
16

Direct Inter-Process Communication (dIPC):
Repurposing the CODOMs Architecture to Accelerate IPC

Lluı́s Vilanova1,2 Marc Jordà1 Nacho Navarro1 Yoav Etsion2 Mateo Valero1

1 Universitat Politècnica de Catalunya (UPC)
& Barcelona Supercomputing Center (BSC)

{vilanova,mjorda,nacho,mateo}@ac.upc.edu

2 Electrical Engineering and Computer Science
Technion — Israel Institute of Technology

yetsion@tce.technion.ac.il

Abstract
In current architectures, page tables are the fundamental
mechanism that allows contemporary OSs to isolate user
processes, binding each thread to a specific page table. A
thread cannot therefore directly call another process’s func-
tion or access its data; instead, the OS kernel provides data
communication primitives and mediates process synchro-
nization through inter-process communication (IPC) chan-
nels, which impede system performance.

Alternatively, the recently proposed CODOMs architec-
ture provides memory protection across software modules.
Threads can cross module protection boundaries inside the
same process using simple procedure calls, while preserving
memory isolation.

We present dIPC (for “direct IPC”), an OS extension
that repurposes and extends the CODOMs architecture to al-
low threads to cross process boundaries. It maps processes
into a shared address space, and eliminates the OS kernel
from the critical path of inter-process communication. dIPC
is 64.12× faster than local remote procedure calls (RPCs),
and 8.87× faster than IPC in the L4 microkernel. We show
that applying dIPC to a multi-tier OLTP web server im-
proves performance by up to 5.12× (2.13× on average), and
reaches over 94% of the ideal system efficiency.

CCS Concepts •Software and its engineering→ Oper-
ating systems; Process synchronization

1. Introduction
Software systems comprise a complex collection of inde-
pendent software components. Contemporary OSs offer two
methods to construct such systems: a collection of libraries
hosted in a single process, or a distributed collection of
intercommunicating processes. The two present a classic
performance/programmability vs. security/reliability trade-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys’17, April 23-26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064197

off [3, 5, 8, 11, 18, 23, 26, 33, 34, 42, 44, 47, 51]. Host-
ing libraries in a single process provides the best perfor-
mance, by offering fast inter-component interactions using
synchronous function calls and data references. But the lack
of inter-library isolation allows errors to propagate across
components, eventually compromising the whole system.

Alternatively, software components can be isolated in
separate processes by using individual page tables managed
by the privileged OS kernel. But inter-process communi-
cation (IPC) is known to impose substantial runtime over-
heads [40, 43, 60]. This is because processes provide a loose
“virtual CPU” model, leading to an asynchronous and dis-
tributed system in which each process hosts its own pri-
vate resources and threads. This, in turn, forces processes to
explicitly synchronize and communicate through the OS’s
IPC primitives, which often require copying data across pro-
cesses. Furthermore, applications require dedicated code to
(de)marshal data and to (de)multiplex requests across IPC
channels. In addition, the process isolation model is conser-
vatively designed for the worst case of complete mutual iso-
lation. Notably, local remote procedure calls (RPCs) conve-
niently hide all the aforementioned programming complexi-
ties of IPC behind regular synchronous function calls1.

IPC imposes overheads on a multitude of different envi-
ronments, from desktops to data centers. Our measurements
show that local RPC communication is more than 3000×
slower than a regular function call.

This paper presents direct IPC (dIPC), an OS exten-
sion that leverages the recent CODOMs architecture [61]
to marry the isolation of processes with the performance
of synchronous function calls. dIPC enables threads in one
process to call a function on another process, delivering the
same performance as if the two were a single composite ap-
plication, but without compromising their isolation.

dIPC builds on top of the CODOMs architecture [61],
which was designed to isolate software components inside
a single process while enabling inter-component function
calls at negligible overheads. dIPC repurposes CODOMs to
isolate multiple processes on a shared page table to achieve
low-overhead and secure inter-process function calls. Using

1 Throughout this paper we use the term RPC to refer to efficient UNIX
socket-based RPC and not to generic TCP/IP-based RPC facilities (which
allow multiple hosts to transparently communicate over the network).

{vilanova,mjorda,nacho,mateo}@ac.upc.edu
yetsion@tce.technion.ac.il
http://dx.doi.org/10.1145/3064176.3064197

17

dIPC, threads in one process can efficiently and securely
invoke predefined entry points in another process.

dIPC entry points translate into runtime-generated code
thunks that safely proxy function calls across processes, free-
ing the OS kernel from managing IPC and data communica-
tion. Memory access isolation across processes is offloaded
to CODOMs, while dIPC-managed proxies provide the min-
imum safety guarantees required for the inter-process calls.
The bulk of isolation enforcement is instead implemented
in untrusted user-level code. This allows untrusted applica-
tion programmers to build their own isolation policies, from
asymmetric isolation — e.g., protecting an application from
a plugin — to the full mutual isolation of processes.

The main contributions of this paper are as follows:
• A detailed analysis of the performance (and, by proxy,

energy) and programmability overheads imposed by cur-
rent process-based isolation and IPC (§ 2).
• The design and implementation of dIPC (§§ 3, 5 and 6),

an IPC facility based on the CODOMs architecture [61]
(§§ 4 and 6.1.2), that enables threads to efficiently and
securely invoke functions across processes without go-
ing through the OS kernel. dIPC further supports user-
defined and user-implemented isolation policies.
• An evaluation of dIPC using micro- and macro-benchmarks

(§ 7). The evaluation shows that dIPC is 64.12× faster
than local RPC in Linux, and 8.87× faster than IPC calls
in the L4 Fiasco.OC microkernel. We further show that
using dIPC in a multi-tier OLTP web workload improves
performance by up to 5.12× (2.13× on average), in all
cases above 94% of the ideal system efficiency.

2. Overheads of Process Isolation
Process-based isolation brings overheads to many existing
systems, from desktops to data centers. Throughout this pa-
per, we examine the impact of IPC overheads using a run-
ning example of a real-world multi-tier online transaction
processing (OLTP) web application stack [15] that is built
from a collection of intercommunicating processes. This ap-
plication is composed of a Web server frontend process, a
backend Database that runs as an isolated process to enforce
its own data access policies, and an intermediate PHP inter-
preter that is isolated from the rest of the system using a third
process. Similar scenarios are also common in many other
environments. For example, HDFS [55] uses a per-node pro-
cess to survive the crashes of its client Spark processes [66];
the Chromium browser uses intercommunicating processes
to isolate the UI, the page renderer, and its plugins from each
other [1]; and multi-server microkernel systems isolate ser-
vices like network and disk I/O into separate processes.

Figure 1 examines the runtime overheads associated with
process-based isolation for our example OLTP web applica-
tion (§ 7.4 details the experimental methodology). The fig-
ure depicts the runtime breakdown for the unmodified Linux
baseline, which uses processes to isolate each tier, and com-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Linux

Ideal
(unsafe)

51%

81%

23%

16%

24%

1%

Average operation latency [msec] (← lower is better)

IPC overhead
1.92×

User
Kernel
Idle

Figure 1: Time breakdown of a OLTP web application stack
(see § 7.4). It uses either multiple processes for isolation (Linux),
or an unsafe single-process system for Ideal performance.

pares it to an Ideal (but unsafe) configuration that runs all
components inside a single process. The figure shows that
forgoing isolation in the Ideal configuration allows it to run
1.92× faster than the safe Linux baseline.

2.1 Properties of Process-Based Isolation
We first define the properties of process-based isolation used
throughout this paper. We also refer to isolation units using
both process and domain, even when processes can contain
multiple isolation domains [19, 20, 65].

Security is built on resource isolation, i.e., what re-
sources can be accessed (such as memory addresses or files);
state isolation, i.e., preventing processes from interfering
with each other’s state; and argument immutability, i.e.,
whether a process is forbidden to modify the arguments
it communicated before the other process signals its com-
pletion (e.g., between the time a server validates and uses
data, to avoid a time-of-check-to-time-of-use vulnerability
— TOCTTOU). In turn, reliability is built on state isolation,
fault notification, and application-specific code to recover
from faults [29]. Note that it is the programmer’s responsi-
bility to write code that responds to faults with a recovery.

2.2 Sources of Overheads in IPC
Current architectures provide privilege levels and page ta-
bles for resource isolation and exceptions for fault notifica-
tion, which are then used by OSs for process isolation. The
co-evolution of OSs and architectures has led to a fairly ef-
ficient “virtual CPU” model for processes, but we argue that
the ideal performance offset in Figure 1 is due to intrinsic
inefficiencies and difficulties in that same model.

Figure 2 shows the performance of synchronous IPC with
a one-byte argument using the following primitives:
Sem.: POSIX semaphores (using futex) communicating

through a shared buffer. (=CPU) and (6=CPU) indicate
whether processes are pinned to the same CPU.

L4: IPC in L4 Fiasco.OC passing data inlined in registers.
Local RPC: RPC on UNIX sockets using glibc’s rpcgen.

The results were obtained using the methodology de-
scribed in § 7.2 (we did not examine time breakdowns for
L4). In all cases, traditional IPC is orders of magnitude
slower than a function call, which takes under 2ns, while
an empty system call in Linux takes around 34ns.

