs lightweight interpre-

tation of heap-allocated objects, treating them as though they were code.
This allows us to recognize potentially unsafe code by interpreting it within
a safe environment, looking for malicious intent.

The Nozzle lightweight emulator scans heap objects to identify valid
x86 code sequences, disassembling the code and building a control flow
graph [30]. Because the attack jump target cannot be precisely controlled,
the emulator follows control flow to identify basic blocks that are likely to
be reached through jumps from multiple offsets into the object. Our local
detection process has elements in common with published methods for sled
detection in network packet processing [4, 15, 27, 36]. Unfortunately, the
density of the x86 instruction set makes the contents of many objects look
like executable code, and as a result, published methods lead to high false
positive rates, as demonstrated in Section 5.1.

We have developed a novel approach to mitigate this problem using
global heap health metrics, which effectively distinguishes benign alloca-
tion behavior from malicious attacks. Fortunately, an inherent property of
heap-spraying attacks is the fact that such attacks affect the heap globally.
Consequently, Nozzle exploits this property to drastically reduce the false
positive rate.

3.2 Threat Model

We assume that the attacker has access to memory vulnerabilities for com-
monly used browsers and also can lure users to a web site whose content they
control. This provides a delivery mechanism for heap spraying exploits. We
assume that the attacker does not have further access to the victim’s ma-
chine and the machine is otherwise uncompromised. However, the attacker
does not control the precise location of any heap object.

We also assume that the attacker knows about the Nozzle techniques
and will try to avoid detection. They also may have access to the browser
code and possess detailed knowledge of system-specific memory layout prop-
erties such as object alignment. We discuss these implications in detail in
Section 6.1.

4 Nozzle Design and Implementation

In this section, we formalize the problem of heap spray detection, provide
improved algorithms for detecting suspicious heap objects, and describe the

8

implementation of Nozzle.

4.1 Formalization

This section formalizes our detection scheme informally described in Sec-
tion 3.1, culminating in the notion of a normalized attack surface, a heap-
global metric that reflects the overall heap exploitability and is used by
Nozzle to flag potential attacks.

Definition 1. A sequence of bytes is legitimate, if it can be decoded as a
sequence of valid x86 instructions. In a variable length ISA this implies
that the processor must be able to decode every instruction of the sequence.
Specifically, for each instruction, the byte sequence consists of a valid opcode
and the correct number of arguments for that instruction.

Unfortunately, the x86 instruction set is quite dense, and as a result,
much of the heap data can be interpreted as legitimate x86 instructions. In
our experiments, about 80% of objects allocated by Mozilla Firefox contain
byte sequences that can be interpreted as x86 instructions.

Definition 2. A valid instruction sequence is a legitimate instruction se-
quence that does not include instructions in the following categories:

• I/O or system calls (in, outs, etc)

• interrupts (int)

• privileged instructions (hlt, ltr)

• jumps outside of the current process address space.

Previous work on NOP sled detection focuses on examining possible at-
tacks for properties like valid instruction sequences [4, 36]. We use this
definition as a basic object filter, with results presented in Section 5.1. Us-
ing this approach as the sole technique for detecting attacks leads to an
unacceptable number of false positives, and more selective techniques are
necessary.

To improve our selectivity, Nozzle attempts to discover objects in which
control flow through the object (the NOP sled) frequently reaches the same
valid instruction sequence (the shellcode, indicated in Figure 1), the assump-
tion being that an attacker wants to arrange it so that a random jump into
the object will reach the shellcode with the greatest probability.

9

Semi-lattice L bitvectors of length N
Top > 1̄
Initial value init(Bi) 0̄
Transfer function TF (Bi) 0 . . . 010 . . . 0 (ith bit set)
Meet operator ∧(x, y) x ∨ y (bitwise or)
Direction forward

Figure 4: Dataflow problem parametrization for computing the surface area
(see Aho et al.).

Our algorithm constructs a control flow graph (CFG) by interpreting
the data in an object at offset ∆ as an instruction stream. For the rest of
this paper, we consider this offset to be zero and discuss the implications of
malicious code injected at a different starting offset in Section 6. As part of
the construction process, we mark the basic blocks in the CFG as valid and
invalid instruction sequences, and we modify the definition of a basic block
to terminate a basic block after an invalid instruction is encountered. For
every basic block within the CFG we compute the surface area, a proxy for
the likelihood of control flow ending at the basic block, should the attacker
jump to a random memory address within the object.

Algorithm 1. Surface area computation.

Inputs: Control flow graph C consisting of basic blocks B1, . . . , BN , basic
block weights, W̄ , and a basic block validity bitvector V̄ , with its ith compo-
nent representing whether Bi is a valid instruction sequence.
Outputs: Surface area for each basic block SA(Bi), Bi ∈ C.
Solution: We define a parametrized dataflow problem using the terminol-
ogy in Aho et. al. [2], as shown in Figure 4. This produces out(Bi) for every
basic block Bi ∈ C.

Next, the surface area of basic block Bi, SA(Bi), is computed as follows:

SA(Bi) = (out(Bi) ∧ V̄) · W̄

where out(Bi) is represented by a bitvector whose values are computed using
the iterative dataflow algorithm above and V̄ and W̄ are algorithm inputs.
V̄ is determined using the validity criteria mentioned above, while W̄ is the
size of each basic block in bytes. The intuition is that we discard basic blocks
that are not valid instruction sequences by logically bitwise ANDing out(Bi)
and V̄ . Finally, we use vector multiplication to account for the weight each
basic block contributes—or does not—to the surface area of Bi.

10

1111

1110 1101 1011 0111

1100 1010 0110

T

...

Figure 5: Semi-lattice used in Example 1..

Complexity analysis. The standard iterative algorithm for solving
dataflow problems computes out(Bi) values with an average complexity
bound of O(N).

The only complication is that doing the lattice meet operation on bitvec-
tors of length N is generally an O(N) and not a constant time operation.
Luckily, for the majority of CFGs that arise in practice — 99.08% in the case
of Mozilla Firefox opened and interacted on www.google.com — the number
of basic blocks is fewer than 64, which allows us to represent dataflow val-
ues as long integers on 64-bit hardware. For those rare CFGs that contain
over 64 basic blocks, a generic bitvector implementation is needed.

