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ABSTRACT
Finite automata and finite transducers are used in a wide
range of applications in software engineering, from regu-
lar expressions to specification languages. We extend these
classic objects with symbolic alphabets represented as para-
metric theories. Admitting potentially infinite alphabets
makes this representation strictly more general and succinct
than classical finite transducers and automata over strings.
Despite this, the main operations, including composition,
checking that a transducer is single-valued, and equivalence
checking for single-valued symbolic finite transducers are ef-
fective given a decision procedure for the background theory.
We provide novel algorithms for these operations and extend
composition to symbolic transducers augmented with regis-
ters. Our base algorithms are unusual in that they are non-
constructive, therefore, we also supply a separate model gen-
eration algorithm that can quickly find counterexamples in
the case two symbolic finite transducers are not equivalent.
The algorithms give rise to a complete decidable algebra of
symbolic transducers. Unlike previous work, we do not need
any syntactic restriction of the formulas on the transitions,
only a decision procedure. In practice we leverage recent
advances in satisfiability modulo theory (SMT) solvers. We
demonstrate our techniques on four case studies, covering
a wide range of applications. Our techniques can synthe-
size string pre-images in excess of 8, 000 bytes in roughly
a minute, and we find that our new encodings significantly
outperform previous techniques in succinctness and speed of
analysis.

1. INTRODUCTION
Finite automata are used in a wide range of applications

in software engineering, from regular expressions to spec-
ification languages. Nearly every programmer has used a
regular expression at one point or another to parse logs or
manipulate text. Finite transducers are an extension of fi-
nite automata to model functions on lists of elements, which
in turn have uses in fields as diverse as computational lin-
guistics and model-based testing. While this formalism is of
immense practical use, it suffers from certain drawbacks: in
the presence of large alphabets, they can “blow up” in the
number of transitions, as each transition can encode only
one choice of element from the alphabet. Furthermore, the
most common forms cannot handle infinite alphabets.

Symbolic finite transducers are an extension of traditional
transducers that attempt to solve these problems by allowing
transitions to be labeled with arbitrary formulas in a speci-
fied theory. While the concept is straightforward, traditional
algorithms for deciding composition, equivalence, and other
properties of finite transducers do not immediately gener-
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alize to the symbolic case. In particular, previous work on
symbolic finite transducers have needed to impose syntac-
tic restrictions on formulas to achieve decidable analysis [1,
37]. Our work breaks this barrier and allows for arbitrary
formulas from any decidable background theory. In practice,
we leverage the recent progress in satisfiability modulo the-
ory (SMT) solvers to provide this decision procedure. We
find that our algorithms are fast when used with Z3, a state
of the art SMT solver.

The restriction we do make is a semantic one: that the
symbolic finite transducer is single-valued. This restriction
is needed because equivalence is undecidable even for stan-
dard finite transducers. The single-valuedness property is
decidable for symbolic finite transducers. This gives us a
way to check transducers arising from practical applications
before applying our algorithms.

While it was previously known that equivalence was de-
cidable for single-valued finite transducers, again it does not
immediately follow that equivalence should be decidable for
single-valued symbolic finite transducers because typically
even very restricted extensions of finite automata and finite
transducers lead to undecidability of the core decision prob-
lems. In fact, our proof requires a delicate separation be-
tween the “automata theoretic” parts of our algorithms and
the use of the decision procedure. Unusually, our algorithm
for deciding equivalence is nonconstructive: while we can
determine that two symbolic finite automata are not equiv-
alent, our proof does not provide a way to find a counterex-
ample. Fortunately, we provide a separate model generation
semi-decision procedure that can find counterexamples once
it is known that two automata are not equivalent.

Figure 1 summarizes known results about finite state
transducers (over sequences) and extensions thereof, focus-
ing on the key properties studied in this paper, namely func-
tional compositionality, decidability of equivalence, and the
role of the alphabet, in order to place our contributions in a
clear context. Section 5 describes previous work, including
work on extending automata to trees and streams.

1.1 Applications
Section 4 presents four compehensive case studies in differ-
ent areas. Our first case study extends previous work in
using symbolic finite transducers to model web “sanitiza-
tion functions” [4]. Our techniques allow the addition of
register variables, which enable encoding a sanitizer that
could not be handled efficiently by previous symbolic ap-
proaches. Our second case study shows an application to
analysis of Javascript malware found on the Web. Our third
and fourth case studies showcase additional theories beyond
strings. Figure 2 summarizes how each case study reflects
a novel feature of our work. In addition to these case stud-
ies, finite transducers have been employed in other areas
such as analysis of web sanitization frameworks, host-based
intrusion detection, and natural language processing. Our
work immediately applies to these application domains.

1.2 Contributions



Effective closure
under composition

Equivalence Alphabet

Finite State Transducers closed undecidable in general [22], decidable for
single-valued case [42] and finite-valued
case [12, 49]

finite set of elements, com-
parable with equality

Streaming Transducers [1] closed (for finite alphabets) decidable total orders (infinite)

Symbolic Finite Transducers closed (Proposition 1) decidable for single-valued case (Theo-
rem 2)

any decidable theory

Symbolic Transducers closed
(extension of Proposition 1)

undecidable (already for the single-valued
case, through direct encoding of 2-counter
machines)

any decidable theory

Figure 1: Summary of decidability results. The bottom two rows summarize our contributions.

Case study Section Feature

HTMLDecode 4.1 ST representation compact-
ness, integer-linear arith-
metic

Malware fingerprinting 4.2 SFT composition for pro-
gram analysis

Image blurring 4.3 non-string module theory
Location privacy 4.4 stream manipulating pro-

grams

Figure 2: Summary of case studies.

Our contributions are the following:

• We present novel algorithms for composition and equiv-
alence checking of symbolic finite transducers. Our al-
gorithms, unlike previous work, make no restrictions
on the formulae used in the transducers: we require
only a decision procedure for the background theory.
• We show that the single-valuedness property of sym-

bolic transducers is decidable. This gives rise to a de-
cidable complete algebra of symbolic transducers. The
impact is that single-valued symbolic transducers can
now be “first class” objects for constructing program
analyses.
• We present four case studies that demonstrate how our

new algorithms enable new applications. We demon-
strate experimentally that our algorithms not only ter-
minate, but that they run quickly in practice for prob-
lem instances of interest.

1.3 Paper Organization
The rest of this paper is structured as follows. In Sec-

tion 2 we provide an introduction to symbolic finite state
transducers. Section 3 describes the core transducer-based
algorithms. Section 4 provides four detailed cases studies
of trasducer use. Finally, we discuss closely related work in
Section 5 and conclude in Section 6.

2. SYMBOLIC FINITE TRANSDUCERS
We now formally define symbolic finite transducers, we give
examples of how these objects model program behavior, and
we define analyses that may be conducted on such transduc-
ers. We assume a background theory that is typed. We write
σ and γ for given types, and we write Uσ or Σ (resp. Uγ or
Γ) for the corresponding domain of elements of type σ (resp.
γ). The intuition behind the notation throughout the paper
is that Σ is a domain of individual input elements and Γ is a
domain of individual output elements. Terms and formulas
are defined as usual over the language of the background
theory and are assumed to be well-typed.

A σ-predicate ϕ is a formula representing a subset [[ϕ]] of
Σ. P(σ) denotes a given set of σ-predicates such that, for

each element a ∈ Σ there is a predicate representing {a},
t (true), and f (false) are in P(σ), and P(σ) is effectively
closed under Boolean operations.

A σ/γ-term f is a term representing a function [[f ]] from
Σ to Γ. We write F(σ→γ) for a given set of σ/γ-terms and
assume that all b ∈ Γ are also constants in F(σ→γ), i.e.,
[[b]](a) = b for all a ∈ Σ.

A label theory, denoted P(σ)/F(σ→γ), contains all for-
mulas ϕ and ϕ(x) ∧ f(x) 6= g(x) for ϕ ∈ P(σ) and f, g ∈
F(σ→γ). A theory Ψ is decidable when satisfiability for
ϕ ∈ Ψ, denoted IsSat(ϕ), is decidable. We assume an ef-
fective witness function for a σ-predicate ϕ such that, if
IsSat(ϕ) then witness(ϕ) ∈ [[ϕ]].