Improving the software IPC implementation or hard-
ware separately is not sufficient. A bare-metal process
switch involves a sequence of syscall, swapgs (to get a

18

0 1000 2000 3000 4000 5000 6000
Execution time [nsec]

7345
7345

CPU 2
CPU 1

CPU 1

CPU 2
CPU 1

CPU 1

CPU 2
CPU 1

CPU 1

Local RPC (6=CPU)

Local RPC (=CPU)

L4 (6=CPU)

L4 (=CPU)

Sem. (6=CPU)

Sem. (=CPU)

(1) User code
(2) syscall+2×swapgs+sysret

(3) Syscall dispatch trampoline
(4) Kernel / privileged code

(5) Schedule / ctxt. switch
(6) Page table switch
(7) Idle / IO wait

Figure 2: Time breakdown of different IPC primitives. Note
that a function call takes under 2ns, while a system call in Linux
takes around 34ns.

trusted gs segment for the kernel’s per-CPU variables in
x86-64), a page table switch, swapgs (to restore the user’s
gs segment) and a sysret (blocks 2 and 6 for Sem. (=CPU)
in Figure 2). About 80% of the time is instead spent in soft-
ware, which introduces second-order overheads by pollut-
ing caches, TLBs, and the branch predictor. Conversely, L4
(=CPU) successfully minimizes the kernel software over-
heads, but is still 474× slower than a function call.

Resource isolation has costs due to page table switches
(block 6 in Figure 2) and, in Linux, switching the per-CPU
current process descriptor (which provides access to the
process’s file descriptor table, part of block 5).

State isolation (i.e., context switching) also comes at a
substantial cost (block 5 in Figure 2). In the asynchronous
model of POSIX IPC, the kernel must save and restore all
the registers of the processes it switches between. L4 instead
provides synchronous IPC primitives, and uses the registers
to pass the beginning of the message payload.

Going across CPUs is even more expensive and brings
little benefit in synchronous communication [56], which is
dominated by the costs of inter-processor interrupts (IPIs).
Compare block 4 in Sem. (=CPU) and Sem (6=CPU) (send-
ing and handling the IPI). Moreover, temporarily scheduling
the idle loop adds to context switch time costs (block 5).

Argument immutability (i.e., copies) is inherently slower
than using pointers in a function call, but also makes the
IPC kernel code more complex (block 4 in RPC (=CPU))
and generates cache and TLB capacity misses. Using shared
memory in Sem. (=CPU) avoids the copies, but requires ap-
plications to agree on pre-shared buffer sizes beforehand, or
share pages on demand (which is limited in granularity and
can be very expensive in multi-threaded applications [62]).
Furthermore, avoiding copies to/from these shared buffers is
not always possible, since the application might need to pass
data that is received through a different shared buffer.

IPC generality and semantic complexity prevent opti-
mization. The OS kernel’s IPC paths must support a wealth
of cases due to their complex semantics. This leads to over-

heads such as finding the target process, performing a con-
text switch, and executing the syscall dispatch trampoline
(block 3 in Figure 2). Overheads also trickle into applica-
tions, leading to increased user time (block 1); callers and
callees must (de)marshal the arguments and results to/from
the buffer used by the IPC primitive, and callees must also
dispatch requests from a single IPC channel into their re-
spective handler function. RPC (=CPU) hides these com-
plexities, but at the cost of additional user code (block 1;
comparing CPUs 1 and 2 in RPC (6=CPU) shows the differ-
ence between the caller’s and callee’s operations).

2.3 False Concurrency
Processes bind isolation and concurrency, forbidding threads
from crossing process boundaries. Even when the applica-
tion has no concurrency, IPC imposes a control transfer be-
tween threads of separate processes, and programmers must
often use low-level asynchronous IPC primitives. For exam-
ple, when a PHP interpreter thread in the OLTP example,
referred to as a primary thread, initiates a database query,
it must transfer control to a service thread, which executes
the query in the Database process, and wait for its result.
Similarly, a Spark process might block until HDFS finishes
a data stream operation. Service threads are thus artifacts of
the process-based isolation model.

2.4 Mechanism and Policy Separation
Process-based isolation often needlessly enforces symmetric
isolation, whereas software components often have asym-
metric relationships. The PHP interpreter in the OLTP ex-
ample of Figure 1 illustrates this clearly. The interpreter need
not be isolated from the web server, allowing direct accesses
from the server and avoiding IPC. The server, however, is
isolated from the interpreter, so that the intended isolation
properties are preserved. Implementing these policies inside
the IPC primitives prevents the compiler from optimizing
policy implementation in the application’s calling site (e.g.,
through register liveness information), leading to unneces-
sary register fiddling in the OS kernel.

State isolation can also be eliminated when faults are
merely forwarded. For example, if a lazy PHP programmer
has no code to recover from communication errors with the
database, it will be left in an inconsistent state. Therefore
it is more efficient to eliminate state isolation from the in-
terpreter, and instead forward faults to the caller web server
(loosely achieving exception semantics).

Moreover, argument immutability (i.e., copies) can also
be elided when there is no TOCTTOU vulnerability. For
example, a thread could modify a buffer while it is being
written to disk by its driver, without affecting the driver’s
security properties (like in an asynchronous write).

3. dIPC Overview
Based on the observations in § 2, the goal of dIPC is to sup-
port fast IPC by enabling threads to directly invoke code in

19

Figure 3: Overview of direct IPC. A - B First-time call of a remote entry point triggers the creation of a trusted proxy for that
function. 1 – 3 This proxy bridges the call across processes. Code enforcing isolation policies can be moved into the non-privileged
application code (functions query in Web and query stub in Database). Bold code is optional, and depends on the isolation policy.

other processes without going through the OS, giving the un-
trusted applications as much control of this process as pos-
sible. For example, Figure 3b shows a thread in process Web
(domain W) directly calling function query in the Database
process (domain D) using a regular function call. To attain
this goal, we require an architecture with efficient primi-
tives for cross-domain interaction. This can be achieved by
(1) allowing regular function calls across domains, with-
out adding overheads to existing out-of-order pipelines, and
(2) by providing memory capabilities to allow safe cross-
domain pointers and, therefore, avoid marshalling, copying
and demarshalling of IPC arguments [16, 39].

The CODOMs architecture provides the two aforemen-
tioned primitives; it does so by isolating memory accesses
and instruction privileges between multiple domains inside
the same page table (domains W and D in Figure 3c; see § 4).

dIPC extends OSs that use processes as their unit of isola-
tion, and runs on top of CODOMs to provide the higher-level
OS abstractions that enable applications with faster IPC. To
accomplish its goal, dIPC fulfills three key requirements:

R1 Avoid general-purpose code for request processing and
(de)multiplexing in the OS and applications’s fast path
(§§ 2.2 and 2.3), and instead use more efficient application-
specific code paths without bloating OS complexity.

R2 Allow domains (i.e., processes) to be dynamically cre-
ated and destroyed and, by extension, to dynamically
specify new communication channels.

R3 Expose isolation policies to the user-level code, where
they can be more efficiently implemented (mechanism
and policy separation; § 2.4). The challenge is in enforc-
ing a security model where domains cannot compromise
the security policies specified by other domains (§ 5).

3.1 Fast IPC Without OS Intervention (R1)
dIPC auto-generates a function-specific trusted proxy (do-
main P in Figure 3) that has access to domains W and D
and bridges calls between them. A cross-domain call in dIPC
looks like a regular synchronous function call; it performs an
in-place domain switch, and redirects execution to the target
function (steps 1 – 3 ; functionality across processes is most
often and naturally expressed as a synchronous operation,
where process parallelism yields no benefits). These calls
in dIPC are 8.87×–64.12× faster than regular IPC because:
(1) They avoid generic IPC primitives and user-level request
(de)multiplexing, using instead a thin privileged code thunk
that safely proxies calls between processes and into the target
function. This proxy simply ensures that dIPC has control
of where and when cross-domain calls and returns are exe-
cuted; domains W and D cannot directly access each other,
whereas domain P has access to both. (2) They eliminate the
overheads of process synchronization (eliminate false con-
currency), since proxies perform an in-place domain switch.

3.2 Dynamic Domains and Comm. Channels (R2)
Processes and domains in dIPC can be created and destroyed
dynamically. In turn, domains can dynamically register new
local entry points to export, and remote entry points to im-
port. Imported entry points are treated like regular dynamic
symbols by the application loader; the first time one is used
(like Web’s call to proxy in Figure 3), the loader will trigger
a request to create a new proxy for it, which will be reused in
future calls (steps A – B end up creating the proxy routine).

3.3 User-Defined Isolation Policies (R3)
Untrusted application programmers can define their own iso-
lation policies in dIPC, further increasing IPC performance

20

speedups. An optional compiler pass takes source code an-
notations to identify domains and entry points (Figure 3a)
and emits extended information on the output executable
(left of Figure 3b). The application loader then uses this in-
formation to auto-configure the domains and public entry
points of each process using dIPC’s primitives.

The compiler also provides annotations to specify the
desired isolation policies, independently for the caller and
callee of an entry point (see § 5 for the security model). This
allows programmers to build the most adequate isolation
policy for their needs on a case-by-case basis (e.g., the exam-
ple PHP interpreter of § 2.4 does not need resource isolation
with the web server, nor state isolation with the database,
eliminating unnecessary register and stack fiddling). Fur-
thermore, the security model of dIPC allows isolation poli-
cies to be implemented in the untrusted application. The op-
tional compiler auto-generates function stubs, whose con-
tents are defined by the policy annotations (dashed boxes in
functions query and query stub for Web and Database in
Figure 3b). Implementing isolation in user-level stubs lets
the compiler optimize them with the rest of the application
(e.g., by inlining them and taking advantage of register live-
ness optimization when handling register state isolation).

