
CubicleOS: A Library OS with So�ware Componentisation for
Practical Isolation

Vasily A. Sartakov
v.sartakov@imperial.ac.uk
Imperial College London

United Kingdom

Lluís Vilanova
vilanova@imperial.ac.uk
Imperial College London

United Kingdom

Peter Pietzuch
prp@imperial.ac.uk

Imperial College London
United Kingdom

ABSTRACT

Library OSs have been proposed to deploy applications isolated
inside containers, VMs, or trusted execution environments. They
often follow a highly modular design in which third-party com-
ponents are combined to offer the OS functionality needed by an
application, and they are customised at compilation and deployment
time to fit application requirements. Yet their monolithic design
lacks isolation across components: when applications and OS com-
ponents contain security-sensitive data (e.g., cryptographic keys or
user data), the lack of isolation renders library OSs open to security
breaches via malicious or vulnerable third-party components.

We describe CubicleOS, a library OS that isolates components
in the system while maintaining the simple, monolithic develop-
ment approach of library composition. CubicleOS allows isolated
components, called cubicles, to share data dynamically with other
components. It provides spatial memory isolation at the granularity
of function calls by using Intel MPK at user-level to isolate compo-
nents. At the same time, it supports zero-copy data access across
cubicles with feature-rich OS functionality. Our evaluation shows
that CubicleOS introduces moderate end-to-end performance over-
heads in complex applications: 2× for the I/O-intensive NGINX web
server with 8 partitions, and 1.7–8× for the SQLite database engine
with 7 partitions.

CCS CONCEPTS

• Software and its engineering→Message passing; • Security
and privacy→Operating systems security; Software and ap-

plication security.

KEYWORDS

compartments, isolation, inter-process communication, Intel MPK

ACM Reference Format:

Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS:
A Library OS with Software Componentisation for Practical Isolation. In
Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’21), April 19–

23, 2021, Virtual, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3445814.3446731

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446731

1 INTRODUCTION

In cloud environments, libraryOSs gain popularitywhen userswant
to make deployed applications self-contained in terms of OS func-
tionality. They are used to deploy lightweight unikernels [29, 31, 37],
make containers more efficient [47], and run shielded applications
inside of trusted execution environments (TEEs) [7, 44].

Library OSs such as Graphene [53], IncludeOS [5] and Uni-
kraft [31] are typically assembled from various independent library
components (e.g., file system libraries, network stacks, and low-
level drivers). To minimise the image size when linked with an
application, the components required for a given application are
selected at compile-time. All components and the application then
execute as part of a single, unprotected address space.

The lack of compartmentalisation between library OS compo-
nents raises security, robustness and reliability concerns; these are
well-known deficiencies of monolithic designs, especially given the
complexity of library OS components and when applications are
exposed over the network [39]. For example, a vulnerability in a
file system implementation may be exploited to compromise the
whole library OS and application, and then disclose, e.g., encrypted
keys from the TLS implementation [12].

We argue that current library OS designs therefore risk being
a step backwards in terms of security, robustness and reliability.
In contrast to the well-known monolithic design, microkernel de-
signs [22, 30, 34, 51] impose standard interfaces between kernel
components (e.g., based on message passing or RPC-like calls),
which can be used to enforce protection boundaries between com-
ponents. We observe that such designs have seen limited uptake
in library OSs, which typically strive for full POSIX compatibility,
e.g., to execute current Linux applications. In addition, the extra
data copies imposed by microkernel interfaces adds further to the
overhead of library OS designs.

The research question that we explore in this paper is whether
it is possible to design a modular and compartmentalized library
OS that consists of existing, third-party components, while enforc-
ing practical isolation between these components. Our goal is to
retain the flexibility of arbitrary in-kernel interfaces between com-
ponents, as found in monolithic kernel designs, while enforcing
spatial and temporal memory isolation with an acceptable perfor-
mance overhead. To be practical, this must be achieved without
invasive source code changes to the application or the library OS,
and retain compatibility with feature-rich (Linux) applications.

We describe CubicleOS, a new library OS with three core contri-
butions: (1) it mutually isolates existing, third-party components
to provide data integrity and privacy; (2) it imposes minimal code
changes to express isolation policies for components; and (3) it

546

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731
https://doi.org/10.1145/3445814.3446731

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

bar (char ∗ ptr , int a) :

ptr [a] = 0xAA
bar (array, a)

char array [10]
int a = 5

f oo :

BARFOO

(a) Direct function call

bar (char ∗ ptr , inta) :
ptr [a] = 0xAA

dispatcher (msд) :
bar (msд.ptr , msд.a)

send_ret (msд)
msд = pack (array, &a)
send (BAR, msд)

char array [10]
int a = 5

f oo :

BARFOO

(b) Message-based interface

bar (char ∗ ptr , int a) :

ptr [a] = 0xAA
open_window (array, BAR)

bar (array, a)

close_window (array, BAR)

int a = 5

char array [10]

f oo :

BAR
FOO

(c) Windows in CubicleOS

Figure 1: Different designs for interface isolation (Colours represent different memory protection domains.)

provides an efficient implementation based on existing hardware
with trivial modifications.

CubicleOS offers three core abstractions that together enforce
the memory isolation policies defined by each component: cubi-
cles, windows, and cross-cubicle calls. Cubicles provide transparent
spatial memory isolation for each library OS and application com-
ponent, such that any attempt to read or write from/to memory of
another cubicle leads to a memory protection fault.Windows pro-
vide user-managed temporal memory isolation, such that cubicles
can temporarily share data with each other without any copying
(e.g., as function arguments). Finally, cross-cubicle calls provide
control-flow integrity (CFI) when calling functions across cubi-
cle boundaries, ensuring only public entry points are used while
enforcing memory isolation policies.

We prototype CubicleOS on top of Unikraft [31], an existing li-
brary OS. Developers simply need to manage CubicleOS’ windows
to grant memory accesses across cubicles. CubicleOS’ build system
automatically identifies the public entry points of each component
and generates trusted cross-cubicle call trampolines for each. Cubi-
cleOS enforces memory isolation with low overheads using Intel’s
Memory Protection Keys (MPK) extensions [25]; it maps each cubi-
cle into a separate MPK tag and dynamically manages the access
permissions for windows, requiring only a minor modification to
MPK hardware to ensure the integrity of cross-cubicle calls.

When a cross-cubicle call accesses arguments passed by another
cubicle via a window, CubicleOS reassigns that page’s tag to the
accessing cubicle. Note that this differs from a typical use of MPK in
which separate tags are set up for shared communication buffers [21,
54]. This would require changing component interfaces to copy
memory to/from the shared buffers, and result in indirect overheads
due to data copies and exhaustion of MPK tags. CubicleOS avoids
these issues by dynamically retagging pages, and judiciously doing
so only when necessary.

We evaluate CubicleOS both in terms of development effort for
third-party library OS and application developers, and performance.
Our experimental results shows that CubicleOS is between 3× and
5× faster than a state-of-the-art microkernel for the SQLite database
engine with an isolated file system stack, with a small developer
effort that does not impact the organisation or interfaces of existing
third-party OS and application code (SQLite: 600 SLOC; NGINX:
400 SLOC). CubicleOS with SQLite is 1.7× to 8× slower compared
to a non-isolated version and, for the I/O-intensive NGINX web
server, it is 2× slower.

2 ISOLATION IN LIBRARY OSS

Here we discuss the trade-offs between different approaches to
isolate interacting components in a library OS, and then look at
recent hardware support that makes new approaches possible.

2.1 Interfaces between Components

We consider threemechanisms for communication between isolated
components, as shown in Figure 1: (a) direct functions calls between
components; (b) message-based interfaces, as employed by micro-
kernels; and (c) thewindow-based approach used by CubicleOS. The
figures consider an example with two components, FOO and BAR, that
interact with each other. Each component has one function: foo()
is located inside FOO, and bar() is located inside BAR. Function foo()

has two stack variables, an array of 10 bytes, array[10], and an
integer, a=5. Function foo() invokes function bar() and passes the
pointer to the array and the integer.

Figure 1a shows a regular function call within a single address
space. Function bar() is called with two arguments, a pointer to
foo’s stack and a scalar value. Function bar() has access to the foo’s
stack, and therefore can directly change the array (ptr[a]=0xAA). In
a library OS, trampolines into the kernel have similar semantics
because the kernel has privileged access to the user program. Such
calls are fast, but cannot be used for the interaction between iso-

lated components. For example, if component BAR is in a separate
protection domain, any attempt to access FOO’s stack would cause a
memory protection fault.

