
Slashing the Disaggregation Tax
in Heterogeneous Data Centers with FractOS

Lluís Vilanova 1 Lina Maudlej 2 Shai Bergman 2 Till Miemietz 3 Matthias Hille 4

Nils Asmussen 3 Michael Roitzsch 3 Hermann Härtig 4 Mark Silberstein 2
1 Imperial College London 2 Technion - Israel Institute of Technology 3 Barkhausen Institut 4 TU Dresden

Abstract
Disaggregated heterogeneous data centers promise higher
efficiency, lower total costs of ownership, and more flexi-
bility for data-center operators. However, current software
stacks can levy a high tax on application performance. Ap-
plications and OSes are designed for systems where local
PCIe-connected devices are centrally managed by CPUs, but
this centralization introduces unnecessary messages through
the shared data-center network in a disaggregated system.
We present FractOS, a distributed OS that is designed to

minimize the network overheads of disaggregation in het-
erogeneous data centers. FractOS elevates devices to be first-
class citizens, enabling direct peer-to-peer data transfers and
task invocations among them, without centralized applica-
tion and OS control. FractOS achieves this through: (1) new
abstractions to express distributed applications across ser-
vices and disaggregated devices, (2) new mechanisms that
enable devices to securely interact with each other and other
data-center services, (3) a distributed and isolated OS layer
that implements these abstractions and mechanisms, and
can run on host CPUs and SmartNICs.

Our prototype shows that FractOS accelerates real-world
heterogeneous applications by 47%, while reducing their
network traffic by 3×.

CCS Concepts: • Information systems → Data centers;
• Security and privacy→ Operating systems security; Dis-
tributed systems security; • Software and its engineering
→ Operating systems.

Keywords: distributed systems, operating systems, data cen-
ter, resource disaggregation, capabilities
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1 Introduction
In pursuit of higher efficiency and lower total cost of owner-
ship (TCO), disaggregated heterogeneous data centers deploy
various device types, such as CPUs, accelerators, storage
and memory, into separate nodes interconnected over the
network. Disaggregation thereby facilitates specialization to-
gether with maintenance, allocation and sharing of hardware
resources [3, 10, 12, 16, 20, 23, 26, 29, 37, 40, 43, 49].

Unfortunately, applications today pay a high performance
tax because the combination of heterogeneity and disag-
gregation introduces redundant communication over the
data-center network. Frequent data and control transfers
across multiple compute and storage devices are inherent
to heterogeneous workloads. However, whereas in a tradi-
tional server architecture such transfers are performed over
a fast dedicated local PCIe bus, in a disaggregated environ-
ment they are instead performed over a shared network with
higher latency and increased performance variability (e.g.,
1𝜇s for PCIe [11] vs. average 24𝜇s and P99 of 40𝜇s for RoCE
RDMA in Microsoft Azure [17]). While reducing inter-device
communication overheads has been important even in het-
erogeneous servers [53], in disaggregated systems it becomes
key to attaining application performance goals.
Over the years, several system architectures have been

developed to support resource disaggregation, but they are
largely oblivious to the changing tradeoffs associated with
the transition of the device interconnect from a local PCIe
bus to a shared network. We summarize them in Figure 1.
One prevalent approach (top-left) is to treat remote de-

vices as local ones, forwarding device commands over the
network. Thus, CPU servers run unmodified applications,
while runtimes, drivers, or hardware expose remote devices
via familiar local interfaces. Such a centralized design hides
the distributed nature of disaggregation, preventing the op-
timizations that eliminate the overheads of remote device
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Figure 1. Application and OS designs in the data center.

access, analogous to the known overheads of transparent
distributed shared memory systems [38].

Another approach (bottom-left) is to provide a high-level
RPC interface that co-locates devices with their drivers and
scheduling logic (e.g., monitors in LegoOS [49]). This ap-
proach reduces the management overheads of remote de-
vices, but keeps centralized application control. For example,
in a processing pipeline where data goes first through a
GPU and then an FPGA, the GPU cannot directly invoke
the FPGA task without first returning control and data to
the application server. This is because neither the OS nor
the applications have mechanisms to express and optimize
cross-device interactions — as a consequence, the GPU node
cannot operate the FPGA directly, as it lacks the mechanisms
to allocate FPGA memory or invoke its computations.