Therefore, the run-time generated proxies only contain
the policy-enforcement code that requires privileges (e.g.,
proxy in Figure 3 switches the active file descriptor table).
Note that the steps A - B also provide signature information
of the target function, which allows dIPC to further fine-tune
the performance of proxies.

3.4 Backwards Compatiblitiy
Finally, dIPC also provides compatibility and incremental
adoption. Processes can selectively and incrementally use
dIPC while retaining backwards compatibility. When re-
quired by the application’s semantics, dIPC-enabled pro-
cesses can provide concurrency for asynchronous calls us-
ing regular threads, and argument immutability can be im-
plemented in non-privileged user code by simply copying
argument contents. dIPC-enabled processes can coexist with
other regular processes, and all processes can keep using the
regular IPC primitives provided by the OS kernel.

4. The CODOMs Architecture
The CODOMs architecture is designed to subdivide the ad-
dress space of a single process into multiple protection do-
mains (e.g., to isolate sensitive libraries in an application).
We highlight the two concepts that differentiate CODOMs
from traditional architectures (summarized in Table 1), but
a more comprehensive description of it can be found in the
original paper by Vilanova et al. [61].

4.1 Code-Centric Domain Isolation
CODOMs verifies whether the current instruction is allowed
to access a specific memory address, by using the instruction

Architecture Operations

Conventional
CPU

S: 2×syscall + 4×swapgs + 2×sysret +
page table switch // D: memcpy

CHERI S: 2×exception // D: capability setup
MMP S: 2×pipeline flush // D: copy data into pre-

shared buffer, or write/invalidate entries in priv-
ileged prot. table

CODOMs S: call + return // D: capability setup

Table 1: Brief comparison of best-case round-trip domain
switch with bulk data on different architectures. S: domain
switch, D: bulk data communication

Figure 4: Domain isolation in CODOMs, showing the page ta-
ble tags (left), the APL configuration (center) and the resulting
access permissions for each domain (right).

pointer as the subject of access control checks. This is in
contrast to conventional systems, which check whether the
current OS process can access the target memory address.

Page tables in CODOMs are extended to contain multiple
domains. In the spirit of architectures with memory protec-
tion keys [25, 32, 35], each domain is associated with a tag,
and the page table has a per-page tag to associate each page
with a domain. Additionally, CODOMs associates every tag
(or domain) T with an Access Protection List (APL): a list of
tags in the same address space that code pages in domain T
can access, along with their access permissions. Therefore, a
domain will usually have its private code and data pages as-
sociated with its own tag, and the domain’s APL will point
to other domains to which it has shared access (e.g., a sand-
boxed library). Each APL entry grants the source domain
one of the following permissions to the target domain:
Call: Allows calling into public entry points of a domain.

Any code address used with this permission is an entry
point if it is aligned to a system-configurable value.

Read: Allows reading from the destination domain as well
as call/jump into arbitrary addresses of it.

Write: Same as read, plus writing into the destination.
CODOMs honors the per-page protection bits in the page

table; e.g., an APL with write access to a domain will not
allow writing into a read-only page of that domain.

Figure 4 illustrates an example with three domains. It
associates pages 1,2,4,7 with domain A (Figure 4a), whose
APL permits calling into the entry points of domain B (page
3 in Figure 4b). This demonstrates the ability to directly
invoke procedures across domains. Once the code in A calls
into code in B (allowed by A’s APL), CODOMs uses B’s
APL (the instruction pointer now originates from a page in
domain B; Figure 4c). In turn, B can jump into the code of

21

C (pages 0,5,6), not directly accessible to A. To make this
efficient, CODOMs has an independent software-managed
APL cache for each hardware thread, which contains the
access grant information of recently executed domains.

CODOMs extends the page table with a per-page priv-
ileged capability bit, which identifies code pages that are
allowed to execute privileged instructions, eliminating the
need for system call instructions and privilege mode switches.

Distinguishing features: The detailed micro-architecture
simulations of CODOMs show that jumping into code of an-
other domain (and effectively switching between domains)
has a negligible performance impact [61]. CODOMs is able
to avoid stalls in out-of-order pipelines, maintaining the pro-
cessor’s instruction-level parallelism. This is because APLs
(specifically, the APL cache) together with the privileged ca-
pability bit allow an implicit change of the effective key set
and privilege level. In comparison, traditional architectures
require a system call into privileged mode to switch between
page tables, key-based architectures require a system call to
switch the privileged active key set, and domain switches
in architectures such as Intel’s call gates, CHERI [64], or
MMP [63] require a processor exception or, in the best
case, a pipeline flush. Furthermore, having independent APL
caches makes it easy to scale to multiple cores, and being
software managed allows the scheduler to swap an APL’s
contents during a context switch.

4.2 Transient Data Sharing Capabilities
Domains can also share arbitrary data buffers through ca-
pabilities [16, 39]. Capabilities are created and destroyed
by user code through special hardware instructions, and
CODOMs guarantees that they cannot be forged or tam-
pered with. A new capability is always derived from the
current domain’s APL or from an existing capability, and is
stored in one of the 8 per-thread capability registers provided
by CODOMs. These registers are managed independently of
regular pointers (stored in the regular CPU registers). By de-
fault, accesses are checked against all 8 capability registers.

Capabilities can be stored in memory, where they oc-
cupy 32 B. All capabilities can be spilled to a per-thread
domain capability stack (DCS), which is bounded by two
registers that can only be modified by unprivileged code
through capability push/pop instructions. Capabilities can
also be stored to (and loaded from) memory pages that have
the special capability storage bit set in the page table, and
CODOMs ensures that user code cannot tamper with them.

Distinguishing features: Unlike traditional architec-
tures, capabilities avoid cross-domain argument immutabil-
ity (copies) and its associated complexity, while adding
no overheads to the memory checks themselves (capabil-
ity range checks can be executed in parallel with the TLB
and cache lookups). Furthermore, most capability architec-
tures fuse capabilities and memory pointers into a single
entity, whereas CODOMs keeps them separate to minimize
memory bandwidth requirements; the compiler can schedule

capabilities into capability registers and use them for mul-
tiple memory accesses (e.g., by using a single capability to
traverse an entire dynamic data structure). The use of ca-
pabilities is further reduced in CODOMs because domains
can be readily accessed without them through the APL (e.g.,
domain B in Figure 4 has implicit read-write access to it-
self, and read-only access to C). When requested by the
programmer, capabilities in CODOMs can be passed across
threads and support immediate revocation through revoca-
tion counters (synchronous vs. asynchronous capabilities in
§ 4.1.5 of [61]), whereas other capability architectures rely
on garbage collection or memory non-reuse, which would be
very difficult to ensure across processes. Finally, the capa-
bility storage bit in CODOMs can differentiate capabilities
from regular data without resorting to memory tagging.

4.3 Extensions Specific to dIPC
We have extended CODOMs to accelerate cross-process
calls in dIPC. The APL cache maps domain tags to: (1)
the permissions of that domain, and (2) a hardware domain
tag, used internally to perform memory access checks (the
32-entry cache yields a 5-bit hardware domain tag).

We have added a privileged instruction that allows soft-
ware to retrieve the 5-bit hardware domain tag of any do-
main present in the cache. Since the cache is quite small,
this lookup operation takes less than a L1 cache hit. The use
of this feature is described in § 6.1.2.

5. dIPC Design
This section describes dIPC’s interface, whereas § 6 de-
scribes the details necessary to implement it efficiently.

5.1 Security model
Processes in dIPC are mutually distrustful by default. In
order to allow user-defined policies, dIPC provides a security
model with the following properties:
P1 Processes can only access each other’s code and data

when the accessee explicitly grants that right.
P2 Inter-process calls are always invoked through the entry

points exported by the callee, and guarantee the correct-
ness of the callee’s state when it starts executing.

P3 Inter-process calls always return to the expected point in
the caller in a way that guarantees the caller’s correctness.

P4 Caller and callee agree on the signature of an entry point,
ensuring adherence to their requested isolation policies.

P5 A process’s failure to implement its declared policy will
not affect the isolation of any other process.
Therefore, any erroneous or malicious use of dIPC will

only affect the process executing that operation, but never
the OS kernel or other processes it communicates with.

5.2 OS Support
dIPC-enabled processes get access to three new OS objects
(see Table 2, described in the following sections):

22

Object attributes Description

domain.tag A CODOMs tag.
domain.perm Permission to the domain:

{owner, write, read, call, nil}
(ordered set).

grant.src Domain granting access from.
grant.dst Domain granting access to.
grant.perm Permission of the grant.

Object attributes Description

entry.dom Domain with entry points.
entry.count Number of entries.
entry.entries[].address Entry point address.
entry.entries[].signature Number of input/output regis-

ters and stack size.
entry.entries[].policy Isolation policy properties (see

§ 5.2.3).

