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Abstract. Decentralized content curation is the process through which
uploaded posts are ranked and filtered based exclusively on users’ feed-
back. Platforms such as the blockchain-based Steemit6 employ this type
of curation while providing monetary incentives to promote the visibil-
ity of high quality posts according to the perception of the participants.
Despite the wide adoption of the platform very little is known regarding
its performance and resilience characteristics. In this work, we provide
a formal model for decentralized content curation that identifies salient
complexity and game-theoretic measures of performance and resilience
to selfish participants. Armed with our model, we provide a first analy-
sis of Steemit identifying the conditions under which the system can be
expected to correctly converge to curation while we demonstrate its sus-
ceptibility to selfish participant behaviour. We validate our theoretical
results with system simulations in various scenarios.

1 Introduction

The modern Internet contains an immense amount of data; a single user
can only consume a tiny fraction in a reasonable amount of time. There-
fore, any widely used platform that hosts user-generated content (UGC)
must employ a content curation mechanism. Content curation can be un-
derstood as the set of mechanisms which rank, aggregate and filter rele-
vant information. In recent years, popular news aggregation sites like Red-
dit7 or Hacker News8 have established crowdsourced curation as the pri-
mary way to filter content for their users. Crowdsourced content curation,

6 https://steemit.com/ Accessed: 2018-09-10
7 https://www.reddit.com/ Accessed: 2018-09-25
8 https://news.ycombinator.com/ Accessed: 2018-09-25
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as opposed to more traditional techniques such as expert- or algorithmic-
based curation, orders and filters content based on the ratings and feed-
back of the users themselves, obviating the need for a central moderator
by leveraging the “wisdom of the crowd” [1].

The decentralized nature of crowdsourced curation makes it a suit-
able solution for ranking user-generated content in blockchain-based con-
tent hosting systems. The aggregation and filtering of user-generated
content emerges as a particularly challenging problem in permissionless
blockchains, as any solution that requires a concrete moderator implies
that there exists a privileged party, which is incompatible with a permis-
sionless blockchain. Moreover, public blockchains are easy targets for Sybil
attacks, as any user can create new accounts at any time for a marginal
cost. Therefore, on-chain mechanisms to resist the effect of Sybil users are
necessary for a healthy and well-functioning platform; traditional counter-
Sybil mechanisms [2] are much harder to apply in the case of blockchains
due to the decentralized nature of the latter. The functions performed
by moderators in traditional content platforms need to be replaced by
incentive mechanisms that ensure self-regulation. Having the impact of
a vote depend on the number of coins the voter holds is an intuitively
appealing strategy to achieve a proper alignment of incentives for users
in decentralized content platforms; specifically, it can render Sybil attacks
impossible.

However, the correct design of such systems is still an unsolved prob-
lem. Blockchains have created a new economic paradigm where users are
at the same time equity holders in the system, and leveraging this prop-
erty in a robust manner constitutes an interesting challenge. A variety
of projects have designed decentralized content curation systems [3,4,5].
Nevertheless, a deep understanding of the properties of such systems is
still lacking. Among them, Steemit has a long track record, having been
in operation since 2016 and attaining a user base of more than 1.08 M9

registered accounts10. Steemit is a social media platform which lets users
earn money (in the form of the STEEM cryptocurrency) by both creating
and curating content in the network. Steemit is the front-end of the social
network, a graphical web interface which allows users to see the content of
the platform. On the other hand, all the back-end information is stored on
a distributed ledger, the Steem blockchain. Steem can be understood as

9 https://steemdb.com/accounts Accessed: 2018-09-25
10 The number of accounts should not be understood as the number of active users, as

one user can create multiple accounts.
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an “app-chain”, a blockchain with a specific application purpose: serving
as a distributed database for social media applications [4].
Our Contributions. In this work we study the foundations of decen-
tralized content curation from a computational perspective. We develop
an abstract model of a post-voting system which aims to sort the posts
created by users in a distributed and crowdsourced manner. Our model
is constituted by a functionality which executes a protocol performed by
N players. The model includes an honest participant behaviour while it
allows deviations to be modeled for a subset of the participants. The N
players contribute votes in a round-based curation process. The impact of
each vote depends on the number of coins held by the player. The posts
are arranged in a list, sorted by the value of votes received, resembling
the front-page model of Reddit or Hacker News. In the model, players
vote according to their subjective opinion on the quality of the posts and
have a limited attention span.

Following previous related work [6,1], we represent each player’s opin-
ion on each post (i.e. likability) with a numerical value l ∈ [0, 1]. The
objective quality of a post is calculated as the simple summation of all
players’ likabilities for the post in question. To measure the effectiveness
of a post-voting system, we introduce the property of convergence under
honesty which is parameterised by a number of values including a metric
t, that demands the first t articles to be ordered according to the objective
quality of the posts at the end of the execution assuming all participants
signal honestly to the system their personal preferences. Armed with our
post-voting system abstraction, we proceed to particularize it to model
Steemit and provide the following results.

i) We characterise the conditions under which the Steemit algorithm
converges under honesty. Our results highlight some fundamental lim-
itations of the actual Steemit parameterization. Specifically, for cu-
rated lists of length bigger than 70 the algorithm may not achieve
even 1-convergence.