Example 1. Consider the CFG in Figure 6. The semi-lattice for this CFG
of size 4 is partially shown in Figure 5. Instructions in the CFG are color-
coded by instruction type. In particular, system calls and I/O instructions
interrupt the normal control flow. In this example, we illustrate that we
have broken block 1 at the invalid in instruction, with the remainder of the
block contributing to the control flow graph. For simplicity, we show W̄i as
the number of instructions in each block, instead of the number of bytes.
The values used and produced by the algorithm are summarized in Figure 7.

For simplicity of exposition, we include the weight of block Bi itself in the
computation presented here. In practice, because the shellcode block does
not contribute to actual attack surface (since a jump inside the shellcode is
not likely to result in a successful exploit), we do not include the weight of
Bi as part of the attack surface.

Given the surface area of individual blocks, we compute the attack sur-
face area of object o as:

SA(o) = max(SA(Bi), Bi ∈ C)

11

arithmetic

memory

I/O or syscall

control flow

Legend:

xor [eax], eax

imul eax, [eax], 6ch

or eax, 0d179004h

add al, 30h

add al, 80h

jmp 021c7fde

add al, 38h

in eax, 0x11

sub [eax], eax

adc dh, bh

jecxz 021c7fd8

test cl, ah

or eax, 0d172004h

outs dx, [esi]

add [ecx], 0

add [eax], al

1

2 3

4

Figure 6: The control flow graph for Example 1..

For the entire heap, we accumulate the attack surface of the individual
objects.

Definition 3. The attack surface area of heap H, SA(H), containing objects
o1, . . . , on is defined as follows: ∑

i=1,...,n

S(oi)

Definition 4. The normalized attack surface area of heap H, denoted
as NSA(H), is defined as: SA(H)/|H|.

The normalized attack surface area metric reflects the overall heap “health”

12

Bi TF (Bi) V̄i W̄i out(Bi) out(Bi) ∧ V̄ SA(Bi)

1 1000 1 2 1000 1000 2
2 0100 0 3 1100 1000 2
3 0010 1 4 1010 1010 6
4 0001 1 3 1111 1011 9

Figure 7: Values for Example 1..

and also allows us to adjust the frequency with which Nozzle runs, thereby
reducing the runtime overhead, as explained below.

4.2 Nozzle Implementation

Nozzle needs to periodically scan heap object content in a way that is
analogous to a garbage collector mark phase. By instrumenting allocation
and deallocation routines, we maintain a table of live objects that are later
scanned asynchronously, on a different Nozzle thread.

We adopt garbage collection terminology in our description because the
techniques are similar. For example, we refer to the threads allocating and
freeing objects as the mutator threads, while we call the Nozzle threads
scanning threads. While there are similarities, there are also key differences.
For example, Nozzle works on an unmanaged, type-unsafe heap. If we had
garbage collector write barriers, it would improve our ability to address the
TOCTOU (time of check to time of use) issue discussed in Section 6.1.

4.2.1 Detouring Memory Management Routines

We use a binary rewriting infrastructure called Detours [12] to intercept
functions calls that allocate and free memory. Within Mozilla Firefox these
routines are malloc, calloc, realloc, and free, defined in MOZCRT19.dll.
To compute the surface area, we maintain information about the heap in-
cluding the total size of allocated objects.

Nozzle maintains a hash table that maps the addresses of currently
allocated objects to information including size, which is used to track the
current size and contents of the heap. When objects are freed, we remove
them from the hash table and update the size of the heap accordingly. Note
that if Nozzle were more closely integrated into the heap allocator itself,
this hash table would be unnecessary.

Nozzle maintains an ordered work queue that serves two purposes.
First, it is used by the scanning thread as a source of objects that need

13

to be scanned. Second, Nozzle waits for objects to mature before they are
scanned, and this queue serves that purpose. Nozzle only considers objects
of size greater than 32 bytes to be put in the work queue as the size of any
harmful shellcode is usually larger than this

To reduce the runtime overhead of Nozzle, we randomly sample a subset
of heap objects, with the goal of covering a fixed fraction of the total heap.
Our current sampling technique is based on sampling by object, but as our
results show, an improved technique would base sampling frequency on bytes
allocated, as some of the published attacks allocate a relatively small number
of large objects.

4.2.2 Concurrent Object Scanning

We can reduce the performance impact of object scanning, especially on
multicore hardware, with the help of multiple scanning threads. As part of
program detouring, we rewrite the main function to allocate a pool of N
scanning threads to be used by Nozzle, as shown in Figure 2. This way, a
mutator only blocks long enough when allocating and freeing objects to add
or remove objects from a per-thread work queue.

The task of object scanning is subdivided among the scanning threads
the following way: for an object at address a, thread number

(a>>p) % N

is responsible for both maintaining information about that object and scan-
ning it, where p is the number of bits required to encode the operating
system page size (typically 12 on Windows). In other words, to preserve
the spatial locality of heap access, we are distributing the task of scanning
individual pages among the N threads. Instead of maintaining a global hash
table, each thread maintains a local table keeping track of the sizes for the
objects it handles.

Object scanning can be triggered by a variety of events. Our current
implementation scans objects once, after a fixed delay of one object allo-
cation (i.e., we scan the previously allocated object when we see the next
object allocated). This choice works well for JavaScript, where string objects
are immutable, and hence initialized immediately after they are allocated.
Alternately, if there are extra cores available, scanning threads could pro-
actively rescan objects without impacting browser performance and reducing
TOCTOU vulnerabilities (see Section 6.1).

14

4.3 Detection and Reporting

Nozzle maintains the values NSA(H) and SA(H) for the currently allocated
heap H. The criteria we use to conclude that there is an attack in progress
combines an absolute and a relative threshold:

(NSA(H) > thnorm) ∧ (SA(H) > thabs)

When this condition is satisfied, we warn the user about a potential se-
curity attack in progress and allow them to kill the browser process. An
alternative would be to take advantage of the error reporting infrastructure
built into modern browsers to notify the browser vendor of the issue. Ei-
ther of these approaches is superior to silently killing the process, the way
DEP/NX protection in Windows responds to memory execution protection
violations.

These thresholds are defined based on a comparison of benign and ma-
licious web pages (Section 5.1). The guiding principle behind the threshold
determination is that for the attacker to succeed, the exploit needs to be
effective with reasonable probability. For the absolute threshold, we choose
five megabytes, observing that the size of the Firefox heap when opening
to a blank page is approximately six megabytes. We consider the economic
basis for a viable attack in Section 6.2.