Operation Effect

dom default() → domd Return domd with owner permission to process’s default domain.
dom create() → domd Return domain domd with owner permission to a new tag.
dom copy(domsrc, permp) → domdst Return domain domdst with permission permp and domsrc’ tag iff permp ≤

domsrc.perm.
dom mmap(domd, ...) → ... mmap-like allocation on a domain iff domd has owner permission.
dom remap(domdst, domsrc, addr, size) Reassign selected pages from domsrc to domdst iff pages are in domsrc, and

both domsrc and domdst have owner permission.
grant create(domsrc, domdst) → grantg Return domain grant with domdst.perm permission to domdst in domsrc’ APL

iff domsrc.perm == owner.
grant revoke(grantg) Set permission to nil for grantg.dst in grantg.src’ APL.
entry register(domd, count,

entries[count]) → entrye

Return entry entrye for the given entry descriptors iff domd.perm == owner
and all descriptors point to domd.

entry request(entrye, count,

entries[count]) → domp

Return domain domp with call permission to a new domain with
proxies to entrye iff ∀i < count : entries[i].signature ==
entrye.entries[i].signature. Each descriptor is set to its proxy’s entry point on
return. Per-entry policy is entries[i].policy ∪ entrye.entries[i].policy.

Table 2: Relevant core objects and operations in dIPC.

Isolation domains represent isolated memory allocation
pools (setting a CODOMs tag to their pages).

Domain grants define the direct permissions between do-
mains (configuring the APL of a domain).

Entry points identify the public entry points of a domain,
as well as their signature and isolation properties, and
produce the proxies that enable cross-domain calls.
These objects are private to each process and can be com-

municated to other dIPC-enabled processes to delegate ac-
cess. All processes get a single default domain, and all dIPC-
enabled processes share a global virtual address space. New
domains are isolated from other domains (are not added to
any CODOMs APL; P1), and therefore dIPC can share a sin-
gle page table between the different dIPC-enabled processes.

5.2.1 Thread Management
Each primary thread can flow across different dIPC-enabled
processes, and uses three types of stacks:
Data stack is isolated between threads by giving each a

thread-private capability to it (a synchronous capability
in CODOMs’s terms; see § 5.2.3).

Capability stack (DCS) is where threads spill capabilities.
Kernel Control Stack (KCS) tracks the call stack across

domains. The proxy used for a call through an entry
point pushes a KCS entry with information about the
caller, whereas a return pops it.
dIPC charges CPU time and memory to each process as

usual. Primary threads appear with different identifiers on

each process, so that users can control threads only when ex-
ecuting on processes they own (P5). When a thread crashes,
a process cannot be simply terminated, since other processes
can be up in the call chain and termination could lead to
a deadlock [21]. Instead, a thread crash is redirected to the
OS kernel, which unwinds the KCS to the entry with the
oldest calling domain still alive, flags an error to it (simi-
lar to setting an errno value), and resumes execution on the
proxy recorded on that KCS entry. Process kills are therefore
treated using the same technique.

5.2.2 Domain Management (P1)
Each domain represents an isolated memory allocation pool,
and processes can manage them through the domain handles
described in Table 2. Pages allocated with dom mmap get that
domain’s tag, while regular mmap and brk calls use the pro-
cess’s default domain. Domain handles have an additional
owner permission, present only in software, that allows man-
aging that domain’s APL (see below). Processes can pass
each other domain handles as file descriptors, and can use
dom copy to “downgrade” the permissions of a domain han-
dle before passing it (e.g., to pass read-only handle).

Domain grant handles allow memory accesses from a Src
to a Dst domain by modifying the APL of Src according
to the permissions in the Dst handle. For example, calling
grant create with an owner handle for domain Src and a
read handle for domain Dst will allow Src to perform read-
only accesses to Dst. If Src does not have the owner permis-
sion, the operation fails. If Dst has the owner permission,

23

dIPC translates it into the write permission in CODOMs.
Since a domain handle must be explicitly communicated to
operate on it, P1 is preserved.

Note that grant create can be used to directly access
data or execute code from another process’s domain. A use-
ful pattern for data is to allocate a subset of memory into a
separate domain (e.g., a memory allocation pool for a com-
plex dynamic data structure), and pass a handle to it to allow
direct accesses. If only temporary access to that memory is
necessary (a short-lived grant), processes can instead use a
CODOMs capability. Passing direct access to code prevents
dIPC from interposing proxies; the callee code will there-
fore execute as if it were the caller’s process (e.g., using
the caller’s POSIX user ID and file descriptor table). Note
that this situation complies with dIPC’s security model, since
passing a handle to that domain was an intentional operation
(P1).

5.2.3 Entry Point Management (P2 to P5)
Domain grants configure direct memory access, but provide
no guarantees to inter-process calls. Therefore, dIPC also
provides entry points (entry * operations in Table 2).

Entry point handles represent an array of public entry
points in a domain, with an isolation policy specified through
isolation properties (see below). First, a process Dst creates
an entry point handle with entry register, passing the
address, signature and desired isolation properties of each
entry in the handle’s array. A process Src can then receive
the entry point handle (step A in Figure 3). Src then calls
entry request on that handle with the expected signature
and desired isolation properties of each entry in the handle’s
array. At this point, dIPC creates a domain with one trusted
proxy for each entry point (step B). The result is a domain
handle with read permission, which can then be accessed by
Src after calling grant create.

Since dIPC knows the signature and isolation properties
requested by Src and Dst for each entry point, it generates
proxies that are specialized for the target function signature
and avoids unnecessary policy enforcement overheads by
exclusively enforcing the requested isolation properties.

Isolation Properties
dIPC defines two properties for each sensitive resource:

(1) integrity (i.e., write, trusting a domain to follow its appli-
cation binary interface (ABI)); and (2) confidentiality (i.e.,
read, trusting a domain with private information).

Isolation properties define the contents of the generated
proxy. When the optional compiler pass is used (see § 5.3.1),
the auto-generated stubs implement the isolation properties
themselves (function query in the caller and query stub

in the callee of Figure 3), and the runtime avoids passing
them to entry * when creating the proxies. dIPC provides
the following isolation properties:
Register integrity saves live registers into the stack before

the call, and restores them afterwards. Implemented in

user stubs (isolate call and deisolate call in Fig-
ure 3, respectively).

Register confidentiality zeroes non-argument registers be-
fore the call, and zeroes non-result registers afterwards.
Implemented in user stubs (isolate call and isolate -

ret, respectively).
Data stack integrity creates a capability for the in-stack ar-

guments and one for the unused stack area before the call,
restoring them afterwards. Implemented in user stubs
(isolate call and deisolate call, respectively).

Data stack confidentiality + integrity splits data stacks be-
tween domains (arguments and results are copied ac-
cording to the signature). Implemented in the trusted
proxy (isolate pcall and deisolate pcall switch
the stack pointers).

DCS integrity adjusts the DCS base register in CODOMs to
prevent access to non-argument entries, and restores it af-
terwards. Implemented in the trusted proxy (isolate -

pcall and deisolate pcall, respectively).
DCS confidentiality + integrity uses a separate capability

stack for each domain (entries are copied according to the
signature). Implemented in the trusted proxy (isolate -

pcall and deisolate pcall to set the new stack and
restore the old one, respectively). Only applies to callees.

dIPC must track the current process across entry points to
account for resource usage (e.g., CPU time) and provide re-
source isolation (e.g., switch the file descriptor table). When
entry register and entry request are called on dif-
ferent processes, dIPC generates track process call and
track process ret in the proxy (Figure 3).

Register and stack integrity allow implementing cross-
domain exception recovery. Data stack confidentiality is im-
plemented in proxies to avoid intermediate copies, and so is
DCS management since its bounds registers are privileged
in CODOMs. Data stack and DCS confidentiality are acti-
vated when any side requests it, and integrity properties are
only activated when requested by callers (i.e., when passed
to entry request). Note that the DCS and data stack are
thread-private, so integrity is enforced both ways.

Security of Entry Point Calls and Returns
The following points clarify how call and return opera-

tions maintain dIPC’s security model (§ 5.1):
P2: grant create returns domains with call permis-

sion, and generates properly aligned proxies to ensure that
CODOMs alignment restrictions (§ 4) force calls to go to the
first instruction of the proxy. In turn, proxies redirect control
into the target functions. Proxies also check the validity of
the current stack pointer, ensuring that a callee uses its as-
signed per-thread stack when there is no stack switch.

P3: Proxies ensure that callers can correctly resume ex-
ecution when a callee returns. The proxy saves the cur-
rent process, return address, and stack pointers into the
KCS and replaces the return address with one of its own

24

(prepare ret in Figure 3). The new return address points
to proxy ret, ensuring that the callee will return into the
proxy. Since the callee’s APL (Database) does not allow a
return into proxy ret, the proxy also creates a capability to
it. On the return path, the proxy restores the saved pointers
(deprepare ret). This provides a minimal execution envi-
ronment for the caller to restore the rest of its state (e.g., by
restoring other registers saved to the stack).

Data stacks must be thread-private in x86 because proxies
use the return addresses stored in them; a proxy copies a
return address into the safe KCS after a call, and later uses
that copy to return. Therefore, thread-private data stacks
would not be necessary in other architectures where return
addresses are stored in a register (e.g., ARM and MIPS).

P4: dIPC checks that the entry point signatures passed to
entry register and entry request match. This ensures
that caller and callee agree on a common ABI (e.g., register
confidentiality on the callee will not expose a temporary
register that is declared as a return register by the caller).

P5: Isolation properties are split between caller and callee
stubs and proxy code in a way that ensures that the untrusted
user stubs cannot impact the isolation of their peers. For
example, an incorrect isolate call or deisolate call

will only impact the caller’s isolation guarantees, but never
the guarantees of the proxy or the callee.

