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Abstract

In this paper we present the design and implementa-
tion of a distributed static analysis framework that is
designed to scale with the size of the input. Our ap-
proach is based on the actor programming model and
is deployed in the cloud. Our reliance on a cloud cluster
provides a degree of elasticity for CPU, memory, and
storage resources. To demonstrate the potential of our
technique, we show how a typical call graph analysis
can be implemented in a distributed setting. The vision
that motivates this work is that every large-scale soft-
ware repository such as GitHub, BitBucket, or Visual
Studio Online will be able to perform static analysis on
a very large scale.

We experimentally validate our distributed analysis
approach using a combination of both synthetic and real
benchmarks. To show scalability, we demonstrate how
the analysis presented in this paper is able to handle
inputs that are almost 10 million LOC in size, with-
out running out of memory. Our results show that the
analysis scales well in terms of memory pressure inde-
pendently of the input size, as we add more VMs. As
the number of analysis VMs increases, we observe that
the analysis time generally improves as well. Lastly, we
demonstrate that querying the results can be performed
with a median latency of 15 ms.

1. Introduction

In the last decade, we have seen a number of attempts
to build increasingly more scalable whole program anal-
ysis tools. Advances in scalability have often come from
improvements in underlying solvers such as SAT and
Datalog solvers as well as sometimes improvements to
the data representation in the analysis itself; we have
seen much of this progress in the space of pointer anal-
ysis [5, 19, 20, 28, 30, 31, 44].

Limits of scalability: A typical whole-program anal-
ysis is designed to run on a single machine, primar-
ily storing its data structures in memory. Despite the

intentions of the analysis designer, this approach ulti-
mately leads to scalability issues as the input program
size increases, with even the most lightweight of anal-
yses. Indeed, if the analysis is stateful, i.e. it needs to
store data about the program as it progresses, typically,
in memory, eventually this approach ceases to scale to
very large inputs. Memory is frequently a bottleneck
even if the processing time is tolerable. We believe that
the need to develop scalable program analyses is now
greater than ever. This is because we see a shift toward
developing large projects in centralized source reposito-
ries such as GitHub, which opens up opportunities for
creating powerful and scalable analysis backends that
go beyond what any developer’s machine may be able
to accomplish.

Distributed analysis: In this paper we explore an
alternative approach to build distributed static analysis
tools, designed to scale with the input size, with the goal
of achieving full elasticity. In other words, no matter
how big the input program is, given enough computing
resources, i.e. machines to execute on, the analysis will
complete in a reasonable time. Our analysis architecture
assumes that the static analysis runs in the cloud, which
gives us elasticity for CPU and memory resources, as
well as storage. More specifically, in the context of large-
scale code repositories, even code understanding and
code browsing tasks are made challenging by the size of
the code base. We have seen the emergence of scalable
online code browsers such as Mozilla’s LXR [33]. These
tools often operate in batch mode, and thus have a
hard time keeping up with a rapidly changing code
repository in real time, especially for repositories with
many simultaneous contributors. In this paper we aim
to show how a more nimble system can be designed,
where analysis results are largely stored in memory,
spread across multiple machines. This design results in
more responsive queries to obtain analysis results.



1.1 Motivation: Static Analysis Backend

Imagine a large project hosted within a centralized
source repository such as GitHub or Visual Studio On-
line1. We see a clear emerging opportunity to perform
server-side analysis in such a setting. Indeed, the back-
ends of many such repositories consists of a large col-
lection of machines, not all of which are fully utilized
at any given time. During the downtime, some of the
available cycles could be used to do static analysis of the
code base. This can help developers with both program
understanding tasks such as code browsing as well as
other static analysis applications such as finding bugs.

The ever-changing code base: As shown in
Figure 1, multiple developers may constantly up-
date the code base, so it is imperative that the
server-side analysis be both responsive to read-
only user queries and propagate code updates fast.
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Figure 1: Analysis architecture:
the analysis is performed using
a cloud backend, using multiple
machines, with developers both
querying the results and sending
updates.

At the same time, within
a large code base, many
parts of the code, often
entire directories remain
unchanged for days or
months at a time. Of-
ten, there is no reason
to access these for anal-
ysis purposes. Therefore,
to ensure that we do not
run out of memory, it is
important to have a sys-
tem that is able to bring
analysis nodes into mem-
ory on demand and per-
sist them to disk (put
them to sleep) when they are no longer needed.

1.2 Call Graph Computation

In this paper we advocate the use of the actor model
as a building block of typical worklist-based analysis
approaches. More specifically, we use this approach to
implement a typical call graph construction algorithm.
While the algorithm itself is quite well-known and is not
a contribution of this paper, the way it is implemented
in a distributed setting is.

Call graph construction is a fundamental step of most
whole-program analysis techniques. However, most of
the time, call graph analysis computation is a batch
process: starting with one or more entry points such
as Main, the call graph is iteratively updated until no
more methods are discovered.

Interactive analysis: Our setting in this paper is a
little different. Our goal is to answer interactive user

1 More about Visual Studio Online is available
from https://www.visualstudio.com/en-us/products/

visual-studio-team-services-vs.aspx.

queries quickly. Our queries are the kind that are most
frequently posed in the context of code browsing and
debugging, and are already supported on a syntactic
level by many IDEs. Specifically, our analysis in this
paper has been developed to provide semantic, analysis-
backed answers for the following IDE-based tasks:

• Go to definition. Given a symbol in the program,
find its possible definitions2.

• Who calls me. Given a method definition, find all
of its callers.

• Auto-complete. Auto-completion, invoked when
the developer presses a dot is one of the most com-
mon and well-studied tasks within an IDE [11, 24,
29, 34–36]. If the variable or expressions on the left-
hand side of the dot is of a generic interface type,
completion suggestions be not particularly useful or
too general. It is therefore helpful to know which
concrete type flow to a given abstract location.

We have architected our analysis backend to respond
to REST calls [1] that correspond to the queries above
(we show some examples of such calls in Figure 15 in the
Appendix). These queries constitute an important part
of what is collectively known as language services and
can be issued by both online IDEs, sophisticated code
editors such as SublimeText, and full-fledged IDEs such
as Eclipse and Visual Studio. Figure 14 in the Appendix
shows some examples of an IDE in action, responding
to user interactions.

Soundness: Given the nature of such tasks that fo-
cus on program understanding, the goal is not to al-
ways be absolutely precise, but to be both useful to the
end user and responsive. Our analysis judiciously cuts
corners in the spirit of soundness [27]. As the analysis
results are used in an advisory role in the context of
program understanding in an interactive setting, com-
plete soundness is not the goal. While we focus on C#
as the input language, our work should apply equally
well to analyzing large projects in Java and other similar
object-oriented languages. It is not, however, our goal to
faithfully handle all the tricky language features such as
reflection, runtime code generation, and pinvoke-based
native calls.