5 Evaluation

We begin our evaluation by showing what a heap-spraying attack looks like
as measured using our normalized attack surface metric. Figure 8 shows the
attack surface area of the heap for two web sites: a benign site (econo-
mist.com), and a site with a published heap-spraying attack, similar to
the one presented in Figure 2. Figure 8 illustrates how distinctive a heap-
spraying attack is when viewed through the filter of our attack surface met-
ric. The success of Nozzle depends on its ability to distinguish between
these two kinds of behavior. After seeing Figure 8, one might be inclined to
think that we can easily detect heap spraying activity based on how rapidly
the heap grows. Unfortunately, benign web sites as economist.com can pos-
sess as high a heap growth rate as a rogue page performing heap spraying.
Moreover,unhurried attackers may avoid such detection by moderating the
heap growth rate of their spray. In this section, we present the false posi-
tive and false negative rate of Nozzle, as well as its performance overhead,
demonstrating that it can effectively distinguish benign from malicious sites.

15

Figure 8: Global normalized attack surface for economist.com versus a pub-
lished exploit (612). The Y-axis indicates the computed normalized attack
surface. The X-axis indicates logical time as measured in object allocations.

16

Download JavaScript Load time
Site URL (kilobytes) (kilobytes) (seconds)

economist.com 613 112 12.6
cnn.com 885 299 22.6
yahoo.com 268 145 6.6
google.com 25 0 0.9
amazon.com 500 22 14.8
ebay.com 362 52 5.5
facebook.com 77 22 4.9
youtube.com 820 160 16.5
maps.google.com 285 0 14.2
maps.live.com 3000 2000 13.6

Figure 9: Summary of 10 benign web sites we used as Nozzle benchmarks.

5.1 False Positives

Because web sites are so diverse, a heap-spray detector detection technique
for the broswer must have a very low false positive rate. To measure the
false positive rate of Nozzle, we collected 10 heavily-used benign web sites
with a variety of content and levels of scripting, which we summarize in
Figure 9. We use these 10 sites to measure the false positive rate and also
the impact of Nozzle on browser performance, discussed in Section 5.3.
In our measurements, when visiting these sites, we interacted with the site
as a normal user would, finding a location on a map, requesting driving
directions, etc. Because such interaction is hard to script and reproduce, we
also studied the false positive rate of Nozzle using a total of 150 web sites,
chosen from the most visited sites as ranked by Alexa [5]. For these sites,
we simply loaded the first page of the site and measured the heap activity
caused by that page alone.

To evaluate the false positive rate, we first consider using Nozzle as a
global detector determining whether a heap is under attack, and then con-
sider the false-positive rate of Nozzle as a local detector that is attempting
to detect individual malicious objects. In our evaluation, we compare Noz-
zle and STRIDE [4], a recently published local detector.

5.1.1 Global False Positive Rate

Figure 10 shows the maximum normalized attack surface measured by Noz-
zle for our 10 benchmark sites (top) as well as the top 150 sites reported

17

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 10: Global normalized attack surface for 10 benign benchmark web
sites and 150 additional top Alexa sites, sorted by increasing surface. The
Y-axis indicates the maximum normalized attack surface measured during
the visit to the site, where each element of the X-axis represents a different
web site.

18

Figure 11: Local false positive rate for 10 benchmark web sites using Noz-
zle and STRIDE. Improved STRIDE is a version of STRIDE that uses
additional instruction-level filters, also used in Nozzle, to reduce the false
positive rate.

by Alexa (bottom). From the figure, we see that the maximum normal-
ized attack surface remains around 5% for most of the sites, with a single
outlier from the 150 sites at around 12%. In practice, the median attack
surface is typically much lower than this, with the maximum often occurring
early in the rendering of the page when the heap is relatively small. The
economist.com line in Figure 8 illustrates this effect. By setting the spray
detection threshold at 20% or above, we would observe no false positives in
any of the sites measured.

5.1.2 Local False Positive Rate

In addition to being used as a heap-spray detector, Nozzle can also be used
locally as a malicious object detector. In this use, as with existing NOP and
shellcode detectors such as STRIDE [4], a tool would report an object as
potentially malicious if it contained data that could be interpreted as code,
and had other suspicious properties. Previous work in this area focused
on detection of malware in network packets and URIs, whose content is
very different than heap objects. We evaluated Nozzle and STRIDE, a
recently published NOP sled detection algorithm, to see how effective they
are classifying benign heap objects.

19

Figure 11 indicates the false positive rate of two variants of STRIDE
and a simplified variant of Nozzle, which does not include any surface area
computation. The figure shows that, unlike previously reported work where
the false positive rates for URIs was extremely low, the false positive rate
for heap objects is quite high, sometimes about 40%. An improved variant
of STRIDE that uses more information about the x86 instruction set (also
used in Nozzle) reduces this rate, but not below 10% in any case. We
conclude from this that, unlike URIs or the content of network packets,
heap objects often have contents that can be entirely interpreted as code
on the x86 architecture. As a result, existing methods of malicious code
detection do not directly apply to heap objects. We also show that even
Nozzle, without incorporating our surface area computation, would have
an unacceptably high false positive rate.

Figure 12: Distribution of filtered object surface area for each of 10 bench-
mark web sites (benign) plus 2,000 synthetic exploits (see Section 5.2). Ob-
jects measured are only those that were considered valid instruction se-
quences by Nozzle.

To increase the precision of a local detector based on Nozzle, we in-
corporate the surface area calculation described in Section 4. Figure 12
indicates the distribution of measured surface areas for the roughly 10% of
objects in Figure 11 that our simplified version of Nozzle was not able to
filter. We see from the figure that many of those objects have a relatively

20

Date Browser Description milw0rm

11/2004 IE IFRAME Tag BO 612
04/2005 IE DHTML Objects Corruption 930
01/2005 IE .ANI Remote Stack BO 753
07/2005 IE javaprxy.dll COM Object 1079
03/2006 IE createTextRang RE 1606
09/2006 IE VML Remote BO 2408
03/2007 IE ADODB Double Free 3577
09/2006 IE WebViewFolderIcon setSlice 2448

09/2005 FF 0xAD Remote Heap BO 1224
12/2005 FF compareTo() RE 1369
07/2006 FF Navigator Object RE 2082

07/2008 Safari Quicktime Content-Type BO 6013

Figure 13: Summary of information about 12 published heap-spraying ex-
ploits. BO stands for “buffer overruns” and RE stands for “remote execu-
tion.”

small surface area, with less that 10% having surface areas from 80-100%
of the size of the object (the top part of each bar). Thus, roughly 1% of
objects allocated by our benchmark web sites qualify as suspicious by a lo-
cal Nozzle detector, compared to roughly 20% using methods reported in
prior work. Even at 1%, the false positive rate of a local Nozzle detector
is too high to raise an alarm whenever a single instance of a suspicious ob-
ject is observed, which motivated the development of our global heap health
metric.