ii) We validate our results with a simulation testing different metrics
based on correlation that have been proposed in previous works [7,8]
and relating them to our notion of convergence.

iii) We demonstrate that “selfish” deviation from honest behavior results
to substantial gains in terms of boosting the ranking of specific posts
in the resulting list of the post-voting system.
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2 Related Work

User-generated content (UGC) has been identified as a fundamental com-
ponent of social media platforms and Web 2.0 in general [9]. The content
created by users needs to be curated, and crowdsourced content cura-
tion [1] has emerged as an alternative to expert-based [10] or algorithmic-
based [11] curation techniques. Motivated by the widespread adoption of
crowdsourced aggregation sites such as Reddit or Digg11, several research
efforts [12,6,13] have aimed to model the mechanics and incentives for
users in UGC platforms. This surge of interest is accompanied by studies
which have shown how social media users behave strategically when they
publish and consume content [14]. As an example, in the case of Reddit,
users try to maximize their ‘karma’ [15], the social badge of the social
media platform [16].

Previous works have analyzed content curation from an incentives and
game-theoretic standpoint [6,12,17,14,13] . Our formalisation is based on
these models and inherits features such as the quality distribution of the
articles and the users’ attention span [1,6]. In terms of the analysis of our
results, the analysis of our t-convergence metric is similar to the top-k
posts in [1]. We also leverage the rank correlation coefficients Kendall’s
Tau [7] and Spearman’s Rho [8] to measure content curation efficiency.
Our approach describes the mechanics of post-voting systems from a com-
putational perspective, something that departs from the approach of all
previous works, drawing inspiration from the real-ideal world paradigm
of cryptography [18,19] as employed in our definition of t-convergence.

Post-voting systems constitute a special case of voting mechanisms,
as studied within social choice theory, belonging to the subcategory of
cardinal voting systems [20]. In this context, it follows from Gibbard’s
theorem [21] that no decentralised non-trivial post-voting mechanism can
be strategy-proof. This is consistent with our results that demonstrate
how selfish behaviour is beneficial to the participants. Our system shares
the property of spanning multiple voting rounds with previous work [22].
Other related literature in social choice [23,24,25] is centered on political
elections and as a result attempts to resolve a variation of the problem
with quite different constraints and assumptions. In more detail, in the
case of political elections, voter communication in many rounds is costly
while navigating the ballot is not subject to any constraints as voters are
assumed to have plenty of time to parse all the options available to them.
As a result, voters can express their preferences for any candidate, irre-
11 http://digg.com/ Accessed: 2018-09-25
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spective of the order in which the latter appear on the ballot paper. On
the other hand, the online and interactive nature of post-voting systems
make multi-round voting a natural feature to be taken advantage of. At
the same time, the fairness requirements are more lax and it is accept-
able (even desirable) for participants to act reactively on the outcome of
each others’ evaluations. On the other hand, in the post-voting case, the
“ballot” is only partially available given the high number of posts to be
ranked that may very well exceed the time available to a (human) user
to participate in the process. As a result a user will be unable to vote for
posts that she has not viewed, for instance, because they are placed in
the bottom of the list. This is captured in our model by introducing the
concept of “attention span.”

Content curation is also related to the concept of online governance.
The governance of online communities such as Wikipedia has been thor-
oughly studied in previous academic work [26,27]. However, the financially
incentivized governance processes in blockchain systems, where the vot-
ers are at the same time equity-holders, have still many open research
questions [28,29]. This shared ownership property has triggered interest
in building social media platforms backed by distributed ledgers, where
users are rewarded for generated content and variants of coin-holder vot-
ing are used to decide how these rewards are distributed. The effects of
explicit financial incentives on the quality of content in Steemit has been
analyzed in [30]. Beyond the Steemit’s whitepaper [4], a series of blog
posts [31,32] effectively extend the economic analysis of the system. In
parallel with Steemit, other projects such as Synereo[3] and Akasha12 are
exploring the convergence of social media and decentralized content cura-
tion. Beyond blockchain-based social media platforms, coin-holder voting
systems are present in decentralized platforms such as DAOs [33] and
in different blockchain protocols [34,35]. However, most of these systems
use coin-holder voting processes to agree on a value or take a consensual
decision.

3 Model

We first introduce some useful notation:

– We denote an ordered list of elements with A = [e1, . . . , en] and the
i-th element of the list with A [i] = ei.

– Let n ∈ N∗. [n] denotes {1, 2, . . . , n}.
12 https://akasha.world/ Accessed: 2018-09-25
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3.1 Post list

Definition 1 (Post). Let N ∈ N∗. A post is defined as p = (m, l), with
m ∈ [N ] , l ∈ [0, 1]N .

– Author. The first element of a post is the id of its creator, m.
– Likability. The likeability of a post is defined as l ∈ [0, 1]N .

N represents the number of voters (a.k.a. players). A post has a distinct
likability in [0, 1] for each player.

Definition 2 (Ideal Score of a post). Let post p = (m, l). We define

the ideal score of p as idealSc (p) =
|l|∑

i=1
li.

The ideal score of a post is a single number that represents its overall
worth to the community. By using simple summation, we assume that
the opinions of all players have the same weight.