Two σ/γ-terms f and g are equivalent relative to a σ-
predicate ϕ, denoted f ≡ϕ g, when ϕ(x) ∧ f(x) 6= g(x) is
unsatisfiable.

Example 1: An example of a decidable label theory is
quantifier-free linear integer arithmetic with at most one
fixed free variable x for the input element. �

Throughout the paper we assume that σ-predicates are
formulas with (at most) one fixed free variable x of type σ,
and σ/γ-terms are terms of type γ that have (at most) one
fixed free variable x of type σ for the input. Given a set X,
we write X∗ for the Kleene closure of X.

Next, we describe an extension of finite state transducers
through a symbolic representation of labels. The advantage
of the extension is succinctness and modularity with respect
to any given label theory. It naturally separates the finite
state transition graph from the label theory.

Definition 1: A Symbolic Finite Transducer (SFT) over
P(σ)/F(σ→γ) is a tuple (Q, q0, F,R), where Q is a finite
set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states, and R ⊆ Q×P(σ)× (F(σ→γ))∗×Q is a finite
set of rules. �

We use the more intuitive notation p
ϕ/v−−→A q for a rule

(p, ϕ, v, q) ∈ RA and call ϕ its guard. We omit the index A
when A is clear from the context. Although v ∈ (F(σ→γ))∗

is a finite sequece of σ/γ-terms, v = [f0, . . . , f|v|−1] denotes
a function [[v]] from Σ to Γ∗ such that, for a ∈ Σ,

[[v]](a) = [[[f0]](a), . . . , [[f|v|−1]](a)].

We lift the definition of relative equivalence of σ/γ-terms to
sequences v and w of σ/γ-terms: v ≡ϕ w iff |v| = |w| and
for all i, 0 ≤ i < |v|, v[i] ≡ϕ w[i]. We use the notation of
rules to also denote concrete transitions when the intension
is clear from the context. For p, q ∈ QA, a ∈ Σ and v ∈ Γ∗:

p
a/v−−→A q

def
= ∃ϕv (p

ϕ/v−−→A q ∧ a ∈ [[ϕ]] ∧ v = [[v]](a)),

i.e., the transition p
a/v−−→ q is an instance of a rule. Con-



catenation of two sequences u and v is denoted u · v.

Definition 2: For u ∈ Σ∗ and v ∈ Γ∗, p
u/v−−→→A q denotes

the reachability relation: there exists a path of transitions
from p to q in A with input u and output v: let n = |u| − 1,

p = p0
u[0]/v0−−−−−→ p1

u[1]/v1−−−−−→ p2 · · · pn
u[n]/vn−−−−−→ pn+1 = q

such that v = v0 · v1 · · ·vn−1. Let p
ε/ε−−→→A p for p ∈ QA. �

Definition 3: The transduction of A, denoted TA, is the
following function from Σ∗ to 2Γ∗ :

TA(u)
def
= {v ∈ Γ∗ | ∃q ∈ FA (q0

A
u/v−−→→ q)}.

Equivalently, TA is viewed as the binary relation, or subset
of Σ∗ × Γ∗, such that TA(u,v) iff v ∈ TA(u). The domain

of A, D(A)
def
= {u ∈ Σ∗ | TA(u) 6= ∅}. �

The following subclass of SFTs captures transductions
that behave as partial functions from Σ∗ to Γ∗.

Definition 4: A is single-valued when |TA(u)| ≤ 1 for all
u ∈ Σ∗. �

A sufficient condition for single-valuedness is determinism.

Definition 5: A is deterministic when, for all p
ϕ/v−−→A q

and p
ψ/w−−−→A r, if IsSat(ϕ ∧ ψ) then q = r and v ≡ϕ∧ψ w.

�

In terms of concrete transitions, determinism of A means

that if p
a/v−−→A q and p

a/w−−−→A r then (v, q) = (w, r). It

follows by induction over |u| for u ∈ Σ∗ that, if p
u/v−−→→A q

then (v, q) is unique for the given p and u, in particular
when p = q0

A and q ∈ FA, and thus A is single-valued. De-
terminism is, however, not a necessary condition for single-
valuedness, as is illustrated below. In the following exam-
ples, all SFTs are single-valued. The first example illustrates
a few simple functional list transformations, expressed as
deterministic SFTs that illustrate how global properties of
SFTs depend on the theory of labels.

Example 2: Let the input type and the output type be Z.
All SFTs have a single state here. Predicates and terms are
terms in integer linear arithmetic. Negate multiplies all ele-
ments by -1. Increment adds 1 to each element. DeleteZeros
deletes all zeros from the input.

RNegate = {p t/[−x]−−−−→ p}

RIncrement = {q t/[1+x]−−−−−→ q}

RDeleteZeros = {r x=0/[]−−−−→ r, r
x6=0/[x]−−−−−→ r}

Properties such as commutativity and idempotence of SFTs
depend on the theory of labels. For example, whether Negate
and DeleteZeros commute or whether DeleteZeros is idem-
potent depend on properties of integer addition and multi-
plication. None of the examples can be expressed as tradi-
tional finite state transducers over a finite alphabet. Our
results about composition and equivalence checking, that
are discussed below, allow us to effectively establish such
properties modulo decidability of a given label theory. �

The following example illustrates a common string trans-
formation where the use of nondeterministic SFTs is essen-
tial.

Example 3: Suppose that the following C# code is in-
tended to implement a function GetTags that extracts from
a given input stream of characters all substreams of the form

[‘<’, x, ‘>’], where x 6= ‘<’. For example

GetTags("<<s><<>><f><t") = "<s><>><f>"

1: int q = 0; char c = (char)0;
2: foreach (char x in input) {
3: if (q == 0) { if (x == ’<’) q = 1; else q = 0;}
4: else if (q == 1) { if (x == ’<’) q = 1; else q = 2;}
5: else if (q == 2) { if (x == ’>’) { yield return ’<’;

yield return c;
7: yield return ’>’;}
8: q = 0; }
9: c = x; }

Note that the variable q keeps track of the relative po-
sition in the pattern [‘<’, x, ‘>’] and c records the previous
character. The corresponding single-valued SFT GetTags is:

q3

q0 q0 q1

q2

(x=‘<’)/ǫ

(x 6=‘<’)/[‘<’, x]

(x 6=‘<’)/ǫ

(x=‘>’)/[x]

(x 6=‘>’)/ǫ

(x 6=‘<’)/ǫ (x=‘<’)/ǫ

1

GetTags is nondeterministic because there are two rules from
q1 to q2 and q3, respectively, yielding different outputs for
the same input. If the characters are represented as integers,
then a deterministic version of GetTags does not exists, and
if the characters are represented as 16-bit bitvectors (that
corresponds precisely to the standard UTF-16 encoding of
characters in C#) then the size of the equivalent determinis-
tic SFT is 216 times larger. (Example 7 below explains how
GetTags is constructed from the C# code.) �

3. SFT ALGORITHMS
In this section we study algorithms for composition and

equivalence of SFTs. First, we show that SFTs are effec-
tively closed under composition. Next, we provide an effi-
cient algorithm for single-valued equality of SFTs modulo a
decidable theory of labels. Finally we introduce an algebra
of SFTs that enables a variety of practically useful decision
problems, such as deciding single-valuedness, and deciding
commutativity and idempotence of single-valued SFTs.

3.1 Composition of SFTs
Given two transductions T1 and T2, T1 ◦ T2 denotes the

following function:

T1 ◦ T2
def
= λu.

⋃
v∈T1(u)

T2(v).

This definition follows the convention in [20]. Notice that ◦
applies first T1, then T2, contrary to how ◦ is used for stan-
dard function composition. Note also that single-valuedness
is trivially preserved by composition.