More fundamentally, both approaches suffer from a struc-
tural problem: while the system architecture became dis-
tributed, the applications remain centralized, and must medi-
ate the interactions between disaggregated devices.

On the other hand, frameworks such as Apache Beam [13]
(top-right) are used to develop distributed systems, but are
not suitable for running heterogeneous multi-device appli-
cations. They work only across CPUs because other devices
do not support the complex high-level interfaces of such
frameworks. One can physically co-locate CPUs with each
disaggregated device to execute such application logic, but
that would defeat the purpose of resource disaggregation.

What we need is an infrastructure to enable decentralized
execution of the application logic over disaggregated hetero-
geneous resources, which must allow direct, peer-to-peer data
and control transfers among devices and services, thereby
minimizing the networking costs of disaggregation.
In this paper, we realize this vision with FractOS, a dis-

tributed OS for disaggregated heterogeneous data centers.
FractOS treats all compute and storage devices as first-class
citizens like traditional CPUs, allowing them to interact di-
rectly among themselves, thus enabling fully decentralized
application execution with minimal networking overheads.
At a high level, FractOS resembles distributed object sys-

tems such as CORBA [42] or Java RMI [41]. A data center
is comprised of services accessed via RPCs. However, in ad-
dition to regular services on CPUs, data-center devices are
also exposed as services via their device-specific RPC inter-
faces (e.g., kernel invocation for GPUs). RPC arguments may

include globally-accessible references to memory buffers or
RPCs to other services, enabling location-independent data
accesses and service invocations. For example, an application
can program a GPU to directly write to disk: it calls a GPU
kernel invocation RPC with a reference to the write() stor-
age RPC, preset with a reference to a GPU memory buffer
as a data source. Thus, an application can create a graph of
data transfers and service invocations, and FractOS executes
it in a decentralized manner on devices and CPUs.
Building such a system poses two key challenges. First,

each device should be able to use FractOS APIs, know which
task to invoke next without centralized application control,
and handle exceptions during the execution. Running such a
logic on each device might not be possible due to hardware
constraints, such as the lack of privilege separation on GPUs,
or the inability to deploy user code on SSDs.
Second, allowing peer-to-peer interactions between de-

vices without the mediation of a trusted OS is insecure. For
example, references to a shared storage should not be used
for unauthorized data accesses. Running a security layer
on each device is not viable due to the limitations above,
whereas using a central security controller would not scale.

FractOS offers systematic solutions to these challenges.
Isolated OS layer. In FractOS, Controllers build a distributed
OS layer by implementing all trusted mechanisms for RPC,
address translation, and message routing. Controllers run on
CPUs or SmartNICs, possibly on top of their local OSes, and
are isolated from services and applications via a message-
passing interface. Each service and memory object is reg-
istered with a single Controller, either local or remote. An
application requests access to FractOS objects via a resource
management service. Each device is associated with an adap-
tor which implements the device’s RPCs. The adaptor man-
ages externally-accessible buffers in device memory and
transforms RPCs into device operations. For example, the
GPU adaptor invokes kernels, akin to a “monitor” in Le-
goOS [49] and an “ASM“ in M3X [4]. Adaptors are generic
and lightweight, hence they are executed on (potentially
wimpy) CPUs that run OS device drivers and are co-located
with the devices, or, in the future, on a device itself. Adaptors
are untrusted by FractOS, as any other software services in
the system. This micro-kernel design makes FractOS compat-
ible with existing devices that cannot run adaptors, provides
strong isolation of the trusted FractOS Controllers, and al-
lows offloading Controllers into SmartNICs (Section 6).
Continuation-based RPCs. To allow decentralized execu-
tion, we use a continuation-based protocol that enables adap-
tors to execute control flow defined by applications without
themselves running application code. Each RPC call includes
one ormore references to other RPCs. Each reference is, effec-
tively, a continuation object that we call Request. A Request
encapsulates the parameters needed for the verbatim invoca-
tion of the RPC it refers to via a generic request_invoke()
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Figure 2. Cloud inference application using disaggregated
devices. A centralized design (red thick lines) has 2.5× and
1.6× more data transfers and overall network messages re-
spectively, than the distributed design (green, thin lines).
function. Thus, adaptors do not need to know how to invoke
the next RPC, only which Request to invoke, as defined by
their own RPC interfaces. Such an approach enables a variety
of distributed execution patterns, from synchronous RPCs
to complex data-flow models [52].
Distributed capabilities. FractOS protects memory and re-
quest references by using capabilities [31], which are tightly
integrated with the RPC mechanism and largely transpar-
ent to application developers. An RPC caller delegates the
authority to its callee to access the references in the RPC
arguments, and can later revoke that authority. For exam-
ple, if an RPC argument is a memory reference to store the
output, the access to that memory should be revoked af-
ter use. We design a scalable and fault-tolerant protocol for
capability delegation and revocation, which in contrast to
previous works [18, 25, 50], combines efficient delegation
with immediate selective revocation in a distributed setting.