Definition 3 (Post List). Let M ∈ N∗. A post list P = [p1, . . . , pM ]
is an ordered list containing posts. It may be the case that two posts are
identical.

In the case of many UGC platforms, e.g. Steemit, there exists a feed
(commonly named “Trending”) that displays the same ordered posts for
all users. In such an ordered list, posts placed closer to the top are more
visible on average, since users typically will consume content from top to
bottom. We can thus measure the quality of an ordered list of posts by
comparing it with a list that contains the same posts in decreasing order
of ideal score.

Definition 4 (t-Ideal Post Order). Let P a list of posts, t ∈ [M ]. The
property Idealt (P) holds if

∀i < j ∈ [t], idealSc (P [i]) ≥ idealSc (P [j]) .

We say that P has a t-ideal rank if Idealt (P) holds and t is the maximum
integer less or equal to M with this property.

3.2 Post Voting System

We now define an abstract post-voting system. Such a system is defined
through two Interactive Turing Machines (ITMs), GFeed and Πhonest. The
first controls the list of posts and aggregates votes, whereas one copy
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of the second ITM is instantiated for each player. GFeed sends the post
list to one player at a time, receives her vote and reorders the post list
accordingly. The process is possibly repeated for many rounds.

A measure of the quality of a post-voting system is the maximum t
such that the post list at the end of the process is in t-ideal order.

In a more general setting, some of the honest protocol instantiations
may be replaced with an arbitrary ITM. A robust post-voting system
should still produce a post list of high quality.

Definition 5 (Post-Voting System). Consider four PPT algorithms
Init,Aux,HandleVote and Vote. The tuple S consisting of the four
algorithms is a Post-Voting System. S parametrizes the following two
ITMs:
GFeed is a global functionality that accepts two messages: read, which

responds with the current list of posts and vote, which can take various
arguments and does whatever is defined in HandleVote.

Πhonest is a protocol that sends read and vote messages to GFeed when-
ever it receives (activate) from E.

Algorithm 1 GFeed (Init,Aux,HandleVote) (P, initArgs)
1: Initialization:
2: U ← ∅ . Set of players
3: Init (initArgs)
4:
5: Upon receiving (read) from upid:
6: U ← U ∪ {upid}
7: aux← Aux (upid)
8: Send (posts, P, aux) to upid

9:
10: Upon receiving (vote, ballot) from upid:
11: HandleVote(ballot)

Algorithm 2 Πhonest (Vote)
1: Upon receiving (activate) from E :
2: Send (read) to GFeed
3: Wait for response (posts, P, aux)
4: ballot← Vote (P, aux)
5: Send (vote, ballot) to GFeed
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Players are activated by an Environment ITM that sends activation mes-
sages (Algorithm 2, line 1).

Definition 6 (Post-Voting System Activation Message). We de-
fine actpid as the message (activate,pid), sent to upid.

Definition 7 (Execution Pattern). Let N,R ∈ N∗, N ≥ 2.

ExecPatN,R =
{(

actpid1 , . . . , actpidNR

)
:

∀i ∈ [R] ,∀k ∈ [N ] , ∃j ∈ [N ] : pid(i−1)N+j = k
}
,

i.e. activation messages are grouped in R rounds and within each round
each player is activated exactly once. The order of activations is not
fixed.

Let Environment E that sends messages msgs =
(
actpid1 , . . . , actpidn

)
sequentially. We say that E respects ExecPatN,R if msgs ∈ ExecPatN,R.
(Note: this implies that n = NR.)

Definition 8 ((N,R,M, t)-convergence under honesty).We say that
a post-voting system S = (Init,Aux,HandleVote,Vote) (N,R,M, t)-
converges under honesty (or t-converges under honesty for N players, R
rounds and M posts) if, for every input P such that |P| = M , for every
E that respects ExecPatN,R and given that all protocols execute Πhonest,
it holds that after E completes its execution pattern, GFeed contains a post
list P ′ such that Idealt (P ′) is true.

Note that concrete post voting systems may or may not give information
such as the total number of rounds R to the players. This is decided in
algorithm Aux.

We now give a high-level description of a concrete post voting system,
based on the Steemit platform. According to this mechanism, each player
is assigned a number called “Voting Power” (VP) in [0, 1], initialized to 1.
A vote is a pair containing a post and a weight w ∈ [0, 1]. Upon receiving a
list of posts, the honest player chooses to vote her most liked post amongst
the top attSpan posts of the list. The weight is chosen to be equal to the
respective likability. The functionality increases the score of the post by
aVPw + b and subsequently decreases the player’s voting power by the
same amount (but keeping it within the aforementioned bounds).

Definition 9 (Steemit system). The Steemit system is the post vot-
ing system S with parameters a, b, regen ∈ [0, 1] : a + b < 1,

⌈
a+b

regen

⌉
>

1, attSpan ∈ N∗. The four parametrizing procedures can be found in Ap-
pendix B.
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Remark 1. The constraint a + b < 1 ensures that a single vote of full
weight cast by a player with full voting power does not completely deplete
her voting power. The constraint

⌈
a+b

regen

⌉
> 1 excludes the degenerate case

in which the regeneration of a single round is enough to fully replenish
the voting power in all cases; in this case the purpose of voting power
would be defeated.

