
Using Recursive Attestation to Scale Trust in
Modern Heterogeneous Cloud Architectures
Yaoxin Jing

y.jing24@imperial.ac.uk
Imperial College London

Michael Steiner
michael.steiner@intel.com

Intel Labs

Anjo Vahldiek-Oberwagner
anjovahldiek@gmail.com

Intel Labs

Mona Vij
mona.vij@intel.com

Intel Labs

Lluis Vilanova
vilanova@imperial.ac.uk
Imperial College London

Abstract
Modern cloud infrastructures are increasingly complex,
driven by heterogeneity, disaggregation, and dynamic ser-
vice composition—exposing critical limits in traditional
attestation models. These models struggle to scale when
trust must span multiple domains and elastic services.
We present scale-out attestation, a paradigm decoupling
platform trust verification from app-level attestation.
Our design introduces a recursive attestation framework
leveraging abstract service identities and trusted deploy-
ment workflows: a single infrastructure agent verifies
platforms via abstract policies, while services derive
instance-agnostic identities enabling secure recursive de-
pendency attestation. We implement the system on Frac-
tOS, a distributed OS for disaggregated data centers,
and plan to extend Confidential Containers for practical
deployment. Evaluation shows strong security with min-
imal overhead, enabling scalable confidential computing
across heterogeneous and dynamic cloud environments.

Keywords
Remote Attestation, Confidential Computing, Trusted
Heterogeneous Disaggregated Could

ACM Reference Format:
Yaoxin Jing, Michael Steiner,Anjo Vahldiek-Oberwagner, Mona
Vij, and Lluis Vilanova. 2025. Using Recursive Attestation to
Scale Trust in Modern Heterogeneous Cloud Architectures.
In 16th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys ’25), October 12–13, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3725783.3764390

This work is licensed under a Creative Commons Attribution 4.0
International License.
APSys ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1572-3/25/10
https://doi.org/10.1145/3725783.3764390

1 Introduction
Confidential computing (CC) has become a fundamental
tool to support important classes of privacy-sensitive
apps in the public cloud, such as finance and health-
care [2]. At the core of CC, apps use remote attestation
to ensure the integrity of all relevant parts of the hard-
ware/software platform, establishing trust to perform
the intended computation [17, 46].

Existing remote attestation solutions assume ahead-
of-time knowledge of all trust relationships [3, 6, 7, 10,
12, 25, 29, 40–42, 52, 55], making them inadequate to
address the heterogeneity and modularity of modern sys-
tems. Consider a confidential cancer image recognition
app with a CPU-based frontend passing CT scans to
a GPU-powered inference service from Tempus AI [1],
using external Azure Storage [8]. This highlights two key
challenges: (i) platform heterogeneity, and (ii) composi-
tion and scheduling decisions, causing a combinatorial
explosion of trust measurements across all software and
hardware stack combinations.

Platform heterogeneity affects measurements across all
components: (i) different hardware vendors and attesta-
tion primitives like Intel SGX [27], AMD SEV [4], or Arm
CCA [5]; (ii) specialized devices like GPUs and TPUs
with device-specific attestation [38, 39]; and (iii) differ-
ent platform software versions for firmware and OS [54].
For instance, inference engines may use NVIDIA MIG
attestation [38] within Linux CVMs with ARM CCA [5],
while Azure Storage runs on Intel Gramine-TDX [26, 31],
creating fragmented trust mechanisms difficult to verify
with traditional attestation.

Composition and scheduling decisions affect measure-
ments across all components too. The pervasive use of
service-oriented architectures (SoA) provide scalability,
elasticity, and modularity [24, 32, 36], but this level of
service composition also requires our app to provide mea-
surements for every possible instance of the third-party
inference and storage services; this is impractical because
dynamic instances of an elastic service cannot be known

1

https://doi.org/10.1145/3725783.3764390
https://doi.org/10.1145/3725783.3764390
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725783.3764390


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Yaoxin et al.

in advance, and is unnecessary because a single app will
often be directed by a request scheduler to a small subset
of the service instances. In addition, VM memory con-
figurations are injected as BIOS changes, which affect
system boot measurements [21]. Furthermore, service
composition can also happen in a recursive way that is
opaque to clients [35]; imagine, for example, that the
storage service provides filesystem semantics, and inter-
nally uses a third-party HiPPA-compliant block storage
service, similar to Azure Files [9]. In this case, our app
can only verify the correctness of the file system if it
knows and attests the block storage service, even though
it cannot directly access it. Finally, the promised cost re-
ductions of hardware disaggregation [20, 44] magnify the
combined effects of platform heterogeneity and resource
scheduling, since devices are dynamically assigned to
apps from a large, heterogeneous pool.

Other attestation solutions, like Marblerun [45], avoid
ahead-of-time knowledge of all trust relationships by
placing the entire operator management stack inside the
app’s TCB. However, this enlarges the TCB and hinders
operators from evolving their their platform management
tools independently of tenant apps.

In this paper, we present a system that achieves scale-
out attestation; the system avoids ahead-of-time knowl-
edge of all trust relationships (and therefore avoids com-
binatorial explosion) by introducing new mechanisms
for recursive abstract attestation. We make attestation
a recursive process where: (i) services and apps (such
as the example frontend) attest other services they use
(such as the example inference and storage services), as
well as attest the secure communication channels they
use with each other; (ii) tenants provide encrypted de-
ployments, which are managed by an untrusted scheduler
and decrypted by a deployment agent (DA) once inside
an attested execution environment; and (iii) the soft-
ware/hardware platform of each deployment, including
the DA, are attested by a trusted infrastructure agent
(IA), which is in turn attested by each tenant (e.g., to en-
sure it only supports valid platform configurations, as in
the configuration attestation service of Scone [22]). This
recursive approach decouples tenant deployments from
ahead-of-time knowledge of the platform, conscripting
all checks of hardware-specific measurements to the IA.