In contrast, Figure 1b shows a general approach for a message-
based interface, which is commonly used in microkernel designs.
Here, the function call is realised by sending messages. Function foo

prepares a message (pack()) and requests the kernel to send it to
the callee. At the callee’s side, there is a message dispatcher, which
retrieves arguments from a message register (i.e., a thread control
block) and calls the actual function with the passed arguments.

Such an approach incurs an overhead due to data marshalling,
switching between the caller, the kernel, and the callee, and sending
the result back. In addition, from a developer’s point-of-view, the
use of message-based interfaces may require these interfaces to be
defined in interface description languages (e.g., MIG [14]) or the
use of particular serialisation mechanisms (e.g., Genode [17]).

We want to explore an interface approach that combines the
efficiency and flexibility of direct function calls with the isolation
properties of message-based implementations. The idea is to have

547

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

a new mechanism that is suitable for communication between iso-
lated components but that does not require the use of messages or
an interface description language.

Figure 1c shows the idea of window-based interaction between
components, as employed by CubicleOS. Calls have the same se-
mantics as direct function calls: e.g., the caller can pass a pointer
and a scalar value to the callee, and the callee, in turn, directly ac-
cesses the passed values. This becomes possible because individual
memory pages are assigned to protection domains (indicated by
different colours). Before the invocation of function bar(), compo-
nent FOO makes the memory pages with the array accessible to BAR.
After the call, the caller revokes the access permissions to the stack
variable, and the components are again fully isolated.

This window-based approach trades the need for designing inter-
faces around the more restrictive message passing style (Figure 1b)
for maintaining existing software interfaces, while adding explicit
memory grant management operations (Figure 1c). In the rest of the
paper, we explore the feasibility of this for a real-world library OS.

2.2 Memory Protection with Intel MPK

The window-based interaction between components requires effi-
cient fine-grained control over page permissions. We propose to use
Intel’s Memory Protection Keys (MPK) [25], an ISA extension that
manages access permissions on groups of pages. It was first intro-
duced in Intel’s Skylake architecture, and it is similar to protection
keys in Itanium [24] and access identifiers in PA-RISC [23].

MPK assigns a 4-bit key to each virtual page by extending the
page table structures, and adds a new 64-bit pkru register that de-
fines the access permissions to all pages on a key. It supports 16 dif-
ferent keys, each with a 2-bit access permission field, which encodes
if a key is granted read and/or write access to all pages with that key.

Each process gets its own set of 16 keys, and each thread can
have different access permissions to each key. Assigning keys to
pages is a protected operation that takes more than 1,100 cycles
in Linux [43] (using the pkey_mprotect system call), but the pkru

register is available to user-level code, and applications can change
its value in around 20 cycles [43] (using the wrpkru instruction).

MPK is suited for window-based interfaces because of its ability
to quickly change the access permissions on entire groups of pages.
Yet, there are three challenges that CubicleOSmust overcome before
it can use MPK for window-based interfaces (see Section 5): (i) MPK
is limited to 16 keys; (ii) MPK does not control access to the wrpkru

instruction (i.e., it can be invoked by untrusted user code); and
(iii) MPK does not control the ability to execute pages, which is
only defined on a per-page basis in the page table.

2.3 Threat Model

Our goal is to protect the confidentiality and integrity of library OS
and application components via compartmentalisation, as defined
by their respective developers. We assume a software attacker who
controls the source code of one or more components outside the
TCB; the adversarial source code includes third-party OS as well as
application components. We also assume an attacker who controls
external inputs to the application (e.g., via network packets).

We trust the developer who defines the isolation policy, and com-
piles and deploys the system. Our TCB also includes a component

Windows

Window 0 VFS : ENABLE

Window 1 [BU F] : RAMFS : ENABLE

Cross-cubicle calls

RAMFS_write@RAMFS

entry :
open_window (BU F , RAMFS)

RAMFS_WRITE (BU F)

BU F

Isolated cubicle : VFS

Windows

Window 0 : RAMFS : ENABLE

Cross-cubicle calls

memcpy@LIBC

RAMFS_WRITE :
memcpy (DST , BU F)

DST

Isolated cubicle : RAMFS

Windows

Window 0 : ALL : ENABLE

Cross-cubicle calls

memcpy :
< .. >

Shared cubicle : LIBC

❶ Trusted CubicleOS components

Host OS kernel (Linux)

❷

❸

❹

❹

syscalls

Figure 2: Function calls and memory accesses in CubicleOS

using cubicles, windows, and cross-cubicle calls

builder tool, which identifies the public symbols of each component
after compilation, and a memory monitor and cubicle loader, which
enforce memory access and control flow policies across components
(as will be described in Sections 3 to 5). We also trust the hardware
infrastructure and underlying virtualisation environment (since
library OSs are typically deployed in VMs or containers). We do
not target the validity of arguments or function call sequences used
across isolation compartments (cubicles), but prevent components
from undermining any invariant that is maintained by such com-
ponents. We also do not target malicious operators, side-channel
attacks, or full protection against external input attacks, which can
be handled by complementary work [1, 2, 9, 11, 15, 27].

3 CUBICLEOS OVERVIEW

CubicleOS is a library OS that protects against unauthorised in-
terference between its components, including OS services and ap-
plications. Protection is provided by three core elements: cubicles,
windows, and cross-cubicle calls, which provide spatial memory
isolation, temporal memory isolation, and control flow integrity,
respectively. By compartmentalizing OS and application compo-
nents, we can build a system with improved security, robustness
and reliability.

CubicleOS runs on top of an existing host OS such as Linux and
fully isolates each component in a separate cubicle, which Cubi-
cleOS translates into per-cubicle MPK tags. Each component in
CubicleOS is compiled as a dynamic library, and the build process
automatically generates a trusted code thunk for each public func-
tion in a component to switch execution across cubicles. These
code thunks, known as cross-cubicle calls, ensure that untrusted
components only interact via their intended interfaces. This allows

548

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

CubicleOS to enforce that they cannot escape their isolation bound-
aries by directly manipulating page or MPK permissions. Finally, a
component developer must modify their code to manage CubicleOS
windows, dynamically granting access to a cubicle’s data through
cross-cubicle calls.

The core argument that wemakewith CubicleOS is that windows
allow library OS developers to use existing component interfaces
with little development effort, while providing strong isolation and
system performance.

Figure 2 shows an example, later used in the evaluation, with
three components: VFS, RAMFS and LIBC. The VFS_write function
in VFS (called by the application) writes the contents of BUF into
the file system backend, which in turn uses LIBC’s memcpy to copy
the data across components (and, therefore, cubicles).

❶ CubicleOS starts by loading each component into separate,
isolated cubicles, which contain their respective code, data, heap,
and stack memory pages. Cubicles provide spatial memory isolation:
each is considered to “own” its memory, and cannot access the
memory of other cubicles unless it has been explicitly authorised to
do so (see below). Existing library OS implementations are typically
componentised along semantic and API lines to allow compile-
time configurability [31], and CubicleOS exploits this to delineate
isolation boundaries that match existing code.

❷ VFS then “opens” a window to BUF for RAMFS (window 1
in VFS), allowing RAMFS to access the memory buffer that VFS
wants to write into the file system. Windows define the policies
for temporal memory isolation of a cubicle’s own memory, and
are enforced by CubicleOS’s TCB. Each window contains a set of
memory ranges in a cubicle, and the set of other cubicles that can
access them at any point in time, allowing cubicles to exchange data
that they own via regular function call arguments (i.e., pointers).
As illustrated in Figure 2, each cubicle has an implicit window 0

that gives it access to all pages that it owns.
❸ VFS then uses a cross-cubicle call to invoke the RAMFS_write

function, effectively switching execution across cubicles. Cross-
cubicle calls ensure control flow integrity (CFI) because each must
go through CubicleOS’s TCB to switch cubicle permissions. After
the call, CubicleOS gives this thread access to all open windows for
the RAMFS cubicle – in this case, the implicit window 0 in RAMFS,
as well as window 1 in VFS –, switch across per-cubicle stacks, and
start executing the target RAMFS_write function (function returns
across cubicles are handled in a similar way).