Remark 2. The Steem blockchain protocol defines a = 0.02, b = 0.0001
and regen = 3

5·24·60·60 = 0.00000694̄, thus
⌈

a+b
regen

⌉
= 2895. A post can be

voted for 7 days from its creation and at most one vote can be cast every
3 seconds, thus R = 7·24·60·60

3 = 201600.

Remark 3. We omit Steem Power, the voting-related currency of Steem
that helps to mitigate Sybil attacks from our model. Our main result
(Theorem 1, Corollary 1) operates with a set of independent non-Sybil
players.

Remark 4. Note (Algorithm 6, lines 24-40) that an honest player attempts
to vote for as many posts as possible and spreads her votes with the max-
imum distance between them. The purpose of this is to efficiently utilize
the available Voting Power to “make her voice heard”. Also, efficiently
using Voting Power on the Steemit website increases the voter’s curation
reward [31].

Theorem 1.

1. If R− 1 ≥ (M − 1)
⌈

a+b
regen

⌉
then Steemit (N,R,M,M)-converges.

2. If R−1 < (M−1)
⌈

a+b
regen

⌉
then Steemit does not (N,R,M, 1)-converge.

Proof Sketch. When R− 1 ≥ (M − 1)
⌈

a+b
regen

⌉
, there are enough rounds to

ensure full regeneration of every player’s voting power between two votes
and thus the resulting post list reflects the true preferences of the players.
In the opposite case, we can always craft a post list that exploits the fact
that some votes are cast with reduced voting power in order to trick the
system into placing a wrong post in the top position.

See Appendix A for full proof.

Corollary 1. The Steemit platform M -converges for M ≤ 70 posts. If
M > 70, then there exist lists of posts such that the system does not
1-converge.
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4 Simulation

The previous outcomes are here complemented with experiments that
verify our findings. We have implemented a simulation framework that
realizes the execution of Steemit’s post-voting system as defined above.

In particular, we consider two separate scenarios: First, we simulate
the case when all players follow the prescribed honest strategy of Steemit,
investigating how the curation quality of the system varies with the num-
ber of voting rounds. We successfully reproduce the result of Theorem 1,
which implies that the system converges perfectly when a sufficient num-
ber of voting rounds is permitted, but otherwise the resulting list of posts
may have a 0-ideal rank, i.e. the top post may not have the best ideal
score. Moreover, we compare our t-convergence metric with previously
used metrics of convergence based on correlation demonstrating that they
are very closely aligned.

The second case measures how resilient is the curation quality of
Steemit against dishonest agents. Since a creator is financially rewarded
when her content is upvoted, she has incentive to promote her own posts.
A combination of in-band methods (apart from striving to produce posts
of higher quality) can help her to that end. Voting for one’s own posts,
refraining from voting posts created by others and obtaining Sybil [36]
accounts that only vote for her posts are only an indicative subset. We
thus examine the quality of the resulting list when certain users do not
follow the honest protocol, but apply the aforementioned self-promoting
methods. We observe that there exists a cutoff point above which a small
increase in the number of selfish players has a detrimental effect to the
t-ideal rank of the post voting system. Furthermore, we measure the num-
ber of positions on the list that the selfish post gains with respect to the
number of selfish players.

4.1 Methodology

We leverage three metrics to compare the curated list with the ideal list:
Kendall’s Tau [7], Spearman’s Rho [8], and t-ideal rank.

In addition to the t-ideal rank and the rank correlation coefficients
used in the first scenario, in the case of dishonest participants we include
a metric that measures the gains of the selfish players. In particular, the
metric is defined as the difference between the real position of the “selfish”
post after the execution and its ranking according to the ideal order. We
are thus able to measure how advantageous is for users to behave selfishly.
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Furthermore, t-ideal rank informs us how this behavior affects the overall
quality of curation of the platform.

4.2 Execution

In all simulations, the likabilities of all “honest” posts have been drawn
from the [0, 1]-uniform distribution.

Scenario A As already mentioned, the results closely follow Theorem 1.
Figures 1 and 2 show the t-ideal rank and Kendall’s Tau coefficient re-
spectively when the number of rounds is enough for all votes to be cast
with full voting power. In particular, the parameters used are a = 1

50 , b =
10−4, regen = 3

5·24·60·60 , R = 200000, attSpan = 10, N = 270 and M = 70.
(Observe that R− 1 > (M − 1)

⌈
a+b

regen

⌉
.)

Fig. 1. t-ideal rank evolution with 270 honest players, 70 posts and 200.000 rounds

As we can see, both measures show that the real list converges rapidly
to the ideal order at the very end of the execution; meanwhile, the quality
of the list improves very slowly.
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Fig. 2. Kendall’s Tau and Spearman’s Rho evolution with 270 honest players, 70 posts
and 200.000 rounds

Figures 3 and 4 depict what happens when the rounds are not suf-
ficient for all votes to be cast with full voting power. In particular, the
corresponding simulation was executed with the same parameters, except
for M = 100 and N = 300. (Observe that R− 1 < (M − 1)

⌈
a+b

regen

⌉
.)