We pair recursive attestation with abstract service
identities, which together enable us to decouple service
attestation from per-instance measurements. An abstract
service identity is a unique attestable measurement that
is shared across instances of the same service. All in-
stances within the same abstract service identity are
indistinguishable from an attestation client perspective
(e.g., they have the same version and service instance

configuration settings); as a result, the untrusted cloud
operator can deploy scheduler, auto-scaling, endpoint
routing, and load-balancing components without im-
pacting attestation (such as the example inference and
storage services with auto-scaling and load-balancing).

We argue that growing platform heterogeneity and
dynamic service composition in the clouds make scale-
out attestation infeasible ((§ 2)). To address this, we
propose recursive abstract attestation design, prototyped
on FractOS [50] (§§ 3 and 4), and conclude the paper
with security and performance evaluation (§ 5).

2 Scale-Out Attestation Challenges
Platform Heterogeneity. Heterogeneous cloud apps are
deployed across diverse compute platforms, such as CPUs,
GPUs, FPGAs, TPUs, or DPUs. Each has distinct hard-
ware attestation primitives and infrastructure software [4,
26, 39, 51, 56], which leads to a combinatorial explosion
of the required reference measurements that current
attestation schemes need [54]. Tenants must track ev-
ery valid infrastructure software combination, making
trust verification fragile, error-prone, and difficult to
scale. Moreover, attestation requires tenants to verify
vendor-specific hardware attestation primitives, forcing
tenants to handle complexities they should not deal
with [3, 7, 12, 21, 52].
Opaque Service Composition. In service-oriented deploy-
ments, apps are built from multiple third-party services
that themselves may recursively depend on additional
internal services. These compositions are intentionally
opaque for service clients because of security and oper-
ational reasons [18, 28, 33, 35, 37]. Current attestation
models either require full access to all interacting ser-
vices, such as Scone [6, 43], or only support composing a
single level of trust, such as Marblerun [45]. As a result,
they cannot establish trust transitively across services
that are composed in a way that is either opaque (e.g.,
the file system and HiPPA-compliant block storage ser-
vices in our example) or dynamic (e.g., when deploying
an elastic inference service).
Elastic Scheduling Decisions. Modern cloud services rely
on both static and dynamic scheduling to manage service
instances (SI). In dynamic scheduling, SI are launched
and terminated automatically on demand. These deci-
sions introduce complexity in attestation because every
new instance must be attested separately under tradi-
tional models [3, 6, 7, 10, 12, 25, 40–42, 52, 55]. This
incurs latency and operational burden in large-scale sys-
tems. However, static scheduling, where specific instances
are pre-assigned or manually configured, doesn’t solve
the problem. Even in such cases, slight differences in

2



Recursive Attestation for Heterogeneous Cloud Trust APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

deployment (e.g., due to hardware configurations, env.
variables) may lead to inconsistent measurements [54].
This causes hash mismatches during attestation, break-
ing trust even though the logical service remains un-
changed. Thus, scalable attestation must decouple trust
from specific instances and tolerate configuration varia-
tions, motivating our proposed model.

3 Design
This section presents the design of our system, which
is built on top of FractOS [50]. FractOS deploys small
distributed OS instances called controllers, which run
on their own TEE and mediate secure communication
between apps and services, both within and across nodes.
Note that we use the terms “app” and “service” inter-
changeably, as they have no distinction in our system.
Each app executes within a TEE, can only directly com-
municate with their assigned controller via the network,
and indirectly communicate with other apps through the
communication primitives provided by controllers. The
rest of this section first outlines the threat model (§ 3.1)
and system overview (§ 3.2), followed by our distributed
workflow for efficient scale-out attestation (§ 3.3–§ 3.5).

3.1 Threat Model
We identify three subjects on our system, which are
shown in Fig. 1: the tenant(s), the cloud provider (CP),
and the FractOS operator (FO). A tenant owns one or
more apps (shown in green) and does not trust any other
party in the system; importantly, a tenant can distrust
other tenants, such that the app owner can distrust the
inference service owner. The CP is responsible for pro-
visioning the physical infrastructure (gray), including
TEEs, firmware/BIOS, and hardware devices, as well as
untrusted infrastructure such as networking and resource
scheduling (shown in red). The FO manages the Frac-
tOS infrastructure (orange), whose are described in the
sections below; tenants do not trust the FO, but trust
the components it deploys after attesting them. Each
TEE is assumed to have a hardware root of trust, and
can establish secure channels with other devices (e.g.,
GPUs) using protocols such as SPDM [23].

Adversaries in this model include malicious third-party
apps owned by some tenant, app deployments compro-
mised by a malicious CP (e.g., through the scheduler,
host OS, or hardware), deployments compromised by
a malicious FO (e.g., through a tampered controller),
or network-based man-in-the-middle attacks. Attacks
such as side-channel attacks, denial-of-service (DoS),
and physical tampering are out of the scope of this work,
but could be addressed using existing solutions [47, 57].

Figure 1: Overview of the scale-out attestation system

3.2 System Overview
Scale-out attestation aims to decouple platform attesta-
tion from service attestation, enabling scalable, recursive
trust across resources in a disaggregated and hetero-
geneous cloud. This design supports abstract service
composition while preserving the elasticity and modular-
ity expected in modern cloud systems. To achieve these
goals, the untrusted FO deploys three types of attestable
components within TEEs (orange boxes in Fig. 1): the
infrastructure agent (IA), the deployment agent (DA)
and the FractOS controller.