5.3 Compiler and Runtime Support
The operations in Table 2 are sufficient to write dIPC-
enabled applications, but the optional dIPC-aware compiler
pass and application loader and runtime simplify their use.

5.3.1 Compiler Annotations
The compiler provides four types of source code anno-
tations: (1) dom assigns code and data to domains; (2)
entry identifies entry points; (3) perm specifies di-

rect cross-domain permissions inside a process; and (4)
iso caller and iso callee specify the isolation prop-

erties for callers and callees described above (respectively).
The compiler auto-generates caller stubs whenever it

calls functions from another domain (function query in
database.h of Figure 3 is assigned to a domain and used
by web.c). It also auto-generates a callee stub whenever a
function is identified as an entry point (function query in
database.c). The generated stubs (central row of Figure 3)
contain the code for all isolation properties that can be im-
plemented outside a proxy. The stubs can be inlined into and
co-optimized with the user application, allowing the com-
piler to exploit knowledge about function signature and reg-
ister liveness to decide which registers to safeguard and/or
zero at the point of a call. To highlight the importance of co-
optimization, we have performed a simple experiment that
compares exception recovery by saving registers (setjmp)
vs. using a C++ try statement before calling a simple func-
tion. C++ try clauses produce code around 2.5× faster,
since the compiler can reconstruct the state from constants

and stack data in case of an error, instead of always saving
register values.

5.3.2 Application Loader and Runtime
The compiler also uses the annotations to auto-generate ad-
ditional sections in the output binary [38], which the pro-
gram loader uses to load code and data into their respec-
tive domains, configure domain grants inside a process, and
manage the dynamic resolution of domain entry points and
proxies. This information also tells the runtime to trigger the
generation proxies without the isolation properties that were
already implemented in the auto-generated stubs.

5.4 Asynchronous Calls and Time-Outs
One-sided communication (or multiple returns) is a form
of asynchronicity that leaks into the application interface
semantics. Therefore, it can be supported in the same way
as other asynchronous calls by creating additional threads,
or even by using conventional IPC primitives if desired.

dIPC supports cross-process call time-outs by “splitting”
a thread at the site that timed-out. The “split” operation will
duplicate the kernel thread structure and KCS. The kernel
will unroll the caller’s KCS to the timing-out proxy, flag
the error, and resume the caller’s execution at that proxy.
The callee thread can resume normal operation, and will be
deleted when it returns into the proxy that produced the split
(recorded in the KCS). This is similar to how thread kills
and crashes are handled in § 5.2.1, but will only work if the
timed-out caller uses a stack separate from the callee’s (i.e.,
stack confidentiality + integrity was enabled).

6. dIPC Implementation
We have implemented dIPC assuming the CODOMs archi-
tecture, but the design and a large part of the implementa-
tion also applies to other architectures that support multi-
ple memory protection domains on the same address space,
such as CHERI [64] or MMP [63]. We believe the costs of
the stronger isolation policies will be dominated by software
overheads, making the finer micro-architectural performance
trade-offs between these architectures less relevant.

Although cross-process timeouts are supported by the
design, we have not implemented them (§ 5.4), since they
are not used by the applications we evaluated.

6.1 OS Support
We have prototyped dIPC with over 9 K lines of new code
for Linux (version 3.9.10) and 2 K for the runtime.

6.1.1 Run-Time Optimized Proxy Generation
dIPC has a set of “proxy templates” for different combina-
tions of entry point signature and isolation properties. When
entry request creates a proxy, it chooses the template that
matches the signature and requested isolation properties. It
then copies the template into the proxy location, and adjusts

25

the template’s values via symbol relocation [38] (e.g., adjust-
ing instruction immediates with control flow addresses and
the assigned domain tag). We wrote a single parametrized
“master template” in assembly that produces around 12 K
templates at build time (averaging at 600 B each), reminis-
cent of the code specialization of Synthesis [46].

6.1.2 Fast Process and Stack Switching in Proxies
Cross-process proxies must switch Linux’s pointer to the
current process (the current variable) to maintain proper
resource accounting and isolation (in track process *;
see § 5.2.3), and must switch between stacks when requested
(in (de)isolate pcall).

The hot path of track process call looks up the tar-
get process’s domain tag in the APL cache (the tag is known
when generating a proxy). The resulting hardware domain
tag is used as an index to a small per-thread cache array
(32 entries), which points to the target process/thread iden-
tifier pair information (recall from § 5.2.1 that each primary
thread has a per-process thread identifier). On a cache array
miss, the warm path looks it up in a per-thread tree, indexed
by the domain tag, and adds its information into the cache ar-
ray. On a tree miss, the cold path upcalls into a management
thread in the target process; this thread executes a system call
to create the needed OS structures, and restarts the lookup.

Finally, track process call stores the current vari-
able in the KCS and replaces it with the target’s value. On a
return, track process ret simply restores current from
the KCS. Inter-process calls are treated as a time slice dona-
tion, until a system call or interrupt is executed. Note that
stack switching uses the same mechanisms to locate and
lazily allocate stacks when needed.

Proxies must also switch to the thread-local storage
(TLS) [17] of the target process as part of a process switch.
For simplicity, we use a costly wrfsbase in x86-64 to main-
tain the current TLS model, but it would be more efficient to
add a new TLS mode where dIPC-enabled processes appear
as dynamically loaded modules on the same TLS segment
(provided each process defines its entries in one or more
pages set with its domain tag).

6.1.3 Global Virtual Address Space
dIPC-enabled processes are loaded into a global virtual ad-
dress space (which in turn allows using a shared page ta-
ble), while other processes are loaded normally. Multiple
shared virtual address spaces can co-exist in dIPC, but we
describe it as a single-address-space OS (SASOS) for sim-
plicity [10, 28, 31, 52, 59]. The OS memory allocator has
two phases: first, a process globally allocates a block of
virtual memory space (currently 1 GB), and then it sub-
allocates actual memory from such blocks.

dIPC-enabled programs must be compiled as position-
independent code (PIC) [38], which is common for server
applications and dynamic libraries. Each process needs a
“virtual copy” of its libraries, but code and read-only data

Board Dell PowerEdge R210 II
Processor Intel E3–1220 V2 @ 3.10GHz, 4 cores
Memory 16 GB
Ethernet Broadcom BCM5716 (1Gig)
Infiniband Mellanox MT26428 (10GigE)

Table 3: Evaluation machine configuration.

of all virtual copies of the same library point to the same
physical memory and cache lines. The POSIX fork opera-
tion, with its traditional copy-on-write semantics, temporar-
ily disables dIPC in new processes to maintain backwards
compatibility (marking only the process’s pages as copy-on-
write). When the POSIX exec operation is invoked with a
PIC executable, dIPC is re-enabled in the process, which is
loaded into a unique virtual address.

6.2 Compiler and Runtime Support
We have implemented a dIPC-aware source-to-source com-
piler pass using the Python interface of CLang [37], resulting
in around 3.5K lines of Python and 300 lines of base system
includes in C. The resulting file contains the auto-generated
stubs and attributes to generate the additional binary infor-
mation from § 5.3.1, and calls to entry points are substituted
by calls to the auto-generated caller stubs.

6.2.1 Entry Resolution
Calls to proxies (in the caller stubs) are resolved at run-
time by the program loader through an application-provided
hook. The dIPC runtime provides a default implementation
that uses UNIX named sockets to exchange entry point han-
dles (step A in Figure 3). Similar to other RPC systems, pro-
grammers only specify the named socket paths used by each
process they communicate with. Programmers can use file
permissions to control socket access, or provide their own
entry resolution hooks (e.g., using a central service).

6.2.2 ABI Information
For simplicity, we did not change the compiler backend, so
cross-domain calls do not have access to detailed ABI infor-
mation. As of now, the function signatures used in Table 2
must be specified manually. Not integrating with the com-
piler backend also misses some opportunities to optimize-
out code for register integrity and confidentiality according
to the compiler’s register liveness analysis information.

7. Evaluation
We evaluated dIPC on two sets of benchmarks. The micro-
benchmarks provide a quantitative comparison of different
IPC mechanisms and dIPC, whereas the macro-benchmarks
explore the improvements on applications using dIPC.

7.1 Methodology
To avoid being limited by the long full-system simulation
times of a multi-core, we evaluated dIPC natively using the

26

100

101

102

103

104

105
Execution time [nsec; log10] (↓ lower is better)

20
×

3×

25
×

75
7× 22

59
×

10
16
×

22
57
×

28
× 53
×

34
28
×

42
21
×

24
11
×

L
ow

H
ig

h

L
ow

H
ig

h

H
ig

h

F
un

c.

Sy
sc

al
l

dI
P

C

Se
m

.

P
ip

e

dI
P

C
+p

ro
c

L
oc

al
R

P
C

dI
P

C
U

se
r

R
P

C

= CPU
6= CPU

Figure 5: Performance of synchronous calls in dIPC and other
primitives. A function is under 2ns.

20 22 24 26 28 210 212 214 216 218 220

Argument size [bytes; log2]
100

101

102

103

104

105

106
Added execution time [nsec; log10] (↓ lower is better)

Distance grows with size

L1$ size L2$ size

Syscall
Sem. (6=CPU)
Pipe (6=CPU)
Local RPC (6=CPU)
dIPC - Low (=CPU)

dIPC - High (=CPU)
dIPC - Low (=CPU;+proc)
dIPC - High (=CPU;+proc)
dIPC - User RPC (6=CPU)

Figure 6: Comparison of dIPC and existing primitives for a
consumer-producer synchronous call passing an argument of
increasing size. Shaded areas show standard deviation.

platform described in Table 3. This allowed us to evaluate
the broader effects of dIPC by executing the applications
and OS in their entirety. We modified our code to emulate
the CODOMs architecture in a way that we believe provides
a reasonable approximation of the underlying hardware.