Here we see that at the end of the execution, only the first three
posts are correctly ordered. Regarding the rest of the list, both Kendall’s
Tau and Spearman’s Rho coefficients show that the order of the posts
improves only slightly throughout the execution of the simulation.

Scenario B: Selfish users. In order to understand how the presence of
voting rings/Sybil accounts affects the curation quality, we simulate the
execution of the game for various voting ring sizes. We fix the rest of the
system parameters so that the selfish post is handicapped. In particular,
the voting rounds are sufficient for all votes to be cast with full voting
power, the likability of the selfish post is 0 for all players and it is initially
placed at the bottom of the post list. Define the gain of the post of
the selfish players as its ideal position minus its final position. Figure 5
depicts the gain of the selfish post for a varying number of selfish players,
from 1 to 100. Figure 6 shows the t-ideal rank of the resulting list at
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Fig. 3. t-ideal rank evolution with 300 honest players, 100 posts and 200.000 rounds

Fig. 4. Kendall’s Tau and Spearman’s Rho evolution with 300 honest players, 100 posts
and 200.000 rounds

13



the same executions. For these simulations, the system parameters are
N = 101..200, a = 1

50 , b = 10−4, regen = 3
5·24·60 , attSpan = 10, R = 5000.

Fig. 5. Positions gained by selfish post with 100 honest players, 100 posts and 1 to 100
selfish players

5 Summary and Future Work

We have defined an abstract post-voting system, along with a particular-
ization inspired by the Steemit platform. We proved the exact conditions
on the Steemit system parameters under which it successfully curates
arbitrary lists of posts. We provided the results of simulations of the exe-
cution of the voting procedure under various conditions. Both cases with
only honest and mixed honest and selfish players were simulated. We
conclude that the Voting Power mechanism of Steem and the fact that
self-voting is a profitable strategy may hurt curation quality.

We have studied the curation properties of decentralized content cu-
ration platforms such as Steemit, obtaining new insights on the resilience
of these systems. Some assumptions have been made in the presented
model. Various relaxations of these assumptions constitute fertile ground
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Fig. 6. t-ideal rank with 100 honest players, 100 posts and 1 to 100 selfish players

for future work. First of all, the selfish strategy can be extended and re-
fined in various ways. For example, voting rings can have the ability to
create more than one posts in order to increase their rewards. Optimizing
the number of posts and the vote allocation in this case would contribute
towards a robust attack against the Steemit platform.

Selfish behavior is considered only in the simulation. Our analysis can
be augmented with a review of games with selfish players and voting rings.

Another open problem is the role of wealth distribution among players.
In Steemit, the influence of the votes is weighed by the amount of coins
each user has staked in the platform, a value known as Steem Power [4].
We have chosen to omit this concept, which mitigates the possibility of
Sybil attacks but increases the influence of wealthy individuals to the
curation procedure. Including the wealth distribution in our model will
allow to measure the influence of big stakeholders.

The addition of the economic factor invites the definition of utility
functions and strategic behavior for the players. Its inclusion would imply
the need for an expansion of our theorems and definitions to the strategic
case, along with a full game-theoretic analysis. Furthermore, several pos-
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sible refinements could be introduced; for example, the process of creating
Sybil accounts could be associated with a monetary cost.

Last but not least, in our model, posts are created only at the begin-
ning of the execution. An extended model in which posts can be created
at any time and the execution continues indefinitely (as is the case in a
real-world UGC system) is also interesting as a future direction.

Appendix A Proof of Theorem 1: Steem convergence

Proof. – Statement 1: Suppose that

R− 1 ≥ (M − 1)
⌈
a+ b

regen

⌉
. (1)

Let pid ∈ [N ]. In this case it is R ≥M and according to VoteThis-
Round in Algorithm 6, upid votes non-null in rounds (r1, . . . , rM ) with
ri =

⌊
(i− 1) R−1

M−1

⌋
+ 1. Observe that:

(1)⇒ R− 1
M − 1 ≥

⌈
a+ b

regen

⌉
rhs⇒

integer

⌊
R− 1
M − 1

⌋
≥
⌈
a+ b

regen

⌉
, (2)

∀i ∈ [M ] \ {1} , ri ∈
{
ri−1 +

⌊
R− 1
M − 1

⌋
, ri−1 +

⌈
R− 1
M − 1

⌉}
. (3)

From (2) and (3) we have that ∀i ∈ [M − 1] , ri+1 − ri ≥
⌈

a+b
regen

⌉
. We

will now prove by induction that ∀i ∈ [M ] ,VPpid,ri = 1.

• For i = 1,VPpid,1 = 1 (Algorithm 3, line 4).
• Let VPpid,ri = 1. Until ri+1, a single non-null vote is cast by upid,
which reduces VPpid by at most a + b (Algorithm 5, line 7) and
at least

⌈
a+b

regen

⌉
regenerations, each of which replenishes VPpid by

regen. Thus

VPpid,ri+1 ≥ min
{
VPpid,ri − a− b+ regen

⌈
a+ b

regen

⌉
, 1
}
≥ 1 .

But VPpid cannot exceed 1 (line 4), thus VPpid,ri+1 = 1.

