arXiv:1905.08767v1 [cs.NI] 21 May 2019

The Blind Men and the Internet:
Multi-Vantage Point Web Measurements

Jordan Jueckstock
North Carolina State University

Shaown Sarker
North Carolina State University

Matteo Varvello

Brave Software

Peter Snyder

Brave Software

Benjamin Livshits
Brave Software,

Panagiotis Papadopoulos
Brave Software

Alexandros Kapravelos
North Carolina State University

Imperial College London

ABSTRACT

In this paper, we design and deploy a synchronized multi-
vantage point web measurement study to explore the com-
parability of web measurements across vantage points (VPs).
We describe in reproducible detail the system with which we
performed synchronized crawls on the Alexa top 5K domains
from four distinct network VPs: research university, cloud
datacenter, residential network, and Tor gateway proxy.
Apart from the expected poor results from Tor, we observed
no shocking disparities across VPs, but we did find significant
impact from the residential VP’s reliability and performance
disadvantages. We also found subtle but distinct indicators
that some third-party content consistently avoided crawls
from our cloud VP. In summary, we infer that cloud VPs do
fail to observe some content of interest to security and pri-
vacy researchers, who should consider augmenting cloud VPs
with alternate VPs for cross-validation. Our results also im-
ply that the added visibility provided by residential VPs over
university VPs is marginal compared to the infrastructure
complexity and network fragility they introduce.

1 INTRODUCTION

An ancient fable from the Indian subcontinent tells of six blind
men who set out to study an elephant by feel. Each encoun-
ters a different part of the creature’s anatomy (the trunk, a
tusk, a leg) and comes away with an absurd generalization
of what an elephant is like (a snake, a spear, or a tree). Taken
in isolation, each observation is technically correct but fails
to comprehend the whole subject. While web measurement
studies are unlikely to prove as memorable or entertaining,
the moral of the story applies.

Researchers regularly measure the state of privacy, perfor-
mance, and security on the web. Motivated by cost, conve-
nience, and scalability, most (if not all) researchers conduct
large scale measurements of the web from a narrow range
of vantage points (VPs), typically cloud systems or research

universities. Prior research and anecdotal experience sug-
gest that certain websites block [15] or cloak themselves [13]
from requests originating from well-known measurement
VPs. Nevertheless, most research proceeds under the tacit as-
sumption that measurements from well known measurement
VPs generalize to the web experiences of “typical” users brows-
ing from residential networks. This assumption is a dangerous
one; its possible that the kinds of measurements that have
been used to motivate improvements to web privacy, security
and performance are systematically skewed. The potential
impact to privacy and security is even worse: bad actors may
be exploiting this assumption and manipulating the results of
the measurements in ways that leave web users vulnerable.
We set out to test the accuracy of this generalizability-
assumption by designing a system that can take a range of
privacy, performance and security measurements from dif-
ferent web vantage points and compare the results from each
VP. In constructing this multi-vantage point (MVP) study, we
take care to document design and implementation decisions
so that our system can be reproduced. While the web itself
is too dynamic to be considered “reproducible,” we believe
measurement infrastructures and experiment design should
be. We enumerate the anticipated challenges of taking com-
parable measurements across multiple VPs and justify our
design decisions. We then describe, in detail sufficient to facil-
itate unambiguous reproduction, the system architecture we
deployed and the per-domain and per-page workflow used.
Deploying our system to crawl the Alexa top 5K domains
resulted in 4TB of compressed, de-duplicated data collected
over 2 weeks. We present a high-level overview of the exper-
iment results, comparing various metrics for success and fail-
ure across crawls and page visits across VPs. As expected, Tor
encountered by far the highest error and failure rates. But the
residential VP proved more fragile than anticipated, with a cas-
cading effect on overall activity volume. These performance
and reliability discrepancies complicate meaningful cross-VP
comparisons of metrics such as EasyList and EasyPrivacy

hits. We are, however, able to identify a cluster of structural
differences (i.e., changes in 3rd-party content loaded) across
VPs that are resilient against performance-mismatch bias and
which reveal a modest but tangible blind spot for our cloud VP.