Per-CPU hardware resources: Every resource in CODOMs
was emulated using per-CPU variables (gs segment in
Linux x86-64), which are handled as part of the CPU
state on context switches (using memory variables is
slower than a hardware implementation of CODOMs).

Memory and privilege protection: Processes share a sin-
gle page table, but APL checks are not enforced. To emu-
late the privileged capability bit in CODOMs, we ran all
kernel and user code in privileged mode using KML [45];
it replaces sysret with an indirect jump in system calls,
but that instruction takes only a fraction of the already
small cost of block 2 in Figure 1. Furthermore, all system
requests are performed through Linux’s regular syscall
path, instead of accelerating them with dIPC.

APL cache: We omitted APL cache lookups (§ 4.3) in the
proxy routines, and instead directly used domain tags
as hardware domain tags (the 5-bit index for the fast-
path in process switching; § 6.1.2). This is reasonable
because the cache is a small associative memory (32
entries), so a lookup should take 1–2 cycles. Furthermore,
none of our benchmarks induces an APL cache miss:
the APL cache is a per-hardware-context resource (i.e.,
its size only affects the number of domains frequently
running with that cache, not on the entire system), and
even the largest benchmark (the web application) uses
only 7 domains, well below the 32 available.

Capabilities: We used regular loads and stores to move
capabilities between memory and CODOMs’s capabil-
ity registers (also emulated in memory, and therefore

not checked during memory accesses; each capability is
32 B).

The simulations of the CODOMs architecture show that
memory, privilege, capability register and domain switch
checks take place in parallel with the regular processor oper-
ation, adding no performance overheads [61]. Given that, the
performance of dIPC is largely driven by the code executed
in the user-level applications and the proxy routines.

7.2 Case Study: The Costs of Isolation
As observed in § 2.2 and Figure 2, process-based isolation
and IPC add very large overheads. We thus quantify the
effectiveness of eliminating them with dIPC.

Figures 2 and 5 show the mean execution time of vari-
ous synchronous IPC primitives using a one-byte argument,
whereas Figure 6 shows the performance effect of increasing
the argument size; because the caller writes and the callee
reads the argument, we show the execution time added by
each primitive compared to the baseline function call. All ex-
periments have standard deviation and timing overheads be-
low 1% and 0.1% of the mean, respectively (with a 2σ con-
fidence). Frequency scaling is disabled on all CPUs to max-
imize performance; otherwise, cross-CPU IPC takes longer
(not shown for brevity).

Figure 5 shows two isolation policies for dIPC between
domains of the same process: Low shows the effects of a
minimal non-trivial policy, and High is equivalent to process
isolation, highlighting the importance of asymmetric poli-
cies. The figure shows that dIPC can be much faster than
even a system call (dIPC - Low), or have comparable per-
formance when offering greater isolation (dIPC - High has
mutual isolation, while user/kernel isolation is asymmetric
by definition). In all, different asymmetric policies in dIPC
can have up to a 8.47× performance difference.

27

The difference is even greater for cross-process calls
(dIPC +proc, which has the same Low/High policies). dIPC
maintains synchronous function call semantics and argu-
ments are passed by reference, while achieving speedups
between 14.16× (dIPC +proc - High vs. Sem.) and 120.67×
(dIPC +proc - Low vs. RPC). The TLS segment switch in
dIPC takes a large part of the time, so optimizing it (§ 6.1.2)
would substantially improve performance (1.54×–3.22×).

Pipe and RPC have to copy data across processes (argu-
ment immutability), while dIPC allows passing arguments
by reference, leaving copies up to the programmer. This is
manifested in the increasing overheads for Pipe and RPC in
Figure 6. While Sem. avoids cross-process copies, the pro-
grammer still has to populate the shared buffer. In compari-
son, dIPC can use CODOMs’s capabilities to pass references
to existing structures, and only to those structures.

Finally, the dIPC - User RPC (6=CPU) experiment pro-
vides the same semantics as a cross-CPU RPC, but is largely
implemented at user level. The server process makes a copy
of its arguments and waits for a thread on another CPU to
process them. This is almost twice as fast as RPC, and only
uses the OS to synchronize threads of the same process. In-
terestingly, the copies in dIPC are more efficient than those
in Pipe or RPC. This is because kernel-level transfers must
ensure that pages are mapped in its address space before per-
forming process-to-process copies. dIPC allows critical syn-
chronization code in the OS kernel to be greatly simplified,
since complex cross-process memory transfers can now be
implemented at user level.

7.3 Case Study: Device Driver Isolation
SR-IOV allows directly assigning modern NICs to applica-
tions or virtual machines, avoiding the OS kernel or hyper-
visor on their fast path. Infiniband provides similar features.
In both cases, processing must be offloaded into additional
NIC and I/O infrastructure hardware. But more importantly,
direct device assignment makes it harder to migrate compu-
tations [30, 67] and impairs the OS’s ability to apply its poli-
cies on the device (e.g., packet scheduling is implemented in
the NIC and cannot be easily extended).

We use Infiniband as our upper-bound performance sce-
nario, and explore how dIPC can allow the OS to participate
in the management of data flows without impacting perfor-
mance. Figure 7 shows the latency and bandwidth overheads
of isolating Infiniband’s user-level driver into a separate do-
main/process. We used the netpipe benchmark (NPtcp), us-
ing Infiniband through the rsocket library. We also inter-
posed the driver’s operations to make synchronous requests
to an “isolated driver” domain, without additional copies be-
tween the application, the driver and the NIC (just as is done
in the original driver). dIPC uses an asymmetric policy be-
tween the application and the driver.

Only dIPC sustains Infiniband’s low latency, with a ∼1%
overhead. In comparison, system calls incur a 10% overhead,
and IPC incurs more than 100% latency overheads. Band-

0
20
40
60
80

B
an

dw
id

th
ov

er
he

ad
[%

] ↓ Lower is better

Pipe
(= CPU)
Semaphore
(= CPU)
Kernel
dIPC +proc
dIPC

20 21 22 23 24 25 26 27 28 29 210 211 212

Transfer size [bytes]

0.1

1

10

100

1000

L
at

en
cy

ov
er

he
ad

[%
] ↓ Lower is better

Figure 7: Bandwidth and latency overheads when isolating
the Infiniband driver using dIPC, processes (IPC) or a kernel
driver (user/kernel isolation).

width is less affected, but we still see overheads above 60%
for a 4 KB transfer in the IPC scenarios. Finally, the differ-
ence between the pipe and semaphore results show that un-
necessary IPC semantics produce further slowdowns, since
copies are not needed in this case.

Unlike other mechanisms, dIPC’s latency is low enough
to to be used in the future to regain OS control of I/O transfer
policies while maintaining close-to-bare-metal performance.

7.4 Case Study: Dynamic Web Serving
We used a multi-tier web server to study the system-wide
speedups of dIPC. The server uses Apache (2.4.10) to gener-
ate dynamic pages with PHP (5.6.7), which in turn retrieves
data from a MariaDB database (10.0.22). The database uses
either a regular hard disk or an in-memory file-system (using
tmpfs) to approximate current in-memory services (using
an SSD would provide a third intermediate point).

We ran the OLTP DVDStore macro-benchmark [15] (ver.
2.1) with 500 MB, 1 GB and 10 GB inputs, running for 3 min
after a 2 min warmup period. All components were executed
with 4 to 512 threads each, in order to isolate the impact of
server concurrency. Starting at 1024 threads, baseline per-
formance drops dramatically due to over-subscription. Per-
formance was compared with the following configurations:

Linux as the baseline, where all components ran as iso-
lated processes. All experiments were tuned to pro-
vide maximum throughput in this configuration: Apache
used the multi-threaded mpm-worker, PHP ran using
FastCGI2 [48] and a bytecode cache, MariaDB used a
threaded process, and all processes communicated using
UNIX sockets (faster than TCP/IP due to header process-
ing and additional intermediate data copies).

Ideal (unsafe), intended to show the ideal performance if all
inter-process communication costs were eliminated. This
configuration runs on the baseline Linux system, but em-
beds all components in a single process. PHP is used as
an Apache plugin, and MariaDB is embedded into PHP

2 CGI spawns a new process for each request, but FastCGI (commonly used
for performance) dispatches requests to multiple long-lived processes.

28

Linux dIPC Ideal
(unsafe)

0

10000

20000

30000

40000

50000

60000

70000

2.
23
×

3.
18
×

1.
80
×

1.
39
×

1.
11
×

2.
26
×

3.
19
×

1.
84
×

1.
40
×

1.
12
×

With on-disk DB
Throughput [ops/min] (↑ higher is better)

Concurrency
4
16

64
256

512

Linux dIPC Ideal
(unsafe)

2.
42
×

5.
12
×

2.
62
×

1.
81
×

1.
17
×

2.
49
×

5.
22
×

2.
68
× 1.
92
×

1.
17
×

With in-memory DB

Figure 8: Performance of different dynamic web server config-
urations using vanilla Linux and dIPC. To isolate communica-
tion and performance factors, the benchmark was run with 4
to 512 threads (1 to 128 threads/CPU).

using the libmariadbd library. The core implementation
is thus identical to the baseline, but it is stripped from
unnecessary concurrency across processes, IPC calls and
the glue code needed to manage IPC.

dIPC, which places Apache, PHP and libmariadbd in sepa-
rate domains with inter-process proxies. They use asym-
metric policies where only PHP trusts all other compo-
nents.