Since the above holds for every pid ∈ [N ], it holds that at the end of
the execution, all votes have been cast with full voting power, thus

∀i ∈ [M ] , scR (P [i]) = Nb + a
N∑

pid=1
P [i]pid and the posts in PR are
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sorted by decreasing score (Algorithm 5, line 20). We observe that

∀i 6= j ∈ [M ] , idealSc (P [i]) > idealSc (P [j])⇒
N∑

pid=1
P [i]pid >

N∑
pid=1

P [j]pid ⇒

Nb+ a
N∑

pid=1
P [i]pid > Nb+ a

N∑
pid=1

P [j]pid .

Thus all posts will be ordered according to their ideal scores; put
otherwise, IdealScoreM (PR) holds.

– Statement 2: Suppose that

R− 1 < (M − 1)
⌈
a+ b

regen

⌉
. (4)

Several lists of posts will be defined in the rest of the proof. Given that,
when all players are honest, the creator of a post is irrelevant, we omit
the creator from the definition of posts to facilitate the exposition.
Thus every post will be defined as a tuple of likabilities.
First, we consider the case when

attSpan +R ≤M . (5)

In this case, no player can ever vote for the last post, as we will show
now. First of all, (5)⇒ R < M , thus all players cast R votes in total.
Let pid ∈ N, i ∈ [R] and vpid,i the index of the last post that has ever
been in upid’s attention span until the end of round i, according to
the ordering of P. It is vpid,1 = attSpan and ∀i ∈ [R] \ {1} , vpid,i =
vpid,i−1 + 1, since in every round upid votes for a single post and
the first unvoted post of the list is added to their attention span.
Note that, since this mechanism is the same for all players, the same
unvoted post is added to all players’ attention span at every round.

Thus ∀pid ∈ N, vpid,R = attSpan + R − 1
(5)
< M . We deduce that no

player has ever the chance to vote for the last post.
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The above observation naturally leads us to the following counterex-
ample: Let

strongPost =

1, . . . , 1︸ ︷︷ ︸
N


nullPost =

0, . . . , 0︸ ︷︷ ︸
N



P =

nullPost, . . . ,nullPost︸ ︷︷ ︸
M−1

, strongPost


∀i ∈ [M − 1] , it is idealSc (P [M ]) > idealSc (P [M ]), thus ∀P ′ that
contain the same posts as P and Ideal1 (P ′) holds, it is P ′ [1] =
P [M ]. However, since the last post is not voted by any player and the
first post is voted by at least one player, it is scR (P [1]) > scR (P [M ]),
thus Ideal1 (PR) does not hold.
We now move on to the case when attSpan + R > M . Let V =
min {R,M}. Each player casts exactly V votes. Consider P1 = 1M×N

and pid ∈ [N ]. Let

i ∈ [V ] :
(
VPregpid,ri

< 1 ∧ @i′ < i : VPregpid,ri′
< 1

)
,

i.e. i is the first round in which upid votes with less than full voting
power. Such a round exists in every case as we will show now. Note
that, since the first round is a voting round and the voting power of
all players is full at the beginning, if i exists it is i ≥ 2.
• If R ≥M , it is V = M .

If @i ∈ [M ] :
(
VPregpid,ri

< 1 ∧ @i′ < i : VPregpid,ri′
< 1

)
, then

∀i ∈ [M ] ,VPregpid,ri
= 1 ⇒ ∀i ∈ [M ] \ {1} , ri ≥ ri−1 +

⌈
a+b

regen

⌉
to have enough rounds to replenish the voting power after a full-
weight, full-voting power vote. Thus rM ≥ 1 + (M − 1)

⌈
a+b

regen

⌉
>

R, contradiction.
• If R < M , every player votes on all rounds, thus r2 = 2. Note that⌈

a+ b

regen

⌉
≥ 2⇒ a+ b

regen > 1⇒ a+ b > regen . (6)

Thus ∀pid ∈ [N ] ,VPregpid,r2 = 1− a− b+ regen
(6)
< 0, thus i = 2.
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We proved that i exists. Since all players follow the same voting
pattern, the voting power of all players in each round is the same.
Let rVP = VPreg1,ri

. Assume that attSpan < i ∨ i > 2. We cover
the case where attSpan ≥ i ∧ i = 2 later. In case N is even, let
0 < γ < 0, 0 < ε < γ (1− rVP),

weakPost =

1, . . . , 1︸ ︷︷ ︸
N/2

, γ − ε, . . . , γ − ε︸ ︷︷ ︸
N/2

 ,

strongPost =

γ, . . . , γ︸ ︷︷ ︸
N/2

, 1, . . . , 1︸ ︷︷ ︸
N/2

 ,

nullPost =

0, . . . , 0︸ ︷︷ ︸
N

 ,

P =

weakPost, . . . ,weakPost︸ ︷︷ ︸
i−1

, strongPost, nullPost, . . . ,nullPost︸ ︷︷ ︸
M−i

 .