From our preliminary results we infer that security and pri-
vacy researchers conducting studies from cloud VPs should
consider using additional VP[s] for validation. Furthermore,
while we saw modest but real visibility advantages of our res-
idential and university VPs over the cloud VP, the residential
VP provided at best marginal advantages over the university
VP given its additional complexity and fragility.

In summary, this work makes the following contributions:

(1) A practical and reproducible template for perform-
ing multi-vantage point (MVP) web measurements at
scale.

(2) High-level results and preliminary inferences from a
demonstration MVP web measurement experiment
of the Alexa top 5K domains, with the raw data to be
released on publication.

2 DESIGN CONSIDERATIONS

Web sites can respond to identical requests, from different
clients, differently. Attributes such as originating network,
the requesting browser (version and configuration) and oper-
ating system (version and configuration), and even hardware
characteristics can cause websites to vary their replies. In
this paper we compare web measurements taken from four
network endpoints (vantage points, or VPs), each with three
browser configurations. Our four VPs were: the network
of a large research university, a residential ISP endpoint near
the university, a cloud endpoint (Amazon EC2) hosted in a
regional datacenter about 800 kilometers from the university,
and a tunnel provided by the Tor anonymization network. Tor
provides an expected worst-case, while the residential and
university networks provide reference points against which
to compare cloud-based measurements.

We also measured how websites responded given differ-
ent browser configuration (BC), intended to resemble auto-
mated (i.e. crawler) and typical (i.e. human operated) browsers.
All measurements were taken using Chromium 72 running
on Linux under the control of Puppeteer [7]. The baseline BC
is intended to resemble browsers used in most measurement
studies by using the Puppeteer defaults, running Chromium
in headless mode. The additional BCs used the Xvfb headless
display server to run Chromium in full/non-headless mode;
one of them also changed the User-Agent string to (falsely)
report itself as the same version of Chromium running on
Windows 10 in addition to running non-headless.

As the web changes constantly, differences between two
measurements of the same domain may depend on VP, or
BC, or the web content itself. This study aims to understand

how changes in VP or BC can affect measurement results; we
are not interested in measurement artifacts due to content
changes. To achieve this goal, we take several precautions to
minimize measurement-artifacts unrelated to VP or BC. First,
we tear down and restart our automated browser environment
for each page visit within each crawl, mitigating variations
caused by client-side session state or caches. Second, We re-
peat the same crawl-configuration (e.g., Alexa rank, BC, VP)
five times to mitigate transient errors. Third, we take care to
measure sites across VP close together in time. Crawls shar-
ing domain, BC, and repetition count are grouped into crawl
sets that are synchronized to launch simultaneously across
all four VPs to mitigate time-based content changes. Fourth,
Where our instrumentation relies on randomization, we use a
common seed per crawl set. Finally, to mitigate client-side ran-
domization in web content, we inject JavaScript (JS) logic into
each new frame to replace the Math.random API with a deter-
ministic version borrowed from Google’s Catapult project [1].

Our unit of work is the crawl, by which we mean a sequence
of one or more visited pages within a single domain (€TLD+1).
From each page successfully visited we harvest up to 3 links
(the width of the crawl) to identify candidate follow-on pages.
The first page is always the “landing page" for the domain
(http://DOMAIN.TLD/) and is assigned a depth of 1. The crawl
stops either when no more queued links are available or until
the target depth is reached. For example, a 3x2 crawl would
visit 1 page at depth 1 and 3 pages at depth 2 for a maximum
of 4 pages visited per domain. Crawl dimensions are a design
trade-off: more pages means more accurate sampling at the
cost of much longer (and more expensive) experiments. For
simplicity, we do not attempt to synchronize the follow-on
page URLs visited across crawl sets.

Link harvesting employs seeded random clicking and scrolling
activity powered by the gremlins.js [5] “monkey testing” frame-
work. This approach allows harvesting of event-triggered
navigations with a human-like bias towards large click tar-
gets (we do not allow the clicks to actually cause navigation
during the page visit). As a fallback, we also harvest links
from HTML anchor tags present in the page document at the
end of our visit. In all cases, links are enqueued only if they
navigate to the crawl’s original eTLD+1 domain.