5.2 False Negatives

To evaluate the false negative rate of Nozzle, we gathered 12 published
heap-spraying exploits, summarized in Figure 13. We also created 2,000
synthetically generated exploits using the Metasploit framework [10]. Metas-
ploit allows us to create many malicious code sequences with a wide variety
of NOP sled and shellcode contents, so that we can evaluate the ability of
our algorithms to detect such attacks. Metasploit is parameterizable, and
as a result, we can create attacks that contain NOP sleds alone, or NOP
sleds plus shellcode. In creating our Metasploit exploits, we set the ratio of
NOP sled to shellcode at 9:1, which is quite a low ratio for a real attack but
nevertheless presents no problems for Nozzle detection.

As with the false positive evaluation, we can consider Nozzle both as
a local detector (evaluating if Nozzle is capable of classifying a known
malicious object correctly), and as a global detector, evaluating whether it
correctly detects web pages that attempt to spray many copies of malicious

21

Configuration min mean std

Local, NOP w/o shellcode 0.994 0.997 0.002
Local, NOP with shellcode 0.902 0.949 0.027

Figure 14: Local attack surface metrics for 2,000 generated samples from
Metasploit with and without shellcode.

Configuration min mean std

Global, published exploits 0.892 0.966 0.028
Global, Metasploit exploits 0.729 0.760 0.016

Figure 15: Global attack surface metrics for 12 published attacks and 2,000
Metasploit attacks integrated into web pages as heap sprays.

objects in the heap.
Figure 14 evaluates how effective Nozzle is at avoiding local false neg-

atives using our Metasploit exploits. The figure indicates the mean and
standard deviation of the object surface area over the collection of 2,000
exploits, both when shellcode is included with the NOP sled and when the
NOP sled is measured alone. The figure shows that Nozzle computes a
very high attack surface in both cases, effectively detecting all the Metas-
ploit exploits both with and without shellcode.

Figure 15 shows the attack surface statistics when using Nozzle as a
global detector when the real and synthetic exploits are embedded into a
web page as a heap-spraying attack. For the Metasploit exploits which were
not specifically generated to be heap-spraying attacks, we wrote our own
JavaScript code to spray the objects in the heap. The figure shows that the
published exploits are more aggressive than our synthetic exploits, resulting
in global attack surface of 98%. For our synthetic use of spraying, which
was more conservative, we still measured a mean global attack surface of
76%. All attacks would be detected by Nozzle with a relatively modest
threshold setting of 50%. We note that these exploits have global attack
surface metrics 6–8 times larger than the maximum measured attack surface
of a benign web site.

5.3 Performance Overhead

To measure the performance overhead of Nozzle, we cached a typical page
for each of our 10 benchmark sites. We then instrument the start and the end

22

of the page with the JavaScript newDate().getTime() routine and compute
the delta between the two. This value gives us how long it takes to load a
page in milliseconds. We collect our measurements running Firefox version
2.0.0.16 on a 2.4 GHz Intel Core2 E6600 CPU running Windows XP Service
Pack 3 with 2 gigabytes of main memory. In these measurements, because
we had a dual core machine, we configured Nozzle to use one additional
thread for scanning. To minimize the effect of timing due to cold start disk
I/O, we first load a page and discard the timing measurement. After this
first trial, we take three measurements and present the median of the three
values. The experiments were performed on an otherwise quiescent machine
and the variance between runs was not significant.

5.92.6

Figure 16: Relative execution overhead of using Nozzle in rendering a
typical page of 10 benchmark web sites as a function of sampling frequency.

Figure 16 shows the performance overhead of Nozzle, both with and
without sampling. From the figure, we see that with no sampling, the over-
head of using Nozzle ranges from 30% to almost a factor of six, with a
geometric mean of two times slowdown. To reduce this overhead, we con-
sider the impact of sampling on the overhead. For these results, we sample
based on object counts; for example, sampling at 5% indicates that one
in twenty objects is sampled. Because a heap-spraying attack has global
impact on the heap, sampling is unlikely to significantly reduce our false
positive and false negative rates, as we show in the next section. Reducing
the sampling rate to 25%, the mean overhead drops to 45%, while with a

23

0 0.05 0.1 0.15 0.2 0.25 0.3

25%

10%

5%

1%

0.10%

Figure 17: Average error rate due to sampling of the computed average
surface area for 10 benign benchmark web sites.

sampling rate of 5%, the performance overhead is only 6.4%.

5.4 Impact of Sampling on Detection

Previously, we showed that sampling signifantly improves the CPU perfor-
mance of using Nozzle. Here, we show the impact of sampling on the
amount of error in the computation of the attack surface metric for both
benign and malicious inputs.

Figure 17 shows the error rate caused by different levels of sampling
averaged across the 10 benign web sites. We compute the error rate E =
|Sampled−Unsampled|/Unsampled. The figure shows that for sample rates
of 0.1% or above the error rate is less than 30%. Noting that the malicious
pages have attack surfaces that are 6–8 times larger than benign web pages,
we conclude that sampling even at 5% is unlikely to result in significant
numbers of false positives.

In Figure 18, we show the impact of sampling on the number of false
negatives for our published and synthetic exploits. Because existing exploits
involve generating the heap spray in a loop, the only way sampling will miss
such an attack is to sample at such a low rate that the objects allocated
in the loop escape notice. The figure illustrates that for published attacks

24

Sampling Rate
100% 25% 10% 5% 1%

12 Published 0 0 0 0 50%
2,000 Metasploit 0 0 0 0 0

Figure 18: False negative rate for 12 real and 2,000 Metasploit attacks given
different object sampling rates in Nozzle.

sampling even at 5% results in no false negatives. At 1%, because several
of the published exploits only create on the order of tens of copies of very
large spray objects, sampling based on object count can miss these objects,
and we observe a 50% (6/12) false negative rate. As mentioned, sampling
based on bytes allocated instead of objects allocated would reduce this false
negative rate to zero.

6 Discussion

In this section, we consider additional implications of using our approach.