1.3 Contributions

This paper makes the following contributions:

2 Note that this process is complicated by the presence of poly-
morphism, common in object-oriented languages. Given a call
site, it is not always possible to determine which is the actual
method implementation being invoked. This problem known as
call site devirtualization is well-studied in the literature. There-
fore, a static analysis can only over approximate the target
method definitions for a virtual method invocation.



• We propose a distributed static analysis approach
and show how to apply it to call graph construc-
tion for answering program understanding and code
browsing queries.

• We describe how our analysis framework is imple-
mented on top of the Orleans distributed program-
ming platform and is deployed on legacy hardware
in the cloud using Microsoft Azure.

• We experimentally demonstrate the scalability of our
technique using a range of synthetic and real bench-
marks. The results show that our analysis scales well
in terms of memory pressure independently of the in-
put size, as we add more machines. Elapsed analysis
times can vary based on project complexity.

Despite using stock hardware and incurring a non-
trivial communication overhead, we scale to inputs
containing 10 million LOC, and our processing time
for some benchmarks of close to 1 million LOC is
about 5 minutes, excluding compilation time. While
the communication overhead can become a bottle-
neck, we show that as the number of machines in-
creases (up to 64), the analysis time generally drops.
Lastly, we demonstrate that querying the results can
be performed with an acceptable median latency
of 15 ms.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2
provides a high-level overview of our distributed anal-
ysis approach. Section 3 describes the specifics of the
call graph construction algorithm. Section 4 discusses
some of the implementation details of our system on
top of the Orleans distributed programming framework.
Section 5 presents our experimental evaluation. Finally,
Sections 6 and 7 describe related work and conclude.
The Appendix contains extra screen-shots and figures.

2. Overview

Given the architecture shown in Figure 1, our goal is to
have the analysis backend respond to queries quickly,
independently of the input size. Of course, we also need
to make sure that the backend does not run out of
memory or timeout in some unpredictable way. Our
requirements force us to rethink some of the typical
assumptions of whole-program analysis.

2.1 Analysis Design Principles

We use a distributed actor model [4] as the basis of
our distributed static analysis engine. For a program
written in an object-oriented language such as Java or
C#, a natural fit is to have an actor per method within
the program3. These actors are responsible for receiv-

3 We could choose to have an actor per class in a program, or
other well-defined program entity.

1: while |MQ| > 0 do
2: 〈a,m〉 := MQ.choose()
3: v := UNPACK (m) tVALUE [a]
4: if v v VALUE [a] then
5: continue
6: end if
7: v′ := TF [a](v)
8: if v v v′ then
9: U := DELTA(v, v′)

10: for each u in U do
11: MQ := MQ ∪ PACK (a, u)
12: end for
13: VALUE [a] := v′

14: end if
15: end while

Figure 2: Distributed worklist algorithm.

ing messages from other actors, processing them using
local state (a representation of the method body, for
instance), and sending information to other methods
that depend on it. For example, for a call graph con-
struction analysis, actors representing individual meth-
ods may send messages to actors for their callers and
callees. Our analysis design adhere to the following dis-
tilled principles.

• Minimal in-memory state per actor. We want
to “pack” as many actors per machine as possi-
ble without creating undue memory pressure, which
could lead to swapping, etc.

• Design for lightweight serialization. We have
designed our analysis so that the updates sent from
one actor to another are generally small and easily
serialized. There is minimal sharing among actors,
as actor holds on to its local state and occasionally
sends small updates to others. The same principle
applies to persistent per-actor state as well. Even if
the in-memory state for an active actor is sizeable,
we only serialize the bare minimum to disk, before
the actor is put to sleep. This can happen when the
actor runtime decides to page an actor out due to
memory pressure or lack of recent use.

• State can be recomputed on demand. In a dis-
tributed setting, we have to face the reality that
processes may die due to hardware and/or software
faults. It is therefore imperative to be able to recover
in case of state loss. While it is possible to commit lo-
cal state to persistent store, we eschew the overhead
of such an approach and instead choose to recompute
per-node state on demand.

• Locality optimizations to minimize communi-
cation. We attempt to place related actors together
on the same machine. In the case of a call graph anal-
ysis, this often means that entire strongly connected
components co-exist on the same physical box, which
minimizes the number of messages that we actually
need to dispatch across the network.



2.2 Distributed Worklist Algorithm

We now present a high-level view of a distributed anal-
ysis problem as a pair 〈A,L〉 where:

• A is a set of actors distributed in a network.
• 〈L,v,t〉 is a complete semi-lattice of finite height.

Each actor a ∈ A has the following associated functions:

• VALUE [a] = v ∈ L is the local state of actor a;
• TF [a](v) = v′ ∈ L is the transfer function for

the local computation performed within actor a. We
assume TF is monotone;

The following helper functions are for communicating
state changes among actors:

• DELTA(v, v′) computes a set U of (global) updates
required when switching from local state v to v′;

• PACK (a, u) is a function that given an update at
actor a produces one or several messages to commu-
nicate to other actors.

• UNPACK (m) is a function that unpacks a message
and returns a value in L.

Figure 2 shows the pseudocode for a distributed worklist
algorithm. The algorithm makes use of a global message
queue, denoted as MQ4. The queue is initialized with a
set of starting messages that will depend on the actual
analysis instance.

2.3 Termination and Non-Determinism

Let H denote the (finite) height of semi-lattice L and
let N = |A|. Consider iterations through the loop on
line 1. Let’s consider two sets of sequences of iterations,
I1 are iterations that lead to a value increase on line 7
and I2 are those that do not.

We can have at most H × N iterations in I1 given
the finite size of the lattice. For iterations in I2, the
size of MQ decreases because at least one message is
consumed but it does not generate other messages. We
consider two possibilities:

• Starting from some iteration i, we only have itera-
tions in I2. This, however, means that on every it-
eration the size of MQ decreases, until it eventually
becomes empty.

• The other possibility is that we will have an infinite
number of iterations in I1 . This is clearly impossible
because the size of I1 is bounded by H ×N .

It is important to emphasize the difference between
this distributed algorithm and a single-node worklist
approach. If a message is in flight, we do not wish the

4 Note that MQ is a mathematical abstraction: we do not actually
use a global message queue in our implementation. Conceptually,
we can think of a (local) worklist maintained on a per-actor basis.
Termination is achieved when all the worklists are empty.

program analysis to terminate. However, detecting the
emptiness of MQ is not trivial, so in practice we must
have an effective means for detecting termination. We
make use of an orchestrator mechanism for termination
detection, as described in Section 4.5.

While the algorithm in Figure 2 reaches a fixpoint
independently of the arrival order of messages, it is
natural to ask whether that is the only fixpoint that
can be reached. Given that TF [a] is monotone and L
is of finite height the uniqueness of least fixpoint is
guaranteed [13, 23].