❹ Finally, RAMFS calls memcpy in the shared cubicle LIBC to
perform the actual memory copy from VFS’ BUF into RAMFS’ DST
buffers. Shared cubicles such as LIBC are used in cases in which
components contain little state and are frequently used by other
components. Static data in shared cubicles, e.g., pre-allocated global
buffers and variables, is shared among all cubicles. Calls to a shared
cubicle never involve CubicleOS’ runtime TCB, effectively exe-
cuting with the privileges, stack and heap of their calling cubicle.
Therefore, the call to memcpy will execute with the privileges of
RAMFS, with access to both the source and destination buffers on
the VFS and RAMFS cubicles, respectively.

Together, cubicles and windows ensure spatial and temporal
isolation, respectively, across components in the system, providing
the equivalent of dynamic, cubicle-centric memory access control
with minimal developer involvement. In addition, cross-cubicle

❶ MONITOR

BU F

entry :
RAMFS_WRITE (BU F)

❷Windows

Trampolines

DST

RAMFS_WRITE :
memcpy (DST , BU F)

Windows

Trampolines

memcpy :
< .. >

Windows

Trampolines

Current cubicle : VFS

PK0= none PK1= r/w/x

PK2= none PK3= r/w/x

MONITOR

BU F

entry :
RAMFS_WRITE (BU F)

Windows

Trampolines

DST

RAMFS_WRITE :
memcpy (DST , BU F)

Windows

Trampolines

memcpy :
< .. >

Windows

Trampolines

Current cubicle : RAMFS

PK0= none PK1= none
PK2= r/w/x PK3= r/w/x

❸

❸

❹

Figure 3: Mapping cubicles and windows into memory pro-

tection keys (MPKs) in CubicleOS

calls ensure CFI by unequivocally tracking the currently-executing
cubicle and enforcing that only known, public functions are used
to switch memory access permissions across cubicles.

4 CUBICLEOS DESIGN AND API

To enforce the desired isolation policies, CubicleOS has four trusted
components: (i) the component builder, (ii) the cross-cubicle call

trampolines, (iii) the memory monitor, and (iv) the cubicle loader.
The component builder identifies each component in the sys-

tem aswell as their public functions, and generates for each function
a cross-cubicle call trampoline. The trampoline is an auto-generated,
trusted code thunk that provides cross-cubicle calls, and has three
tasks performed at call and return: switching the memory access
permissions across cubicles via the trusted memory monitor (step❸

in Figure 2), as well as switching stack pointers and copying in-stack
arguments when the caller and callee cubicles use different stacks.

The memory monitor is a trusted cubicle with an interface
to manage permissions and window ownership. It offers stack-
/heap allocation primitives that assign pages to the calling cubicle
(each isolated cubicle has its own memory sub-allocator), as well
as the CubicleOS-specific API in Table 1. A cubicle creates a win-
dow using cubicle_window_create, and adds/removes owned mem-
ory via cubicle_window_add and cubicle_window_remove. It can use

549

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 1: CubicleOS-specific API available to untrusted code

API function Description

wid_type cubicle_window_init() Initialise an empty window
cubicle_window_add(wid_type wid, void *ptr, size_t size) Associate memory range (ptr, ptr+size) to window wid

cubicle_window_remove(wid_type wid, void *ptr) Remove a memory range previously associated to window wid

cubicle_window_open(wid_type wid, cid_type cid) Allow cubicle cid to access contents of window wid

cubicle_window_close(wid_type wid, cid_type cid) Disallow cubicle cid to access contents of window wid

cubicle_window_close_all(wid_type wid) Disallow all accesses to wid from other cubicles
cubicle_window_destroy(wid_type wid) Destroy window wid

cubicle_window_open to grant another cubicle access to that win-
dow’s contents (step ❷ in Figure 2); cubicle_window_close does the
opposite. Note that windows are assigned to the calling cubicle,
and can only be managed by it.

To ensure the integrity of the isolation mechanisms, code can
only be loaded by the cubicle loader. The loader takes a set of
pages owned by a cubicle, containing the code and data of a com-
ponent to load into the system, and switches their ownership into
a newly-created cubicle. This is similar to how dlopen loads pro-
gram and library images into a system, with two additional rules:
(1) pages identified as code are given execute-only permissions,
data pages are given read or read-write permissions (as specified
by the binary), and CubicleOS does not allow cubicles to change
the execution permissions of any page; and (2) the loader scans the
code pages to ensure that they do not contain any instructions that
would affect the integrity of the isolation mechanisms, i.e., cubicles
cannot directly execute system calls nor MPK-related operations.
This is similar to other prior work [21, 54] (see Section 5 for further
details).

5 IMPLEMENTATION OF CUBICLEOS

We implement CubicleOS on top of the Unikraft framework [31],
using its modular architecture as the basis for automatically identi-
fying and isolating cubicles. We also use Intel MPK [25] to enforce
the memory access policies expressed by cubicles and windows,
dynamically assigning memory keys to open windows. MPK allows
us to implement cross-component calls efficiently by switching the
set of access permissions for each memory key in a per-thread basis,
ensuring that only CubicleOS’s TCB can assign memory keys and
change their access permissions.

We first give an overview of howwe adapt Unikraft to build Cubi-
cleOS, and then describe the implementation of CubicleOS’ trusted
components and how they use Intel MPK to enforce isolation.

It is important to note that MPK was intended as a user-level
mechanism for hardening the security of applications, and thus has
limitations for CubicleOS that we address as follows:

• We assume that the host OS, CubicleOS and compilation
toolchains are bug free, and that the developer building the
system is trusted (even if the components are not).

• We ensure that untrusted components cannot perform MPK-
related operations by parsing the binaries at load time; this
includes the wrpkru system call instructions (the latter could
otherwise be used to instruct the host OS to modify the
per-page MPK tags).

• We assume that the wrpkru instruction will revoke the execu-
tion attribute in the future, and describe a trivial hardware
modification to do so.

5.1 Unikraft Architecture

Unikraft [31] is a framework for building unikernels. It has a mod-
ular architecture in which each component implements a single
OS function (the virtual file system, file system backends, mem-
ory allocation, network stack, etc.). Components are selected at
compile-time and linked into a monolithic image together with the
application.

Components in Unikraft interact by referencing each other’s
function and data symbols (resolved at dynamic link time), either by
directly using a symbol of another component, or by using a callback
table that is filled-in by component at initialisation time (e.g., the
RAMFS component initialises a callback table defined by the VFS
component to export file system backend-specific functions; similar
cases arise with network device drivers or memory allocators).

5.2 Builder: Piggy-Backing on Unikraft
Components

The builder in CubicleOS is a tool that extends Unikraft’s build logic
to produce the information necessary for CubicleOS. It performs
the following tasks:

(1) It compiles each component in Unikraft as a separate dy-
namic library. During this process, the developer specifies
for each component whether it is an isolated or a shared cu-
bicle (in practice, a file is generated that enforces this when
the system is deployed).

(2) It identifies functions used across cubicles. As part of Unikraft,
each symbol exported by a component has an entry in an
exportsyms.uk file. In the case of callback tables, we modify
the source code of a component to ensure that the pointer on
each callback is resolved as a dynamic symbol at load time.
This way CubicleOS’ loader can interpose a cross-cubicle
call trampoline.

(3) It generates a cross-cubicle call trampoline for each such
function (see Section 5.5). The builder takes the symbols in
exportsyms.uk, parses the corresponding function definition
to extract its signature, and generates a cross-cubicle call
trampoline for that symbol. The generated trampoline is
security-sensitive because it can copy data across per-cubicle
stacks; therefore, it must be generated and signed by the
trusted builder.

550

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

trap handler :
What ∗ ptr? → VFS stack var .

wid = дet_window (ptr)

is_allowed (wid, RAMFS, ptr) :
map_paдe (ptr , RAMFS)

hooked_RAMFS_WRITE ()

switch_cubicles (VFS, RAMFS)

call RAMFS_WRITE

switch_cubicles_ret (RAMFS, VFS)

VFS_STACK_TABLE [] :
Window1 : {BU F , 10,RAMFS}

ipc_window_add (wid, BU F , 10)
ipc_window_open (wid, RAMFS)

RAMFS_WRITE (BU F)

ipc_window_close (wid)

char BU F [10]
char pad [4086]

entry :

RAMFS_WRITE (BU F) :
memcpy (DST , BU F)

HEAP : DST [10]

TRAP 1

2

3

4

5

Figure 4: Trap-and-map scheme

Note that an application does not differ from other components
in Unikraft: it has a public main function and uses functions from
other components in the system.