Figure 8 shows the throughput of each configuration on
the 1 GB database; the other sizes show similar results. Since
register and stack usage is unknown without low-level com-
piler backend support, the caller and callee stubs are folded
into the proxies while assuming the worst case (all non-
volatile registers are considered live).

Ideal (unsafe) shows that removing the baseline’s IPC
provides speedups of up to 3.19× and 5.22× for the on-disk
and in-memory configurations, respectively. Interestingly,
Ideal is able to achieve much higher throughput with much
less concurrency, pointing to a much more efficient use of
the system (see 512 threads in Linux vs. 16 threads in Ideal).
This is due to large reductions in time spent in user and
kernel code for the sole sake of managing process isolation
and IPC. For the 256-thread results (largest throughput), the
on-disk version eliminates 5.45% and 46.65% of user and
kernel time, respectively. The in-memory version is able to
reduce them by 13.72% and 60.51%, respectively. Another
important speedup factor is a reduction of idle time, which
goes from from 24% to 1% in the in-memory version. The
asynchronous communication model of processes and the
large number of threads necessary to fill the system lead the
scheduler to temporarily imbalance the CPUs, at which point
synchronous IPC must wait to contact a remote process.
Instead, Ideal immediately starts executing the code of the
target component.

The dIPC configuration has performance similar to Ideal
for the same reasons, with speedups of up to 3.18× and
5.12× for the on-disk and in-memory configurations, respec-
tively. The performance loss is split between inefficiencies
in the OS and executing the caller/callee stubs and proxy
routines. First, there is contention in global virtual memory

block allocation, but using per-CPU allocation pools would
easily improve scalability [7]. Second, we use a simplistic
algorithm to resolve page faults across processes; the algo-
rithm iterates over all processes in the current global virtual
address space, which could be sped up by instead locating a
faulted process by the address of its faulted virtual memory
space block. Third, context switches are more expensive due
to the additional structures in CODOMs. All other existing
system operations have no measurable performance impact.

These results clearly demonstrate the benefits of the inter-
process calls in dIPC. dIPC outperforms a standard Linux
setup by 3.18× when using an I/O bound setup, and by up
to 5.12× when using a faster storage medium. In all cases, it
achieves more than 94% of the ideal system efficiency.

7.5 Evaluation Limitations
Emulating a CODOMs processor might underestimate three
aspects of the actual hardware overheads.

First, in the case of an APL cache miss, CODOMs will
trigger an exception and dIPC would have to update the
software-managed APL cache. We emphasize that this event
never happens on the presented benchmarks. Also note that
the APL cache can be switched lazily to accelerate context
switches (akin to the FPU or vector registers).

Second, detailed simulation of CODOMs shows negli-
gible hardware overheads [61], but we nevertheless mea-
sured how hardware-domain crossing overheads would in-
fluence dIPC’s performance. To that end, we counted the av-
erage number of cross-domain calls per operation. For ex-
ample, the 256-thread in-memory configuration of Ideal in
§ 7.4 has 211 calls per operation. This corresponds to an
average call overhead of 252 nsec for dIPC, higher than in
the micro-benchmarks (Figure 5) due to additional cache
pressure between the application and the proxies. Therefore,
cross-domain calls could be up to 14× slower before voiding
any performance benefit in dIPC.

Finally, capability loads/stores are present in the prox-
ies and stubs, but are missing from the application code
of the macro-benchmarks, since we do not have a full
compiler backend to automatically manage capabilities
(CHERI demonstrated that this is possible even for the C
language [12]). We thus modeled the worst–case overheads
by measuring the number of cross-domain memory accesses
and assuming that they always require loading an additional
capability from memory. For example, around 2% of the
memory accesses in the 256-thread in-memory configura-
tion of Ideal are across domains. This corresponds to a mod-
eled 12% throughput overhead for the dIPC configuration
(if we account for its average cache hit ratios and latencies),
still leaving a 1.59× speedup over the Linux baseline. Note
that this is a worst-case overhead estimate; capabilities and
pointers are managed independently in CODOMs (there are
separate capability registers and general-purpose registers).
This allows a compiler to use standard register scheduling
techniques to reuse the same capability register for access-

29

ing memory through multiple pointers, thereby minimizing
the number of capability loads and stores in memory.

8. Related Work
The reduction of isolation overheads on existing systems has
been the focus of many studies: directly accessing privileged
hardware and I/O devices [3, 4, 50], using safe languages
or virtual machines to isolate applications [34, 44, 51], or
isolating application and kernel extensions [6, 9, 19, 20, 24,
31, 54, 57, 58, 65]. Instead, dIPC provides fast inter-process
communication while maintaining backwards compatibility,
and can also be used to isolate components inside a process.

The Burroughs systems provided support for calling
functions on protected libraries (i.e., a form of dynamic link-
ing) [49]; nevertheless, its stack architecture presented very
different implementation considerations, it was unable to
isolate errors across cross-domain calls (callers were termi-
nated on a callee error), and mutual isolation required the
system to create new stacks on every call. Multics [53] and
Plessey System 250 [39] also had hardware support to accel-
erate cross-domain communication (e.g., by implementing
processes and RPCs in hardware). All these systems hard-
wired isolation policies into the architecture, making them
either insufficient or too heavyweight, while dIPC lets users
build the most appropriate policy.

CrossOver [41] takes the concept of more efficient cross-
domain control transfers into virtual machines. The architec-
tural design is only concerned with eliminating intermedi-
ate calls to the hypervisor (plus the two guest kernels when
communicating between guest user applications on differ-
ent VMs), and bulk data communication must take place
through shared memory pages. It provides a security model
based on protected tokens that are part of the cross-domain
control transfers arguments, and callees then manually check
the token identifying a caller to decide whether to authorize
the requested operation. It is not clear how this model works
in the face of concurrent cross-domain transfers, since a sin-
gle entry point in a domain must distinguish between being
called into and being returned to.

The authors of Alpha OS [13], Mach [21] and Spin [27]
observed that dissociating threads from processes made it
possible to improve the performance of inter-process control
transfers. Tornado [22] (and K42 [36]) also provided simi-
lar semantics (through protected procedure calls (PPCs)) in
order to maximize the concurrency of request servicing, and
further emphasized the need to minimize the use of shared
state and locking in multi-processor systems during IPC.
Tornado made heavy use of (un)mapping processor-local
memory at PPC boundaries to achieve locality (e.g., for shar-
ing stacks, at the expense of costly TLB shootdowns [62]),
whereas dIPC is less strict on memory allocation and leaves
memory placement to Linux’s allocator (note that NUMA
locality is less important in modern systems [14]). Further-
more, the kernel still had to mediate IPC calls in all these

systems, whereas dIPC eliminates copies and kernel code
entirely from the fast path, and allows programmers to build
efficient isolation policies at user level.

In-place process switching in dIPC is in the spirit of mi-
grating threads [21], as opposed to the asynchronous cross-
core communication offered by FlexSC [56] (for system
calls) and Barrelfish [2] (for IPC). Bulk asynchronous com-
munication improves instruction cache locality by dedicat-
ing cores to specific tasks, at the expense of cross-core data
cache transfers. Instead, dIPC’s synchronous in-place con-
trol transfers efficiently trade off an increased instruction
cache footprint for better data cache locality, as shown by
the results of the end-to-end processing model in IX [4].

Previous systems have proposed using a unified address
space [10, 28, 52, 59], and relied on different mechanisms to
enforce isolation: (1) safe languages, which limit program-
mer choices; (2) separate per-domain page tables, which re-
quire entering into the OS kernel to switch them; or (3) ad-
dress randomization, which makes addresses hard to guess,
but not absolutely protected. A unified address space is nec-
essary to facilitate data sharing across processes, but is not
sufficient to provide the features and performance of dIPC.

9. Conclusions
This paper presents direct IPC (dIPC), an extension to cur-
rent systems that provides safe and efficient inter-process
communication while removing the OS kernel from the
critical path. dIPC-enabled threads perform regular func-
tion calls across processes in a safe manner, eliminating
the overheads of unnecessary synchronization, concurrency,
(de)marshaling and worst-case symmetric isolation of pro-
cesses. dIPC is implemented by repurposing and extending
the CODOMs architecture [61].

Experimental micro-benchmarks show that dIPC is 64.12×
faster than RPCs in Linux. Moreover, a multi-tier OLTP web
server benchmark, where Apache, PHP and MariaDB com-
municate using dIPC, achieves up to 5.12× speedup over
Linux, and 2.13× on average; in all cases, results are above
94% of the ideal system efficiency where all process and
IPC overheads are eliminated.

With the efficiency offered by dIPC, isolation becomes
more affordable, and programmers no longer need to choose
between performance and security or reliability when using
multiple applications and processes.