3 CRAWLER INFRASTRUCTURE

Architecture: Our crawling and storage infrastructure was
split in two (Figure 1). Most of the crawling work and data
storage, and all of the centralized control and analysis, were
hosted on a primary server cluster hosted within the univer-
sity network. This shared cluster—employed by a number of
concurrent projects—comprises 8 servers with a total of 144
physical cores and 1 TiB RAM.

Residential Outpost
K8S 1X

Amazon AWS Cloud Residential
€-----ee »> Alexa Top 5K N\ €--------- > £=5
. Tor | : l
.I (""" ,University ’

Tor Tunnel ‘. Mongo i
H /_L:—V_\ Residential i1
AuoSSH || .g é "7 AutossH

Master Queue / | Tunnel 1X

Barrier Sync

Tunnel 4X
K8S 4X

Mongo Postgres
_ Primary Analytic DB/

Primary Workpost

Figure 1: Crawler data collection setup

Residential crawls and data were hosted on an outpost clus-
ter located in the residence hosting our endpoint. Resources
here were much more modest: crawls performed on a Mac
Pro with 8 physical cores and 32GiB of RAM, data stored on
a Synology DS918+ NAS appliance.

Crawl Workers: Crawling was parallelized across many con-
tainerized workers running our custom automation frame-
work built on Puppeteer and driving the Chromium browser.
We used a standalone release build of Chromium (72.0.3626.121)
rather than the non-release version bundled with Puppeteer.
All data collected or generated during a crawl were stored in
MongoDB (one primary server, one outpost server). Crawl
workers were deployed and managed via Kubernetes (K8s).
Crawl Queuing: Crawl configurations (e.g., domain and
browser configuration) were queued to and dispatched from
a central Redis server. A persistent SSH tunnel between the
clusters allowed outpost workers to pull jobs from the central
queues. We used a dedicated queue for crawls destined for the
residential VP, and a common queue for all other VPs’ crawls.
Vantage Points: University VP crawls required no special
configuration: they simply ran in the primary cluster and con-
tacted destinations directly, resolving names via university
DNS. Tor VP crawls required us to configure Chromium to use
one of the SOCKS proxies provided by a pool of running Tor
clients for communication through the Tor network. Cloud
VP crawls were also tunneled via SOCKS proxy, but this time
through a pool of persistent SSH tunnels to a dedicated Ama-
zon EC2 instance. All tunneled VPs resolved DNS names via
SOCKS at the tunnel end-point, using the end-point defaults.

We had originally planned on a tunnel-based approach for
the residential VP too, but circumstances intervened: the only

readily available residential endpoint featured good down-
stream capacity (200Mb/s) but was hobbled by low upstream
bandwidth (10Mb/s). So we established the outpost cluster
described above and ran residential crawls there directly, re-
solving names via ISP-provided DNS. This design change
placed a hard limit on our parallelism: the outpost hardware
could sustain only 8 concurrent crawls. This cap effectively
limited our global parallelism to 8 workers per VP (32 total)
due to crawl set synchronization.

Crawl Set Synchronization: Modern websites change fre-
quently. To minimize spurious measurement differences be-
tween VPs, we start cross-VP crawl sets (same domain, same
BC, same repetition) simultaneously. The synchronization
mechanism is a non-resetting barrier implemented using Re-
dis atomic counters and pub/sub notifications. All workers use
the same Redis serverasa central broker. Each crawl configura-
tionincludes a sync tag common to all members of a crawl set.
When starting a crawl, workers subscribe to sync notifications
for the crawl’s sync tag, atomically increment the sync tag’s
counter, and, if the updated value equals the number of VPs,
publishes the “release” notification for that sync tag. All work-
ersin a set, including the release publisher, wait for release no-
tification before proceeding with the crawl. This mechanism
proved robust and effective: all but 11 of the 75,000 crawl sets
had all 4 members launch within a one second time window.

3.1 Collection Workflow

Domain Crawl: Crawl configurations are pulled from the
crawl queues by any available worker. After synchronization
with its crawl set, the worker performs a 3x 2 crawl (Section 2)
of the target domain using an internal page-visit queue. Cata-
strophic errors (e.g., abrupt worker death) result in the crawl
“stalling” and being re-queued. Re-queued crawls are detected
and marked as dropped. Crawls are forcibly aborted and the
worker process restarted if they do not complete within a
watchdog interval of 180s.