5.3 Monitor: Memory Access Authorisation

The monitor in CubicleOS is responsible for bootstrapping the
system and enforcing the isolation of cubicles and the access per-
missions of windows.Windowmanipulation is performance critical,
because it can occur before and after each cross-cubicle call. We
thus choose to operate windows as user-managed, discretionary
access control lists (ACLs) for memory, and to lazily grant access
to pages across cubicles.

Each cubicle has three arrays with window descriptors for
global, stack, and heap data. The descriptors are stored in a simple
array, created by the CubicleOS monitor, and contain the address
and size of a single memory range and a bitmask of cubicles for
which this window is open. The size of each bitmask is fixed at de-
ployment time, as the number of cubicles in the system is known by
CubicleOS’ builder at link time. Furthermore, if a window descrip-
tor array runs out of free entries, the user code asks the monitor to
extend it.

CubicleOS authorises memory accesses across cubicles via a lazy
trap-and-map approach. We assign one MPK tag for each cubicle,
and change the tag of window-assigned pages as they are used.
Figure 4 shows how CubicleOS’ trap-and-map approach works
with the example in Figures 2 and 3. The VFS isolated cubicle
opens a window to BUF for RAMFS, and the memcpy function in the
LIBC shared cubicle executes with the permissions of the RAMFS

isolated cubicle. Note that the CubicleOSmonitor is a trusted cubicle
that executes with access to all cubicles (MPK tags) on the system,
granting it access to all the per-cubicle window descriptor arrays:

❶ When memcpy tries to access BUF, that page is not accessible and
a page fault exception is raised, which is captured by the monitor.

❷ The monitor then locates the window descriptor array for BUF’s
page, which is owned by VFS. CubicleOS keeps a page metadata
map that identifies the window descriptor array corresponding to
that page, together with its owner and type (code, global data, stack
or heap). Code and global data pages are known at deployment
time, and CubicleOS builds a page metadata map at deployment
time where pages can be located with O(1) time. CubicleOS updates
a separate memory map for stack and heap at runtime, where pages
can also be located with O(1) time. Pages are strictly assigned
an owner and type at allocation time to ensure the safety of this
operation, similar to L4Sec [28].

❸ The monitor then does a linear search in the window descriptor
array for BUF’s page, which corresponds to “Window 1” inVFS. Since
cross-cubicle calls usually grant access to few memory ranges, this
is sufficient – in our evaluation, all but one cubicle have less than
ten windows at any point in time.

❹ Finally, the monitor indexes the cubicle bitmask of the window
using the cubicle ID of the failing instruction, RAMFS. This is a O(1)
operation because all cubicles and their IDs are known at link time.

❺ After establishing that “Window 1” in VFS contains BUF and that
the window is open for RAMFS, the monitor assigns the MPK tag
for cubicle RAMFS to the page, granting the code access to it.

Note that windows work at page granularity, and a component
developer must thus align structures to prevent unintended sharing
via windows (see Section 6 for a description of developer effort).

5.4 Loader: Verifiable Isolation

The loader enforces two properties on untrusted code that ensure
the integrity of the memory isolation mechanisms:

(1) No access to system calls, as they can change the MPK tags
and access permissions on pages via the host OS.

(2) No access to the wrpkru instruction, as it can be used to
change access permissions to the per-cubicle MPK tags.

Cubicles can only load new code via the loader, which sets them
on a new cubicle. To enforce these integrity properties, the loader
scans code pages for binary sequences containing system call or
wrpkru instructions before making the pages executable, and refuses
to load code if any such sequence is found [21].

When loading a binary, the loader also populates the per-cubicle
page metadata maps. Finally, the loader performs dynamic symbol
resolution such that cross-cubicle calls will go through the appro-
priate trampolines (described next), and allocates the necessary
per-cubicle stacks for the current thread.

5.5 Cross-Cubicle Call Trampolines: CFI

CubicleOS uses the cross-cubicle call trampolines (generated by
the trusted CubicleOS builder; see Section 5.2) to enforce control
flow integrity (CFI), i.e., calls and returns across cubicles can only
happen through the intended entry points. Note that trusted Cubi-
cleOS primitives such as core memory allocation are implemented
on trusted cubicles and therefore are also accessed through cross-
cubicle calls.

The code thunk of a trampoline is generated and signed by Cu-
bicleOS builder and thus trusted by the loader. It is in charge of
performing the actual permission and context switch between cu-
bicles. It uses wrpkru to switch access permissions between MPK
tags assigned to the caller’s and callee’s cubicles (Figure 4), and
performs a context switch between the per-cubicle stacks by copy-
ing necessary data across them (the function’s binary interface is
known by CubicleOS’ builder when generating the trampoline’s
code thunk).

Hardware support. To ensure CFI in cross-cubicle calls, Cubi-
cleOS must ensure a caller can only enter a trampoline, and a callee
resume execution of the trampoline, via the intended addresses. To
that end, CubicleOS forbids direct execution of trampoline code

551

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

thunks and, instead, provides access to an intermediate caller or
callee trampoline guard page that enforces control flow integrity.

This requires a simple change in the MPK implementation: when-
ever read and write access is disabled, execution is too, which is
allowed otherwise. The loader places trampoline code thunks in
the monitor’s cubicle and places the guard pages on the corre-
sponding caller and callee cubicles for that trampoline. Each guard
page simply contains a wrpkru instruction to allow execution of the
trampoline in the monitor’s cubicle, and a jump to that trampoline,
followed by a series of no-ops so that starting execution of a guard
page anywhere but in its first instruction will result in a fault.

5.6 Discussion

The trap-and-map approach implemented in CubicleOS has several
important features.

Trap-and-mapmodel. Previous work [21, 54] on compartmentali-
sation has usedMPK to share pages that are used for communication
across compartments. This implies that each compartment needs
one additional tag for every other compartment that it communi-
cates with, and must copy data to/from these shared buffers. Such
an approach requires changes to component interfaces to perform
these memory copies, but also adds overhead due to the extra copies.
It also requires a larger number of used MPK tags, which must be
virtualised when exhausted [43]. Instead, CubicleOS’s trap-and-
map model maintains existing interfaces and avoids memory copies
by dynamically changing a page’s tag only when necessary, which
also uses fewer tags.

Causal tag consistency. Closing a window does not immediately
revoke access to its contents, i.e., page tags are not reassigned to the
window’s owning cubicle. Instead, CubicleOS keeps pageswith their
current tag, and lazily reassigns tags using trap-and-map only when
a page is accessed by a cubicle with access to that window (which
includes the owning cubicle). This is an optimisation to decrease
the overhead of cubicle switches, and maintains causal consistency
with respect to window operations. Since a callee cubicle could have
accessed a page from a window before closing, it is thus correct to
let it access it anytime before another cubicle accesses such a page.

Nested calls. A cubicle cannot open a new window on data shared
by another cubicle (via a window) because a cubicle must be the
owner of a window to modify its permissions through its window
table. In the case of a nested call, i.e., when data is shared with more
than one other cubicle, the window must be opened by its owner
for all cubicles ahead of time. Alternatively, nested calls could copy
shared data and open windows for intermediate buffers, or the
monitor could be modified to keep track of “sub-windows”, but we
have not encountered such a case for the evaluated applications.

6 EVALUATION

We ask three questions in the evaluation of CubicleOS: (1) What is
the overhead of CubicleOS for I/O-intensive workloads? (2) What is
the overhead of CubicleOS for CPU/memory-intensive workloads?
(3) How does its performance compare to other component-based
OS designs?

To answer these questions, we port two applications to Cu-
bicleOS, the NGINX web server [41] and the SQLite embedded

Table 2: Sizes of CubicleOS components

Component SLOC Language Description

Monitor 110 ASM Cross-cubicle calls
Monitor 3, 000 C All components
Builder 640 Python Trampoline generation
Unikraft 600 C Windows

SQLite 620 C Windows
NGINX 390 C Windows

NGINX LW IP

T IME VFSCORE NETDEV

RAMFS ALLOCPLAT

76

6991

7087

1197 418344135
6991

217

6991
432

73

550

55948

526 5596991

Figure 5: NGINX with cubicles (Call counts obtained during
benchmark measurement time.)

database engine [50]. We compare the performance of CubicleOS
with Genode [17], which is a framework for the development of
component-based applications that supports various OS kernels,
including Linux, SeL4 [46], Fiasco.OC [16], and NOVA [42].