We implement a complete FractOS prototype and use it to
build fully functional services for disaggregated GPUs and
NVMe SSDs, as well as a multi-layer file-system service. We
also implement a realistic heterogeneous face-verification
application that uses all these services.
We comprehensively evaluate FractOS on a multi-node

cluster in a variety of configurations, with FractOS Con-
trollers running on both CPUs andMellanox BlueField Smart-
NICs. FractOS enables 47% faster end-to-end application ex-
ecution while reducing network traffic by 3× compared to
existing disaggregation designs.

2 Motivation
In this section we highlight the structural issues of current
disaggregation solutions, and motivate our FractOS design.

2.1 Motivating scenario
Figure 2 shows an inference service used in production
clouds [19]. For each client request, the service reads its
input from storage, processes it on a GPU-based inference
engine, and writes the output to a file on a file server. We
consider a disaggregated architecture with remote SSDs and
GPUs. Note that the FS service also uses remote SSDs.

The figure shows both the centralized application model
that we find today (steps 1 - 8 in red), and the fully dis-
tributed model we seek to achieve with FractOS (steps a - e
in green). In the former, the application (app CPU) performs
all the control and data transfers, acting as the center of a
star-shaped topology. In the latter, the application defines
how each device must be used in turn, but devices invoke
the application tasks on each other directly, forming a ring
topology that is optimal for this application: it has 2.5× fewer
data transfers (thick green lines vs. red lines), and requires
1.6× fewer network messages overall.
Analysis. The message-complexity savings of a distributed
model with peer-to-peer communications over a centralized
model are apparent. For an application with 𝑁 services, the
distributed model reduces the number of steady-state net-
workmessages by up to 2× (from 2𝑁 to𝑁 +1), while avoiding
potential communication bottlenecks at the central node.

However, in a system where services themselves are built
on top of other remote services (e.g., the FS service in the
example uses remote SSDs), the total message complexity
improvements are much higher. In general, we can represent
a system that uses a centralized model as a tree of services
with the main application as its root, where the edges are
inter-service interactions. The highest reduction in the num-
ber of messages is achieved if the services represented by
the leaves perform the application tasks, whereas the in-
termediate nodes are used for control operations and can
be bypassed in steady-state. In this case the total message-
complexity reduction of the distributed model is as high as
2 × 𝑁

𝐿
where 𝑁 is the total number of nodes in the tree, and

𝐿 is the number of leaves. However, this upper bound on the
message-complexity reduction cannot be achieved if only
the application is distributed, but the services themselves are
not. In addition, to realize this potential, the system should
allow optimizations to cut through service boundaries: note
the direct interaction between ML GPU, the output SSD and
the application in the example.