We say that P(σ)/F(σ→δ) and P(δ)/F(δ→γ) are com-
posable if P(σ)/F(σ→γ) is a label theory such that:

• if f ∈ F(σ→δ), g ∈ F(δ→γ) then g(f) ∈ F(σ→γ)
such that [[g(f)]](a) = [[g]]([[f ]](a)).

• if ϕ ∈ P(δ) and f ∈ F(σ→δ) then ϕ(f) ∈ P(σ) such
that a ∈ [[ϕ(f)]]⇔ [[f ]](a) ∈ [[ϕ]].

Proposition 1: Let A and B be SFTs over composable la-
bel theories. Then there exists an SFT A◦B that is obtained
effectively from A and B such that TA◦B = TA ◦ TB .



The algorithm for A ◦ B can be efficiently implemented
with a DFS procedure that, by assuming decidability of
P(σ), eliminates incrementally all composed rules that
have unsatisfiable guards and finally eliminates all deadends
(deadlock states: states from which no final state is reach-
able).

3.2 Equivalence of SFTs
We introduce an algorithm for deciding equivalence of

single-valued SFTs. While general equivalence of finite state
transducers is undecidable [22] the undecidability is caused
by allowing unboundedly many different outputs for a given
input. Single-valued transducers, furthermore, correspond
closely to functional transformations over lists computed by
concrete programs. As illustrated above, this does not (in
general) rule out nondeterministic SFTs.

SFTs A and B are equivalent, A ≡ B, when TA = TB .
Deciding A ≡ B reduces to two independent tasks:

Domain equivalence : D(A) = D(B).

Partial equivalence : (∀v ∈ D(A)∩D(B)) TA(v)=TB(v)

A symbolic finite automaton or SFA is an SFT all of whose
outputs are ε. Let d(A) denote the SFA obtained from the
SFT A by replacing all outputs by ε. Then D(A) = D(B)
iff d(A) ≡ d(B). Equivalence of SFAs is decidable provided
that satisfiability for P(σ) is decidable [47] (the decidability
of SFA equivalence depends on the assumption that P(σ) is
closed under complemetation).

For developing a decision procedure for partial equivalence
of single-valued SFTs we use the following weak form of
partial equivalence.

Single-valued equality (or 1-equality A
1
= B) :

∀u v w ((v ∈ TA(u) ∧w ∈ TB(u))⇒ v = w)

Proposition 2: A is single-valued iff A
1
= A. If A and

B are single-valued then A
1
= B iff A and B are partially

equivalent.

Single-valued equality of two SFTs A and B may fail for
two reasons. There is an input u ∈ D(A)∩D(B) and outputs
v ∈ TA(u) and w ∈ TB(u) such that:

1. A has a length-conflict with B: |v| 6= |w|.

2. A has a position-conflict with B: |v| = |w| and, for
some position i, 0 ≤ i < |v|, v[i] 6= w[i].

We introduce the following basic product construction of
SFTs as a generalization of the product of SFAs [47]. The
product construction is most effectively realized by using a
DFS procedure. Note that the product of SFTs is a “2-
output-SFT” (SFTs are not closed under product).

Definition 6: The product of SFTs A and B, denoted A×
B, is defined as the least fixpoint of pair states Q ⊆ QA×QB
and rules under the following conditions:

• (q0
A, q

0
B) ∈ Q,

• if (p1, p2) ∈ Q, p1
ϕ/u−−→A q1, and p2

ψ/v−−→B q2, then

– (q1, q2) ∈ Q and

– (p1, p2)
ϕ∧ψ/(u,v)−−−−−−−→A×B (q1, q2),

provided that IsSat(ϕ ∧ ψ).

All deadends, noninitial states from which FA × FB is not
reachable, are eliminated from A×B. �

Example 4: Consider the SFT GetTags in Example 3.

Then GetTags × GetTags has rules (p, p)
ϕ/(u,u)−−−−−→ (q, q) for

all p
ϕ/u−−→GetTags q and no other rules due to elimination of

deadends, e.g., (q3, q2) is a deadend because the guard of

the only possible rule (q3, q2)
x=‘>’∧x 6=‘>’/([x],ε)−−−−−−−−−−−−→ (q0, q0) from

(q3, q2) is unsatisfiable. �

Let D(A× B) denote the set of inputs that are accepted
by the product. It follows from the product construction
that:

D(A×B) = D(A) ∩D(B). (1)

The rechability relation is lifted to A×B and the following
holds for p = (p1, p2), q = (q1, q2) ∈ QA×B :

p
u/(v,w)−−−−−→→A×B q ⇔ p1

u/v−−→→A q1 ∧ p2
u/w−−−→→B q2. (2)

We omit the index A×B when it is clear from the context.
For q ∈ QA×B , and k ≥ 0, define the offset relation,

q M k
def
= ∃u v w (q0

A×B
u/(v,w)−−−−−→→ q ∧ k = |v| − |w|) (3)

The intuition behind q M k is that, for some common input
u, there exists an output v from A that is either ahead of an
output w from B with k-positions at product state q when
k > 0, or behind when k < 0. The following lemma is used
to detect length-conflicts.

Lemma 1: If there exists q ∈ QA×B and m 6= n such that
q M m and q M n then A has a length-conflict with B.
Moreover, A has a length-conflict with B iff there exists
q ∈ FA×B and m 6= 0 such that q M m.

Lemma 1 suggests an efficient DFS algorithm to detect if a
length-conflict exists and otherwise computes the fixed offset
offs(p) such that p M offs(p). In order to decide if a position-
conflict exists between A and B, we first assume that A and
B have no length-conflicts and assume that offs(p) is defined
and offs(p) = 0 for p ∈ FA×B . We say that (α, β) ∈ Γ∗×Γ∗

is a promise of a product state p ∈ QA×B when the following
holds:

(α = ε ∨ β = ε) ∧ ∃u v w (|v| = |w| ∧ q0
A×B

u/(v·α,w·β)−−−−−−−−→→ p)

It follows that

(|α|, |β|) =

{
(offs(p), 0), if offs(p) ≥ 0;
(0,−offs(p)), otherwise.

Lemma 2: If A
1
= B then each product state in QA×B has

a fixed promise.

Proof. Assume A
1
= B. Suppose, by way of contradiction,

that there exists p ∈ QA×B with two distinct promises (α, β)
and (α′, β′). By Lemma 1 we know that |α| = |α′| and
|β| = |β′| and either α = ε or β = ε. Suppose β = ε
(the case α = ε is symmetrical). Thus α 6= α′ (or else the
promises are identical). By definition of promises there exist
u,v,w,u′,v′,w′ such that, |v| = |w|, |v′| = |w′|,

q0
A×B

u/(v·α,w)−−−−−−−→→ p, q0
A×B

u′/(v′·α′,w′)−−−−−−−−−→→ p.

Since p is not a deadend, there exist u′′,v′′,w′′ and qf ∈
FA×B such that

p
u′′/(v′′,w′′)−−−−−−−−→→ qf .



It follows from A
1
= B that

v · α · v′′ ∈ TA(u · u′′)
w ·w′′ ∈ TB(u · u′′)

}
⇒ v · α · v′′ = w ·w′′

v′ · α′ · v′′ ∈ TA(u′ · u′′)
w′ ·w′′ ∈ TB(u′ · u′′)

}
⇒ v′ · α′ · v′′ = w′ ·w′′

and, since |v| = |w| and |v′| = |w′|, it follows that α · v′′ =
w′′ and α′ · v′′ = w′′, contradicting that α 6= α′.

Similar to Lemma 1, Lemma 2 suggests an efficient DFS
algorithm to detect if distinct promises exists for some prod-
uct state and otherwise computes the fixed promise prom(p)
for all p ∈ QA×B .

Example 5: The product GetTags×GetTags in Example 4
has trivially no length-conflicts because offsets of all product
states are 0 and thus promises of all product states are (ε, ε).
�

Finally, assuming A×B has no length-conflicts and each
product state p ∈ QA×B has a fixed promise prom(p) =

(α, β), then p is conflict-free, when, for all rules p
ϕ/(v,w)−−−−−→ q,

the maximal prefixes of α ·v and β ·w are equivalent relative
to ϕ: let k = min(|α · v|, |β · w|)− 1,

k∧
j=0

(∀a(a ∈ [[ϕ]]⇒ [[α · v[j]]](a) = [[β · w[j]]](a))). (4)

We say that p is a conflict-state if p is not conflict-free.
Verifying absense of conflict-states is a linear search over
rules in A×B that verifies the condition (4) for each rule.