6.1 Experimental Set-up

We use a machine with an Intel Xeon Silver 4210 CPU (2.20 GHz)
and 32 GB of DDR4 memory. The software environment is based
on Debian Linux 4.19.98-1 with kernel 4.19.0, Genode version 20.05,
SQLite 3.30.1, NGINX 1.15.6 and Unikraft 0.4.0. The versions of Fi-
asco.OC, seL4, and NOVA are shipped with the Genode framework.
We use LLVM 9.0 to generate LLVM IR and GCC 8.3.0 as a compiler.
QEMU 3.1 (with KVM enabled) is used for the microkernel-based
evaluation.

6.2 Developer Effort

Table 1 shows the source code size of CubicleOS. The core runtime
components of CubicleOS consist of 3,000 lines of C code and 110
of assembly. The former implements cross-cubicle calls, the loader,
and the builder, while the latter is a part of cross-cubicle calls. The
builder parses the LLVM IR of Unikraft binaries and generates the
trampolines, and is written in roughly 640 lines of Python. The
window support added to Unikraft is around 600 lines. NGINX
and SQLite require porting to CubicleOS, with an effort of 390 and
620 SLOCs, respectively.

552

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

100 110 120 130 140 142 145 150 160 161 170 180 190 210 230 240 250 260 270 280 290 300 310 320 400 410 500 510 520 980 990
0

2

4

6

8

10

Query identifier

E
xe
cu
ti
on

ti
m
e
(s
ec
on

ds
)

Unikraft CubicleOS w/o MPK CubicleOS w/o ACLs CubicleOS

Figure 6: Query execution times for SQLite under CubicleOS (local execution)

1K 2K 32K 128K 512K 2M 8M

101

102

Transfer size (B), log scale

La
te
n
cy

(m
se
c)
,l
og

Baseline CubicleOS

Figure 7: NGINX download latencies for different file sizes

6.3 I/O-Intensive Workload (NGINX)

To benchmark NGINGX, we use the siege utility [48] to generate
requests to random static files located inside the RAMFS of the
server. As a performance metric, we measure the download latency
of files with different sizes. As a baseline, we compare against the
baseline Unikraft system.

Figure 5 shows the cubicles used as part of NGINX, and the num-
ber of cross-cubicle calls during the execution. The main isolated
cubicles are the application (NGINX), the TCP/IP stack (LWIP), the
network device driver (NETDEV), the virtual file system (VFSCORE), the
file system backend (RAMFS), and the platform code (PLAT). In addi-
tion, there is a system-wide memory allocator (ALLOC) and the time
module (TIME). Shared cubicles are not shown, but are comprised
of newlibc and the random device driver.

Figure 7 shows the request latencies for different file sizes. La-
tency is almost constant for small files (5–6 ms for the baseline;
6–7 ms for CubicleOS), and grows when the file size reaches 64 kB.
After that, it grows almost linearly with file size. The change in

PLAT

BOOT

SQLite T IMEVFSCORE

RAMFS ALLOC

113

1

10
13876883967366

2

1948187 31

62

1

4

87

10

Figure 8: SQLite with cubicles. (Call counts include boot time.)

slope for files larger than 1 MB is due to the buffer size inside
LWIP. The overhead of cubicles also changes after 64 kB: it increases
from 15% to 2×. In other words, the partitioning of NGINX into
eight components that exchange a high volume of data halves the
throughput.

6.4 CPU/Memory-Intensive Workload (SQLite)

We port SQLite [50] to CubicleOS and observe performance under
the speedtest1 [49] benchmark workload. This benchmark includes
various queries, starting from simple INSERT queries and ending
with complex multi-way JOINs.

Figure 8 shows the configuration of cubicles. We use 7 isolated
cubicles and 4 shared ones (not shown). Three isolated cubicles
provide the main functionality and are thus invoked frequently: the
SQLite library combined with the speedtest1 benchmark, the virtual
file system VFSCORE, and the driver for the RAMFS file system. Com-
pared to NGINX, each cubicle uses only its own memory allocation
library, and ALLOC is used only for coarse-grained allocations.

553

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

T IMER

SQLITE
CORE +

RAMFS

KERNEL

(a) 3 components

T IMER RAMFS

SQLITE CORE

KERNEL

(b) 4 components

Figure 9: Different ways of partitioning SQLite

In this experiment, we want to compare the impact of the Cubi-
cleOS mechanisms on performance. We explore CubicleOS’s three
main mechanisms: (i) the switching mechanism between cubicles;
(ii) the MPK-based memory protection; and (iii) the window-based
cross-cubicle calls. We measure the impact of each mechanism on
performance. Therefore, we compare: (a) the baseline Unikraft;
(b) CubicleOS without MPK protection; (c) CubicleOS with MPK
protection but without ACLs (i.e., the windows are “open” for any
access); and (d) full-fledged CubicleOS.

Figure 6 shows the results for query execution times. The queries
can be separated into two groups: almost two thirds of queries (100–
120, 140–161, 180, 190, 230, 250, 300, 320, 400, 500, 520, 990) demon-
strate a low moderate impact of cubicles on performance. Here,
the introduction of the trampolines adds 2% overhead, MPK adds
50%, while the windows add 20% overhead. On average, CubicleOS-
based SQLite requires 1.8× longer to process a query. A common
feature of this group of queries is that they use the OS interface
infrequently. They benefit from caching and only involve the OS
interface to write batched pages evicted from the cache.

The second group of queries has significant overhead. While
the trampolines add a reasonable overhead (17%), the use of MPK
and windows increases request time by 4× and 1.2×, respectively.
For these queries, on average, CubicleOS-based SQLite requires 8×
more time to process queries. These queries benefit less from the
use of the database page cache, and they significantly more often
use the OS interface. The overhead of cubicle switches therefore
become more significant, and the average slowdown factor is 4×.

6.5 Impact of Partitioning on Performance

We use the speedtest1 benchmark for SQLite to compare the parti-
tioning overhead in CubicleOS with that of other component-based
approaches, the Genode framework and different microkernels. We
create identical compartment configurations with CubicleOS and
Genode, and measure the overhead caused by adding one extra com-
partment that separates the file system driver from the virtual file
system. This operation is supported in both CubicleOS and Genode,
thus comparing different kernels and interface implementations.

Figure 9 shows the deployments of SQLite used in this experi-
ment. We first use the monolithic virtual filesystem module with
the builtin RAMFS driver (Figure 9a), and compare with a partitioning
in which the RAMFS driver is derived from the virtual file system.

Li
n
u
x

U
n
ik
ra
�

G
en
od
e-
3

G
en
od
e-
4

C
u
bi
cl
eO

S-
3

C
u
bi
cl
eO

S-
4

0

10

20

30

Sl
ow

do
w
n

(a) Compared to Linux

Se
L4

Fi
as
co
.O
C

N
O
VA

Li
n
u
x

C
u
bi
cl
eO

S

0

10

20

Sl
ow

do
w
n

(b) Compared to 3 components

Figure 10: CubicleOS overhead compared to different kernels

In the Genode terms, the virtual file system is the Core module;
in the terms of CubicleOS, the virtual file system is a module that
combines the PLAT, VFSCORE, ALLOC, and BOOT cubicles.

First, we compare Unikraft, Genode and CubicleOS.We configure
all systems to run on top of the same Linux kernel, thus comparing
the performance of user-level Unikraft with that of Linux/Genode
interfaces and of cubicles. For the baseline, we use the same SQLite
benchmark executed on top of the Linux kernel (Linux).

Figure 10a shows the average slowdown factor across all speedtest1
queries against Linux. Unikra� is 2.8× slower. Genode with three
modules (Genode-3) achieves better performance than Unikraft
(1.4× slowdown). CubicleOS with three cubicles (CubicleOS-3) is
4.1× slower than Linux but, compared to Unikraft, the slowdown is
similar to Genode (1.4×). The separation of RAMFS leads to a 29× per-
formance drop for Genode (Genode-4); CubicleOS only decreases
performance by 5.4× (CubicleOS-4), which is more than five times
better. Compared to Unikraft, CubicleOS-4 is 1.9× slower.