First of all, it is

∀j ∈ [i− 1] , idealSc (P [j]) = N

2 (1 + γ − ε) <

<
N

2 (1 + γ) = idealSc (P [i])

and ∀j ∈ {i+ 1, . . . ,M} , idealSc (P [j]) = 0 < idealSc (P [i]), thus the
strong post has strictly the highest ideal score of all posts and as a
result, ∀P ′ that contains the same posts as P and Ideal1 (P ′) holds,
it is P ′ [1] = P [i].
We observe that all players like both weak and strong posts more
than null posts, thus no player will vote for a null post unless her
attention span contains only null posts. This can happen in two cases:
First, if the player has not yet voted for all non-null posts, but the
first attSpan posts of the list, excluding already voted posts, are null
posts. Second, if the player has already voted for all non-null posts.
For a null post to rank higher than a non-null one, it must be true
that there exists one player that has cast the first vote for the null
post. However, since the null posts are initially at the bottom of the
list and it is impossible for a post to improve its ranking before it is
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voted, we deduce that this first vote can be cast only after the voter
has voted for all non-null posts. We deduce that all players vote for
all non-null posts before voting for any null post.
We will now see that the first N

2 players vote first for all weak posts
and then for the strong post. These players like the weak posts more
than the strong post. As we saw, they will not vote any null post before
voting for all non-null ones. If attSpan > 1 they vote for the strong
post only when all other posts in their attention span are null ones and
thus they will have voted for all weak posts already. If attSpan = 1
and since no post can increase its position before being voted, the
strong post will become “visible” for all players only once they have
voted for all weak posts. Thus in both cases the first N

2 players vote
for the strong post only after they have voted for all weak posts first.
The two previous results combined prove that the first N

2 players vote
for the strong post in round ri exactly. We also observe that these
players have experienced the exact same voting power reduction and
regeneration as in the case of P1 since they voted only for posts with
likeability 1, thus in round ri their voting power after regeneration is
exactly the same as in the case of P1 : ∀pid ∈

[
N
2

]
,VPregpid,ri

=
rVP.
We observe that the first N

2 players vote for all weak posts with full
voting power. As for the last N

2 players, we observe that, if attSpan <
i, they all vote for the first weak post of the list in the first round,
and thus with full voting power. If attSpan ≥ i and i > 2, they vote
for the strong post in the first round and for the first weak post in
r2 with full voting power. Thus in all cases the last N

2 players vote
for the first weak post with full voting power. Therefore, the score
of the first weak post at the end of the execution is scR (P [1]) =
N
2 (a+ b) + N

2 ((γ − ε) a+ b).
On the other hand, at the end of the execution the strong post has
been voted by the first N

2 players with rVP voting power and by the
last N

2 players with at most full voting power, thus its final score will
be at most scR (P [i]) ≤ N

2 (rVP · γa+ b) + N
2 (a+ b). It is

ε < γ (1− rVP)⇒
N

2 (rVP · γa+ b) + N

2 (a+ b) < N

2 (a+ b) + N

2 ((γ − ε) a+ b)⇒

scR (P [i]) < scR (P [1]) .

Thus PR [1] 6= P [i] and Ideal1 (PR) does not hold.
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As for the case when N is odd, let 0 < ε < γN−3
N−1 (1− rVP). In

this case, we assume that the likeability of the first i posts (weak and
strong) for the last player is γ, whereas the likeability of the lastM−i
posts (the null posts) is 0. This means that the last player votes first
for the weak and strong posts and then for the null posts. The rest
of the likabilities remain as in the case when N is even. We observe
that the ideal score of the strong post is still strictly higher than the
rest. Furthermore, since the last player votes for the first weak post
within the first i voting rounds, her voting power at the time of this
vote will be at least rVP. We thus have the following bounds for the
scores:

scR (P [i]) ≤ N − 1
2 (rVP · γa+ b) + N − 1

2 (a+ b) + γa+ b ,

scR (P [1]) ≥ N − 1
2 (a+ b) + N − 1

2 ((γ − ε) a+ b) + rVP · γa+ b .

Given the bounds of ε, it is scR (P [i]) < scR (P [1]), thus Ideal1 (PR)
does not hold.
We finally cover the previously untreated edge case where attSpan ≥
i ∧ i = 2. rVP is defined like before. We first consider the case when
N is even and greater than 2: ∃k ∈ N \ {0, 1} : N = 2k. Let 0 < γ <
1, 0 < ε < 2γ 1−rVP

(k−1)rVP ,

weakPost =

1, . . . , 1︸ ︷︷ ︸
k−1

, γ − ε, . . . , γ − ε︸ ︷︷ ︸
k−1

, γ, γ

 ,

strongPost =

γ, . . . , γ︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
k−1

, γ, γ

 ,

P =

weakPost, strongPost, nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

 .

We first observe that

∀j ∈ {3, . . . ,M} , idealSc (P [j]) = 0 <
< idealSc (P [1]) = k − 1 + (k − 1) (γ − ε) + 2γ =

= k − 1 + (k + 1) γ − (k − 1) ε <
< k − 1 + (k + 1) γ = idealSc (P [2]) ,
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thus the strong post has strictly the highest ideal score of all posts and
as a result, ∀P ′ that contains the same posts as P and Ideal1 (P ′)
holds, it is P ′ [1] = P [2].
The first k − 1 and the last two players vote first for P [1] and then
for P [2], whereas players k, . . . , 2k−2 vote first for P [2] and then for
P [1], thus at the end of the execution,

scR (P [1]) = (k − 1) (a+ b) + 2 (γa+ b) + (k − 1) ((γ − ε) rVPa+ b) ,

scR (P [2]) = (k − 1) (a+ b) + (k + 1) (γrVPa+ b) .