3. Call Graph Analysis

In this section we present an instantiation of the general
framework described in the previous section for comput-
ing call graphs. Our analysis is a distributed interproce-
dural and incremental inclusion-based static analysis in-
spired by the Variable Type Analysis (VTA) presented
in [41]. This flow-insensitive analysis computes the set of
potential types for each object reference (variable, field,
etc.) by solving a system of inclusion constraints. Be-
cause it propagates type constraints from object alloca-
tion sites to their uses, this kind of analysis is sometimes
referred to as concrete type analysis.

3.1 Program Representation

Propagation graphs: At the method level, the
inclusion-based analysis is implemented using a data
structure we call a propagation graph (PG) [41]. A PG
is a directed graph used to “push” type information to
follow data flow in the program, as described by analy-
sis rules. Our analysis naturally lands itself to incremen-
tality. A typical change in the program would require
often minimal recomputation within the modified code
fragment as well as propagation of that information to
its “neighbors”. Propagation graphs support incremen-
tal updates since the propagation of information is trig-
gered only when a new type reaches a node.

Terminology: More formally, let PG = 〈R,E〉 where
R denotes a set of abstract locations in the method (such
as variables and fields) and E refers to a set of edges
between them.

An edge e = (v1, v2) ∈ E connects nodes in the
PG to model the potential flow of type information
from v1 to v2. Essentially, an edge represents a rule
stating that Types(v2) ⊇ Types(v1) (e.g, v2 = v1). To
model interprocedural interaction, the PG also includes
special nodes for representing method invocations and
return values (rv). Finally, I ⊆ R denotes the set of
invocations. Let T be the set of all possible types,
dType contains declared types (compile-time types) for
abstract locations and Types denotes concrete types
inferred by our analysis.



v1 = v2 =⇒ Types(v1) ⊇ Types(v2)

v1 = v2.f =⇒ Types(v1) ⊇ Types(dType(v1).f)

v1.f = v2 =⇒ Types(dType(v1).f) ⊇ Types(v2)

v = new C() =⇒ C ∈ Types(v)

return v =⇒ Types(rv) ⊇ Types(v)

loc : v = v0.m(v1 . . . vn) =⇒ Types(invloc) ⊇
⋃

j=0..n

Types(vj)

Figure 3: VTA analysis rules.

3.2 Analysis Phases

In the actor model, the choice of granularity is key for
performance. We decided to use one actor per method.
Each method-level actor contains a PG that captures
type information that propagates through the method.

The analysis starts by analyzing an initial set of root
methods M0. We describe both intra- and interproce-
dural processing below.

3.2.1 Intraprocedural Analysis

Instantiating the problem: The lattice L for our
analysis consists of a mapping from abstract locations
to sets of possible types and is defined as

L = 〈Types : R 7→ 2T ,vtype,ttype〉

with vtype defined as

l1 vtype l2 iff l1.Types(r) ⊆ l2.Types(r),∀r ∈ R

and t defined as

l1 ttype l2 = l3 where

l3.Types(r) = l1.Types(r) ∪ l2.Types(r),∀r ∈ R.

Analysis rules that compute TF [a] are summarized
in Figure 3 and cover the typical statement types such
as loads, stores, allocations, etc. Object dereferences
(i.e., v.f) are represented by using the name of the class
defining the field. That is, the analysis is field-sensitive
but not object-sensitive. In the case of invocations there
is an inclusion relation to model the flow of all the
arguments to the invocation abstract location invloc ∈
I ⊆ R. Note that the left-hand side v of the invocation
is not updated by the rule since it depends on the
result of the invoked method. This will be handled by
interprocedural analysis.

Notice that TF [a] is monotone because the propaga-
tion of types never removes a type and L satisfies the
finite-height condition because it is a finite lattice.

3.2.2 Interprocedural Analysis

Once the intraprocedural phase finishes, relevant up-
dates must be communicated to the corresponding
methods (callees and callers). As mentioned, the analy-
sis considers invocations using the set I ⊆ R. To handle

callers’ updates, we need to extend the lattice to in-
clude the caller’s information for the current method.
This has the form 〈m, lhs〉, where m ∈ A denotes the
caller’s name and lhs ∈ R represents the left-hand side
of the invocation made by the caller. The extended lat-
tice is shown below.

L = 〈Types : R 7→ 2T × Callers : 2A×R,v,t〉

l1 v l2 iff l1 vtype l2 ∧
l1.Callers(r) ⊆ l2.Callers(r), ∀r ∈ R

l1 t l2 = (ts, cs) where

ts = l1 ttype l2 ∧
cs = l1.Callers(r) ∪ l2.Callers(r), ∀r ∈ R

A message m has the form 〈kind, d, data〉, where
kind ∈ {callMsg, retMsg} is the kind of message, d ∈ A
is the destination actor and data is a tuple.

Instantiating DELTA: In Figure 4a we show the def-
inition of the DELTA operation described in Section 2.
It computes the set of invocations that were affected by
the propagation. An invocation is affected if the set of
types flowing to any of its parameters grew. Addition-
ally, we also must consider changes in types that the
return value may correspond to, since they need to be
communicated to the callers.

Instantiating PACK : Figure 4b shows a definition of
PACK. This function is in charge of converting local
updates to messages that can be serialized and sent to
other actors. For each invocation, the analysis uses the
computed type information of the receiver argument to
resolve potential callees.

Then, it builds a caller message including the poten-
tial types for each argument. Those types will be added
to the set of types of the parameters on the caller actor.
In case of an update in return value it builds a message
to inform the caller about changes to the return value’s
types. This message includes the (original) caller’s left-
hand side, so that the caller can update its types.

Instantiating UNPACK : Function UNPACK in Fig-
ure 4c is responsible for processing messages received
by an actor. This function converts a message into a
value in the lattice of the local analysis that will be then
joined into the local state. A message can be either a call
message (i.e., an invocation made by a caller) or a return
message (i.e., to inform a change in the callee’s return
value). For call messages we produce an element that
incorporates the types for each call argument into the
method parameters. We also update the set of callers.
For return messages we need to update the left-hand
side of the invocation with the potential types of the
return value.



Example 1 This example illustrates the advantage of
using concrete types as opposed to declared types to
obtain more precision. Consider the small program in
Figure 5a. In Figure 5b we show the propagation graphs
for both methods. As the analysis starts, only the left-
hand sides of allocations (lines 2 and 11) contain types.