Page Visit: Each page visit starts with launching a fresh
browser instance using an empty user profile directory. Once
the new browser is configured and instrumented to capture
all relevant data, it is directed to the target URL. Navigation
times out (aborting the visit) at 30s; if navigation succeeds, we
launch gremlins.js pseudo-interaction to collect links. This in-
teraction runs until we reach 30s from the start of the visit (in-
cluding navigation time) or until 10s have elapsed, whichever
is longer. As we loiter, we close all alert boxes and new win-
dows/tabs opened. At the end of the interaction window, we
perform tear-down: capturing the final state of the DOM, tak-
ing a screenshot, extracting anchor tag links from the DOM,
and saving any other data we have been collecting in memory
during the visit. Tear-down must complete within 5s or the
visit is aborted. The worst-case duration, then, of a single

page visit is 45s. All timeouts and limits were set pragmat-
ically, derived from the desired volume of our experiment
and the constraints of our time budget, and are comparable
to counterparts in prior measurement work [17].

Data Collected: In addition to crawl and page visit metadata
(configuration details, lifecycle timestamps, final status), we
record web content data and metadata for each page visited,
including: the HTML frame tree (parents, children, and nav-
igation events), all HTTP requests queued within Chromium
(URL, resource type, frame context), HT TP request responses
(status, headers, and body) and failures (error type).
Post-processing: After collection was complete, we exported
raw collection data from the MongoDB servers into a Post-
greSQL server for data aggregation and relational analytics.
We further post-processed the HTTP request metadata (docu-
ment URL, request URL, and resource type), matching against
the popular EasyList (EL) [2] and EasyPrivacy (EP) [3] Ad-
BlockPlus (ABP) filter lists. Finally, we post-processed each
page’s captured DOM content and related request data to
search for indications of CAPTCHA presence using rules
extracted from Wappalyzer [9].

Collection Scope & Timeline: We crawled the top 5,000
Alexa domains as reported on 2019-04-01 [8]. Each domain
was crawled 5 times using 3 BCs across 4 VPs, for a total of
300,000 crawls, each visiting a maximum of 4 pages (for a
maximum of 1,200,000 page visits). Crawling commenced
2019-04-07 and finished 2019-04-20. The EL and EP lists used
in post-processing date from 2019-04-18.

4 ANALYSIS & RESULTS

Summary of Collected Data: During our crawl, for each of
the Alexa top 5K domains, we visit 4 URLs including the root
page URL. Each crawl is of depth 2 and width of 3 where the
root page is depth 0 and we find the 3 URLs to visit for the next
depth from the root page. As each URL was visited 5 times
over 3 browser configurations, it resulted in a maximum of 60
page visits for each crawl on a single VP given all page visits
were successful. We define a page visit to be a dead-end if the
visit finished with no HTML page content. In Figure 2, we
show the distribution of the page visits for the Alexa domains
excluding the dead-end pages over all VPs. All VPs show a
bimodal distribution - one of the modes being at the 60 pages
mark which is expected, the other at 15. Since we visit each
page 5 times over 3 browser configurations the mode at 15 in-
dicate no other pages beyond the root page was visited during
the crawl. This is particularly noticeable in case of Tor, where
the likelihood of having a captcha page returned for the root
page is higher compared to other VPs (approximately 12% of
all Tor pages had captcha presence compared to ~8% on other
VPs), with no URL harvesting possible.

20004 ™= Cloud

0+ ——

2000 4 Residential

2000 { ™= University

04~ — E—

2000 { ™== Tor

0 - ,-,

T T
0 10 20 30 40

L)

Figure 2: Completed pages withno dead-end across van-
tage points

Crawls by Headless | xvfb with xvfb with
Page Visited | Linux UA:Windows | UA:Linux
None 1,779 1,870 1,855
Mixed 5,310 6,547 6,519
Matched 17,911 16,583 16,626
Grand Total 25,000 25,000 25,000

Table 1: Crawls over configurations categorized by
number of pages visited successfully across vantage
points excluding Tor