2.2 System requirements

Interface encapsulation for cross-service invocations. In
the centralized model, devices are managed by OS drivers
running on the CPU. The application thus accesses devices
via convenient interfaces, whereas each device does not need
to know how to access other devices. In the decentralized
architecture, this is no longer true. In Figure 2, b involves
direct data and control transfer from the SSD to the GPU,
implying that the SSD must run a GPU driver. Similarly,
the GPU must be able to use the FS server and the SSD ( c
and d ), and the SSD should invoke a CPU service ( e ).
Direct data transfers between devices such as GPUDirect-
RDMA [39] are supported only in a single server, and must
be invoked by a co-located CPU. Direct device control is
sometimes possible, e.g., GPU controlling the NIC [9], but
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would require porting all device drivers to all devices – an
impractical proposition. Similarly, a device cannot invoke
high-level services, e.g., a file system, without running the
appropriate software [54].
Takeaway: we need a unified and lightweight mechanism

to enable device and service invocation without knowing their
low-level management protocols. It may run on the device itself,
or on a wimpy co-located CPU that executes the device driver.
Application-agnostic decentralized flow.Our targetmodel
implies decentralized execution: an application invokes the
SSD service ( a ), which invokes the GPU task ( b ), which
invokes the FS service ( c ), which passes the control back to
the application ( e ). However, deploying application tasks
on devices or services is not a viable option: some devices
may not allow executing user code (e.g., SSDs), and co-
locating devices with CPUs to run application tasks goes
against disaggregation. Fortunately, we can enable decen-
tralized execution with a much simpler mechanism to steer
control and data flow. For example, the SSD can invoke the
GPU kernel after completing the read operation (i.e., reading
data into the GPU memory). Similarly, the GPU can invoke
the file system service after the kernel terminates success-
fully. If the invocation resulted in an application error, a
GPU can invoke a different service. Thus, provided that each
device knows which task to invoke next (as defined by the
device’s interface), we can execute applications in a fully
decentralized manner.
Takeaway: we need a mechanism to specify a task graph

across services and devices, and a distributed mechanism to al-
low decentralized execution of this graph over the participating
devices, without deploying application code on them.
Composability of services and applications. Decentral-
ized execution of applications is insufficient, since services
can themselves use multiple other services and devices. Take
the FS service in our example. The filesys CPU task is in-
volved in all data transfers between the clients and the output
SSD ( 6 and 7 ). In a model where the execution is fully
decentralized across all services, we would transfer the data
from the client (GPU) into the output SSD ( d ), and respond
directly to the application CPU ( e ). More fundamentally,
the decentralized model should effectively merge, or com-
pose, the task graphs of the FS service and the application,
thereby enabling direct interaction between the application
tasks (ML GPU and app CPU) and the internal FS tasks. Note
that composition relies on the interface encapsulation dis-
cussed above: the output SSD from the FS service directly
invokes an application task on the CPU, but since the details
of that task are unknown when designing the FS service, the
invocation task interface must be unified.
Takeaway: we need an execution mechanism to transpar-

ently compose application and service task graphs without
breaking service encapsulation.

Figure 3. Architecture of FractOS on a system with a CPU
(left) and a SSD node (right), and the logic representation of
the corresponding capability-authorized objects (bottom).

Decentralized protection and security. Devices and ser-
vices are shared among different tenants in the data center,
so access to them must be protected to maintain user iso-
lation. For example, the SSD must be temporarily granted
access to a GPU memory buffer in b , which is only accessi-
ble to the main application. The access to the GPU memory
buffer should be revoked right after the SSD operation is com-
plete to enable its reuse by another client. The OS handles
this authorization in the centralized model, but providing
it in the decentralized model without using a single global
authority is challenging. The problem is further complicated
with service composability: for the ML GPU to write to the
output SSD ( d ), the FSmust grant the GPU access to specific
SSD blocks. This implies that the FS serves as an additional
authority limited to the disks it controls.

Takeaway: we need a decentralized mechanism to dynami-
cally grant and revoke authority to access services and devices.