During propagation, type B flows from variable x

into an invocation of M as an argument. This triggers a
message to the actor for method B.M. The flow through
parameter p and w makes the return value of B.M to
contain type B. This in turn triggers a return message
that adds B to the types of y. This propagates to z.

let d(v, v′)(r) := v′.Types(r)− v.Types(r)

let Inv(v, v′) := {inv | inv ∈ I ∧ d(v, v′)(inv) 6= ∅}

let Rv(v, v′) :=

{
{rv} if d(v, v′)(rv) 6= ∅
∅ otherwise

DELTA(v, v′)
def
= Inv(v, v′) ∪Rv(v, v′)

(a) Definition of DELTA(v, v′)

let callees(inv) := {C.m|C ∈ l.Types(args(inv)0)}

let callMsg(a, inv) := 〈a, lhs(inv), l.Types(args(inv))〉
let callMsgs(a, inv) := {〈callMsg, d, callMsg(inv)〉

| d ∈ callees(inv)}
let returnMsg(a, c) := 〈a, lhs(c), l.Types(rv)〉

let retMsgs(a) := {〈retMsg,method(c), returnMsg(a, c)〉
| c ∈ l.Callers}

PACK (a, u)
def
=

{
callMsgs(a, u) if u ∈ I
retMsgs(a) if u = rv

(b) Definition of PACK (a, u). l.Types(args) is the lifting of
l.Types to the list of arguments, it returns a lists of set of types.
Given inv = 〈v = v0.m(v1 . . . vn)〉, args(inv) = [v0, v1, . . . , vn],
lhs(inv) = v. For a caller c = (m, lhs) ∈ l.Callers, method(c) =
m, the caller’s name and lhs(c) = lhs, the left-hand side of the
original invocation made by the caller.

let l1.Types(r) =

{
argTypes(m)i if r = pi
∅ otherwise

let l1.Callers = {(sender(m), lhs(m))}

let l2.Types(r) =

{
retTypes(m) if r = lhs(m)
∅ otherwise

UNPACK (m)
def
=

{
l1 if kind(m) = callMsg
l2 if kind(m) = retMsg

(c) Definition of UNPACK (m). For a message m =
〈callMsg, d, 〈a, lhs, [ts0, ts1, . . . , tsn]〉〉 argTypes(m)i = tsi, the
set of potential types for the ith argument pi. lhs(m) =
lhs, sender(m) = a. For a return message m′ =
〈retMsg, d, 〈a, lhs, ts〉〉, retTypes(m′) = ts is the set of potential
types of the method’s return value.

Figure 4: Defining DELTA, UNPACK , and PACK .

1 public static void Main() {
2 A x = new B(); // allocation
3 A y = x.M(x);
4 A z = y;
5 }
6 public class A {
7 public abstract A M(A p);
8 }
9 public class B : A {
10 public override A M(A p) {
11 A w = new B(); // allocation
12 return (p != null) ? p : w;
13 }
14 }

(a) Code example for interprocedural propagation.

A actual argument
of call M(x)

{}

A y
{}

A z
{}

A x
{B}

A p
{}

A returnValue
{}

A w
{B}

A actual argument
of call M(x)

{B}

A y
{B}

A z
{B}

A x
{B}

A p
{B}

A returnValue
{B}

A w
{B}

call message

return message

(b) PGs for methods Main and B.M before (left) and after (right)
the propagation for the code in Figure 5a.

Figure 5: Code and propagation graph for Example 1.

Concrete type analysis produces results that are more
accurate for y, z, etc. than what we can obtain from
their declared types.

Type approximation: In the interprocedural stage,
our analysis sends information about concrete parame-
ter types to its callees. However, when it comes to com-
plex, nested objects, this information is potentially in-
sufficient, as it only concerns one level of the object
hierarchy. Consider the following example:

void Main { void M(A p) {

A x = new B(); A z = p.f;

x.f = new B(); return z;

y = M(x) }

}

Function PACK will create a message that propagates
the type of x into M and UNPACK will discover the type
of p to be B. However, no information is given for the
type of p.f, potentially leading to unsoundness.

We could include information about the first (or kth)
level of references for parameter types. This may possi-
bly lead to larger message sizes, with many more types
included for complex objects, with limited benefit. This
size explosion could be mitigated by pruning these mes-
sages if callees’ method signatures include information
about the fields they read. We take an alternative ap-
proach and rely on Rapid Type Analysis (RTA) to main-
tain soundness at the cost of loosing some precision [8].



We use the type of p.f given by RTA; when RTA
provides no useful information, we fall back on declared
types. As usual, this kind of relaxation can lead to
imprecision that may be undesirable, i.e. too many
spurious suggestions may appear for auto-complete. We
did not observe it, an acceptable tradeoff would be
to choose an under-approximation instead of an over-
approximation here.

Other uses of the analysis framework: The dis-
tributed algorithm in Figure 2 can be instantiated
for other program analyses that follow the same de-
sign principle. For instance, consider an inclusion-based
analysis like Andersen’s points-to [7]. A possible instan-
tiation may be as follows: (1) Each node represents a
method; (2) The transfer function implements Ander-
sen’s inclusion rules locally and, in case there is a change
in an argument of a method invocation, produces an up-
date message to be sent to the potential callees; (3) Sim-
ilarly, by just replacing the inclusion rules with uni-
fication rules in the transfer function, we can turn it
into a unification based points-to analysis like Steens-
gaard’s [40]. We envision future work where our dis-
tributed backend would be combined with a natural
front-end for this kind of analysis that uses Datalog,
as previously proposed for single-machine analysis [22].

4. Implementation

We implemented a prototype of our distributed ap-
proach5 to analyze large-scale projects written in C#.
This prototype relies on Roslyn [32], a compiler frame-
work for analyzing C# code and the Orleans frame-
work [10], an implementation of a distributed actor
model that can be deployed in the cloud. Although
other deployment options such AWS are possible, for
this paper we used Azure as a platform for running our
experiments.

4.1 Orleans and the Actor Model

Orleans [10] is a framework designed to simplify the de-
velopment of distributed applications. It is based on the
abstraction of virtual actors. In Orleans terminology,
these actors are called grains. Orleans solves a num-
ber of the complex distributed systems problems, such
as deciding where — on which machine — to allocate
a given actor, sending messages across machines, etc.,
largely liberating developers from dealing with those
concerns. At the same time, the Orleans runtime is de-
signed to enable applications that have high degrees of
responsiveness and scalability.

Grains are the basic building blocks of Orleans appli-
cations and are the units of isolation and distribution.

5 Source code implementing the analysis in this paper is available
on GitHub. We are planning to provide a link in the final, de-
anonymized version of this paper.
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Figure 6: Logical organization of grains. The arrows show how
grains create each other: solution grains create project grains;
project grains create method grains, etc.

Every grain has a unique global identity that allows the
underlying runtime to dispatch messages between ac-
tors. An actor encapsulates both behavior and mutable
local state. State updates across grains can be initiated
using messages.