Next, we also measure the overhead of adding an extra compart-
ment in modern microkernels. We use the same platform, frame-
work (Genode) and benchmark, but different kernels. Thus com-
paring the performance of message-based interfaces with that of
CubicleOS. Here we use SeL4 [46], Fiasco.OC [16], NOVA [42]. We
measure the performance of the systems with three and four com-
partments and, as the baseline, we use a partitioning with three
components.

Figure 10b shows the slowdown compared to 3 components for
the different kernels. Compared to Linux, the separation of RAMFS
has less performance impact for microkernels, which is not surpris-
ing. The average slowdown for SeL4 is 7.5×, while for Fiasco.OC and
NOVA, it is 4.5× and 4.7×, respectively. However, the performance
overhead of the separation for CubicleOS is only 1.4×, showing
how CubicleOS becomes more efficient with multiple partitions.

In summary, our evaluation has explored if it is possible to turn a
monolithic library OS design into a compartmentalised one without
the use of message-based interface. Our results show that Cubi-
cleOS’s window-based mechanism allows the use of ordinary call
semantics, while enabling fast switches that decrease the overhead
of transitions, which are caused by the inefficiency of the library
OS design. Moreover, the results indicate that such an approach
can have lower overhead than traditional component-based micro-
kernel frameworks. Adding an extra compartment to the critical

554

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

path of SQLite (RAMFS) leads to a 4–7× performance drop for mi-
crokernels, and only 1.4× for CubicleOS; NGINX with 8 partitions
is 2× slower than its monolithic version.

7 RELATED WORK

Partitioning with Intel MPK. ERIM [54] uses MPK to separate
trusted and untrusted code. The call gates introduced by ERIM,
however, do not include support to pass parameters and results
between protection domains. CubicleOS not only generalises this
to support multiple untrusted components, but it also supports
dynamic passing of arguments with zero-copy.

Similarly, Hodor [21] introduces a protected library abstraction.
Such libraries are mutually isolated from each other using MPK or
VMFUNC, and use trusted function trampolines to switch between
libraries. Compared to CubicleOS, Hodor cannot compartmentalize
OS components, requires substantial developer efforts to explicitly
manage sharing of selected data, especially for stack arguments,
and fine-grained sharing results in using a large number of MPK
tags (which are limited).

UnderBridge [19] uses MPK to migrate and isolate critical system
services in kernel mode, focusing on speeding up the message-
passing IPC typical of micro-kernels, whereas CubicleOS works at
user-level and explores how to isolate existing code in a monolithic
system architecture.

Sung et al. [52] apply MPK to RustyHermit [32] to isolate the
unikernel and its application. They do not compartmentalise uniker-
nel components, as the work assumes that using the type-safe Rust
language is sufficient. Iso-UniK [33] also uses MPK-based isolation
to implement processes in OSv [29] without partitioning.

EnclaveDom [40] enforces privilege isolation of some LibOS
data structures by associating them with separate MPK tags. Only
relevant system calls implemented by the LibOS have access to the
protected data structures, which is achieved by manually labelling
data objects. CubicleOS, in contrast, isolates both data and code
and requires few changes to the target system.

OS kernel compartmentalisation. Monolithic kernels such as
Linux have long been considered as a target for compartmentali-
sation. PerspicuOS [13] splits the monolithic kernel into a smaller
trusted part and a larger untrusted one. LXFI [38] and Mondrix [58]
enable the isolation of individual Linux kernel modules. CubicleOS
compartmentalises user-level library OSs with little developer in-
volvement, whereas LXFI relies on extensive source code annota-
tions and compiler support, and Mondrix requires extensive hard-
ware modifications (MMP). CubicleOS andMondrix both create pro-
tection domains within a single shared address space, but Mondrix’
hardware support significantly impacts its design and performance.

Compartmentalisation frameworks.Breakapp [55], GOTEE [18],
Secured Routines [18] and Civet [8] compartmentalize user appli-
cations using languages with well-defined typing rules, whereas
CubicleOS covers the entire system and supports type-unsafe code.

Glamdring [35] automates code partitioning for Intel SGX by
annotating C source code files. Developers mark the data that must
be protected, and the framework identifies necessary components
that must be placed inside an SGX enclaves together with the data.
CubicleOS offers more fine-grained partitioning because it is based
on Intel MPK, which is however incompatible with Intel SGX.

EActors [45] partitions programs by assigning execution units
to different SGX enclaves. This done at compile time, requires low
effort by developers but enforces an actor-based programming
model. CubicleOS targets regular software components.

SOAAP [20] is an LLVM-based system for developers to make
compartmentalisation decisions based on source-code annotations.
It could be combined with CubicleOS to split modules and increase
the partitioning granularity.

ConfLLVM [4] is another LLVM-based framework that separates
trusted and untrusted code. It only supports two partitions and uses
Intel MPK for isolation. Compared to CubicleOS, ConfLLVM adds a
higher instrumentation overhead and enables only uni-directional
data exchange between compartments: trusted code can access
untrusted one, but not vice-versa. PrivTrans [6] is a source-level
partitioning tool based on source annotations. It splits source code
into two partitions, and the calling interface between them is based
data marshalling. Wedge [3] creates isolation primitives inside pro-
cesses. These “sthreads” inherit a subset of the parent’s memory
mappings and have only limited access to the kernel namespace.
Wedge does not marshal arguments but disallows one partition to
access another one. CubicleOS does not use marshalling in calls,
provides multiple partitions, and allows and protects cross-cubicle
memory accesses.

Hardware extensions. CHERI [59] introduces hardware-software
object capabilities. They can be used for compartmentalisation
within the process address space. dIPC [57] uses a hardware-enabled
IPC mechanism that also can be applied to isolate partitions. In
contrast, CubicleOS does not require extra support from the OS
and compiler (unlike CHERI), and uses commodity CPU hardware
(with a minor extension).

8 DISCUSSION

CubicleOS is built on top of a monolithic unikernel framework that
was not designed for isolation, but it achieves efficient compart-
mentalisation with low developer effort. Benefits notwithstanding,
CubicleOS has certain technical limitations discussed below.

Using a trusted builder tool in CubicleOS is at odds with DevOps
tools that dynamically stack binary components into final system
images. Instead, CubicleOS could exploit existing debug information
in binaries to generate the trusted cross-cubicle call trampolines at
deployment time [57], instead of using a trusted builder.

CubicleOS also has to confront several hardware limitations that
directly impact its performance. First, the number of MPK tags is
limited to 16 by hardware. CubicleOS can efficiently accomodate
more compartments because it uses fewer MPK tags by design (one
per compartment, as opposed to one per compartment and per
communication buffer shared with other compartments). We note
that our evaluation experiments have not needed more than the
16 tags provided by the hardware, but if more tags were required,
CubicleOS could use existing tag virtualisation mechanism [43].
Here, it would be interesting to explore new designs that combine
CubicleOS’s trap-and-map approach with window-specific tags that
reduces overhead for frequently-used windows.

Second, MPK does not control access to wrpkru instructions.
CubicleOS therefore uses load-time binary analysis to detect unau-
thorised instructions, which is sufficient but not desirable. This

555

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

could be solved by simple hardware changes such as relying on
per-page instruction permissions (as in CODOMs [56]) to authorise
wrpkru only for trusted pages.

Third, MPK lacks tag-wide no-execute permissions, which can
defeat CubicleOS’s CFI. We propose a simple hardware modifica-
tion to provide efficient tag-wide execution permissions, which
significantly decreases the complexity of the system compared to a
software-only solution.

Fourth, most architectures lack general hardware support for
CFI. Together with the proposed MPK hardware modifications, Cu-
bicleOS’s cross-cubicle call trampolines provide a software solution
to CFI. Nevertheless, planned hardware modifications such as Intel
CTA [26] would make this task even more efficient in CubicleOS.

The burden of managing windows and (in some cases) segre-
gating allocations onto separate pages now falls entirely onto the
developer. Nevertheless, others have shown how to use the com-
piler to identify memory regions used across isolation domains,
only in some cases requiring developer annotations [10].