3 Design
3.1 Overview

Programming abstractions. FractOS provides two simple
abstractions, Memory and Request objects, that encapsulate
the details necessary to perform data transfers and send con-
trol messages between devices, respectively. Furthermore,
Requests can be combined into task graphs to allow dynam-
ically composing functionality that will execute in a dis-
tributed fashion across services and devices.
Deployment and operation. FractOS Controllers are deployed
by the operator and run on either CPUs or SmartNICs as
user-level Linux processes. Each Controller is part of the
FractOS trusted computing base (TCB).
FractOS Processes (both user applications and adaptors)

are also user-level Linux processes. They run on host CPUs,
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and access the co-located devices via existing drivers and
runtimes. FractOS does not distinguish between adaptors
that expose hardware devices and regular CPU services. Both
services and user applications are FractOS Processes. Each
Process is connected to a single Controller via request/re-
sponse queues, locally or via the network (Figure 3, top half).
A Process can invoke FractOS operations, i.e., Request in-
vocations and Memory object accesses, using FractOS APIs.
These operations are then forwarded by the Controller to
their respective destinations.
To illustrate, Figure 3 zooms into one aspect of the infer-

ence example from Figure 2, showing two FractOS Processes:
a CPU application (top-left) and a SSD adaptor (top-right).
The application has a req_SSDrd Request, which references
mem_GPU as the GPU buffer (shown at the receiver on the
top-right), and a req_GPU Request to invoke the GPU. When
request_invoke(req_SSDrd) is called, its arguments are
sent to the SSD adaptor, which performs the requested read
operation from the SSD, and then copies the read data to
mem_GPU and invokes req_GPU, without being aware that
they refer to a GPU. Only the Process setting up the argu-
ments for req_GPU needs to know the GPU interface, but the
SSD adaptor invokes it verbatim.
Protection and isolation. FractOS has only a handful of
system calls for manipulating Memory and Request objects
(Table 1). Processes are isolated from each other and from
FractOS Controllers, and are constrained to their own set of
capabilities, each referencing Requests or Memory (bottom of
Figure 3). The underlying mechanism for capabilities is simi-
lar to file descriptors in POSIX – the references behind the
capabilities are protected by FractOS, and Processes access
them via indices in their capability space (cid in Table 1).

3.2 Target system model
Trust model. FractOS has a layered security model, sim-

ilar to other micro-kernel OSes; its TCB consists of a (pre-
deployed) set of trusted Controller instances, a trusted ser-
vice that FractOS Controllers use for bootstrapping and dis-
covery, and the hardware where all these components run.
We assume a single data center where FractOS Controllers
are pre-deployed. Services and device adaptors are deployed
by either the data center operator or its tenants, and run as
FractOS Processes that are untrusted by FractOS itself but
trusted by other Processes, similar to a multiserver micro-
kernel architecture. For example, operator services such as
resource management rely on FractOS to run, and are trusted
by both tenants and device adaptors. Similarly, tenants trust
the device adaptors and other tenant services that they use.

Capabilities authorize access to other Processes, but do not
imply symmetric trust. For example, an operator’s resource-
management service might hold capabilities to access all
resources in the system. However, if a malicious or buggy
device adaptor is managed by that service, such an adaptor

will not have the ability to compromise the management
service or the resources it controls. Similarly, a tenant appli-
cation will only be able to interact with resources it has been
granted capabilities for. Naturally, the fact that one tenant
uses a third-party service or device adaptor implies that this
tenant trusts such third parties to fulfill their job.

We note that FractOS does not dictate a concrete security
policy, but rather provides the basicmechanism to implement
one with the help of capabilities.
Data-center architecture requirements.Wedesigned Frac-
tOS to minimal requirements on the data center architecture,
while envisioning a future where devices, services, and ap-
plications are tightly integrated with FractOS (see Section 7).

We run FractOSControllers on SmartNICs. The Controllers
are regular Linux processes that are developed and deployed
using existing tools such as Kubernetes, and have access
to all the necessary drivers and runtimes. Controllers ex-
pose a network-based request/response protocol to FractOS
Processes. As a result, Controllers are fully decoupled and
isolated from the Processes they manage, and can be trans-
parently deployed on SmartNICs or traditional host CPUs
(either local or remote to the Processes they manage).

As a result of this decoupling, services and device adaptor
Processes are essentially indistinguishable to FractOS, and
follow a model very similar to that of micro-services.