The runtime decides which physical machine (silo
in Orleans terminology) a given grain should execute
on, given concerns such as memory pressure, amount
of communication between individual grains, etc. This
mechanism is designed to optimize for communication
locality because even within the same cluster cross-
machine messages are considerably smaller than local
messages within the same machine.

4.2 Grain Organization

We follow a specific strategy in organizing grains at
runtime. This strategy is driven by the input structure.
The input consists of an MSBuild solution, a .sln file
that can be opened in Visual Studio. Each solution
consists of a set of project files, ∗.csproj, which may
depend on each other. Roslyn allows us to enumerate
all project files withing a solution, source files within a
project, classes within a file, methods within a class, etc.
Furthermore, Roslyn can use its build-in C# compiler
to compile sources on the fly. In Figure 6 we show how
grains are organized to follow this logical hierarchy.

We define grains for solutions, projects and meth-
ods. While we initially considered more levels in this
hierarchy, we do not find it necessary to provide grains
for classes and other higher-level code artifacts such as
documents or namespaces.

• A solution grain is a singleton responsible for main-
taining the list of projects and providing functional-
ity to find methods within projects.

• A project grain contains the source code of all files for
that project and provides functionality to compute
the information required by method grains (e.g., to
build propagation graphs by parsing the method
code) as well as type resolution (e.g., method lockup,
subtyping queries, etc).



• The method grain is responsible for computing the
local type propagation and resolve caller/callees
queries. It stores type information for the abstract
locations in the method.

The hierarchical grain organization in Figure 6 allows us
to minimize the amount of unnecessary IO. The solution
grain reads the ∗.sln file from cloud storage; in our
implementation we used Azure Files, but other forms
of input that support file-like APIs such as GitHub or
Dropbox are also possible. Project grains read ∗.csproj
files and also proceed to compile the sources contained
in the project to get a Roslyn Compilation object.
This information is only contained in the project grain
to minimize duplication. To obtain information about
the rest of the project, method grains can consult the
project grain. We use caching to reduce the number of
messages between grains.

Example 2 To illustrate persistent state for a typical
method grain, consider the example in Figure 5a. The
state of both methods is as follows.

Method Main:

Callers = {}

Types = {(x,{B}), (y,{B}), (z,{B}), (3,{B})}

Method B.M:

Callers = {(A.Main, y)}

Types = {(p,{B}), (w,{B}), (returnValue,{B})}

This minimal state is easily serialized to disk if the
grains are ever deactivated by the Orleans runtime.

4.3 Orleans-based Implementation

Orleans is built on a cooperative multitasking model. A
grain activation operates in discrete units of work called
turns and finishes each execution unit before moving
on to the next. A turn executes the computation to
handle requests from other grains or external clients
and to run closures at the resolution of a promise.
While a system may execute many turns belonging to
different activations in parallel, each activation always
executes its turns sequentially. Therefore, execution in
an activation is always logically single-threaded.

Asynchronous programming: Orleans is deeply
integrated with asynchronous programming in .NET,
which involves the async/await programming
paradigm. Orleans takes care of serializing mes-
sages and deserializing them on the side of the received.
This is achieved by Orleans rewriting calls such as

Task <Effects > effects = await GetEffects(method );

to perform cross-machine calls: method is serialized and
sent to the grain that executes GetEffects. The return
value effects is a promise for an eventual result. Note,
however, that serializing a complex object such as a
method may be taxing for the network and is largely

unnecessary. We take care to ensure that we avoid doing
so. A better approach here would be to call

string methodName = method.GetUniqueMethodName ();
Effects effects = await GetEffects(methodName );

where GetUniqueMethodName returns a short string.
Generally, we mostly pass around strings or lists of
strings; other complex in-memory types are “reduced”
to this simplified representation. Under the covers, the
transport layer may use JSON or another similar en-
coding to transmit the data.

Fault tolerance: In addition to helping with data
seamless passing across machine boundaries, Orleans
will automatically attempt message delivery several
times before throwing an exception. Moreover, Orleans
provides APIs for recovery of a grain in case of a fail-
ure. This allows us to find and request information from
the corresponding project grain to build the method-
level propagation graph. Similarly, project and solution
grains can recover information from the file storage in
case of a crash.

4.4 Distributed Analysis Challenges

Implementing a distributed system like ours is fraught
with three fundamental challenges.

Reentrancy: Since the callgraph can have cycles, a
grain can start a propagation which will in turn even-
tually propagate to the original method. However, since
Orleans uses turn-based concurrency this will create a
deadlock. Even without recursion it is possible for a
method grain that is currently being processed to re-
ceive another message (i.e. a return message).

Termination: In a distributed setting, detecting when
we achieve termination is not so easy. This is in part
because even if all the local worklists are empty, we
may have messages that are in flight or those that have
been delayed.

Timeouts: In a manner similar to other turn-based
concurrency systems (for instance, JavaScript in the
browser), in order to detect potential failures and dead-
locks, Orleans monitors the duration of calls to other
grains and terminates calls that it deems to be time-
outs. This has a number of undesirable consequences
such as exceptions that propagate throughout the sys-
tem. Some program analysis tasks, such as compiling
a project or creating a propagation graph for a long
method, may exceed the timeout that Orleans imposes.

4.5 Addressing Analysis Challenges

Näıve solution #1: Given the built-in powerful fea-
tures of Orleans, it is tempting to implement the main
worklist algorithm recursively, as shown in Figure 7.
Note that Orleans will rewrite async calls such as
callee.ProcessMethodAsync() to communicate across



1 foreach (var r in roots) {
2 var effects = await r.ProcessMethodAsync ();
3 // ...
4 }
5 class MethodGrain {
6 async Task <Effect > ProcessMethodAsync () {
7 // process local state
8 // ...
9 foreach (var inv in this.Invocations) {
10 var callees = this.ResolveCallees(inv);
11 foreach (var c in callees) {
12 var effects = [await] c.ProcessMethodAsync ();
13 // ...
14 }}}}

Figure 7: Näıve attempts #1 and #2: the keyword await of
line 12 is included in attempt #1, but not in attempt #2.

machines. Unfortunately, this näıve approach is not go-
ing to work well because of reentrancy issues: the call
on line 12 may affect the current grain directly (self-
recursion) or after a series of calls.

Näıve solution #2: A possible solution to the issue
of reentrancy is to not await the completion of calls on
line 12 in Figure 7. Doing so will allow other grains
to do their processing in parallel. This is sometimes
called “send-and-forget” style of asynchronous process-
ing. While this approach is likely to increase the level of
parallelism, it provides no easy way to detect global ter-
mination. Indeed, the top-level loop will return almost
immediately without waiting for the results to prop-
agate back. Besides, not awaiting the result has as a
consequence missing the exceptions may be thrown by
the callee.