The IA and DA address platform heterogeneity by
attesting components across the infrastructure. The IA
has an abstract attestation policy, a series of platform-
specific backends, a cluster private key (CPK) that is
only released to attested DAs, and a controller image
verification policy (controller IVP), which describes a
controller image with a public key for image verification,
the image URL, and the image version. The abstract
policy attests each DA, which is then delegated the CPK
to deploy and attest additional components owned by
the FO and other tenants (i.e., controllers and apps).

Both FO and tenants send deployment requests to
the untrusted cloud scheduler. To ensure the integrity of
the deployment, they attach an encrypted version of the
deployment request (containing IVP, command line, and
injected configuration files and environment variables)
using the cluster public key (the counterpart to the CPK).
The IA then releases the CPK to a successfully attested
DA, which in turn extracts and decrypts the deployment
request (which is therefore integrity-protected), verifies
its contents (i.e., image integrity), and finally launches
the requested program inside the TEE.

Controllers and app are managed slightly different by
the DA. When deploying a controller, the FO does the
following steps: (i) attest IA; (ii) upload controller IVP
to the IA, which creates the secret CPK; and (iii) get the
cluster public key to encrypt deployment requests. If the
request identifies a controller (via an optional field), the

3



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Yaoxin et al.

DA checks that the deployment request is valid accord-
ing to the controller IVP, and then proceeds with the
deployment. The DA will pass the CPK to the controller
once deployed, which it will use to connect to other
controllers using encrypted network transports [48, 53].
When deploying an app, the tenant does the following
steps: (i) attest IA; and (ii) get the cluster public key to
encrypt deployment requests. If the request identifies an
app (via an optional field), the DA proceeds with the
deployment. The tenant has the option of embedding a
symmetric key on the encrypted request, which the DA
will use to decrypt the app image. The tenant also has
the option to control how apps can be co-located on the
same TEE, by setting an additional field on the deploy-
ment request; the DA will check that all co-located apps
have the same secret value on that field (the default is
to disallow co-location). The DA will pass this optional
key and secret fields to the app once deployed.

This separation of concerns abstracts the complexity
of hardware platform attestation away from the FO and
tenants, who only need to attest the IA, together with
its abstract attestation policy and controller IVP. Since
the CPK is only released to attested controllers, they do
not need to attest each other, as well as tenants do not
need to attest controllers. § 3.3 contains more details.

To support elastic scheduling decisions and opaque ser-
vice composition, applications can check that any service
instance they connect to, conforms to a reference abstract
service identity that captures the relevant information
that is constant across equivalent instances of the same
service. An attestation report cannot be used in practice,
since each instance might have different configurations
that do not compromise the security of the service (e.g.,
memory size or thread count). Instead, the DA crypto-
graphically hashes the app deployment request, which
is privacy- and integrity-protected through the CPK; to
support identity equivalence across instances, the DA
only hashes a well-defined subset of the fields in the
deployment request (see § 3.4 and § 3.5 later). The DA
then sends this to the corresponding controller, which
allows apps to check the identity of any instance against
a reference value (calculated by tenants using the same
method). Since identities are agnostic to the platforms
and specific deployment parameters, they remain sta-
ble across dynamically instantiated or migrated services.
Furthermore, each identity encodes a policy for how the
service itself uses its security monitor to attest any other
services it may use; this enables recursive attestation
across arbitrarily deep elastic service compositions.

Figure 2: Steps to attest infrastructure (a–e), and app
deployments (1–6)

3.3 Platform Attestation
The platform attestation process consists of five phases,
numbered a – e in Fig. 2: IA deployment, controller re-
quest, platform measurement, platform verification, and
controller deployment. a The FO first deploys an IA
inside a TEE, specifying the corresponding abstract pol-
icy and controller IVP. b The FO then encrypts the
controller deployment request (which includes the DA
configuration) and embeds it into a clear-text request
to the cloud scheduler. c The hypervisor hashes the
DA configuration into the immutable host data field of
the TEE report. After boot, the TEE collects platform
software measurements into an attestation report; i.e., it
captures the state of the device and infrastructure soft-
ware, by hashing them into Intel TDX RTMRs or TPM
PCRs [26, 40]. d The DA sends the attestation report
to the IA for verification (see § 3.2). Notably, the IA con-
tains vendor-specific backends to verify heterogeneous
hardware roots of trust (see Fig. 1). The IA then checks
the measured software states against the abstract policy
to ensure conformance with expected configurations. e If
verification succeeds, the IA releases the CPK and the
controller IVP to the respective DA. The DA decrypts
the deployment request, pulls the controller image, and
validates it using the IVP. Once verified, it injects the
CPK and environment variables in the deployment re-
quest into the controller, enabling secure communication
between any attested controllers.

3.4 Application Deployment
The app deployment has phases numbered 1 – 6 in Fig.
2. First, 1 tenants attest the IA, and verify its abstract
policy and controller IVP to ensure (in a single step)
that the IA, DAs and controllers can be trusted. This
facilitates trust across the entire FractOS infrastructure,
and returns the cluster public key to the tenant.

After this, tenants can deploy one or more apps using
the untrusted cloud scheduler. 2 The tenant uses the

4



Recursive Attestation for Heterogeneous Cloud Trust APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

cluster public key to encrypt and sign the app deploy-
ment request, and submits it for deployment. 3 The
DA then authenticates the request received from the
scheduler, decrypts the app deployment request using
the CPK, calculates the abstract service identity, and
performs the relevant co-location checks (see § 3.2). Re-
member that the DA gets the corresponding CPK only
after it is successfully attested against the IA (as in
d earlier); the app deployment integrity and privacy
are therefore protected from untrusted components such
as the cloud scheduler. 4 The DA then uses the de-
crypted app IVP to verify (and optionally decrypt) the
integrity of the app image, sends the calculated abstract
service identity to the controller assigned to this app,
and deploys the app with the inject configuration files
and environment variables (including the address of the
DA). This identity remains consistent across instances
because it only includes relevant deployment parameters;
such parameters include a cryptographic hash of any DA
and app configuration files, and a set of environment
variable values, whose names are provided in the DA
configuration. Notably, command line arguments are not
considered, due to their order sensitivity, as well as envi-
ronment variables not present in the DA configuration;
it is therefore up to a service client to ensure that the
DA configuration used to produce an abstract service
identity captures all the relevant configuration files and
environment variables that affect the behavior of a de-
ployment. 5 The app connects with the corresponding
controller, and authenticates it using the cluster public
key (an untrusted controller cannot have the CPK). As
part of this connection, the app passes the address of its
DA, which the controller uses to retrieve the abstract
service identity for the connecting app.