Lemma 3: If A × B has fixed promises and no length-

conflicts then A 6 1= B ⇔ QA×B contains a conflict-state.

Proof. Assume that A×B is as stated.
(⇐): existence of a conflict-state p implies, by definition,

that there exists a position-conflict, since p is both reachable
and not a deadend.

(⇒): Assume A 6 1= B. We show that there exists a conflict-
tate. Since A and B have no length-conflicts there exist
u,v,w such that v ∈ TA(u), w ∈ TB(u), |v| = |w|, and
there exists a position i, 0 ≤ i < |v|, such that v[i] 6=
w[i]. Fix i to be the smallest such position. So there exists
u1, a,v1,v2,w2, α, β, p, q such that u1 · a is a prefix of u,
v1 · α · v2 is a prefix of v, v1 · β ·w2 is a prefix of w, and

q0
A×B

u1/(v1·α,v1·β)−−−−−−−−−−→→ p
a/(v2,w2)−−−−−−→ q

where prom(p) = (α, β) and (α · v2)[j] 6= (β · w2)[j] with

j = i − |v1|. So there exists a rule p
ϕ/(v2,w2)−−−−−−→ q such that

a ∈ [[ϕ]] but [[(α · v2)[j]]](a) 6= [[(β · w2)[j]]](a). Thus, p is a
conflict-state because (4) does not hold.

The following theorem describes precisely the assumptions
under which 1-equality of SFTs is decidable.

Theorem 1 (SFT-1-equality): If A and B are SFTs over a

decidable label theory then A
1
= B is decidable. Moreover,

if the complexity of the label theory for instances of size m

is f(m) then the complexity of A
1
= B is O(n2 ·f(m)) where

n is the number of rules and m the size of the rules.

Proof. By using Lemmas 1, 2 and 3. Deciding satisfiabil-
ity of ϕ is needed in the construction of A × B. Deciding
f ≡ϕ g is needed for deciding validity of the formula (4). In
Lemma 2, we need to decide if f is constant relative to a
satisfiable formula ϕ: decide if f ≡ϕ [[f ]](witness(ϕ)).

Lemmas 1, 2 and 3 are combined into a single DFS algo-
rithm, shown in Figure 3, that decides 1-equality of SFTs
over a decidable label theory. Line 6 corresponds to detec-

Decide1equality(A,B)
def
=

1 C := A×B; Q := {q0
C 7→ (ε, ε)}; S := stack(q0

C);

2 while S 6= ∅
3 p := pop(S); (α, β) := Q(p);

4 foreach (p, ϕ, (u1, v1), q) ∈ RC(p)
5 (u, v) := (α · u1, β · v1);

6 if q ∈ FC ∧ |u| 6= |v| return f ;

7 if |u| ≥ |v|

8 if
∨|v|−1
i=0 u[i] 6≡ϕ v[i] return f ;

9 w := [u[|v|], . . . , u[|u| − 1]]; w := [[w]](witness(ϕ));

10 if w 6≡ϕ w ∨ (q ∈ Dom(Q) ∧Q(q) 6= (w, ε)) return f ;

11 if q /∈ Dom(Q) push(q, S); Q(q) := (w, ε);

12 if |u| < |v| . . . (symmetrical to the case |u| ≥ |v|)
13 return t;

Figure 3: 1-equality algorithm for SFTs.

tion of a final state with non-zero offset by using Lemma 1.
Line 8 corresponds to use of Lemma 3(⇐). Line 10 corre-
sponds to use of Lemma 2. Line 13 corresponds to use of
contraposition of Lemma 3(⇒).

The number of iterations of the loop as well as in the prod-
uct construction is bounded by |RA| · |RB |. The algorithm
uses satisfiability checks during product construction in line
1, and in the loop in lines 8 and 10. In line 8 the number of
checks is linear in the length of the output sequence v: decide
if there exists i, 0 ≤ i < |v|, and ϕ(x) ∧ u[i](x) 6= v[i](x) is
satisfiable. Similarly for line 10. The complexity follows.

Theorem 1 shows that complexity of 1-equality of SFTs
depends on the complexity of the label theory. For example,
if we use linear arithmetic with one free variable as the label
theory, and guards are represented in normalized form as
conjunctions of linear inequalities, then the Fourier-Motzkin
elimination procedure [14] implies a polynomial worst-case
complexity of 1-equality.

3.3 Algebra of SFTs
We introduce an algebra of SFTs, in Figure 4, that allows

us to express several useful decision problems involving SFTs
and SFAs. Note that B ◦ A of an SFT B with an SFA A is
again an SFA because all the outputs of B◦A are empty. We
call B ◦ A the inverse image of B under A. The definition
of B � A in our algebra is as follows.

Definition 7: Let B be an SFT and A an SFA. The domain
restriction of B for A, denoted B � A, is the SFT obtained

σ, δ, γ ::= types
sfaσ ::= explicit dfn of an SFA over P(σ)

sftσ/γ ::= explicit dfn of an SFT over P(σ)/F(σ→γ)

Aσ ::= sfaσ | Aσ −Aσ | Aσ ×Aσ | Bσ/γ ◦Aγ
Bσ/γ ::= sftσ/γ | Bσ/δ ◦Bδ/γ | Bσ/γ � Aσ

F ::= Aσ ⊆ Aσ | Bσ/γ 1
= Bσ/γ | F ∧ F | ¬F

Figure 4: Algebra of SFTs; A is a valid SFA ex-
pression; B is a valid SFT expression; F is a valid
formula; P(σ)/F(σ→δ) and P(δ)/F(δ→γ) are assumed
composable, the composition is P(σ)/F(σ→γ).



from B × A by eliminating the second output component ε
from all the rules. �

The following property follows from (1) and (2).

TB�A(u) =

{
TB(u), if u ∈ D(A);
∅, otherwise.

(5)

We say that the SFT algebra in Figure 4 is decidable if
validity of all the formulas F in the algebra is decidable.

Theorem 2 (SFT-algebra): The algebra of SFTs is decid-
able if the label theories are decidable.

Proof. The SFA operations are effectively closed under in-
tersection an complement and equivalence is decidable if sat-
isfiability of the guards is decidable [47]. Decidability of 1-
equality of SFTs is Theorem 1. Closure under composition
is Proposition 1. Domain restriction is given in (5).

The following corollary identifies a collection of practi-
cally relevant decision problems that follow from Theorem 2.
Subsumption of SFTs, A v B, is the problem of deciding if
TA(u) ⊆ TB(u) for all u. Reachability is the problem of exis-
tence of an input that is transformed to an output accepted
by an SFA.

Corollary 1: The following decision problems over single-
valued SFTs over a decidable label theory are decidable:
Subsumption; Equivalence; Idempotence; Commutativity;
Reachability.

Proof. Assume A and B are single-valued SFTs and recall

Proposition 2. Subsumption, A v B, is d(A) ⊆ d(B)∧A 1
=

B. Equivalence, A ≡ B, is A v B ∧B v A. Idempotence is
A ≡ A ◦ A. Commutativity is A ◦ B ≡ B ◦ A. Reachability
of a given output SFA D is A ◦D 6= ∅.

The following example illustrates a use of the SFT algebra
for reachability analysis of SFTs. The example is a digest
behind security analysis of string santitizers with respect to
known XSS attack vectors.

Example 6: Consider the SFT B = GetTags from Exam-
ple 3. Is it possible that B does not detect all tags? In other
words, does there exist an input u that matches the regex
P = ".*<[^<]>.*" but TB(u) = {ε}?

Let Aε and A∅ be the SFAs such that D(Aε) = {ε} and
D(A∅) = ∅. Let AP be the SFA that accepts all strings that
match P .