Acknowledgements
We thank Diego Marrón for helping with MariaDB, the
anonymous reviewers for their feedback and, especially, An-
drew Baumann for helping us improve the paper. This re-
search was partially funded by HiPEAC through a collabora-
tion grant for Lluı́s Vilanova (agreement number 687698 for
the EU’s Horizon2020 research and innovation programme),
the Israel Science Fundation (ISF grant 769/12) and the Is-
raeli Ministry of Science, Technology and Space.

30

References
[1] A. Barth, C. Jackson, and C. Reis. The security architecture

of the Chromium browser. Technical Report with unspecified
number, Stanford, 2008.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: A new OS architecture for scalable multicore
systems. In ACM Symp. on Operating Systems Principles
(SOSP), Oct 2009.

[3] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In Symp. on Operating Systems Design and
Implementation (OSDI), Oct. 2012.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. IX: A protected dataplane operating system
for high throughput and low latency. In Symp. on Operating
Systems Design and Implementation (OSDI), Oct. 2014.

[5] J. Bernabeu-Auban, P. Hutto, and Y. Khalidi. The architecture
of the Ra kernel. Technical Report GIT-ICS-87135, Georgia
Institute of Technology, 1988.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers. Extensibil-
ity safety and performance in the SPIN operating system. In
ACM Symp. on Operating Systems Principles (SOSP), 1995.

[7] J. Bonwick and J. Adams. Magazines and vmem: Extending
the slab allocator to many CPUs and arbitrary resources. In
USENIX Annual Technical Conf., June 2001.

[8] R. H. Campbell, N. Islam, D. Raila, and P. Madany. Design-
ing and implementing Choices: An object-oriented system in
C++. Comm. ACM, Sept. 1993.

[9] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. In ACM Symp. on Operating Systems
Principles (SOSP), 2009.

[10] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and protection in a single address space operating
system. In IEEE Trans. on Computers, May 1994.

[11] D. R. Cheriton, G. R. Whitehead, and E. W. Sznyter. Binary
emulation of UNIX using the V kernel. In USENIX Summer
Conf., June 1990.

[12] D. Chisnall, C. Rothwell, R. N. Watson, J. Woodruff,
M. Vadera, S. W. Moore, M. Roe, B. Davis, and P. G. Neu-
mann. Beyond the PDP-11: Architectural support for a
memory-safe C abstract machine. In Intl. Conf. on Arch. Sup-
port for Programming Languages & Operating Systems (AS-
PLOS), Mar 2015.

[13] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An architec-
tural overview of the Alpha real-time distributed kernel. In
USENIX Workshop on Micro-kernels and Other Kernel Archi-
tectures, Apr 1992.

[14] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quéma, and M. Roth. Traffic management: A
holistic approach to memory placement on NUMA systems.
In Intl. Conf. on Arch. Support for Programming Languages
& Operating Systems (ASPLOS), Mar 2013.

[15] Dell. Dell DVD store database test suite. http://linux.

dell.com/dvdstore.

[16] J. B. Dennis and E. C. V. Horn. Programming semantics for
multiprogrammed computations. Comm. ACM, Mar 1966.

[17] U. Drepper. ELF Handling For Thread-Local Storage. Red
Hat Inc., Feb 2003.

[18] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel, an
operating system architecture for application-level resource
management. In ACM Symp. on Operating Systems Principles
(SOSP), 1995.

[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces.
In Symp. on Operating Systems Design and Implementation
(OSDI), 2006.

[20] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing
on the x86. In USENIX Annual Technical Conf., 2008.

[21] B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrating
thread model. In USENIX Annual Technical Conf., 1994.

[22] B. Gamsa, O. Krieger, and M. Stumm. Optimizing IPC per-
formance for shared-memory multiprocessors. In Intl. Conf.
on Parallel Processing (ICPP), Aug 1994.

[23] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an
application program. In USENIX Summer Conf., June 1990.

[24] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi-
cation. Addison-Wesley, 1996.

[25] C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang, and
G. Heiser. Itanium — a system implementor’s tale. In
USENIX Annual Technical Conf., Apr 2005.

[26] M. Guillemont. The Chorus distributed operating system:
design and implementation. In ACM Intl. Symp. on Local
Computer Networks, 1982.

[27] G. Hamilton and P. Kougiouris. The Spring nucleus: A micro-
kernel for objects. In USENIX Summer Conf., Jun 1993.

[28] G. Heiser, K. Elphinstone, S. Russell, and J. Vochteloo.
Mungi: A distributed single-address-space operating system.
In Australasian Computer Science Conf. (ACSC), Jan 1994.

[29] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-
baum. MINIX 3: A highly reliable, self-repairing operating
system. In Operating Systems Review, Jul 2006.

[30] W. Huang, J. Liu, M. Koop, B. Abali, and D. Panda. Nomad:
Migrating OS-bypass networks in virtual machines. In Intl.
Conf. on Virtual execution environment (VEE), June 2007.

[31] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
software stack. Operating Systems Review, Apr. 2007.

[32] Power ISA TM. IBM, version 2.06 revision B edition, Jul 2010.

[33] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems. In ACM Symp. on Operating Systems
Principles (SOSP), 1997.

[34] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti,
and V. Zolotarov. OSv — optimizing the operating system
for virtual machines. In USENIX Annual Technical Conf., Jun
2014.

http://linux.dell.com/dvdstore
http://linux.dell.com/dvdstore

31

[35] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural
support for single address space operating systems. In Intl.
Conf. on Arch. Support for Programming Languages & Oper-
ating Systems (ASPLOS), 1992.

[36] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building a
complete operating system. In EuroSys, Apr 2006.

[37] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Intl. Symp. on
Code Generation and Optimization (CGO), Mar. 2004.

[38] J. R. Levine. Linkers and Loaders. Morgan Kaufmann, 1999.

[39] H. M. Levy. Capability-Based Computer Systems. Digital
Press, 1984.

[40] C. Li, C. Ding, and K. Shen. Quantifying the cost of context
switch. In ACM Workshop on Experimental Computer Science
(ExpCS), Jun 2007.

[41] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan. Reducing
world switches in virtualized environment with flexible cross-
world calls. In Intl. Symp. on Computer Architecture (ISCA),
June 2015.

[42] J. Liedtke. A persistent system in real use — experiences of
the first 13 years. In Intl. Workshop on Object Orientation in
Operating Systems (IWOOOS), 1993.

[43] J. Liedtke. On microkernel construction. In ACM Symp. on
Operating Systems Principles (SOSP), 1995.

[44] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Intl. Conf.
on Arch. Support for Programming Languages & Operating
Systems (ASPLOS), Apr 2013.

[45] T. Maeda. Kernel mode linux. Linux Journal, May 2003.

[46] A. Massalin. Synthesis: An Efficient Implementation of Fun-
damental Operating System Services. PhD thesis, Columbia
University, 1992.

[47] S. J. Mullender. The Amoeba distributed operating system:
Selected papers, 1984-1987. Technical report, Centrum voor
Wiskunde en Informatica, 1987.

[48] Open Market. FastCGI. http://www.fastcgi.com.

[49] E. I. Organick. The B5700 / B6700 series. Computer System
Organization, 1973.

[50] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. In Symp. on Operating Systems
Design and Implementation (OSDI), Oct 2014.

[51] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. Hunt. Rethinking the library OS from the top down. In
Intl. Conf. on Arch. Support for Programming Languages &
Operating Systems (ASPLOS), Mar 2011.

[52] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch,
P. McJones, H. Murray, and S. Purcell. Pilot: An operating
system for a personal computer. In Comm. ACM, Feb 1980.

[53] J. H. Saltzer. Protection and the control of information sharing
in Multics. In Comm. ACM, July 1974.

[54] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software fault
isolation to contemporary CPU architectures. In USENIX Se-
curity, Aug 2010.

[55] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In Mass Storage Systems and
Technologies, MSST, May 2010.

[56] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In Symp. on
Operating Systems Design and Implementation (OSDI), Oct
2010.

[57] R. Strackx and F. Piessens. Fides: Selectively hardening soft-
ware application components against kernel-level or process-
level malware. In ACM Conf. on Computer & Communica-
tions Security (CCS), Oct 2012.

[58] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. In ACM Symp. on
Operating Systems Principles (SOSP), 2003.

[59] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann. A
structural view of the Cedar programming environment. In
ACM Trans. on Programming Languages and Systems, Oct
1986.

[60] D. Tsafrir. The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops). In ACM
Workshop on Experimental Computer Science (ExpCS), Jun
2007.

[61] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. CODOMs: Protecting software with code-centric
memory domains. In Intl. Symp. on Computer Architecture
(ISCA), June 2014.

[62] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion,
A. Ramirez, A. Mendelson, N. Navarro, A. Cristal, and O. S.
Unsal. DiDi: Mitigating the performance impact of TLB
shootdowns using a shared TLB directory. In Intl. Conf. on
Parallel Arch. and Compilation Techniques (PACT), Oct 2011.

[63] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Intl. Conf. on Arch. Support for Programming
Languages & Operating Systems (ASPLOS), Oct 2002.

[64] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton,
and M. Roe. The CHERI capability model: Revisiting RISC
in an age of risk. In Intl. Symp. on Computer Architecture
(ISCA), June 2014.

[65] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code. Comm. ACM,
Jan 2010.

[66] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In Hot
topics in cloud computing (HotCloud), June 2010.

[67] E. Zhai, G. D. Cummings, and Y. Dong. Live migration
with pass-through device for Linux VM. In Ottawa Linux
Symposium, July 2008.

http://www.fastcgi.com