Given the bound on ε, it is scR (P [1]) > scR (P [2]), thus Ideal1 (PR)
does not hold.
Second, we consider the case when N is odd: ∃k ∈ N : N = 2k + 1.
Let 0 < γ < 1, 0 < ε < γ 1−rVP

krVP ,

weakPost =

1, . . . , 1︸ ︷︷ ︸
k

, γ − ε, . . . , γ − ε︸ ︷︷ ︸
k

, γ

 ,

strongPost =

γ, . . . , γ︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
k

, γ

 ,

P =

weakPost, strongPost, nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

 .

We first observe that

∀j ∈ {3, . . . ,M} , idealSc (P [j]) = 0 <
< idealSc (P [1]) = k + k (γ − ε) + γ =

= k + (k + 1) γ − kε < k + (k + 1) γ = idealSc (P [2]) ,

thus the strong post has strictly the highest ideal score of all posts and
as a result, ∀P ′ that contains the same posts as P and Ideal1 (P ′)
holds, it is P ′ [1] = P [2].
The first k and the last player vote first for P [1] and then for P [2],
whereas players k + 1, . . . , 2k vote first for P [2] and then for P [1],
thus at the end of the execution,

scR (P [1]) = k (a+ b) + γa+ b+ k ((γ − ε) rVPa+ b) ,

scR (P [2]) = k (a+ b) + (k + 1) (γrVPa+ b) .
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Given the bound on ε, it is scR (P [1]) > scR (P [2]), thus Ideal1 (PR)
does not hold.
Last but not least, we consider the case when N = 2. In this case, let
0 < γ < 1 and

P =

(1, 0) ,
(
γ, 1− γ 1 + rVP

2

)
, nullPost, . . . ,nullPost︸ ︷︷ ︸

M−2

 .

It is ∀j ∈ {3, . . . ,M} , idealSc (P [j]) = 0 < idealSc (P [1]) = 1
rVP<1
<

1 + γ 1−rVP
2 = γ + 1− γ 1+rVP

2 = idealSc (P [2]), thus P [2] has strictly
the highest ideal score of all posts and as a result, ∀P ′ that contains
the same posts as P and Ideal1 (P ′) holds, it is P ′ [1] = P [2].
On the other hand, scR (P [1]) = a+2b > γrVPa+b+

(
1− γ 1+rVP

2

)
a+

b = scR (P [2]), thus Ideal1 (PR) does not hold.
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Appendix B Steem post voting system procedures

Algorithm 3 Init (attSpan, a, b, regen, R)
1: Store input parameters as constants
2: r ← 1
3: lastVoted← (0, . . . , 0) ∈ (N∗)N

4: VP← (1, . . . , 1) ∈ [0, 1]N

5: scores← (0, . . . , 0) ∈
(
R+)M

Algorithm 4 Aux
1: return (attSpan, a, b, r, regen, R)

Algorithm 5 HandleVote (ballot, upid)
1: if lastVotedpid 6= r then . One vote per player per round
2: VPpid,r ← VPpid . For proofs
3: VPpid ← max {VPpid + regen, 1}
4: VPregpid,r ← VPpid . For proofs
5: if ballot 6= null then
6: Parse ballot as (p, weight)
7: cost← a ·VPpid · weight + b
8: if VPpid − cost ≥ 0 then
9: score← cost · SPpid
10: VPpid ← VPpid − cost
11: else
12: score← VPpid · SPpid
13: VPpid ← 0
14: end if
15: scoresp ← scoresp + score
16: end if
17: lastVotedpid ← r
18: end if
19: if ∀i ∈ [N ] , lastVotedi = r then . round over
20: P ← Order (P, scores) . order posts by votes
21: Pr ← P . For proofs
22: r ← r + 1
23: end if . TODO: count rounds? simplify with set of voted and check of length?
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Algorithm 6 Vote (P, aux)
1: Store aux contents as constants
2: voteRounds← VoteRounds (R, |P|)
3: if VoteThisRound (r, |P|) = yes then
4: top← ChooseTopPosts (attSpan,P, votedPosts)
5: (i, l)← argmax

(i,l)∈top
{lpid}[1]

6: votedPosts← votedPosts ∪ (i, l)
7: return ((i, l) , lpid)
8: else
9: return null
10: end if
11:
12: function ChooseTopPosts(attSpan,P, votedPosts)
13: res← ∅
14: idx← 1
15: while |res| < attSpan & idx ≤ |P| do
16: if P [idx] /∈ votedPosts then . One vote per post per player
17: res← res ∪ {P [idx]}
18: end if
19: idx← idx + 1
20: end while
21: return res
22: end function
23:
24: function VoteThisRound(r, M)
25: if R < M then
26: return yes
27: else if r ∈ voteRounds then
28: return yes
29: else
30: return no
31: end if
32: end function
33:
34: function VoteRounds(R, M)
35: voteRounds← ∅
36: for i = 1 to M do
37: voteRounds← voteRounds ∪

{
1 +

⌊
(i− 1) R−1

M−1

⌋}
38: end for
39: return voteRounds
40: end function
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