The question is equivalent to deciding if (6) fails,

(B � AP ) ◦Aε︸ ︷︷ ︸
D

≡ A∅ (6)

because, for u ∈ Σ∗,

u ∈ D(D) ⇔ ∃v (TB�AP
(u) = {v} ∧ v ∈ D(Aε))

⇔ TB�AP
(u) = {ε}

⇔ TB(u) = {ε} ∧ u ∈ D(AP )

It turns out that D (when minimized) is an SFA with 8
states, e.g., "<a<a>" ∈ D(D). (What is remarkable is that
D can be effectively converted back to a regex that describes
all inputs where tags are not detected.) By considering the
witness, it can easily be traced back to the missing case
in the GetTags program: line 8 of the C# code should be
q = (x == ’<’ ? 1 : 0);. By verifying (6) for the SFT
corresponding to the fixed code, we can verify the new code
indeed detects all tags.

�

It also follows from Theorem 1 and Proposition 2, that we
can decide single-valuedness of SFTs. This is a practically
valuable result that lifts the burden of the semantic assump-
tion of single-valuedness in decision problems that assume
single-valuedness.

Corollary 2: Single-valuedness of SFTs over a decidable
label theory is decidable.

3.4 Extension with Registers
We extend SFTs to symbolic transducers or STs by allow-

ing the use of registers. This will provide a more succinct
representation, and enable more efficient symbolic analysis
methods to be used, by taking advantage of recent advaces
is SMT technology [15]. An ST uses a set of variables called
registers as a symbolic representation of states. The rules
of an ST are guarded commands with a symbolic input and
output component. Since the finite state component of an
SFT can be represented with a particular register of finite
type, the explicit state component is omitted from STs.
Moreover, by using Cartesian product types, we represent
multiple registers with a single (compound) register.

Definition 8: A Symbolic Transducer or ST with input
type σ, output type γ and register type ρ is a tuple (q0, ϑ, R),
where q0 ∈ Uρ is the initial state, ϑ ∈ P(ρ) is the final state
condition, and R ⊆ P(σ×ρ)× (F(σ×ρ→γ))∗ ×F(σ×ρ→ρ)
is a finite set of rules �

We writeAσ/γ;ρ to indicate the input/output element type
σ/γ and the register type ρ of an ST A. When we write

Aσ/γ , we assume ρ to be implicit. A rule (ϕ, u, r) ∈ RA
denotes the following set of concrete transitions:

[[(ϕ, u, r)]]
def
= {q a/[[u]](a,q)−−−−−−→ [[r]](a, q) | (a, q) ∈ [[ϕ]]}

Although the formal defintion omits finite states, it is of-
ten useful to explicitly include a separate finite state compo-
nent, we do this in the examples below. Moreover, it is tech-
nically convenient to extend final states with final outputs by
extending ϑ to be a finite set of final output rules as a subset
of P(ρ)×(F(ρ→γ))∗ such that if (ψ, v) ∈ ϑ and q ∈ [[ψ]] then
a final output produced from q is [[v]](q) (recall that [[v]] de-
notes the function λq.[[[v[0]]](q), . . . , [[v[|v|−1]]](q)]), denoted

q
/[[v]](q)−−−−→A. Note that, when all final outputs are ε then ϑ

is equivalent to being a ρ-predicate as in Definition 8, i.e.,

q ∈ [[ϑA]] then means that q
/ε−→A. Final outputs correspond

to a restricted form of input-epsilon rules as used in classical
finite transducers.

The reachability relation p
u/v−−→→A q for u ∈ Σ∗, v ∈ Γ∗,

and p, q ∈ Uρ is defined analogously to SFTs. The definition
of TA is lifted similarly, for u ∈ Σ∗:

TA(u)
def
= {v ·w | ∃ q (q0

A
u/v−−→→A q ∧ q

/w−−→A)}

Example 7: Consider the C# code in Example 3. There
is a direct mapping of the code to an ST A that uses the
compound register 〈q, c〉. The initial state of A is 〈0, 0〉, the
final state condition is t and the rules are:

(q=0 ∧ x=‘<’, ε, 〈1, x〉), (q=0 ∧ x6=‘<’, ε, 〈0, x〉),
(q=1 ∧ x=‘<’, ε, 〈1, x〉), (q=1 ∧ x6=‘<’, ε, 〈2, x〉),
(q=2 ∧ x=‘>’, [‘<’, c, ‘>’], 〈0, x〉), (q=2 ∧ x6=‘>’, ε, 〈0, x〉)

The register update 〈rq, rc〉 of a rule corresponds to the as-
signments q := rq and c := rc. Since all assigments to c have
the form c := x, c corresponds to the previous input charac-
ter. A can be automatically transformed to the equivalent
GetTags SFT; the register c is eliminated by using a new
state and nondeterminism. �



One can effectively construct a well-founded axiomatic
theory Th(A) of an ST Aσ/γ over a background of lists, sim-
ilarly to symbolic automata in [46]. Th(A) defines a symbol
TA that provides a sound and complete axiomatization of
TA, i.e., for any model A |=U Th(A), TA

A = TA.
Moreover, Th(A) can be directly asserted as an auxiliary

theory of any state-of-the-art SMT solver that supports lists.
By deploying Th(A) in this way, we obtain an integrated de-
cision procedure for satisfiability and model generation for
quantifier free formulas that may arbitrarily combine formu-
las over the backgound U with transduction atoms TA(u, v)
where u : L〈σ〉 and v : L〈γ〉 are arbitrary list terms. A
direct application, outlined in Figure 5, is a semi-decision

Witness1disequality(Aσ/γ , Bσ/γ)
def
=

1 assert Th(A) ∪ Th(B);

2 (u, v, w) := (nil,NewVariable(L〈γ〉),NewVariable(L〈γ〉));
3 while t

4 if ∃A (A |=U TA(u, v)∧TB(u,w)∧v 6=w) return (uA,vA,wA);

5 else u := cons(NewVariable(σ), u);

Figure 5: Given STs A 6 1= B, generates a witness
(u,v,w) such that v ∈ TA(u), w ∈ TB(u), and v 6= w.

procedure for 1-disequality of STs, where the auxiliary the-
ories are asserted to the solver in line 1, and successively
longer input-lists are used to invoke the solver to decide 1-
disequality of the instance in line 4. The semi-decision pro-
cedure computes a shortest-input witness of 1-disequality.

4. CASE STUDIES
We present four case studies for applications of SFTs. While
the first case study focuses on sophisticated string manipu-
lation, going beyond previous approaches such as Bek [4],
we want to emphasize that the utility of SFTs goes well be-
yond reasoning about string sanitizer processing. Figure 2
summarizes the essential features of each case study.

4.1 Representing HTMLDecode
To prevent injection attacks such as cross-site script-

ing (XSS) and SQL injection, Web applications employ san-
itizers, which are string manipulation routines that remove
or encode dangerous input characters. Many applications
include their own sanitizer implementations. Recent work
by Hooimeijer et al. [4] examines several such sanitizers,
demonstrating that a subset of popular sanitizers can be
modeled using transducers. Furthermore, they show that
safety properties of Web sanitizers can be checked using
transducer analyses.

We focus on the sanitizer HTMLDecode to evaluate the prac-
tical utility of the ST representation. Figure 6 outlines a
real-world implementation, taken from the OWASP library.
HTMLDecode transforms HTML entities back to the symbol
they represent. Entities can be named (e.g., &lt; maps
to <), or numeric in decimal or hexadecimal representation
(e.g., decimal entity &#48; maps to symbol 0). For simplic-
ity, we will restrict our attention to decimal entities.