Unikraft, onwhich CubicleOS is based, provides amodel inwhich
user-level threads are multiplexed onto a single host thread. Previ-
ous work has argued that application parallelism can be achieved
via multiple library OS instances instead of multiple threads [36].
In the case in which host multi-threading is necessary in an appli-
cation, we speculate that multi-threading, together with MPK tag
virtualisation, can reduce the time spent in CubicleOS’s trap-and-
map handler.

9 CONCLUSIONS

Many library OSs and unikernels offer POSIX-compatible, light-
weight environments for application deployment inside containers
and trusted execution environments. While monolithic library OS
designs can achieve high performance without excessive switches,
they lack any isolation across components, thus ignoring decades of
best security practices that have led to compartmentalised systems.

We explore how to address this challenge through CubicleOS,
a compartmentalised library OS that proposes cubicles, windows
and cross-cubicle calls as new abstractions for practical compart-
mentalisation of a library OS. We show that these abstractions
provide low-overhead fine-grained isolation and zero-copy data
access across partitioned components, while preserving rich OS
functionality.

ACKNOWLEDGEMENTS

We thank the reviewers and our shepherd, Yannis Smaragdakis,
for their valuable feedback. This work was partially funded by the
UK Government’s Industrial Strategy Challenge Fund (ISCF) under
the Digital Security by Design (DSbD) Programme, to deliver a
DSbDtech enabled digital platform.

A ARTEFACT APPENDIX

A.1 Abstract

This artefact contains the library OS, two applications, the isola-
tion monitor, and scripts to reproduce the experiments from the
ASPLOS 2021 paper by V. A. Sartakov, L. Vilanova, R. Pietzuch —

“CubicleOS: A Library OSwith Software Componentisation for Prac-
tical Isolation”, which isolates components of a monolithic library
OS without the use of message-based IPC primitives.

A.2 Artefact Check-List (Meta-Information)
• Algorithm: Component isolation
• Program: Unikraft, NGINX, SQLite
• Compilation: gcc 8.3, Debian 10, Linux kernel 4.19, Python 3.7
• Transformations: Software isolates components of a system in run-
time by the use of Intel MPK

• Data set: SQLite Speedtest1 benchmark
• Binaries: Compiled from the source code
• Hardware: Intel MPK, Intel VT-x, we recommend Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz

• Metrics: Slowdown, latency
• Output: Performance-related metadata
• How much disk space required (approximately)?: 20 GiB
• How much time is needed to prepare workflow?: approx. 30 mins
• How much time is needed to complete experiments?: approx. 20
mins

• Publicly available?: Yes
• Workflow framework used?: Docker, Bash scripts
• Archived (provide DOI)?: 10.5281/zenodo.4321431

A.3 Description
A.3.1 How to Access. All components of CubicleOS, applications, bench-
marks, and deployment scripts are available on GitHub: http://github.com/
lsds/CubicleOS, in the ASPLOS_AE branch.

A.3.2 Hardware Dependencies. CubicleOS requires Intel MPK. To run a
baseline workload (Microkernels Fiasco.OC, NOVA, SeL4), one needs to use
a platform with VT-x support, given that the workload is shipped in the
form of disk images and QEMU-KVM scripts.

A.3.3 So�ware Dependencies. Debian 10 with the Linux kernel version 4.19.
The runtime of CubicleOS parses /proc/self/maps and the format of this
file may vary between different versions of the kernel and/or OS.

A.3.4 Data Sets. All benchmarks are included in the source code. We use
a simple curl-based script for NGINX, and Speedtest1 for SQLite.

A.4 Installation
First, you should check that your platform supports Intel MPK:

$ gcc check.c && ./a.out

pkey alloc = 1

pkey: Success

Then, you can build CubicleOS and all relevant tests:

docker build . --tag cubicles

The Docker script retrieves any necessary dependencies and creates a
container that includes (i) CubicleOS and its components including two
applications and (ii) a Genode-based build environment to generate and run
baseline tests for microkernels. To run CubicleOS, the platform should have
Intel MPK, to run microkernel-based systems (SeL4, Fiasco.OC, NOVA), the
platform should have VT-x (or nested virtualisation enabled in the case of a
cloud environment).

A.5 Experiment Workflow
To build a container and run the tests and benchmarks, one needs to execute:

./run.sh

556

http://github.com/lsds/CubicleOS
http://github.com/lsds/CubicleOS

ASPLOS ’21, April 19–23, 2021, Virtual, USA Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch

This script includes both the NGINX and SQLite tests. To run a specific
test, uncomment the corresponding line in this file, or follow the instructions
in README.md. By default, the script only builds the container.

A.6 Evaluation and Expected Result
Each test generates raw output that requires post-processing. The output of
each Speedtest1 benchmark should be manually saved in a file and processed
by the parser/parser.py utility. This utility takes as input a directory with
raw data, where each test result is stored as a separate file in accordance
with the naming convention. It then processes the data and generates the
results. Two directories, yandex and paper, are provided as references and
contain raw results for different hardware platforms.

A.7 Experiment Customisation
The existing benchmarks can be customised. For SQLite, the size of the
database can be changed via the --stat XXX flag (100 is the default). For
NGINX, the root filesystem with files can be changed.

Note that some changes may require reconfiguration of CubicleOS, e.g.
changing the HEAP sizes of some components or adding new Windows.
The execution of other programs requires porting them.

A.8 Notes
CubicleOS significantly benefits from the size of CPU caches. It is expected
that public cloud environments likely show results that differ from the ones
reported in the paper. However, the main feature of CubicleOS – the ability
to compartmentalise a LibOS with less overhead than microkernels – are
reproducible on any platform.

The microkernel-based benchmarks also significantly differ from one
platform to another, but the measured performance degradation caused by
compartmentalisation of the RAMFS (Fig. 10b), for microkernels, is always
more than 4×; for CubicleOS, this value is significantly smaller (1.3×).

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow

Integrity Principles, Implementations, and Applications. ACM Trans. Inf. Syst.
Secur., 13(1), November 2009.

[2] ARM. ARM Security Technology: Building a Secure System using TrustZone
Technology. White paper, 2009. 2020.

[3] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Splitting
Applications into Reduced-Privilege Compartments. In 5th USENIX Symposium
on Networked Systems Design and Implementation (USENIX NSDI 08). USENIX
Association, April 2008.

[4] Ajay Brahmakshatriya, Piyus Kedia, Derrick P. McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. ConfLLVM: A
Compiler for Enforcing Data Confidentiality in Low-Level Code. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys ’19, 2019.

[5] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad, and Kyrre
Begnum. IncludeOS: A minimal, resource efficient unikernel for cloud services.
In 2015 IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom), pages 250–257. IEEE, 2015.

[6] David Brumley and Dawn Song. Privtrans: Automatically Partitioning Programs
for Privilege Separation. In 13th USENIX Security Symposium (USENIX Security
04). USENIX Association, August 2004.

[7] Chia che Tsai, Donald E. Porter, andMona Vij. Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 645–658. USENIX Association, July 2017.

[8] Chia che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa, and
Donald E. Porter. Civet: An Efficient Java Partitioning Framework for Hardware
Enclaves. In 29th USENIX Security Symposium (USENIX Security 20), pages 505–
522. USENIX Association, August 2020.

[9] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuf-
frida. StackArmor: Comprehensive Protection From Stack-based Memory Error
Vulnerabilities for Binaries. In NDSS. Citeseer, 2015.

[10] David Chisnall, Colin Rothwell, Robert N.M. Watson, JonathanWoodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann.
Beyond the PDP-11: Architectural support for a memory-safe C abstract ma-
chine. In Architectural Support for Programming Languages and Operating Systems
(ASPLOS), March 2015.

[11] Intel Corp. Software Guard Extensions Programming Reference, Ref. 329298-
002US. https://software.intel.com/sites/default/files/managed/48/88/329298-002.
pdf, October 2014.

[12] CVE-2018-5410. Available from MITRE, CVE-ID CVE-2018-5410.
[13] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and

Vikram Adve. Nested Kernel: An Operating System Architecture for Intra-Kernel
Privilege Separation. SIGPLAN Not., 50(4):191–206, March 2015.

[14] Richard P Draves, Michael B Jones, and Mary R Thompson. MIG-The MACH
Interface Generator. School of Computer Science, Carnegie Mellon University,
1989.