6.1 Assumptions and Limitations

This section lists assumptions that Nozzle makes and discusses their im-
plications.
TOCTOU issues. Because Nozzle examines object contents only at spe-
cific times, this leads to a potential time-of-check-to-time-of-use (TOCTOU)
vulnerability. An attacker aware that Nozzle was being used could be allo-
cate a benign object, wait until Nozzle scans it, and then rapidly change the
object into a malicious one before executing the attack. With JavaScript-
based attacks, since string is an immutable type, this is generally only possi-
ble using JavaScript Arrays. Further, because Nozzle may not know when
objects are completely initialized, it may scan them prematurely, creating
another TOCTOU window. To address this issue, Nozzle scans objects
once they mature on the assumption that most objects are written once
when initialized, soon after they are allocated. In the future, we intend
to investigate other ways to reduce this vulnerability, including periodically
rescanning objects. Rescans could be triggered when Nozzle observes a sig-
nificant number of heap stores, perhaps by reading hardware performance
counters.

25

Moreover, in the case of a garbage-collected language such as JavaScript
or Java, Nozzle can be integrated directly with the garbage collector. In
this case, changes observed via GC write barriers may be used as a trigger
for Nozzle to rescan objects.
Interpretation start offset: In our discussion so far, we have interpreted
the contents of objects as instructions starting at offset zero in the object,
which allows Nozzle to detect the current generation of heap-spraying ex-
ploits. However, if attackers are aware that Nozzle is being used, they
could arrange to fool Nozzle by inserting some number of junk bytes at
the start of objects. In order for Nozzle to be comprehensive when in-
specting an object, it must probe into multiple offsets other than zero. We
consider resisting this attack here.

Site URL Probe
frac. (%)

economist.com 17.9
cnn.com 8.4
yahoo.com 8.2
google.com 10.8
amazon.com 32.4
ebay.com 11.1
facebook.com 10.4
youtube.com 12.1
maps.google.com 24.5
maps.live.com 8.7
Metasploit sleds 28.3

Figure 19: Average
fraction of an object
that needs to be probed
for complete coverage
in 10 benchmark web
sites and 2,000 NOP
sleds.

Each initial instruction offset where a mali-
cious attack might start defines an equivalence
class of instruction layouts. For example, the in-
duced layout starting at offset one might be dif-
ferent than the induced layout starting at offset
zero, except in the case where the first instruction
at offset zero is a single-byte instruction, in which
case the two induced layouts would be equivalent.
Note that a layout starting at offset zero is likely
to have many other layouts in its equivalence class
(specifically, any layout that has an initial instruc-
tion starting at an instruction boundary present
in the offset zero layout).

To understand how many such equivalence
classes exist, we studied the 10 benchmark web
sites and 2,000 NOP sleds generated from Metas-
ploit to see how many offsets need to be probed
to cover all the equivalence classes of instruction
layouts for a given object (see Figure 19). We see
a range of values from the minimum of 8% (ya-
hoo) to the maximum of 32% (amazon). These
results suggest that exhaustively checking every
offset equivalence class would be prohibitive for a
browser heap (typically tens of megabytes in size). Therefore, we believe a
practical solution to address this problem would be to do sampling within an
object by randomly probing offsets at the start of different equivalent classes.
We plan to incorporate multiple offset probes into future implementations

26

of Nozzle.

6.2 Threshold Setting

The success of heap spraying is directly proportional to the density of the
dangerous objects in the program heap, as measured by the normalized
attack surface employed by Nozzle. The more sprayed objects there are, the
more likely an attack is to succeed in a probabilistic sense. At the same
time, a densely-sprayed heap will have a high normalized surface area and
will be immediately detected by Nozzle. If the attacker tries to disguise her
actions by having a sparsely populated heap so as to fall under the Nozzle
radar, she is not going to take over many of machines. As a result, the
attacker is between a rock and a hard place; to make matters worse for the
attacker, failing attacks most often result in program crashes. In the browser
context, these are recorded on the user’s machine and sent over to browser
vendors using a crash agent such as Mozilla Crash reporting [22] for per-site
bucketing and analysis.

What is interesting about attacks against browsers is that from a purely
financial standpoint, the attacker has a strong incentive to produce exploits
with a high likelihood of success. Indeed, assuming the attacker is the one
discovering the vulnerability such as a dangling pointer or buffer overrun
enabling the heap spraying attack, they can sell their finding directly to the
browser maker. For instance, the Mozilla Foundation, the makers of Firefox,
offers a cash reward of $500 for every exploitable vulnerability [23]. This
represents a conservative estimate of the financial value of such an exploit,
given that Mozilla is a non-profit and commercial browser makes are likely
to pay more [13]. A key realization is that in many cases heap spraying is
used for direct financial gain. A typical way to monetize a heap spraying
attack is to take over a number of unsuspecting users’ computers and have
them join a botnet. A large-scale botnet can be sold on the black market to
be used for spamming or DDOS attacks.

According to some reports, to cost of a large-scale botnet is about $.10
per machine [17, 14]. So, to break even, the attacker has to take over at
least 5,000 computers. For a success rate α, in addition to 5,000 successfully
compromised machines, there are 5, 000× (1− α)/α failed attacks. Even a
success rate as high as 90%, the attack campaign will produce failures for
555 users. Assuming these result in crashes reported by the crash agent, we
believe that this many reports from a single web site should attract attention
of the browser maker. For a success rate of 50%, the browser make is likely
to receive 5,000 crash reports, which should lead to rapid detection of the

27

exploit!
As discussed in Section 5, in practice we use the relative threshold of 50%

with Nozzle. We do not believe that a much lower success rate is financially
viable from the standpoint of the attacker.

7 Related Work

This section discusses exploit detection and memory attack prevention.

7.1 Exploit Detection

As discussed, a code injection exploit consists of at least two parts: the
NOP sled and shellcode. Detection techniques target either or both of these
parts. Signature-based techniques, such as Snort [28], use pattern match-
ing, including possibly regular expressions, to identify attacks that match
known attacks in their database. A disadvantage of this approach is that
it will fail to detect attacks that are not already in the database. Further-
more, polymorphic malware potentially vary its shellcode on every infection
attempt, reducing the effectiveness of pattern-based techniques. Statistical
techniques, such as Polygraph [24], address this problem by using improba-
ble properties of the shellcode to identify an attack.

The work most closely related to Nozzle is Abstract Payload Execution
(APE), by Toth and Kruegel [36], and STRIDE, by Akritidis et al. [4, 26],
both of which present methods for NOP sled detection in network traffic.
APE examines sequences of bytes using a technique they call abstract ex-
ecution where the bytes are considered valid and correct if they represent
processor instructions with legal memory operands. APE identifies sleds by
computing the execution length of valid and correct sequences, distinguish-
ing attacks by identifying sufficiently long sequences.