Orchestrator: A more radical option is to use of an
orchestrator to establish some degree of centralized con-
trol over the propagation process. Grains communicate
with the orchestrator exclusively, instead of communi-
cating with each other peer-to-peer. This avoids the is-
sue of reentrancy by construction; only the orchestrator
can send messages to grains via a single message queue.

The orchestrator keeps track of the outstanding tasks
and can therefore detect both termination and prevent
reentrant calls from taking place. To overcome the issue
of timeouts, the orchestrator catches the timeout excep-
tions thrown by the grains. This is possible because the
orchestrator initiates all the chain of grain calls. The key
disadvantage of this design is that it is possible to have
a great deal of contention for access to the orchestra-
tor. We observed this in practice, suggesting a different
variant of this idea.

Reducing contention with multiple queues: In-
stead of having an unique centralized queue, we have
a collection of queues distributes across the distributed
system. Each method grain is a potential producer of ef-
fects to be processed by other method grains. To avoid
reentrancy, this information is not sent directly to the
target method grain but it is enqueued in one of the
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Figure 8: The multi-queue approach, illustrated. Method grains
are circles shown in light blue. Solid and dashed arrows represent
standard invocations and callbacks respectively.

queues in the round robin fashion. The information is
then consumed by dispatchers grains that pull the data
from the queues and deliver it to the corresponding
method grains; this is illustrated in Figure 8.

Using this mechanism we avoid both reentrancy, bot-
tlenecks and single points of failure. The drawback is
that detecting termination is more complex. For that,
we use timers to determine when a dispatcher becomes
idle (i.e., inactive longer than a predetermined thresh-
old), at which point we notify the client. The analysis
finishes when the client is sure that all dispatchers are
idle6.

In practice, we set the number of queues to be four
times higher than the number of worker VMs (for ex-
ample, 128 queues for 32 worker VMs) and set the ter-
mination threshold to 10 seconds.

4.6 Azure Deployment

Our analysis is deployed in Azure as illustrated in Fig-
ure 13 in the Appendix. On the left, there is the analysis
client such as an IDE or a code editor like SublimeText.
The cluster we used consists on one front-end VM and
a number of worker VMs. The client used REST re-
quests to communicate to the front-end VM. The job of
the front-end VM is to (1) accept and process external
analysis client requests; (2) dispatch jobs to the worker

6 We have a mechanism to detect the case when an idle dispatcher
becomes active again.



VMs and process the results; and (3) provide a Web UI
with analysis results and statistics.

In Figure 14 in the Appendix we show two screen-
shots of an experimental IDE prototype that uses the
API exposed by our analysis to resolve caller/callees
queries7. In Figure 15 in the Appendix, we show sev-
eral typical REST requests for common IDE navigation
tasks. The API is designed for use with a variety of
clients; for a task such as getting all references to a
symbol, we simply package up the name of the symbol
into a string and dispatch the request.

5. Evaluation

In our evaluation, we aim to answer the following three
research questions.

RQ1: Is our analysis capable of handling arbitrary
amounts of input (i.e., more lines of code, files,
projects, etc.) by increasing the number of worker
VMs, without running out of memory?

RQ2: While the communication overhead can become
significant, as more worker VMs are added, does an
increase in the number of worker VMs significantly
increase the overall analysis times?

RQ3: Is the analysis query latency small enough to
allow for interactive use8?

5.1 Experimental Setup

All the experiments presented in this paper were exe-
cuted in the cloud, on a commercially available Azure
cluster. We could also have used an AWS cluster, as
our dependency on Azure is small. The Azure clus-
ter we used for the experiments consists on one front-
end VM and up to 64 worker role VMs. The front-
end VM is an Azure VM with 14 GB of RAM (this
is an A4\ExtraLarge VM in Azure parlance9). Each
worker role is an Azure VM with 7 GB of RAM
(called A3\Large in Azure). For benchmarking pur-
poses, we run our analysis with configurations that in-
clude 1, 2, 4, 8, 16, 32, and 64 worker VMs. Note that
the orchestrator always resides in a single VM.

To collect numbers for this paper, we used a custom-
written experimental controller as our analysis client
throughout this section; this setup is illustrated in Fig-
ure 13 in the Appendix. The controller is scripted to
issue commands to analyze the next .sln file, collect
timings, etc.

7 Another example of such an IDE can be found at http://

source.roslyn.io/
8 Generally, query latencies of 10 to 20 ms are considered to be
acceptable.
9 Up-to-date VM specifications are available at https:

//azure.microsoft.com/en-us/documentation/articles/

virtual-workerVMs-size-specs/.

We heavily instrumented our analysis to collect a
set of relevant metrics. We instrumented our analysis
code to measure the analysis elapsed time. We intro-
duced wrappers around our grains (solution, project,
and method grains) to distinguish between local mes-
sages (within the same VM) and network messages. Us-
ing Orleans-provided statistics, we measured the max-
imum memory consumption per VM. Lastly, we also
have added instrumentation to measure query response
times. While these measurements are collected at the
level of an individual grain, we generally wanted to re-
port aggregates. In order to collect these, we posted
grain-level statistics to a special auxiliary grain.

5.2 Benchmarks

For our inputs, we have used two categories of bench-
marks, synthetic benchmarks we have generated specif-
ically to test the scalability of our call graph analysis
and a set of 3 real applications written in C# that push
our analysis implementation to be as complete as possi-
ble, in terms of handling tricky language features such
as delegate, lambdas, etc. and see the impact of deal-
ing with polymorphic method invocations. In all cases,
we start with a solution file (.sln) which references sev-
eral project files (.csproj), each of which in turn refer-
ences a number of C# source files (.cs).

Synthetic benchmarks: We designed a set of syn-
thetic benchmarks to test the scalability of our analysis
approach. These are solution files generated to have the
requisite number of methods (for the experiments, we
ranged that number between 1,000 and 1,000,000).

These methods are broken into classes, one class per
input file. The pattern of calls within this synthetic
code is set up to maintain a fixed average number of
callees per invocation and also to force all methods
to be reachable from root methods. The figure below
summarizes some statistics about the synthetic projects
we have used for this evaluation.

Benchmark LOC Projects Classes Methods

X1,000 9,196 10 10 1,000
X10,000 92,157 50 50 10,000
X100,000 904,854 100 100 100,000
X1,000,000 9,005,368 100 100 1,000,000

Real-world benchmarks: We have selected several
large open-source projects from GitHub for our anal-
ysis. A summary of information about these programs
in shown in Figure 9. We tried to focus on projects
that are under active development. To illustrate, one
of our benchmarks, Azure Powershell is one of the
most popular projects written in C# on GitHub. Ac-
cording to the project statistics, over a period of one
month in October–November 2015, 51 authors have
pushed 280 commits to the main branch and 369
commits to all branches. There have been 342,796
additions and 195,366 deletions. We picked solu-



tion ResourceManager.ForRefactoringOnly.sln from
Azure Powershell because it is the only one that con-
tains all the projects. Generally, discovering good root
methods to serve as starting points for the call graph
analysis is not trivial. Because there is no natural Main
method in several of these projects, we have decided to
use as entry points the included unit tests, event han-
dlers, and public methods within the project to in-
crease the number of methods our analysis reaches10.