Intuitively, HTMLDecode is difficult to cast as a transducer
because it requires lookahead : a single output symbol may
depend on a specific sequence of several characters. The full
Unicode set consists of more than one million symbols. To
decode a decimal entity, therefore, we need to inspect up
to six digits. While that is possible using either SFTs or
traditional transducers, it requires a large state space.

public String HTMLDecode( String input ) {
StringBuffer sb = new StringBuffer();
PushbackString pbs = new PushbackString( input );
while ( pbs.hasNext() ) {

Character c = decodeCharacter( pbs );
if ( c != null ) { sb.append( c ); }
else { sb.append( pbs.next() ); } }

return sb.toString();
}

public Character decodeCharacter( PushbackString input ) {
input.mark();
Character first = input.next();
if ( first == null ) { input.reset(); return null; }
if ( first.charValue() != ’&’ ) {

input.reset(); return null; }
Character second = input.next(); if ( second == null ) {

input.reset(); return null; }
if ( second.charValue() == ’#’ ) {

Character c = getNumericEntity( input );
if ( c != null ) return c; }

else if ( Character.isLetter( second.charValue() ) ) {
input.pushback( second );
Character c = getNamedEntity( input );
if ( c != null ) return c; }

input.reset();
return null;

}

private Character getNumericEntity( PushbackString input ) {
...
return parseNumber( input );

}

private Character parseNumber( PushbackString input ) {
StringBuffer sb = new StringBuffer();
while( input.hasNext() ) {

Character c = input.peek();
if ( Character.isDigit( c.charValue() ) ) {

sb.append( c );
input.next(); }

else if ( c.charValue() == ’;’ ) {
input.next();
break; }

else break; }
try {

int i = Integer.parseInt(sb.toString());
return new Character( (char)i ); }

catch( NumberFormatException e ) return null;
}

Figure 6: Excerpt HTMLDecode in Java (from OWASP
1.4.0). The code shown converts named entities
(e.g., &lt; to <) and numeric entities (e.g., &#52;

to 4). The numeric entity conversion is difficult to
model efficiently using previous approaches.

In contrast, the corresponding ST is quite succinct. Fig-
ure 7 shows a ST DecodeZ/Z;Q×(Z×Z), that uses two registers
to handle numeric entities with exactly two digits. The com-
pound register is 〈q, 〈y, z〉〉We illustrate explicitly the finite
state component (that is the value of q). Final outputs, un-
less they are ε, are shown by labels on outgoing→ arcs from
final states. Characters correspond to their Unicode code
points, e.g., ‘0’ = 48. The actual decoding happens in
the rule from state q4 to q0 with guard x = ‘;’, where the
output 10 · (y − 48) + z − 48 corresponds to invocation of
parseInt in Figure 6. The states qi roughly correspond to
the control flow of the code in Figure 6.

Evaluation: We compare the ST representation to the
equivalent SFTs, in terms of size and analysis speed. Let
DecodeSTn denote an ST that models HTMLDecode for en-
tities of the form &#[0-9]{1,n}; (i.e., up to n decimals,
inclusive). For each i ∈ [2; 6], we compute an SFT that is
equivalent to DecodeSTi by concretizing the possible regis-
ter values at each state. Figure 8(a) shows the number of



q0 q0 q1 q2 q3 q4

q0 q1 q2 q3 q4

(x=‘&’)/ǫ (x=‘#’)/ǫ (‘0’≤x≤‘9’)/ǫ; y:=x (‘0’≤x≤‘9’)/ǫ; z:=x

[‘&’] [‘&’, ‘#’] [‘&’, ‘#’, y] [‘&’, ‘#’, y, z]

(x=‘;’)/[10(y − 48) + z − 48]

(x 6=‘;’ ∧ x 6=‘&’)/[‘&’, ‘#’, y, z, x]

(x 6=‘&’)/[x] (x=‘&’)/[‘&’]

(x=‘&’)/[‘&’, ‘#’](x 6=‘&’∧x 6=‘#’)/[‘&’, x]

(x 6=‘&’ ∧ ¬(‘0’≤x≤‘9’))/[‘&’, ‘#’, x]

(x=‘&’)/[‘&’, ‘#’, y]

(x 6=‘&’ ∧ ¬(‘0’≤x≤‘9’))/[‘&’, ‘#’, y, x]

(x=‘&’)/[‘&’, ‘#’, y, z]

1

Figure 7: ST representation of the HTMLdecode code
in Figure 6, restricted to decimal numeric entities
of the form &#[0-9][0-9];. This ST uses two regis-
ters to remember one digit each, and uses integer-
linear arithmetic to compute the corresponding code
point.

both states and edges on the y-axis, for both representa-
tions; the x-axis denotes the number of digits modeled. The
most prominent take-away is that the ST representation is
drastically smaller. For example, for the 6-digit encoding,
the SFT encoding has over 10, 000× as many states, and
135, 000× as many edges, as the equivalent ST encoding.

We consider the speed of two algorithms: composition
and equivalence checking. The experimental task is to find
a witness (i.e., an input string) w that demonstrates that
DecodeSTi(w) 6= DecodeSTi(DecodeSTi(w)), for some num-
ber of self-compositions. We consider three different algo-
rithms for performing this task: ST.E uses an in-memory
representation and conducts an eager search (computing en-
tire transducers); ST.L uses a lazy approach by encoding the
entire ST into the underlying SMT solver; and SFT repre-
sents an eager SFT-based approach.

Figure 8(b) shows the speed results. Compositions repre-
sents the number of times we compose each class of trans-
ducer with itself. Composition refers to the time taken to
perform the composition; for the lazy ST.L this time is neg-
ligible (since the composition is simply asserted to the under-
lying solver). IdempotenceChecking refers to the time taken
to find the actual witness, after the composition. Each col-
umn represents a single experimental run; we employed a
2-hour timeout per run. The label OM marks runs that ran
out of memory, while TO marks cases that hit the 2-hour
timeout.

These results show that STs, in particular using the lazy
representation, are significantly more scaleable for this task
than SFTs. The SFT representation either exhausts mem-
ory or passes the timeout in the majority of cases. The eager
ST representation outperforms the lazy representation only
for the smallest two testcases. For larger runs (i.e., more
compositions and more digits), the lazy SFT representation
scales much more reliably, ranging from 1 to 20 seconds over
the 2-composition range (compared to several minutes for
the eager representation).

4.2 Malware Fingerprinting Code
Millions of web pages today contain malicious JavaScript

that attempts to take over a victim’s web browser. An active
research literature has proposed static and dynamic methods
for detecting these attacks [40, 13, 11, 9]. A key finding of
this work is that malware authors use fingerprinting tech-
niques [35, 16] to decide which malware to deliver to the
victim user.

Figure 9 shows an example of client-side browser fin-
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Figure 8: HTMLDecode results. The task is to prove
that HTMLDecode does not commute with itself, and to
provide a witness that demonstrates this for a given
number of Compositions. We evaluate three repre-
sentations: ST.E (eager ST composition), ST.L (lazy
ST composition using Z3), and SFT (SFT composi-
tion). We consider five distinct models (indicated by
Decimals, based on how many digits the ST or SFT
can handle.

gerprinting. 1 The code iterates over the list of plug-
ins installed in the browser and queries their version num-
bers. In some cases, version numbers are padded by op-
tionally adding leading 0s to them. Finally, variables
quicktime plugin and adobe plugin are combined to pro-
duce the final fingerprint value. This fingerprint value is
then used to select a specific attack to run against the user.

Figure 12 list several concrete fingerprint values from real
browser setups. Note that QuickTime 7.6.6 has at least one
known vulnerability, and may thus be of special interest to
an attacker.

We consider a scenario in which we have acquired these
fingerprints (e.g., through network sniffing), and want to
find out the corresponding plugin names. At a higher level,
the question is: “Can we find out interesting properties by
computing string-related pre-conditions based on a postcon-
dition?”

Our techniques can answer this question in the affirma-
tive by modeling the code of Figure 9 using multiple SFTs.

1This code is simplified for illustrative purposes: the origial
considers more plugin types, including Flash, etc.



var quicktime_plugin = "0", adobe_plugin = "00";

for(var i = 0; i < navigator.plugins.length; i++)
{

var plugin_name = navigator.plugins[i].name;
if (quicktime_plugin == 0 &&
plugin_name.indexOf("QuickTime") != -1)

{
var helper = parseInt(plugin_name.replace(/\D/g,""));
if (helper > 0) // not base 16
quicktime_plugin = helper.toString(10)

}
if (adobe_plugin == "00" &&
plugin_name.indexOf("Adobe Acrobat") != -1)

{
plugin_name = navigator.plugins[i].description;
if(plugin_name.indexOf(" 5") != -1) adobe_plugin = "05";
else if(plugin_name.indexOf(" 6") != -1) adobe_plugin = "06";
else if(plugin_name.indexOf(" 7") != -1) adobe_plugin = "07";
else adobe_plugin = "01"

} else {
// flash, java...