3.5 Service Attestation
An app must attest all services it uses recursively, which
is crucial in a public cloud with opaque or dynamic com-
position (see § 2). 6 An app attests the services it uses
by checking their associated abstract service identity
against their expected reference value. This comparison
is provided by an identity-check system call in the con-
troller, who associates each connection to a service with
the identity generated by the DA when deploying it.

Identity checks can therefore be applied recursively,
and facilitate using existing (untrusted) cloud schedulers.
An app performs an identity check against a particular
service instance as part of the connection process, so
the assignment can happen via an untrusted component
(e.g., an auto-scaling load balancer). In the case of an
L7 load balancer, the app must identity-check the load
balancer, which in turn must identity-check the service

instances it is managing; with a reusable load-balancer,
the service identity can be easily embedded as a pa-
rameter in the deployment request, therefore enabling
recursive composition of identity checks in a safe way.

4 Implementation
Our design considers heterogeneous TEEs and secure
communications, but the prototype simplifies areas we
expect future lift-and-shift solutions to apply, such as se-
cure RDMA, SPDM, and confidential PCIe and CXL [11,
23, 34, 48]. We build an overlay cloud by deploying con-
trollers and apps as confidential containers using Confi-
dential Containers (CoCo) [16]. We chose CoCo for its
support of multiple CPU TEEs, secure device I/O, and
software infrastructure measurements [14, 30, 42]. Our
implementation has two main parts. We need to extend
the Key Broker Service [13] to act as the IA, enabling
multi-tenant attestation. We also need to deploy apps
and controllers using CoCo, implement the DA, and add
it into CoCo guest components [15]. This setup ensures
DA can be measured using CoCo-provided mechanisms
during cVM initialization. The FractOS controller also
need to be modified by: (i) extending process creation
(make_process() call) to retrieve service identities from
the DA; and (ii) adding the identity-check system call
to allow apps to id-check other services. So far, the DA
and the FractOS modifications are completed.

5 Evaluation
We conduct a security analysis to examine how well the
design mitigates threats from CP, FO, and malicious
services, and then benchmark attestation overheads, in-
cluding service startup and connection.

5.1 Security Analysis
The untrusted CP could violate FractOS or app deploy-
ment policies by allocating a TEE with buggy firmware.
However, such attacks are prevented since the IA attests
TEE integrity against the abstract policy. If attestation
fails, DA in the TEE does not receive the CPK and
cannot participate further.

A malicious FO may attempt to deploy a compromised
controller to exfiltrate tenant secrets. This is not possible
in our framework. Upon deployment, DA validates the
controller image against the controller IVP. If validation
fails, deployment will be aborted, and the corresponding
controller instance will not receive the CPK. The IVP is
submitted to the IA by the FractOS operator and deliv-
ered to DA after platform attestation. Tenants can thus
attest the IVP and ensure that only benign controllers
are allowed to run.

5



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Yaoxin et al.

50 75 80 90 95 99
Percentile

17000
18000
19000
20000
21000
22000
23000
24000

St
ar

tu
p 

La
te

nc
y 

(μ
s)

17988

17731

18683

18387

18910

18549

19370

19086

19988

19719

22019

21471

With Attestation
Without Attestation

Figure 3: Process creation latency

50 75 80 90 95 99
Percentile

0
100
200
300
400
500
600
700

St
ar

tu
p 

La
te

nc
y 

(μ
s)

63

45

68

48

141

48 55

With Attestation
Without Attestation

Figure 4: Service connection latency

Malicious service owners may attempt to trick client
apps into using tampered services to extract secrets. For
example, a malicious service owner may try to deploy
a compromised GPU service that silently leaks patient
data. However, such attacks are mitigated by our de-
sign. Before any interaction, the hospital app attests
the identity of the inference frontend, verifying that it
runs the correct binary in a trusted TEE and that it
will recursively attest its dependent services as required
by the security policy embedded in its identity. If either
the frontend or any subservice is compromised, it will
be rejected due to an identity mismatch, preserving a
trusted chain across the pipeline.

5.2 Performance Evaluation
5.2.1 Methodology. We evaluate on a 2-node cluster,
each with Intel Xeon Silver 4215R CPU, 93 GB DRAM,
and a 10 Gbps Mellanox ConnectX-5 NIC. Controllers
and the DA run on both nodes. The app is deployed on
node 1; the backend service runs on node 2.

5.2.2 Application Startup Overhead. We evaluate app
startup latency by measuring the time an app takes to
complete the make_process() call, with and without at-
testation enabled. Figure 3 presents the make_process()
latency. At the 50th percentile, the latency increases
from 17,731 µs (without attestation) to 17,988 µs (with
attestation enabled), and at the 99th percentile, from
21,471 µs to 22,019 µs. Across all percentiles, the over-
head remains under 600 µs, representing less than a
3% increase. This overhead arises because the controller
must retrieve the caller’s ID from the DA when process-
ing the make_process(). However, the results show that
the attestation introduces minor overhead.