[15] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. BranchScope: A New Side-Channel Attack on Directional Branch Predic-
tor. SIGPLAN Not., pages 693–707, March 2018.

[16] The Fiasco.OC Microkernel Repository. https://github.com/kernkonzept/fiasco.
Last accessed: Feb 15, 2021.

[17] Genode Operating System Framework. https://github.com/genodelabs/genode.
Last accessed: Feb 15, 2021.

[18] Adrien Ghosn, James R. Larus, and Edouard Bugnion. Secured Routines:
Language-based Construction of Trusted Execution Environments. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 571–586. USENIX
Association, July 2019.

[19] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo
Chen. Harmonizing Performance and Isolation in Microkernels with Efficient
Intra-kernel Isolation and Communication. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 401–417. USENIX Association, July 2020.

[20] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks
Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. Clean
Application Compartmentalization with SOAAP. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages
1016–1031. Association for Computing Machinery, 2015.

[21] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 489–504. USENIX Association, July 2019.

[22] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. Minix 3: A highly reliable, self-repairing operating system. SIGOPS Oper.
Syst. Rev., 40(3):80–89, July 2006.

[23] Hewlett Packard. PA-RISC 1.1 Architecture and Instruction Set Reference Manual,
February 1994.

[24] Intel. Intel Itanium Architecture Software Developer’s Manual, January 2006.
[25] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. 2018.
[26] Intel. Control-flow Enforcement Technology Specification. White paper, 2019.

2020.
[27] David Kaplan, Jeremy Powell, and TomWoller. AMD memory encryption. White

paper, 2016.
[28] Bernhard Kauer and Marcus Völp. L4. sec preliminary microkernel reference

manual. 2005.
[29] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and

Vlad Zolotarov. OSv—Optimizing the Operating System for Virtual Machines. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 61–72. USENIX
Association, June 2014.

[30] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. SeL4: Formal
Verification of an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, pages 207–220. Association for Computing
Machinery, 2009.

[31] Simon Kuenzer, Sharan Santhanam, Yuri Volchkov, Florian Schmidt, Felipe Huici,
Joel Nider, Mike Rapoport, and Costin Lupu. Unleashing the Power of Unikernels
with Unikraft. In Proceedings of the 12th ACM International Conference on Systems
and Storage, page 195. Association for Computing Machinery, 2019.

[32] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Exploring Rust for Unikernel
Development. In Proceedings of the 10th Workshop on Programming Languages
and Operating Systems, pages 8–15. Association for Computing Machinery, 2019.

[33] Guanyu Li, Dong Du, and Yubin Xia. Iso-UniK: lightweight multi-process uniker-
nel through memory protection keys. Cybersecurity, 3:1–14, 2020.

[34] Jochen Liedtke. Improving IPC by Kernel Design. 27(5):175–188, 1993.
[35] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis

Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. Glamdring: Automatic application partitioning for intel SGX.

557

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/kernkonzept/fiasco
https://github.com/genodelabs/genode

CubicleOS: A Library OS with So�ware Componentisation for Practical Isolation ASPLOS ’21, April 19–23, 2021, Virtual, USA

In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 285–298.
USENIX Association, 2017.

[36] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-In-Time Summoning of Uniker-
nels. In USENIX Symp. on Networked Systems Design and Implementation (NSDI),
May 2015.

[37] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: Library operating systems for the cloud. ACM SIGARCH Computer
Architecture News, 41(1):461–472, 2013.

[38] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. Software Fault Isolation with API Integrity and Multi-
Principal Modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, pages 115–128. Association for Computing
Machinery, 2011.

[39] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. ClickOS and the Art of Network Function
Virtualization. In 11th USENIX Symposium on Networked Systems Design and
Implementation (USENIX NSDI 14), pages 459–473. USENIX Association, April
2014.

[40] Marcela S Melara, Michael J Freedman, and Mic Bowman. EnclaveDom: Privilege
separation for large-TCB applications in trusted execution environments. arXiv
preprint arXiv:1907.13245, 2019.

[41] NGINX, an HTTP server. https://www.nginx.org. 2019.
[42] NOVA Microhypervisor. https://github.com/udosteinberg/NOVA/. Last accessed:

Feb 15, 2021.
[43] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. libmpk:

Software Abstraction for Intel Memory Protection Keys (Intel MPK). In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 241–254. USENIX
Association, July 2019.

[44] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,
Vasily A Sartakov, and Peter Pietzuch. SGX-LKL: Securing the host OS interface
for trusted execution. arXiv preprint arXiv:1908.11143, 2019.

[45] Vasily A Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara Bouchenak, Gaël
Thomas, and Rüdiger Kapitza. Eactors: Fast and flexible trusted computing using
sgx. In Proceedings of the 19th International Middleware Conference, pages 187–200,
2018.

[46] The seL4 microkernel. https://github.com/seL4/seL4. Last accessed: Feb 15, 2021.
[47] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delim-

itrou, Robbert Van Renesse, and Hakim Weatherspoon. X-containers: Breaking

down barriers to improve performance and isolation of cloud-native containers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 121–135, 2019.

[48] Siege. https://www.joedog.org/siege-home/. 2020.
[49] Speedtest1 benchmark. http://www.sqlite.org/src/finfo?name=test/speedtest1.c.

Last accessed: Feb 15, 2021.
[50] SQLite. https://www.sqlite.org. 2020.
[51] Udo Steinberg and Bernhard Kauer. NOVA: A Microhypervisor-Based Secure

Virtualization Architecture. In Proceedings of the 5th European Conference on Com-
puter Systems, EuroSys ’10, pages 209–222. Association for Computing Machinery,
2010.

[52] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. Intra-
Unikernel Isolation with Intel Memory Protection Keys. In Proceedings of the
16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, VEE ’20, pages 143–156, 2020.

[53] Chia-Che Tsai, Kumar SaurabhArora, Nehal Bandi, Bhushan Jain,William Jannen,
Jitin John, Harry A Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E
Porter. Cooperation and security isolation of library OSes for multi-process
applications. In Proceedings of the Ninth European Conference on Computer
Systems, pages 1–14, 2014.

[54] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19), pages 1221–1238. USENIX Association, August 2019.

[55] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and JonathanM Smith. BreakApp: Automated, Flexible Application Compartmen-
talization. In 2018 Network and Distributed System Security Symposium (NDSS’18).

[56] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo
Valero. CODOMs: Protecting software with code-centric memory domains.
ACM SIGARCH Computer Architecture News, 42(3):469–480, 2014.

[57] Lluís Vilanova, Marc Jordà, Nacho Navarro, Yoav Etsion, andMateo Valero. Direct
Inter-Process Communication (dIPC) Repurposing the CODOMs Architecture to
Accelerate IPC. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 16–31, 2017.

[58] Emmett Witchel, Junghwan Rhee, and Krste Asanović. Mondrix: Memory Isola-
tion for Linux Using Mondriaan Memory Protection. volume 39, pages 31–44,
New York, NY, USA, October 2005. Association for Computing Machinery.

[59] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. The CHERI capability model: Revisiting RISC in an age of risk.
In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pages 457–468. IEEE, 2014.

558

https://www.nginx.org
https://github.com/udosteinberg/NOVA/
https://github.com/seL4/seL4
https://www.joedog.org/siege-home/
http://www.sqlite.org/src/finfo?name=test/speedtest1.c
https://www.sqlite.org

	Abstract
	1 Introduction
	2 Isolation in Library OSs
	2.1 Interfaces between Components
	2.2 Memory Protection with Intel MPK
	2.3 Threat Model

	3 CubicleOS Overview
	4 CubicleOS Design and API
	5 Implementation of CubicleOS
	5.1 Unikraft Architecture
	5.2 Builder: Piggy-Backing on Unikraft Components
	5.3 Monitor: Memory Access Authorisation
	5.4 Loader: Verifiable Isolation
	5.5 Cross-Cubicle Call Trampolines: CFI
	5.6 Discussion

	6 Evaluation
	6.1 Experimental Set-up
	6.2 Developer Effort
	6.3 I/O-Intensive Workload (NGINX)
	6.4 CPU/Memory-Intensive Workload (SQLite)
	6.5 Impact of Partitioning on Performance

	7 Related Work
	8 Discussion
	9 Conclusions
	A Artefact Appendix
	A.1 Abstract
	A.2 Artefact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customisation
	A.8 Notes
	A.9 Methodology

	References