We consider a page visit during crawling to be completed
when the visit succeeded without any error and the page was
marked finished. Based on this, we categorized our crawls
by the number of completed page visits across VPs into three
classes over the browser configuration used: none crawls are
those for which none of the page visits were completed, mixed
and matched are those for which the number of page visits are
different and exactly the same across VPs respectively. Table 1
shows the breakdown of crawls excluding Tor. When Tor is
included, the number of mixed crawls increases to 35,645 and
matched decreases to 34,428 due to Tor’s overall inconsistency
of page visits during crawls. Crawl set mix and match ratios
provide one of the only high-level results that show clear if
minor distinctions between browser configurations (BCs): the
headless BC resulted in more matched sets compared to the
more realistic but more heavy-weight “headed” BCs.

In Table 2, we display the major causes of page abort by per-
centage across VPs. The page navigation timeout was the most
prominent cause of page aborts during crawls. The absence of
DNS name resolution failure over the cloud and Tor, and sym-
metrically the absence of socks proxy connection error over
residential and university indicates that these errors are from
the same class. Due to cloud and Tor being connected to the

Error Type Cloud | Residential | Tor University
DNS Name N/A 426% | N/A 3.26%
resolve failed

SOCKS proxy 3.84% N/A | 4.05% N/A
connection error

Timeout during 3.50% 742% | 2.98% 3.42%
post-visit cleanup

Timeoutexceeded |,), 13.36% | 19.90% 10.69%
for navigation

Other 3.18% 3.72% 3.12% 3.99%
% of total failures | 19.84% 28.75% | 30.05% 21.36%

Table 2: Breakdown of abort causes of crawls

mmm Cloud

B Residential
N University
. Tor

Document

XHR

Script

Image

0.60 0.62 0.64 0.66 0.68 0.‘10 0.‘12 0.‘14 0.‘16

Figure 3: Initialized requests, percentage by resource
type across vantage points

primary cluster over a tunnel the DNS errors were perceived
as SOCKS proxy errors over these VPs.

During our data collection, we collected approximately 160
million request initializations over all VPs. Figure 3 displays
the percentage breakdown of the top 5 request initializations
by their requested resource type across the VPs. Images were
the largest request type covering more than 50% of the entire
collected request initializations. Among VPs, excluding Tor,
residential had lower number of requests compared to the
other two - cloud and university, which is evident also in the
figure for resource types image, script, and XHR. This can
be partially explained by the lack of network bandwidth for
the residential VP. To understand this empirical observation
further, we looked into the request initializations filtered by
the EasyList and EasyPrivacy URL filters.

URL Hits on Filter Lists: We matched ~25.51 million and
~50.03 million requests against EasyList (EL) and EasyPrivacy
(EP) respectively. Figure 4 depicts the ratio of the number of
request initializations that matched the rules on the EL filter
to the total request initializations across VPs, categorized by
the prominent resource types. From the figure, we can see that
despite the residential VP being limited in terms of network
bandwidth and capacity, it had similar (more in case of images)
ratio of matches for document and image resource types. As

mmm Cloud
B Residential
I University
= Tor

Stylesheet

Document

XHR

Script

Image

0.00

Figure 4: Ratio of EasyList requests to total requests
across vantage points by resource types

mm Cloud
B Residential
BN University
. Tor

Stylesheet

Document

XHR

Script

Image

0.00

Figure 5:Ratio of EasyPrivacy requests to total requests
across vantage points by resource types

HTML content (document resources) and images form the
majority of ads on the web and EL filter being an ad blacklist,
this implies cloud receiving lesser ad content compared to
residential and university VPs.

However, we observe differently on Figure 4, which dis-
plays the similar ratio between EP matches over all VPs, di-
vided by the top resource types. Here we see a decrease in
image type resources being matched for residential compared
to other vantage points. EP filter consists of tracker blacklist-
ing rules, and combining with the common practice of web
trackers to leverage of tiny images for ad tracking [4, 6], this
drop in image resource matches on EP filter points towards
increased presence of trackers over VPs other than residential.

The disparity of these results shows the pitfall of volumet-
ric analysis of requests and at the same time indicates the
presence of discrimination on VPs from the web. A better ap-
proach to explore and understand this discrimination would
be to examine the subset of third-party requests across van-
tage points, as both the EL and EP filters are comprised of
mostly third-party resource rules.