The authors of STRIDE observe that by employing jumps, NOP sleds
can be effective even with relatively short valid and correct sequences. To
address this problem, they consider all possible subsequences of length n, and
detect an attack only when all such subsequences are considered valid. They
demonstrate that STRIDE handles attacks that APE does not, showing also
that tested over a large corpus or URIs, their method has an extremely low
false positive rate. One weakness of this approach, acknowledged by the
authors is that “...a worm writer could blind STRIDE by adding invalid
instruction sequences at suitable locations...” ([26], p. 105).

Nozzle also identifies NOP sleds, but it does so in ways that go beyond
previous work. First, prior work has not considered the specific problem of

28

sled detection in heap objects or the general problem of heap spraying, which
we do. Our results show that applying previous techniques to heap object
results in high false positive rates. Second, because we target heap spraying
specifically, our technique leverages properties of the entire heap and not
just individual objects. Finally, we introduce the concept of surface area as
a method for prioritizing the potential threat of an object, thus addressing
the STRIDE weakness mentioned above.

7.2 Memory Attack Prevention

While Nozzle focuses on detecting heap spraying based on object and heap
properties, other techniques take different approaches. Recall that heap
spraying requires an additional memory corruption exploit, and one method
of preventing a heap-spraying attack is to ignore the spray altogether and
prevent or detect the initial corruption error. Techniques such as control flow
integrity [1], write integrity testing [3], data flow integrity [8], and program
shepherding [16] take this approach. Detecting all such possible exploits
is difficult and, while these techniques are promising, their overhead has
currently prevented their widespread use.

Some existing operating systems also support mechanisms, such as Data
Execution Prevention (DEP) [20], which prevent a process from executing
code on specific pages in its address space. Implemented in either software
or hardware (via the no-execute or “NX” bit), execution protection can be
applied to vulnerable parts of an address space, including the stack and
heap. With DEP turned on, code injections in the heap cannot execute.

Even with DEP, however, there are reasons to use Nozzle. First, at-
tacks that first turn off DEP have been published, thereby circumventing
its protection [32]. Second, because DEP is an all-or-nothing solution, com-
patibility issues can prevent DEP from being used. Despite the presence
of NX hardware and DEP in modern operating systems, existing commer-
cial browsers, such as Internet Explorer 7, still ship with DEP disabled by
default [11]. Third, a run-time system that performs just-in-time (JIT)
compilation such as the Sun JVM allocates objects with read-write-execute
permission, therefore, making DEP irrelevant. Thus, it can be used as a ve-
hicle to perform heap spraying in a system with DEP. For example, instead
of using JavaScript to do spraying, we may elect to use Java applets to do
this, instead. Finally, code injection spraying attacks have recently been
reported in areas other than the heap where DEP cannot be used. Sotirov
describes spraying attacks that introduce exploit code into a process address
space via embedded .NET User Controls [35]. The attack, which is disguised

29

as one or more .NET managed code fragments, is loaded in the process text
segment, preventing the use of DEP. In future work, we intend to show that
Nozzle can be effective in detecting such attacks as well.

8 Conclusions

We have presented Nozzle, a runtime system for detecting and preventing
heap-spraying security attacks. Heap spraying has the property that the
actions taken by the attacker in the spraying part of the attack are legal
and type safe, allowing such attacks to be initiated in JavaScript, Java, or
C#. Attacks using heap spraying are on the rise because security mitigations
have reduced the effectiveness of previous stack and heap-based approaches.

Nozzle is the first system specifically targeted at detecting and prevent-
ing heap-spraying attacks. Nozzle uses lightweight runtime interpretation
to identify specific suspicious objects in the heap and maintains a global
heap health metric to achieve low false positive and false negative rates, as
measured using 12 published heap spraying attacks, 2,000 synthetic mali-
cious exploits, and 150 highly-visited benign web sites. We show that with
sampling, the performance overhead of Nozzle can be reduced to 7%, while
maintaining low false positive and false negative rates.

While we have focused our experimental evaluation on heap-spraying
attacks exclusively, the techniques this paper proposes are considerably more
general. In particular, we can detect a variety of exploits that use code
masquarading as data, such as images, compiled bytecode, etc. [35].

In the future, we intend to further improve the selectivity of the Nozzle
local detector, demonstrate Nozzle’s effectiveness for attacks beyond heap
spraying, and further tune Nozzle’s performance. Because heap-spraying
attacks can be initiated in type-safe languages, we would like to evaluate
the cost and effectiveness of incorporating Nozzle in a garbage-collected
runtime. We are also interested in extending Nozzle from detecting heap-
spraying attacks to tolerating them as well.

Acknowledgements

We thank Martin Burtscher, Silviu Calinoiu, Trishul Chilimbi, and Ted Hart
for their valuable feedback during the development of this work.

30

References

[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow integrity. In Proceedings
of the Conference on Computer and Communications Security, pages 340–353, 2005.

[2] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 2007.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error exploits
with WIT. In Proceedings of the IEEE Symposium on Security and Privacy, pages 263–277,
2008.

[4] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. G. Anagnostakis. STRIDE: Polymor-
phic sled detection through instruction sequence analysis. In R. Sasaki, S. Qing, E. Okamoto,
and H. Yoshiura, editors, International Conference on Information Security (SEC 2005),
pages 375–392. Springer, 2005.

[5] Alexa. Global top sites. http://www.alexa.com/site/ds/top sites, 2008.

[6] E. D. Berger and B. G. Zorn. DieHard: probabilistic memory safety for unsafe languages.
In Proceedings of the Conference on Programming Language Design and Implementation,
pages 158–168, 2006.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an efficient approach to
combat a board range of memory error exploits. In Proceedings of the USENIX Security
Symposium, pages 8–8, 2003.

[8] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow integrity.
In Proceedings of the Symposium on Operating Systems Design and Implementation, pages
147–160, 2006.

[9] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: attacks and
defenses for the vulnerability of the decade. Foundations of Intrusion Tolerant Systems,
pages 227–237, 2003.

[10] J. C. Foster. Metasploit Toolkit for Penetration Testing, Exploit Development, and Vulner-
ability Research. Syngress Publishing, 2007.

[11] M. Howard. Update on Internet Explorer 7, DEP, and Adobe
software. blogs.msdn.com/michael howard/archive/2006/12/12/

update-on-internet-explorer-7-dep-and-adobe-software.aspx, 2006.