5.2.3 Service Connection Overhead. We evaluate the
overhead introduced by attestation during service con-
nection. Figure 4 presents the service connection latency.
Without attestation, latency remains stable across most
percentiles, around 45–55 µs. With attestation enabled,
the latency is slightly higher (63–141 µs). This overhead
arises from ID verification via RPCs between controllers
and the installation of service-specific state (e.g., shared
or isolated) during connection setup. The latency impact

before saturating the controller is modest (63-141 µs vs.
45-55 µs), but the additional computations done in the
controller are sufficient to saturate its worker threads at
higher percentiles (80th vs 90th); this is easily solved by
adding additional worker threads to the controller.

6 Related Work
Confidential Kubernetes. Constellation [19] adds k8s
scheduler into its TCB, enabling cluster-level attestation
but inflating TCB and limiting flexibility. IBM removes
the scheduler from the TCB by isolating untrusted Kata
agent endpoints [49]. Constellation lacks fine-grained
workload attestation, whereas IBM lacks dynamic ser-
vice composition and recursive attestation, making them
unsuitable for our dynamic, multi-party computations.
Confidential Service Meshes. Marblerun [45] provides
SGX-based confidential scaling with ahead-of-time attes-
tation via a trusted coordinator. Marblerun lacks multi-
party and recursive composition, and the coordinator
enlarges the TCB attack surface while reducing its flexi-
bility. SCONE [6] uses CAS [22] to attest services and
provision TLS certificates for secure point-to-point ser-
vice connections. However, it does not support dynamic
or opaque service composition.

7 Conclusions
We introduced scale-out attestation, a novel recursive
attestation paradigm that addresses the scalability and
trust management challenges in the confidential heteroge-
neous cloud. We decouple platform and app-level attesta-
tion by introducing abstract service identities, delivering
scale-out attestation with strong security guarantees
while streamlining how trust is established across elas-
tic and opaque service compositions that span multiple
trust domains and heterogeneous devices. Our evalua-
tion shows the feasibility of our approach with minimal
latency overhead.

References
[1] Tempus AI. 2024. Tempus: AI-enabled precision medicine.

https://www.tempus.com
6

https://www.tempus.com


Recursive Attestation for Heterogeneous Cloud Trust APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

[2] Suzanne Ambiel. 2024. The Case for Confidential Computing.
https://www.linuxfoundation.org/hubfs/LF%20Research/
TheCaseforConfidentialComputing_062724.pdf?hsLang=e

[3] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory
Neven, Ahmad-Reza Sadeghi, and Matthias Schunter. 2016.
SANA: Secure and Scalable Aggregate Network Attesta-
tion (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 731–742. https://doi.org/10.1145/2976749.
2978335

[4] AMD. 2024. AMD Secure Encrypted Virtualization (SEV).
https://www.amd.com/en/developer/sev.html

[5] Arm. 2024. Arm Confidential Compute Architecture (ARM
CCA). https://www.arm.com/architecture/security-features/
arm-confidential-compute-architecture

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind, Di-
vya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David
Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers
with Intel SGX. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX As-
sociation, Savannah, GA, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[7] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, Matthias Schunter, Gene Tsudik, and Christian
Wachsmann. 2015. SEDA: Scalable Embedded Device At-
testation. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (Den-
ver, Colorado, USA) (CCS ’15). Association for Comput-
ing Machinery, New York, NY, USA, 964–975. https:
//doi.org/10.1145/2810103.2813670

[8] Azure. 2024. Introduction to Azure Storage. https://
learn.microsoft.com/en-us/azure/storage/common/storage-
introduction

[9] Azure. 2025. What is Azure Files. https://learn.microsoft.
com/en-us/azure/storage/files/storage-files-introduction

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015.
Shielding Applications from an Untrusted Cloud with Haven.
ACM Trans. Comput. Syst. 33, 3, Article 8 (Aug. 2015),
26 pages. https://doi.org/10.1145/2799647

[11] Rob Blankenship and Mahesh Wagh. 2023. Introducing the
CXL 3.1 Specification. https://computeexpresslink.org/wp-
content/uploads/2024/03/CXL_3.1-Webinar-Presentation_
Feb_2024.pdf

[12] Xavier Carpent, Karim ElDefrawy, Norrathep Rat-
tanavipanon, and Gene Tsudik. 2017. Lightweight Swarm
Attestation: A Tale of Two LISA-s. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications
Security (Abu Dhabi, United Arab Emirates) (ASIA CCS
’17). Association for Computing Machinery, New York, NY,
USA, 86–100. https://doi.org/10.1145/3052973.3053010

[13] Confidential Container Community. 2023. Key Broker Ser-
vice. https://github.com/confidential-containers/trustee/
tree/main/kbs

[14] Confidential Container Community. 2023. Trusted
Device Manager Architecture. https://github.
com/confidential-containers/guest-components/blob/
9de4e6b10af10c25e253c33013d22b2cdaa695e6/tdm/docs/
architecture.md

[15] Confidential Container Community. 2024. Confidential
Container Tools and Components. https://github.com/
confidential-containers/guest-components

[16] Confidential Container Community. 2024. Confidential Con-
tainers. https://github.com/confidential-containers

[17] Confidential Computing Consortium. 2023. Why is
Attestation Required for Confidential Computing?
https://confidentialcomputing.io/2023/04/06/why-is-
attestation-required-for-confidential-computing/

[18] Dileep Domakonda. 2025. Secure and Scalable Microser-
vices Architecture: Principles, Benefits, and Challenges. In-
ternational Journal of Scientific Research in Computer
Science, Engineering and Information Technology (IJSRC-
SEIT) 11, 2 (March-April 2025). https://doi.org/10.32628/
CSEIT23112569

[19] Edgelesssys. 2023. Constellation: Always Encrypted Kuber-
netes. https://github.com/edgelesssys/constellation