Frame-Origin Domains Clustered by Frames-Loaded-per-Vantage-Point

|eruapisal
w

3
Sy 4

3
5 4 (,\()\,\d

Figure 6: Visual clusters of VP-exclusive frame origin
domains

Comparison of Vantage Points: Figure 6 provides a mi-
crocosm of our results. Each marker denotes a distinct ori-
gin domain from which we observed third-party sub-frames
loaded. The three axes (log,,) denote volume of 3rd-party
frames loaded for visitors from a given VP (as only 3 dimen-
sions are available, Tor is excluded as the least interesting
VP for general-purpose measurement). The prominent, taper-
ing spike of markers extending toward the top left rides the
central diagonal of the plot: it comprises origins frequently
loaded for visitors from all VPs. A few outliers and strings of
markers lie in the lower corners of the plot: origins loaded ex-
clusively for visitors from a single VP. The only other visually
significant structure of markers is a faint but unmistakable
spike of markers climbing the cloud-0 wall: origins that loaded
somewhat frequently for visitors from residential and uni-
versity VPs, but never for cloud visitors. It is unlikely that
blind spot is simply a side-effect of localized ad targeting,
since there is no cluster of comparable range/mass along the
cloud-only axis.

5 RELATED WORK

This section describes prior work on measuring how websites
discriminate, or vary their content, depending on charac-
teristics of the visitor. We intentionally do not discuss work
focusing on censorship, as they focus on the inverse problem,
i.e., governments or network operators preventing users from
visiting certain types of content, independent of the wishes
of the content host.

Distributed Measurement Systems: Much prior work has
focused on the design and deployment of systems for detect-
ing when networks and site providers discriminate based
on visitor attributes, primarily IP address. Bajpai et al. [11]
provide a summary of this work, including the strengths, dif-
ferences, and lineages of existing proposals. In our study, we
are concerned about measuring how the web reacts when
visited from different VP endpoints.

PacketLab [16] proposes a universal measurement end-
point system by decoupling the measurement logic from the
actual system and adopting an access control system for the
physical endpoints. In contrast, our architecture is not con-
cerned about endpoint network infrastructure as a packet
source/sink, but distributed VPs measuring web content.
Website Discrimination: Other related work focuses on un-
derstanding the motivations behind, and frequency of, web-
sites presenting different content to different users. Some
researchers have focused on understanding when, why and
how websites block IP addresses for security reasons. Khattak
etal. [15] explores how websites treat requests coming from
the Tor network differently than “standard” internet traffic.
The work visits the 1k most popular websites and compares
how websites respond differently to Tor and non-Tor requests.
This work is similar to the Tor-related measurements in our
work, though over a smaller number of websites (1k versus 5k).
Afroz et al. [10] found that a significant amount of IP-based
blacklisting is likely unintended, and the result of overly-
general security policies on networks. Tschantz et al. [18]
looked into a variety of motivations for IP based blocking
and found that security was a major motivation, along with
political (i.e., GDPR) reasons.

Invernizzi et al. [13] investigated security-motivated IP
based discrimination from the inverse security motivation;
websites attempting to hide their malicious activities (instead
of websites shielding themselves from malicious visitors).
The authors found a large number of websites using IP lists
to show benign content to visitors coming from well known
measurement IPs, while showing malicious content to other
(assumed to be human) traffic.

Additional research has explored the motivations for web-
sites presenting different content to users based on their IP
addresses.Fruchter et al. [12] found that websites track users
differently, and to varying degrees, based on the regulations
of the country the visitor’s IP is based in. Iordanou et al. [14]
describes a system for measuring n how e-commerce web-
sites discriminate between users. The authors consider several
different motivations for discrimination, including geogra-
phy (measured by IP address), prior browsing behavior (e.g.,
tracking-derived PPI) of the user, and site A/B testing. The
authors find that the first and third motivations explain more
site “discrimination” than the second motivation.