[12] G. Hunt and D. Brubacher. Detours: Binary interception of Win32 functions. In In Proceed-
ings of the USENIX Windows NT Symposium, pages 135–143, 1999.

[13] iDefense Labs. Annual vulnerability challenge. http://labs.idefense.com/vcp/challenge.
php, 2007.

[14] S. Inc. Stopping zombies, botnets and other email- and web-borne threats. blogs.piercelaw.
edu/tradesecretsblog/SophosZombies072507.pdf, 12 2006.

[15] I.-K. Kim, K. Kang, Y. Choi, D. Kim, J. Oh, and K. Han. A practical approach for detecting
executable codes in network traffic. In S. Ata and C. S. Hong, editors, APNOMS, volume
4773 of Lecture Notes in Computer Science, pages 354–363. Springer, 2007.

[16] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution via program shepherd-
ing. In Proceedings of the 11th USENIX Security Symposium, pages 191–206, 2002.

[17] J. Leyden. Phatbot arrest throws open trade in zombie PCs. www.theregister.co.uk/2004/
05/12/phatbot zombie trade, May 2004.

[18] B. Livshits and W. Cui. Spectator: Detection and containment of JavaScript worms. In
Proceedings of the Usenix Annual Technical Conference, July 2008.

[19] A. Marinescu. Windows Vista heap management enhancements. In BlackHat US, 2006.

[20] Microsoft Corporation. Data execution prevention. technet.microsoft.com/en-us/library/

31

cc738483.aspx, 2003.

[21] Microsoft Corporation. Microsoft Security Bulletin MS07-017. www.microsoft.com/technet/
security/Bulletin/MS07-017.mspx, Apr. 2007.

[22] Mozilla Developer Center. Crash reporting page. https://developer.mozilla.org/En/

Crash reporting, 2008.

[23] Mozilla Security Group. Mozilla security bug bounty program. www.mozilla.org/security/
bug-bounty.html, 2004.

[24] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signatures for
polymorphic worms. In Proceedings of the IEEE Symposium on Security and Privacy, pages
226–241, 2005.

[25] J. D. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting buffer
overruns. IEEE Security and Privacy, 2(4):20–27, 2004.

[26] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-based detection of
non-self-contained polymorphic shellcode. In C. Krgel, R. Lippmann, and A. Clark, editors,
RAID, pages 87–106, 2007.

[27] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-level polymorphic
shellcode detection using emulation. Journal in Computer Virology, 2(4):257–274, 2007.

[28] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the
USENIX conference on System administration, pages 229–238, 1999.

[29] Samy. The Samy worm. namb.la/popular/, Oct. 2005.

[30] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited. Reverse
Engineering, 2002. Proceedings. Ninth Working Conference on, pages 45–54, 2002.

[31] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effective-
ness of address-space randomization. In Proceedings of the Conference on Computer and
Communications Security, pages 298–307, 2004.

[32] skape and Skywing. Bypassing windows hardware-enforced DEP. Uninformed Journal, 2(4),
Sept. 2005.

[33] SkyLined. Internet explorer iframe src&name parameter BoF remote
compromise. skypher.com/wiki/index.php?title =Www.edup.tudelft.nl/
b̃jwever/advisory iframe.html.php, 2004.

[34] A. Sotirov. Heap feng shui in JavaScript. In Proceedings of Blackhat Europe, 2007.

[35] A. Sotirov and M. Dowd. Bypassing browser memory protections. In Proceedings of BlackHat,
2008.

[36] T. Toth and C. Krügel. Accurate buffer overflow detection via abstract payload execution.
In RAID, pages 274–291, 2002.

[37] R. van den Heetkamp. Heap spraying. www.0x000000.com/index.php?i=412&bin=110011100,
Aug. 2007.

32

Appendix

A: Alexa Sites

Figure 20 shows the list of 150 sites we used for our false positive evaluation.
Note that we had to filter our some sites from the original Alexa.com site
listing to avoid “business-inappropriate” sites.

B: Normalized Attack Surface

Figures 21–23 show the normalized attack surface metric over time (mea-
sured in the number of allocations) for a variety of commonly used sites.

C: How STRIDE Detection Generates False Alarms

Consider the following byte sequence (in hex) of size 32 taken from a heap
object on visiting google.com:

00251998 dc e3 12 60 00 00 00 00
002519a0 1c 00 c0 40 10 00 00 00
002519a8 00 00 00 00 00 00 00 00
002519b0 00 00 00 00 e0 e0 e0 e0

STRIDE inspects a suspicious object starting at offset 0, 1, 2, and 3. At
each offset, it decodes sequences of bytes by probing into different sub-offsets
in the increment of four until the last sequence at that offset has size less
than or equal to four. If all sequences are valid, STRIDE flags the object
as malicious. A valid sequence cannot contain privileged instructions, and
is decodable from start to finish or contains a branch along the way.

Given the above object, STRIDE effectively generates four different
equivalence classes of instruction layout starting at offset 0, 1, 4, and 11.
All the four layouts induced are as follows:

starting offset = 0

00251998 dce3 fsubr st(3),st
0025199a 126000 adc ah,byte ptr [eax]
0025199d 0000 add byte ptr [eax],al
0025199f 001c00 add byte ptr [eax+eax],bl
002519a2 c0401000 rol byte ptr [eax+10h],0
002519a6 0000 add byte ptr [eax],al
002519a8 0000 add byte ptr [eax],al
002519aa 0000 add byte ptr [eax],al

33

1 http://www.yahoo.com 51 http://www.youku.com 101 http://www.veoh.com
2 http://www.google.com 52 http://www.ask.com 102 http://www.4shared.com
3 http://www.youtube.com 53 http://www.imageshack.us 103 http://www.xunlei.com
4 http://www.live.com 54 http://www.adobe.com 104 http://www.clicksor.com
5 http://www.facebook.com 55 http://www.google.ca 105 http://www.terra.com.br
6 http://www.msn.com 56 http://www.uol.com.br 106 http://www.megaupload.com
7 http://www.myspace.com 57 http://www.rakuten.co.jp 107 http://www.google.nl
8 http://www.wikipedia.org 58 http://www.espn.go.com 108 http://www.perfspot.com
9 http://www.blogger.com 59 http://www.sohu.com 109 http://www.google.com.ar