[20] Mohammad Ewais and Paul Chow. 2024. DDC: A Vision
for a Disaggregated Datacenter. arXiv:2402.12742 [cs.AR]
https://arxiv.org/abs/2402.12742

[21] Google. 2023. Verify a Confidential VM instance’s firmware
(TDX). https://cloud.google.com/confidential-computing/
confidential-vm/docs/verify-firmware#intel-tdx

[22] Franz Gregor, Wojciech Ozga, Sebastien Vaucher, Rafael Pires,
Do Le Quoc, Sergei Arnautov, Andre Martin, Valerio Schi-
avoni, Pascal Felber, and Christof Fetzer. 2020. Trust Manage-
ment as a Service: Enabling Trusted Execution in the Face of
Byzantine Stakeholders . In 2020 50th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks
(DSN). IEEE Computer Society, Los Alamitos, CA, USA,
502–514. https://doi.org/10.1109/DSN48063.2020.00063

[23] SPDM Working group. 2023. Security Protocols and Data
Models(SPDM). https://www.dmtf.org/standards/spdm

[24] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. 2023.
Lifting the veil on Meta’s microservice architecture: Anal-
yses of topology and request workflows. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX
Association, Boston, MA, 419–432. https://www.usenix.org/
conference/atc23/presentation/huye

[25] IETF. 2023. Remote ATtestation procedureS (RATS) Archi-
tecture. https://www.rfc-editor.org/info/rfc9334.

[26] Intel. 2024. Intel® Trust Domain Extensions (In-
tel® TDX). https://www.intel.com/content/www/us/en/
developer/tools/trust-domain-extensions/overview.html

[27] Intel Corporation. 2023. Intel® Software Guard Extensions
(Intel® SGX). https://www.intel.com/content/www/us/
en/products/docs/accelerator-engines/software-guard-
extensions.html.

[28] Kasun Indrasiri. 2022. Microservices in Prac-
tice - Key Achitectural Concepts of an MSA.
https://content.wso2.com/wso2/sites/all/images/pdf/
microservices-in-practice-key-architectural-concepts-of-an-
msa.pdf?utm_source=chatgpt.com.

[29] Thomas Knauth, Michael Steiner, Somnath Chakrabarti,
Li Lei, Cedric Xing, and Mona Vij. 2019. Integrat-
ing Remote Attestation with Transport Layer Security.
arXiv:1801.05863 [cs.CR] https://arxiv.org/abs/1801.05863

[30] Magnus Kulke. 2024. Building Trust into OS images for
Confidential Containers. https://confidentialcontainers.
org/blog/2024/03/01/building-trust-into-os-images-for-
confidential-containers/

[31] Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric
Xing, Pramod Bhatotia, and Mona Vij. 2024. Gramine-TDX:
A Lightweight OS Kernel for Confidential VMs. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and

7

https://www.linuxfoundation.org/hubfs/LF%20Research/TheCaseforConfidentialComputing_062724.pdf?hsLang=e
https://www.linuxfoundation.org/hubfs/LF%20Research/TheCaseforConfidentialComputing_062724.pdf?hsLang=e
https://doi.org/10.1145/2976749.2978335
https://doi.org/10.1145/2976749.2978335
https://www.amd.com/en/developer/sev.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/2810103.2813670
https://doi.org/10.1145/2810103.2813670
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://learn.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://doi.org/10.1145/2799647
https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-Webinar-Presentation_Feb_2024.pdf
https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-Webinar-Presentation_Feb_2024.pdf
https://computeexpresslink.org/wp-content/uploads/2024/03/CXL_3.1-Webinar-Presentation_Feb_2024.pdf
https://doi.org/10.1145/3052973.3053010
https://github.com/confidential-containers/trustee/tree/main/kbs
https://github.com/confidential-containers/trustee/tree/main/kbs
https://github.com/confidential-containers/guest-components/blob/9de4e6b10af10c25e253c33013d22b2cdaa695e6/tdm/docs/architecture.md
https://github.com/confidential-containers/guest-components/blob/9de4e6b10af10c25e253c33013d22b2cdaa695e6/tdm/docs/architecture.md
https://github.com/confidential-containers/guest-components/blob/9de4e6b10af10c25e253c33013d22b2cdaa695e6/tdm/docs/architecture.md
https://github.com/confidential-containers/guest-components/blob/9de4e6b10af10c25e253c33013d22b2cdaa695e6/tdm/docs/architecture.md
https://github.com/confidential-containers/guest-components
https://github.com/confidential-containers/guest-components
https://github.com/confidential-containers
https://confidentialcomputing.io/2023/04/06/why-is-attestation-required-for-confidential-computing/
https://confidentialcomputing.io/2023/04/06/why-is-attestation-required-for-confidential-computing/
https://doi.org/10.32628/CSEIT23112569
https://doi.org/10.32628/CSEIT23112569
https://github.com/edgelesssys/constellation
https://arxiv.org/abs/2402.12742
https://arxiv.org/abs/2402.12742
https://cloud.google.com/confidential-computing/confidential-vm/docs/verify-firmware#intel-tdx
https://cloud.google.com/confidential-computing/confidential-vm/docs/verify-firmware#intel-tdx
https://doi.org/10.1109/DSN48063.2020.00063
https://www.dmtf.org/standards/spdm
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://www.rfc-editor.org/info/rfc9334
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://content.wso2.com/wso2/sites/all/images/pdf/microservices-in-practice-key-architectural-concepts-of-an-msa.pdf?utm_source=chatgpt.com
https://content.wso2.com/wso2/sites/all/images/pdf/microservices-in-practice-key-architectural-concepts-of-an-msa.pdf?utm_source=chatgpt.com
https://content.wso2.com/wso2/sites/all/images/pdf/microservices-in-practice-key-architectural-concepts-of-an-msa.pdf?utm_source=chatgpt.com
https://arxiv.org/abs/1801.05863
https://arxiv.org/abs/1801.05863
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/
https://confidentialcontainers.org/blog/2024/03/01/building-trust-into-os-images-for-confidential-containers/


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea Yaoxin et al.