6 CONCLUSION

We conclude with a few recommendations for future MVP
measurement studies. Such studies should implement the con-
trols we enumerate in Section 2 to minimize false differences
across VPs. Additional controls to consider include throttling
to achieve bandwidth and compute resource parity across re-
mote VPs. Given limited choice in class of VP, prefer research

university networks to cloud systems, as the former appear
to generalize slightly better to true residential browsing expe-

riences. Security and privacy researchers in particular should
beware of possible blind spots in third-party content coverage
from cloud VPs. We look forward to releasing our collected
data to the measurement research community.

REFERENCES

(1]

—
~
—

catapult - Git at Google. https://chromium.googlesource.com/catapult/.
Accessed: 2019-5-12.

EasyList. https://easylist.to/easylist/easylist.txt. Accessed: 2019-4-18.
EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt. Accessed:
2019-4-18.

facebook for developers: Facebook Pixel. https://developers.facebook.
com/docs/facebook-pixel. Accessed: 2019-05-12.

GitHub - marmelab/gremlins. https://github.com/marmelab/gremlins.
js. Accessed: 2019-5-12.

Google Analytics: Tracking Code Overview. https://developers.google.
com/analytics/resources/concepts/gaConceptsTrackingOverview. Ac-
cessed: 2019-05-12.

Puppeteer. https://pptr.dev/. Accessed: 2019-5-12.

Top 1 Million Alexa Domains. https://s3.amazonaws.com/alexa-static/
top-1m.csv.zip. Accessed: 2019-4-1.

Wappalyzer: Identify Technologies in Websites. https://github.com/
AliasIO/Wappalyzer. Accessed: 2019-05-13.

Sadia Afroz, Michael Carl Tschantz, Shaarif Sajid, Shoaib Asif Qazi,
Mobin Javed, and Vern Paxson. Exploring server-side blocking of
regions. arXiv preprint arXiv:1805.11606, 2018.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Vaibhav Bajpai and Jirgen Schonwélder. A survey on internet per-
formance measurement platforms and related standardization efforts.
IEEE Communications Surveys & Tutorials, 17(3):1313-1341, 2015.
Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako.
Variations in tracking in relation to geographic location. arXiv preprint
arXiv:1506.04103, 2015.

Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana
Comanescu, Jean-Michel Picod, and Elie Bursztein. Cloak of visibility:
Detecting when machines browse a different web. In Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, 2016.

Costas Iordanou, Claudio Soriente, Michael Sirivianos, and Nikolaos
Laoutaris. Who is fiddling with prices?: Building and deploying a
watchdog service for e-commerce. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 376-389.
ACM, 2017.

Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed, Srikanth
Sundaresan, Vern Paxson, Steven] Murdoch, and Damon McCoy.
Do you see what i see? differential treatment of anonymous users.
In Proceedings of the Symposium on Network and Distributed System
Security (NDSS). Internet Society, 2016.

Kirill Levchenko, Amogh Dhamdhere, Bradley Huffaker, Kc Claffy,
Mark Allman, and Vern Paxson. Packetlab: a universal measurement
endpoint interface. In Proceedings of the 2017 Internet Measurement
Conference, pages 254-260. ACM, 2017.

Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser
Feature Usage on the Modern Web. In Proceedings of the ACM SIGCOMM
conference on Internet measurement conference (IMC). ACM, 2016.
Michael Carl Tschantz, Sadia Afroz, Shaarif Sajid, Shoaib Asif Qazi,
Mobin Javed, and Vern Paxson. A bestiary of blocking: The motivations
and modes behind website unavailability. In 8th { USENIX} Workshop
on Free and Open Communications on the Internet ({FOCI} 18), 2018.

https://chromium.googlesource.com/catapult/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://developers.facebook.com/docs/facebook-pixel
https://developers.facebook.com/docs/facebook-pixel
https://github.com/marmelab/gremlins.js
https://github.com/marmelab/gremlins.js
https://developers.google.com/analytics/resources/concepts/gaConceptsTrackingOverview
https://developers.google.com/analytics/resources/concepts/gaConceptsTrackingOverview
https://pptr.dev/
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://github.com/AliasIO/Wappalyzer
https://github.com/AliasIO/Wappalyzer

	Abstract
	1 Introduction
	2 Design Considerations
	3 Crawler Infrastructure
	3.1 Collection Workflow

	4 Analysis & Results
	5 Related Work
	6 Conclusion
	References