5.3 [RQ1]: Scales with Input Size

To answer RQ1, we measured the memory consumption
of each VM and computed the average and maximum
memory consumption across all VMs. Figure 10a shows
the average memory consumption for each benchmark
during the run, for each experimental configuration,
i.e. number of worker VMs used. To give an aggregate
perspective of the effect that adding more VMs to the
mix has on memory pressure, Figure 10b shows the
memory consumption averaged across all benchmarks
shown for every cloud configuration.

As can be observed from the chart, the memory con-
sumption decreases steadily as the number of worker
VMs increases. Recall that worker VMs come equipped
with 7 GB of memory, so these memory consumption
numbers are nowhere near that limit. Looking at Fig-
ure 10a, we can see peaks of about 3.2 GB for a single
worker VM while analyzing X1,000,00011.

These experiments naturally highlight the notion of
analysis elasticity. While we run the analysis with dif-
ferent number of VMs set for the sake of measurement,
in reality, more machines would be added (or removed)
due to memory pressure (or lack thereof) or to respond
to how full analysis processing queues get. We can sim-
ilarly choose to increase (or decrease) the number of
queues and dispatchers involved in effect propagation.
It is the job of the Orleans runtime to redistribute the
grains to update the system with the new configuration.

RQ1: capable of handling input size?

The memory consumption per worker VMs steadily de-
creases as the number of worker VMs increases.

5.4 [RQ2]: Scales with the # of Worker VMs

To answer RQ2, we proceeded to measure the total
elapsed analysis time for each benchmark on all the
configurations. Figure 16 in the Appendix shows the
overall analysis and compilation times; the latter can
be quite substantial (i.e., about 3 minutes to compile
the larger benchmarks such as X100,000 and Azure-

10 Note that we do not analyze libraries provided as DLLs; our
analysis works at the source level only.
11 Note also that for that benchmark, we needed to use at least 16
worker VMs to fit all the methods into (their shared) memory. We
needed at least 4 worker VMs for X100,000.

PW). Analysis time is compared to compilation time
in Figure 17. Clearly, the analysis time is highly input
size-specific. It is therefore instructive to normalize the
analysis time by the input size. Figure 11 shows the
elapsed analysis time normalized by the number of
methods in the input.

Note that the real-world benchmarks shown on the
right-hand side of the chart, despite containing fewer
methods, require more time than the synthetic bench-
marks with 100,000 methods. This is simply because of
the analysis time that goes into analyzing more complex
method bodies.

Real-world benchmarks allocate more objects per
method, involving more type propagation time, and
perform more virtual invocations, adding to the method
resolution time, while the synthetic benchmarks only
perform static invocations and allocate relatively few
objects. As the number of worker VMs increases, we
see a consistent drop in the normalized analysis times.
However, this effect generally diminishes after 16 VMs.
This has to do with the tension between more parallel
processing power of more machines and the increase in
the network overhead, as shown below.

Degradation due to 
increased network overhead

Improvement due to 
increase parallelism

Balance between parallelism 
and network overhead

number of machines
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It is instructive to focus on the average number of
(unprocessed) messages in the analysis queues. If the
queues are too full, adding more machines will increase
the number of queues, reducing the size of each one.
More machines will increase the parallelism because of
more dispatchers to process the messages in the new
queues. As we add more resources, however, when the
queues become mostly empty, their associated dispatch-
ers will be mostly idle. So the cluster as a whole will have
more computing resources than needed. Additionally, if
more machines are added, the probability of sending a
message to a grain on the same machine as the sender
will be reduced, leading to more network overhead. So
after reaching a certain cut-off point, adding more ma-
chines is not only not helping the analysis, but starts to
degrade its performance.

RQ2: does adding more worker VMs in-
crease analysis time?

Normalized analysis time generally decreases, as the num-
ber of worker VMs increases, up to a point, where the law
of diminishing returns kicks in.
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Azure-PW https://github.com/Azure/azure-powershell 416,833 60 2,618 23,617 0 997 1 18,747 18,759 23,663

ShareX https://github.com/ShareX/ShareX 110,038 11 827 10,177 2 0 1,122 6,257 7,377 10,411

ILSpy https://github.com/icsharpcode/ILSpy 300,426 14 2,606 25,098 1 0 119 14,343 14,498 21,944

Figure 9: Summary of information about real-world projects from GitHub. The number of reachable methods include also library
methods invoked by the application methods. Note that some application methods might not be reachable.
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(b) Average memory consumption in KB/method, as a function
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similarly observe a steady decrease as the number of worker VMs
goes up. Fitting an exponential trend line to this data gives us
the following formula: M = 169.09/e0.728·m with R2 = 0.99545.

Figure 10: Average memory consumption.

5.5 [RQ3]: Fast Enough for Interactive Queries

One of the goals of our approach is to enable interac-
tive queries submitted by an analysis client such as an
IDE or a sophisticated code editor. In such a setting,
responsiveness of such queries is paramount [36]. The
user is unlikely to be happy with an IDE that takes
several seconds to populate a list of auto-complete sug-
gestions. We want to make sure that as the query times
remain tolerable (under 20 ms) even as the size of input
increases and the number of VMs goes up.
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Figure 11: Elapsed analysis time in ms, as a function of the
number of worker VMs per test, normalized by the number of
reachable methods. The number of worker VMs is indicated in
color in the legend above the figure.

To evaluate query performance, we automatically
generated sequences of 100 random queries, by repeat-
ing the following process. We would first pick a ran-
dom method name from the list of all methods. Then
we would (1) Request the solution grain for the corre-
sponding method grain; (2) Select a random invocation
from method and request the set of potential callees. In
Figure 12 we show the mean and median query times
(the latency of the two steps above) for each benchmark
and worker VM configuration.

RQ3: is response latency small enough?

The query median response time is consistently be-
tween 10 and 20 ms. Increasing the number of worker
VMs and the input size does not negatively affect the
query response times.

6. Related Work

There exists a wealth of related work on traditional
static analysis algorithms such as call graph construc-
tion. While we have seen dedicated attempts to scale up
important analyses such as points-to in the literature,
we are unaware of projects that aim to bring analysis
to the cloud.

6.1 Analysis

While our approach is general, the two types of analysis
below are most relevant for our effort. Note, however,
that given that our approach is designed for program



Figure 12: Mean and median query time in ms as a function of
the number of worker VMs for each of the synthetic tests.

understanding, we are satisfied with soundiness [27] and
not full soundness.