Communications Security (Salt Lake City, UT, USA) (CCS
’24). Association for Computing Machinery, New York, NY,
USA, 4598–4612. https://doi.org/10.1145/3658644.3690323

[32] I-Ting Angelina Lee, Zhizhou Zhang, Abhishek Parwal, and
Milind Chabbi. 2024. The Tale of Errors in Microservices.
Proc. ACM Meas. Anal. Comput. Syst. 8, 3, Article 46 (Dec.
2024), 36 pages. https://doi.org/10.1145/3700436

[33] W. Lindblom. 2022. Evaluation of Security Threats in Mi-
croservice Architectures. https://urn.kb.se/resolve?urn=urn:
nbn:se:kth:diva-321085

[34] Rambus Lou Ternullo, Senior Director IP Product Marketing.
2023. IDE and TDISP: An Overview of PCIe® Technology
Security Features. https://pcisig.com/blog/ide-and-tdisp-
overview-pcie%C2%AE-technology-security-features

[35] Boris Lublinsky. 2008. Service Composition. Retrieved April
4, 2025 from https://www.infoq.com/articles/lublinsky-soa-
composition/

[36] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao
Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu.
2021. Characterizing Microservice Dependency and Perfor-
mance: Alibaba Trace Analysis. In Proceedings of the ACM
Symposium on Cloud Computing (Seattle, WA, USA) (SoCC
’21). Association for Computing Machinery, New York, NY,
USA, 412–426. https://doi.org/10.1145/3472883.3487003

[37] Microsoft. 2022. The API gateway pattern ver-
sus the Direct client-to-microservice communica-
tion. https://learn.microsoft.com/en-us/dotnet/
architecture/microservices/architect-microservice-container-
applications/direct-client-to-microservice-communication-
versus-the-api-gateway-pattern.

[38] Nivdia. [n. d.]. Hopper Confidential Computing: How it
Works Under the Hood. Retrieved April 2, 2025 from
https://static.rainfocus.com/nvidia/gtcspring2023/sess/
1666639437498001endS/supmat/S51709%20-%20Hopper%
20Confidential%20Computing_%20How%20it%20Works%
20under%20the%20Hood_1679465925191001GNep.pdf#:
~:text=%E2%80%A2%20Requests%20the%20attestation%
20report%20from%20the,authenticates%20it%20based%
20on%20GPU%20certificate%20chain&text=%E2%80%
A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%
80%93%20partitioning%20of%20GPU%20into.

[39] NVIDIA. 2023. Confidential Computing on NVIDIA
H100 GPUs for Secure and Trustworthy AI. https:
//developer.nvidia.com/blog/confidential-computing-on-
h100-gpus-for-secure-and-trustworthy-ai/

[40] Reiner Sailer, Leendert Van Doorn, and James P Ward. 2004.
The role of TPM in enterprise security. Technical Report.
Technical Report RC23363 (W0410-029), IBM Research.

[41] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van
Doorn. 2004. Design and implementation of a TCG-based
integrity measurement architecture. In Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13
(San Diego, CA) (SSYM’04). USENIX Association, USA, 16.

[42] Carlos Segarra, Tobin Feldman-Fitzthum, Daniele Buono,
and Peter Pietzuch. 2024. Serverless Confidential Contain-
ers: Challenges and Opportunities. In Proceedings of the
2nd Workshop on SErverless Systems, Applications and
MEthodologies (Athens, Greece) (SESAME ’24). Associa-
tion for Computing Machinery, New York, NY, USA, 32–40.
https://doi.org/10.1145/3642977.3652097

[43] Ioannis Sfyrakis and Thomas Gross. 2020. A Survey on
Hardware Approaches for Remote Attestation in Network

Infrastructures. arXiv:2005.12453 [cs.CR] https://arxiv.org/
abs/2005.12453

[44] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang.
2022. Towards a fully disaggregated and programmable data
center. In Proceedings of the 13th ACM SIGOPS Asia-Pacific
Workshop on Systems (Virtual Event, Singapore) (APSys ’22).
Association for Computing Machinery, New York, NY, USA,
18–28. https://doi.org/10.1145/3546591.3547527

[45] Edgeless system. 2024. MarbleRun: a framework for creating
distributed confidential computing apps. https://github.com/
edgelesssys/marblerun

[46] Edgeless system. 2024. Remote Attestation. https:
//www.edgeless.systems/wiki/what-is-confidential-
computing/remote-attestation#:~:text=Remote%
20attestation%20is%20a%20crucial,is%20addressed%
20by%20remote%20attestation

[47] Rajat Tandon. 2020. A Survey of Distributed Denial of Service
Attacks and Defenses. arXiv:2008.01345 [cs.CR] https://
arxiv.org/abs/2008.01345

[48] Konstantin Taranov, Benjamin Rothenberger, Adrian Per-
rig, and Torsten Hoefler. 2020. sRDMA – Efficient NIC-
based Authentication and Encryption for Remote Direct Mem-
ory Access. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 691–704. https:
//www.usenix.org/conference/atc20/presentation/taranov

[49] Enriquillo Valdez, Salman Ahmed, Zhongshu Gu, Christophe
de Dinechin, Pau-Chen Cheng, and Hani Jamjoom. 2024.
Crossing Shifted Moats: Replacing Old Bridges with New
Tunnels to Confidential Containers. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Com-
munications Security (Salt Lake City, UT, USA) (CCS ’24).
Association for Computing Machinery, New York, NY, USA,
1390–1404. https://doi.org/10.1145/3658644.3670352