}
}

while(quicktime_plugin.length < 8)
quicktime_plugin = "0" + quicktime_plugin;

var fingerprint = "Q" + quicktime_plugin + "8" + adobe_plugin;
// ...
fetch_exploit(fingerprint);

Figure 9: Browser and plugin fingerprinting code
found in JavaScript malware.

(1 ≤ c ≤ 9)/[c]
(c=0)/[c]

(c=0)/[c]

(0 ≤ c ≤ 9)/[c]

(c=#)/[c]

(c=e)/[]

(t)/[]

(c!=Q)/[]

...

(1 ≤ c ≤ 9)/[c]

(c!=e)/[]

¬(0 ≤ c ≤ 9)∧(c!=Q)/[]

(c=0)/[]

(c=0)/[]

(c=#)/[c]

(c=#)/[c]

(0 ≤ c ≤ 9)/[c]

(c=e)/[]...

¬(0 ≤ c ≤ 9)∧(c!=e)/[]
(0 ≤ c ≤ 9)/[c]

¬(0 ≤ c ≤ 9)/[]
(0 ≤ c ≤ 9)/[c]

quicktime_plugin == 0 &&

plugin_name.indexOf("Quicktime")==-1

quicktime_plugin != 0

quicktime_plugin == 0 &&

plugin_name.indexOf("Quicktime")!=-1

Figure 10: SFT QuicktimeSplitter with correspond-
ing path predicates for the fingerprinting code.

The key idea is conditional assignment translates into non-
deterministic case splits inside the SFT. At a high level,
each transducer corresponds to a split or a merge in the
control flow of the fingerprinting code, relative to a sin-
gle variable of interest. This is illustrated in Figure 10,
which shows the transducer QuicktimeSplitter together
with the path predicates modeled by each of its three main
branches. The transducer reads both quicktime_plugin

and plugin_name, separated by a special # symbol. Its out-
put is guaranteed to start with # if and only if the branch
if(quicktimeplugin == 0&&... was taken.

For the sake of brevity, we do not display the remaining
SFTs. Figure 11 lists the full set of SFTs and their statistics.
QuicktimeMerger takes the output of QuicktimeSplitter

and models the control flow join at the end of the first if

statement. QuickTimePadder models the final while loop
in Figure9. The manipulation of variable adobe_plugin is
analogous.

Evaluation: We compute the pre-image of the composi-
tion transducers discussed above as follows. For each finger-
print w, we construct an SFA that accepts {w} and corre-
sponds to the postcondition fingerprint == w. The pre-

SFT States Edges

Quicktime (variable quicktime plugin)
QuicktimeSplitter 25 60
QuicktimeMerger 6 9
QuicktimePadder 37 37

Composed 534 1,425

Adobe (variable adobe plugin)
AdobeSplitter 36 81
AdobeMerger 21 40

Composed 203 797

Figure 11: SFTs used for the malware fingerprinting
example. Statistics for the Quicktime and Adobe
components are shown. The composition SFTs take
approximately one second to compute.

Browser/plugin combination Fingerprint

FF: Acrobat 9.4.5.236; no quicktime Q00000000801
FF: Acrobat 9.4.5.236; Quicktime 7.6.9 Q00000769801
IE: no plugins of interest installed Q00000000800
FF: Acrobat 9.4.5.236; Quicktime 7.5.5 Q00000755801
FF: Acrobat 9.4.5.236; Quicktime 7.6.6 Q00000766801

Figure 12: Browser fingerpints. Using an SFT
model, computing input values for quicktime_plugin

and adobe_plugin takes less than one second per fin-
gerprint.

images of QuicktimeComposed and AdobeComp correspond
to preconditions for a single iteration of the for loop in Fig-
ure 9. For example, for w = Q00000769801, we find a pre-
condition that relates values of quicktime_plugin to values
of plugin_name, as follows: (1) quicktime_plugin already
had value 769, possibly padded with up to five zeroes, or
(2) quicktime_plugin consisted entirely of zeroes and plu-

gin_name contained the substring �Quicktime together with
digits 7, 6, and 9 in that relative order. Condition (1) rep-
resents the case where quicktime_plugin had a previously-
assigned version number, while condition (2) represents the
case in which a version number was extracted inside the for

loop. For all real fingerprints we tried, our analysis took less
than one second per fingerprint.

Next, we evaluate whether inverse image generation, as
used above, scales to relatively large output values. Unlike
most previous string constraint solvers [29, 41, 26], SFT-
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Figure 13: Inverse image generation time in seconds
for fingerprint outputs up to 8192 bytes. The out-
puts were randomly generated from the language
Q[0-9]{n}801 over 16 bit characters.
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Figure 14: Blurring transformation illustrated.

based analysis does not impose length bounds on the strings
under consideration. This is only beneficial if the approach
actually scales to large strings. We show the approach does
scale by generating random fingerprints of the form Q[0-

9]{n}801, and measuring the time it takes to compute the
inverse images for both the QuickTime and Adobe variables.
Figure 13 shows encouraging results: in general, our ap-
proach takes less than half a minute to generate pre-images
for up to eight kilobytes worth of output. In contrast, the
Hampi solver was limited to finding pre-images up to fifty
bytes worth of output.

Our malware case study demonstrates several important
points. First, SFTs are well-suited for describing code by
making use of non-determinism. The transducers needed
can be large (on the order of hundreds of states and edges),
but we can construct them from much smaller transduc-
ers (tens of states and edges) through composition. The
pre-image computation reveals interesting relations among
mutually dependent variables. Finally, the pre-image com-
putation is efficient: it can generate valid string inputs for
outputs that measure several kilobytes in size, while we are
unaware of any previous string constraint solver that can
handle this order of magnitude.

Takeaways: From our first two case studies, we have the
following key takeaways

• STs can be radically more succinct in representation
than SFTs: we saw in our HTMLDecode example that
our ST representation had 10, 000 times fewer states
and 150, 000 times fewer edges than our SFT repre-
sentation.

• Lazy ST encoding scales best for our HTMLDecode ex-
ample, taking between 1 to 20 seconds for six char-
acters and two compositions. Eager ST encoding is
slower, and eager SFT encoding times out above two
characters.

• SFTs can accurately model real examples of malicious
Javascript fingerprinting code. Our analysis requires
less than one second to recover plug-in versions from
real examples of fingerprints generated by malicious
code found “in the wild.”

• Previous work in string constraint solving has focused
almost exclusively on constraints that require fewer
than 50 bytes; for example, the majority of Hampi
experiments were conducted with length bounds of
15 bytes or fewer [29]. In contrast, our techniques
can synthesize pre-images in excess of 8, 000 bytes in
roughly a minute.

4.3 Image Blurring
To illustate the generality of SFTs, we look at image trans-

formations. A clear advantage of representing image trans-
formations in the form of transducers is the ability to do
composition on transducers it gives us. In fact, image edi-
tors such as Google Picasa represent image contents as the
original image as well as a series of image transformations,
such as blurring, sharpening, black and white coversion, con-
strast enhancement, and the like.

In many cases, of course, editing a large-scale image that
includes millions of 32-bit pixes before high-quality printing
might involve a dozen of such transformations. Applying
them one after another, in a sequence is often too time-
consuming to be practical. A better alternative consists of
composing the transformations together and applying them
to the input image only a single time.

We focus on image blurring, which is a prototypical “text-
book” image transformation [39]. Figure 14 illustates the
two transducers for horizontal and vertical blurring of an
image.