Concrete types: Most of the work in concrete type
inference for object-oriented programs goes back to the
early 1990s [2, 3, 12, 37, 39]. Many of these tech-
niques are now considered standard. Concrete type in-
ference generally does not require the same complexity
as a content-sensitive points-to analysis [25] would and
scales better as a result.

Call graph construction: Call graph construction for
object-oriented code was explored in the 1990s, with
standard algorithms such CHA and VTA proposed at
that time [17, 18, 42]. A comparison of analysis precision
is presented in Lhoták et al. [26]. Some of the recent
work focuses on call graph construction in the presence
of frameworks and libraries [6, 29]. We largely skirt that
issue in this paper, focusing on input being provided to
us in the form of source code.

6.2 Scaling up Static Analysis

Points-to analysis: Hardekopf et al. [20] show how
to scale up a flow-sensitive points-to analysis of LLVM
code using a staged approach. Their flow-sensitive al-
gorithm is based on a sparse representation of program
code created by a staged, flow-insensitive pointer anal-
ysis. They are able to analyze 1.9M LOC programs in
under 14 minutes. Their largest benchmark, however,
required a machine with 100 GB of memory, which is
generally beyond the reach of most people. Our focus,
in contrast, is on using legacy, low-cost hardware.

Hardekopf et al. [19] introduce and evaluate two
novel techniques for inclusion-based pointer analysis
that significantly improve scalability without negatively
impacting precision. These techniques focus on the
problem of online cycle detection, a critical optimiza-
tion for scaling such analyses. The combination of their
techniques is on average 3.2× faster than Heintze and

Tardieu’s algorithm [21], and 6.4× faster than Pearce et
al.’s algorithm [38], and 20.6× faster than Berndl [9].

Yu et al. [44] propose a method for analyzing pointers
in a program level by level in terms of their points-to lev-
els. This strategy enhances the scalability of a context-
and flow-sensitive pointer analysis. They demonstrate
that their analysis can handle some programs with over
a million lines of C code in minutes.

Mendez-Lojo et al. [31] propose a parallel analysis
algorithm for inclusion-based pointer analysis and show
a speed up of up to 3× on an 8-core machine on code
bases with size varying from 53 KLOC to 0.5 MLOC.
Our focus is on bringing our approach to the cloud and
going beyond multicore.

Voung et al. [43] propose a technique that uses the
notion of a relative lockset, which allows functions to be
summarized independent of the calling context. This,
in turn, allows them to perform a modular, bottom-
up analysis that is easy to parallelize. They have ana-
lyzed 4.5 million lines of C code in 5 hours, and after
applying some simple filters, found a total of 53 races.

Frameworks: Albarghouthi et al. [5] present a generic
framework to distribute top-down algorithms using a
map-reduce strategy. Their focus is in obtaining speed
ups in analysis elapsed times. Even tough they report
some potential improvements they admit that one im-
portant limiting scaling factor is memory consumption
and propose distributing their algorithm as future work.
McPeak et al. [30] propose a multicore analysis that al-
lows them to handle millions of lines of code in several
hours on an 8-core machine. In contrast, our approach
focuses on analysis within a cloud cluster on often less
powerful hardware.

Boa (Dyer et al. [14–16]) is a domain-specific lan-
guage for mining large code repositories like GitHub to
answer questions such as “how many Java projects use
SVN?” or “how many projects use a specific Java lan-
guage feature over the years”. Boa runs these queries
on a map-reduce cluster. However, while it uses a dis-
tributed backend, Boa is not a static analysis.

7. Conclusions

As modern development is increasingly moving to large
online cloud-backed repositories such as GitHub, Bit-
Bucket, and Visual Studio Online, there is a natural
tendency to wonder what kind of analysis can be per-
formed on large bodies of code. In this paper, we explore
an analysis architecture in which static analysis is exe-
cuted on a distributed cluster composed of legacy VMs
available from a commercial cloud provider.

We present the design and implementation of the
first static analysis approach designed for elasticity,
i.e. to scale gracefully with the size of the input. Our
static analysis is based on the actor programming model



build on top of the Orleans framework and deployed in
Microsoft Azure. To demonstrate the potential of our
techniques for static analysis, we show how a typical
call graph analysis can be implemented.

The analysis presented in this paper is able to han-
dle inputs that are almost 10 million LOC in size. Our
results show that our analysis scales well in terms of
memory pressure independent of the input size, as we
add more VMs. Despite using stock hardware and incur-
ring a non-trivial communication overhead, our process-
ing time for some of the benchmarks of close to 1 mil-
lion LOC can be about 5 minutes, excluding compila-
tion time. As the number of analysis VMs increases, we
show that the analysis time does not suffer. Lastly, we
demonstrate that querying the results can be performed
with a median latency of 15 ms.

In our future work we plan to investigate how to in-
crease the analysis throughput. We also want to under-
stand how to combine distributed processing with incre-
mental analysis: we are ultimately interested in design-
ing a distributed analysis that can respond quickly to
frequent updates in the code repository. We plan to in-
corporate the analysis into an IDE and to also perform
user studies.
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Figure 13: Azure-based deployment of our analysis. The majority of work happens within an Azure cluster, within worker VMs. The
analysis client interacts with the cluster via a front-end VM.

(a) Visualizing callees: call site on line 20 invokes function DoTest

on line 17.

(b) Visualizing callers: method Bar defined on line 12 is called on
line 23.

Figure 14: An experimental online IDE that uses analysis for resolving references for callees and callers.



Task issued by the client URL for the REST call Server-side request handler

Get all abstract locations in a
source code document

http://<hostname>:49176/api/

Orleans?filePath=program.cs

[HttpGet]
public async Task <IList <FileResponse >>
GetFileEntitiesAsync(string filePath)

Get symbol references http://<hostname>:49176/api/

Orleans?ruid=Program.Main

[HttpGet]
public async Task <IList <SymbolReference >>
GetReferencesAsync(string ruid)

Get symbol definitions http://<hostname>:49176/api/

Orleans?ruid=Program.Main@2

[HttpGet]
public async Task <IList <SymbolReference >>
GetReferencesAsync(string ruid)

Figure 15: Examples of interacting with the analysis backend via REST queries.
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Compilation 6 11 9 20 28 32 49 48 57 68 58 67 72 88 188 205 204 207 259 281 215 352

Analysis 25 25 26 22 22 21 28 130 115 77 52 52 47 41 609 371 298 237 284 3,704 2,666 2,514
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Machines 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Compilation 305 266 269 272 276 285 308 121 115 177 216 129 189 165 85 94 88 105 108 121 162

Analysis 670 373 298 238 210 183 190 1,281 1,214 1,063 931 677 576 568 280 246 190 152 122 105 111

Figure 16: Analysis and compilation times for synthetic and real benchmarks (in seconds).
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