[50] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till Miemietz,
Matthias Hille, Nils Asmussen, Michael Roitzsch, Hermann
Härtig, and Mark Silberstein. 2022. Slashing the disag-
gregation tax in heterogeneous data centers with FractOS.
In European Conference on Computer Systems (EuroSys).
https://doi.org/10.1145/3492321.3519569

[51] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018.
Graviton: Trusted Execution Environments on GPUs. In 13th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 18). USENIX Association, Carlsbad,
CA, 681–696. https://www.usenix.org/conference/osdi18/
presentation/volos

[52] Samuel Wedaj, Kolin Paul, and Vinay J. Ribeiro. 2019. DADS:
Decentralized Attestation for Device Swarms. ACM Trans.
Priv. Secur. 22, 3, Article 19 (July 2019), 29 pages. https:
//doi.org/10.1145/3325822

[53] Wikipedia. 2025. Transport Layer Security. https://en.
wikipedia.org/wiki/Transport_Layer_Security

[54] Mikko Ylinen and Dr. Malini Bhandaru. 2024. Confiden-
tial Cloud Native Attestation Challenges and Opportunities,
OC3 2024. https://learn.microsoft.com/en-us/azure/storage/
common/storage-introduction

[55] Yan Zhai, Qiang Cao, Jeffrey Chase, and Michael Swift.
2017. TapCon: Practical Third-Party Attestation for the
Cloud. In 9th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 17). USENIX Association, Santa
Clara, CA. https://www.usenix.org/conference/hotcloud17/
program/presentation/zhai

8

https://doi.org/10.1145/3658644.3690323
https://doi.org/10.1145/3700436
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321085
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321085
https://pcisig.com/blog/ide-and-tdisp-overview-pcie%C2%AE-technology-security-features
https://pcisig.com/blog/ide-and-tdisp-overview-pcie%C2%AE-technology-security-features
https://www.infoq.com/articles/lublinsky-soa-composition/
https://www.infoq.com/articles/lublinsky-soa-composition/
https://doi.org/10.1145/3472883.3487003
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://static.rainfocus.com/nvidia/gtcspring2023/sess/1666639437498001endS/supmat/S51709%20-%20Hopper%20Confidential%20Computing_%20How%20it%20Works%20under%20the%20Hood_1679465925191001GNep.pdf#:~:text=%E2%80%A2%20Requests%20the%20attestation%20report%20from%20the,authenticates%20it%20based%20on%20GPU%20certificate%20chain&text=%E2%80%A2%20Multi%2DInstance%20GPU%20(MIG)%20%E2%80%93%20partitioning%20of%20GPU%20into.
https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/
https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/
https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/
https://doi.org/10.1145/3642977.3652097
https://arxiv.org/abs/2005.12453
https://arxiv.org/abs/2005.12453
https://arxiv.org/abs/2005.12453
https://doi.org/10.1145/3546591.3547527
https://github.com/edgelesssys/marblerun
https://github.com/edgelesssys/marblerun
https://www.edgeless.systems/wiki/what-is-confidential-computing/remote-attestation#:~:text=Remote%20attestation%20is%20a%20crucial,is%20addressed%20by%20remote%20attestation
https://www.edgeless.systems/wiki/what-is-confidential-computing/remote-attestation#:~:text=Remote%20attestation%20is%20a%20crucial,is%20addressed%20by%20remote%20attestation
https://www.edgeless.systems/wiki/what-is-confidential-computing/remote-attestation#:~:text=Remote%20attestation%20is%20a%20crucial,is%20addressed%20by%20remote%20attestation
https://www.edgeless.systems/wiki/what-is-confidential-computing/remote-attestation#:~:text=Remote%20attestation%20is%20a%20crucial,is%20addressed%20by%20remote%20attestation
https://www.edgeless.systems/wiki/what-is-confidential-computing/remote-attestation#:~:text=Remote%20attestation%20is%20a%20crucial,is%20addressed%20by%20remote%20attestation
https://arxiv.org/abs/2008.01345
https://arxiv.org/abs/2008.01345
https://arxiv.org/abs/2008.01345
https://www.usenix.org/conference/atc20/presentation/taranov
https://www.usenix.org/conference/atc20/presentation/taranov
https://doi.org/10.1145/3658644.3670352
https://doi.org/10.1145/3492321.3519569
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1145/3325822
https://doi.org/10.1145/3325822
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://learn.microsoft.com/en-us/azure/storage/common/storage-introduction
https://www.usenix.org/conference/hotcloud17/program/presentation/zhai
https://www.usenix.org/conference/hotcloud17/program/presentation/zhai


Recursive Attestation for Heterogeneous Cloud Trust APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

[56] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2022.
ShEF: shielded enclaves for cloud FPGAs. In Proceedings
of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (Lausanne, Switzerland) (ASPLOS ’22). Association
for Computing Machinery, New York, NY, USA, 1070–1085.

https://doi.org/10.1145/3503222.3507733
[57] Yongbin Zhou and Dengguo Feng. 2005. Side-Channel Attacks:

Ten Years After Its Publication and the Impacts on Crypto-
graphic Module Security Testing. IACR Cryptol. ePrint Arch.
2005 (2005), 388. https://api.semanticscholar.org/CorpusID:
9365379

9

https://doi.org/10.1145/3503222.3507733
https://api.semanticscholar.org/CorpusID:9365379
https://api.semanticscholar.org/CorpusID:9365379

	Abstract
	1 Introduction
	2 Scale-Out Attestation Challenges
	3 Design
	3.1 Threat Model
	3.2 System Overview
	3.3 Platform Attestation
	3.4 Application Deployment
	3.5 Service Attestation

	4 Implementation
	5 Evaluation
	5.1 Security Analysis
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusions
	References