Measuring privacy via entropy: A fascinating feature
of our analysis is that we can estimate a privacy metric for
image blurring using our techniques. Our starting point is
the observation that if an image has a unique pre-image
given blurring, then the blurring does not hide the original
image at all. Just consider a black square: no matter how
many times we might attemtpt to blur it, the image will
remain unchanged. On the other hand, after blurring a face,
there may be multiple original images that yield the same
blurred face.

Put another way, a blurred face image defines a set of
potential candidate original images. If we assume that all
candidate original images are equally likely, then we can
define the entropy H of the original face after a blurring
transformation β as follows:

H = −log(|β(β−1)|)

in other words, we use the reverse mapping β−1 given to us
by the inverse transducer, and take the negated logarithm
of the size of its preimage. For the entirely black image
example, H = 0 because there is only one element in the
preimage. To increase privacy, our goal is to maximize the
entropy. Note that given for images of a given rectangular
size, we can always exhaustively check if two images result
in the same image after blurring.

Our techniques allow us to write down a SMT formula
where the number of solutions is equal to the number of
preimages of β on a specific image. This is the first connec-
tion to our knowledge between SMT techniques and proba-
bilistic definitions of privacy. Of course computing the exact
number of solutions is #P -complete, but we can employ ap-
proximation techniques to estimate this quantity. Then we
can programmatically compare different methods of blurring
by the entropy induced. We leave exploration of the impact
of different approximation techniques as future work.

4.4 Location Privacy
GPS sensors located in most mobile devices constantly

track our location [31, 2]. While the popularity of applica-
tions such as Foursquares, Gowalla, and Facebook check-ins
show user demand for sharing this information, this also
raises privacy concerns.

As a reaction to privacy concerns, Google’s Latitude loca-
tion sharing service started allowing users to only release the
city they are in, not their precise location, so that a trace of



a user’s day might look like

Menlo Park, CA; Palo Alto, CA; Los Gatos, CA;

Mountain View, CA; Los Gatos, CA.

Clearly, given the sizes of these cities, tracking the user pre-
cisely might present some difficulty. To generalize, one ap-
proach that has emerged is context sensitive choice of gran-
ularity; intuitively, if I am located in a densely-populated
location such as midtown Manhattan, block-level location is
fine to reveal. If I am in a sparsely-populated area such as
the Death Valley, we should only reveal a coarse location
approximation. This can be encoded with a transducer that
works on a stream of recorded location measurements. To
summarize, given GPS coordinates 〈latitude/longitude〉:

1. Use a lookup list of world cities and their latti-
tude/longitude values and nearset point calculation to
compute the nearest city to the current locaiton;

2. Determine the city population via a lookup table;

3. Map the population to a high or low density area (H
or L).

4. Based on the last five GPS readings, enter a high- or
low-density output state. Depending on that approx-
imate the 〈latitude,longitude〉 pair with different pre-
cision.

This can be captured by a transducer with different out-
put actions depending on the current state. For instance,
for high-density areas, we can drop GPS location seconds,
and for low-density areas we can drop GPS location min-
utes. Krumm et al consider additional trace obfuscation
techniques such as adding noise or quantizing traces, which
can also be represented using our SFT framework [8].

5. RELATED WORK
General equivalence of finite state transducers is undecid-

able [22], and already so for very restricted fragments [27].
Equivalence of decidability of single-valued GSMs was shown
in [42], and extended to the finite-valued case (there exists
k such that, for all v, |TA(v)| ≤ k) in [12, 49]. The de-
cidability of equivalence of the finite-valued case does not
follow from the single-valued case. Corresponding decid-
ability result of equivalence of finite-valued SFTs is shown
in [6]. Unlike for the single-valued case that has a practical
algorithm (Figure 3), the finite-valued case is substantially
harder, the 1-equality algorithm does not generalize to this
case because the satisfiability checks cannot be made locally:
Lemma 2 does not imply violation of partial-equivalence in
the finite-valued case.

In recent years there has been considerable interest in au-
tomata over infinite languages [43], starting with the work on
finite memory automata [28], also called register automata.
Finite words over an infinite alphabet are often called data
words in the literature. Other automata models over data
words are pebble automata [36] and data automata [7]. Sev-
eral characterizations of logics with respect to different mod-
els of data word automata are studied in [5]. This line of
work focuses on fundamental questions about definability,
decidability, complexity, and expressiveness on classes of au-
tomata on one hand and fragments of logic on the other
hand. A different line of work on automata with infinite al-
phabets introduces lattice automata [21] that are finite state
automata whose transitions are labeled by elements of an
atomic lattice with motivation coming from verification of
symbolic communicating machines.

Streaming transducers [1] provide another recent symbolic
extension of finite transducers where the label theories are
restricted to be total orders, in order to maintain decidabil-
ity of equivalence, e.g., full linear arithmetic is not allowed.

Finite state automata with arbitrary predicates over la-
bels, called predicate-augmented finite state recognizers, or
symbolic finite automata (SFAs) in the current paper, were
first studied in the context of natural language process-
ing [37]. While the work [37] views symbolic automata
as a “fairly trivial” extension, the fundamental algorithmic
questions are far from trivial. For example, it is shown
in [24] that symbolic complementation by a combinatorial
optimization problem called minterm generation leads to
significant speedups compared to state-of-the-art automata
algorithm implementations.The work in [37] introduces a dif-
ferent symbolic extension to finite state transducers called
predicate-augmented finite state transducers. This extension
is not expressive enough for describing SFTs. Besides iden-
tities, it is not possible to establish functional dependencies
from input to output that are needed for example to encode
transformations such as HtmlEncode.

SFTs are used in the Bek project [23] and use the SMT
solver Z3 [15] for solving label constraints that arise during
composition and equivalence checking algorithms, as well as
for witness search by model generation using auxiliary SFT
axioms. Finite state transducers have been used for dy-
namic and static analysis to validate sanitization functions
in web applications in [3], by an over-approximation of the
strings accepted by the sanitizer using static analysis of ex-
isting PHP code. Other security analysis of PHP code, e.g.,
SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context free grammars) of the
HTML output by a server [34, 48]. Yu et al. show how mul-
tiple automata can be composed to model looping code [50].

Our work is complementary to previous efforts in using
SMT solvers to solve problems related to list transforma-
tions. HAMPI [29] and Kaluza [41] extend the STP solver
to handle equations over strings and equations with multiple
variables. The work in [25] shows how to solve subset con-
straints on regular languages. In contrast, we show how to
combine any of these solvers with SFTs whose edges can take
symbolic values in the theories understood by the solver.

Top-down tree transducers [20] provide another extension
of finite state transducers: a finite state transducer is a top-
down tree transducer over a monadic ranked alphabet. Sim-
ilar to finite state transducers, decidability of equivalence
of top-down tree transducers is known for the single-valued
case [17, 19], including a specialized method for the deter-
ministic case [10], and also for the finite-valued case [44].
Several non-symbolic extensions of top-down tree transduc-
ers have been studied, e.g., [20, 33, 18, 32, 30, 38]. Symbolic
top-down tree transducers are studied in [45] where partial
equivalence is shown to be decidable for the linear single-
valued case.

6. CONCLUSION
We introduced a symbolic extension of the theory of clas-

sical finite transducers, where transitions are represented by
terms modulo a given background theory. Our approach
enables a range of analyses in combination with state-of-
the-art constraint solving techniques. The core algorithms
we presented are composition and equivalence checking of
single-valued symbolic finite transducers, and we showed
how to decide whether arbitrary symbolic transducers have
the single-valuedness property. We demonstrated how our



work directly applies to analysis of web string sanitizers,
malware detection, image manipulation, and location pri-
vacy, and we expect more applications to follow. Our tech-
niques can synthesize string pre-images in excess of 8, 000
bytes in roughly a minute, our ST representation had 10, 000
times fewer states than previous approaches, and we found
lazy ST encoding for our HTMLDecode example took at most
20 seconds even in the most extreme cases. These algorithms
make it possible to work with symbolic representations of
transducers, just as traditionally done with finite state trans-
ducers, as first class citizens in designing new analyses and
program transformation techniques by leveraging the contin-
uous advances and improvements in constraint solvers and
satisfiability modulo theories solvers.
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