10 http://www.yahoo.co.jp 60 http://www.ebay.de 110 http://www.google.co.th
11 http://www.baidu.com 61 http://www.dailymotion.com 111 http://www.doubleclick.com
12 http://www.rapidshare.com 62 http://www.netlog.com 112 http://www.deviantart.com
13 http://www.microsoft.com 63 http://www.mixi.jp 113 http://www.metacafe.com
14 http://www.google.co.in 64 http://www.metroflog.com 114 http://www.sogou.com
15 http://www.google.de 65 http://www.daum.net 115 http://www.thepiratebay.org
16 http://www.hi5.com 66 http://www.rambler.ru 116 http://www.mop.com
17 http://www.qq.com 67 http://www.vmn.net 117 http://www.zshare.net
18 http://www.ebay.com 68 http://www.apple.com 118 http://www.geocities.com
19 http://www.google.fr 69 http://www.yahoo.com.cn 119 http://www.amazon.co.jp
20 http://www.sina.com.cn 70 http://www.rediff.com 120 http://www.download.com
21 http://www.google.co.uk 71 http://www.livedoor.com 121 http://www.orange.fr
22 http://www.mail.ru 72 http://www.orkut.com 122 http://www.2ch.net
23 http://www.fc2.com 73 http://www.google.com.tr 123 http://www.tagged.com
24 http://www.aol.com 74 http://www.megavideo.com 124 http://www.tudou.com
25 http://www.vkontakte.ru 75 http://www.fastclick.com 125 http://www.tribalfusion.com
26 http://www.google.com.br 76 http://www.fotolog.net 126 http://www.gmx.net
27 http://www.wordpress.com 77 http://www.livejournal.com 127 http://www.pconline.com.cn
28 http://www.orkut.com.br 78 http://www.about.com 128 http://www.clicksor.net
29 http://www.google.it 79 http://www.globo.com 129 http://www.homeway.com.cn
30 http://www.flickr.com 80 http://www.soso.com 130 http://www.amazon.de
31 http://www.yandex.ru 81 http://www.mininova.org 131 http://www.weather.com
32 http://www.google.cn 82 http://www.nytimes.com 132 http://www.biglobe.ne.jp
33 http://www.photobucket.com 83 http://www.nicovideo.jp 133 http://www.conduit.com
34 http://www.google.es 84 http://www.wretch.cc 134 http://www.cyworld.com
35 http://www.google.co.jp 85 http://www.ameblo.jp 135 http://www.google.co.za
36 http://www.amazon.com 86 http://www.google.com.au 136 http://www.geocities.jp
37 http://www.naver.com 87 http://www.nasza-klasa.pl 137 http://www.aim.com
38 http://www.go.com 88 http://www.bebo.com 138 http://www.studiverzeichnis.com
39 http://www.craigslist.org 89 http://www.goo.ne.jp 139 http://www.maktoob.com
40 http://www.friendster.com 90 http://www.google.pl 140 http://www.infoseek.co.jp
41 http://www.odnoklassniki.ru 91 http://www.google.co.id 141 http://www.kaixin001.com
42 http://www.google.com.mx 92 http://www.google.com.sa 142 http://www.alibaba.com
43 http://www.taobao.com 93 http://www.yourfilehost.com 143 http://www.sourceforge.net
44 http://www.imdb.com 94 http://www.mediafire.com 144 http://www.dell.com
45 http://www.skyrock.com 95 http://www.imagevenue.com 145 http://www.google.com.eg
46 http://www.cnn.com 96 http://www.comcast.net 146 http://www.onet.pl
47 http://www.bbc.co.uk 97 http://www.ku6.com 147 http://www.tinypic.com
48 http://www.orkut.co.in 98 http://www.google.ru 148 http://www.gamespot.com
49 http://www.googlesyndication.com 99 http://www.ebay.co.uk 149 http://www.ig.com.br
50 http://www.163.com 100 http://www.free.fr 150 http://www.zol.com.cn

Figure 20: List of the top 150 websites from Alexa used in the Nozzle false
positive evaluation.

34

Figure 21: Normalized surface of attack over time: Amazon, Facebook,
CNN, Economist.

35

Figure 22: Normalized surface of attack over time: ebay.com, youtube.com,
Google maps, and Live Maps.

36

Figure 23: Normalized surface of attack over time: Google.com and Ya-
hoo.com.

002519ac 0000 add byte ptr [eax],al
002519ae 0000 add byte ptr [eax],al
002519b0 0000 add byte ptr [eax],al
002519b2 0000 add byte ptr [eax],al
002519b4 e0e0 loopne 00251996
002519b6 e0e0 loopne 00251998

starting offset = 1

00251999 e312 jecxz 002519ad
0025199b 60 pushad
0025199c 0000 add byte ptr [eax],al
0025199e 0000 add byte ptr [eax],al
002519a0 1c00 sbb al,0
002519a2 c0401000 rol byte ptr [eax+10h],0
002519a6 0000 add byte ptr [eax],al
002519a8 0000 add byte ptr [eax],al
002519aa 0000 add byte ptr [eax],al
002519ac 0000 add byte ptr [eax],al
002519ae 0000 add byte ptr [eax],al

37

002519b0 0000 add byte ptr [eax],al
002519b2 0000 add byte ptr [eax],al
002519b4 e0e0 loopne 00251996
002519b6 e0e0 loopne 00251998

starting offset = 4

0025199c 0000 add byte ptr [eax],al
0025199e 0000 add byte ptr [eax],al
002519a0 1c00 sbb al,0
002519a2 c0401000 rol byte ptr [eax+10h],0
002519a6 0000 add byte ptr [eax],al
002519a8 0000 add byte ptr [eax],al
002519aa 0000 add byte ptr [eax],al
002519ac 0000 add byte ptr [eax],al
002519ae 0000 add byte ptr [eax],al
002519b0 0000 add byte ptr [eax],al
002519b2 0000 add byte ptr [eax],al
002519b4 e0e0 loopne 00251996
002519b6 e0e0 loopne 00251998

starting offset = 11

002519a3 40 inc eax
002519a4 1000 adc byte ptr [eax],al
002519a6 0000 add byte ptr [eax],al
002519a8 0000 add byte ptr [eax],al
002519aa 0000 add byte ptr [eax],al
002519ac 0000 add byte ptr [eax],al
002519ae 0000 add byte ptr [eax],al
002519b0 0000 add byte ptr [eax],al
002519b2 0000 add byte ptr [eax],al
002519b4 e0e0 loopne 00251996
002519b6 e0e0 loopne 00251998

All of these instruction layouts are considered valid for STRIDE, and,
hence, it will flag this object as malicious. Nozzle, on the other hand,
realizes that this cannot be so because the two conditional branches loopne
have targets beyond the range of this object.

38