3.3 Memory and Request Objects
Memory and Request objects reside in a virtually global Frac-
tOS namespace that is effectively distributed across the many
Controllers. We use the term capability to denote FractOS
references to such objects, which are protected by the trusted
FractOS Controllers and encapsulate the address of the target
objects (similar to POSIX file descriptors).

Memory objects enable access to memory buffers any-
where in the system. A buffer is registered by a Process that
owns the physical memory via memory_create(). The data
can be copied between Memory objects via memory_copy(),
regardless of the location of the buffers (i.e., third-party trans-
fers). One can create “views” into a portion of a Memory
object or reduce permissions using memory_diminish(); for
example, the GPU in Figure 2 can send a read-only Memory
capability to its memory to the write() storage RPC.

Request objects effectively represent service RPC end-
points. To allow access to a service, the Process that imple-
ments it (the provider Process) first creates a Request that
represents the RPC to that service. The clients that obtain a
reference to this Request are effectively granted the author-
ity to invoke that RPC on the provider Process. In addition,
a Request may hold arbitrary arguments, i.e., immediate
values and capabilities. This allows the service provider to
embed the specific details of the RPC invocation in the Re-
quest itself, thus enabling verbatim invocation of the service
via request_invoke(). As a result, a caller does not need
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FractOS primitive Brief description

cid cap_create_revtree(cid) Create a new revocation subtree for the given capability.
cap_revoke(cid) Revoke capability.

cid memory_create(addr, size, perms) Create a Memory capability to given local memory.
cid memory_diminish(cid, offset, size, drop_perms) Diminish extents and/or permissions of a Memory capability.
memory_copy(cid1, cid2) Copy all bytes from Memory cid1 into cid2.

cid request_create([cid], [(offset, size, addr), ...] Create a new Request or extend an existing Request (cid),
[(cid_src, cid_dst), ...]) with additional immediate and capability arguments.

request_invoke(cid) Invoke the given Request.
request_receive{imms_size, imms[], caps_size, caps[]} Descriptor for a received Request.

Table 1. Main syscalls in FractOS. All syscalls are fully asynchronous and posted into a message-passing channel, which later
returns their result when polling the channel (not shown for brevity.)

to know the service invocation protocol. This is essential
to enable third-party invocations of services as we discuss
in section 3.4. The service provider uses request_receive()
call to listen to Requests to its services.

Requests are created using request_create(). There are
two types of Requests: (1) a new Request that is initialized
to point to the calling Process as the service provider, or
(2) a Request derived from an existing Request that points
to the same service provider. A newly created Request is
initialized with new arguments. A derived Request inherits
the arguments from the original Request, but also allows
refining it by adding new arguments. This feature is used for
request composition as we discuss next.

3.4 Request Composition
Requests serve as the basis for composing application tasks
and delegating authority; the example in Figure 3 shows how
the SSD receives the req_GPU capability, which grants the
SSD the authority to invoke a GPU kernel.

We now describe the three key properties of Requests.
Security. In Figure 3, the Request contains a block number
to read from; this block number should not be modifiable
by any Process that holds the Request after creation. For
that reason, the Request arguments that have already been
initialized cannot be changed, but Processes can refine Re-
quests by adding new arguments. For example, imagine that
the SSD grants a base Request req_SSDrd_base to the ap-
plication that allows reading a single block passed in its
immediate argument (0xcafe). The application has access
to that block alone. But it can refine req_SSDrd_base by
deriving a new Request req_SSDrd, in which it can set a
reference to the output buffer mem_GPU and the continuation
argument req_GPU. We use this mechanism to implement
the storage stack (Section 5).
Distributed execution. Requests form a generic mechanism
for distributed execution that can express a variety of dis-
tributed executionmodels, such as RPCs, distributed pipelines,
or distributed fork/join and data-flow patterns [52]. Consider
a service RPC𝐴 that expects a reference to a Request 𝐵 as its

argument. 𝐴 invokes 𝐵 after completion, i.e., 𝐵 is a contin-
uation of 𝐴. We can use this primitive to implement a syn-
chronous RPC for𝐴 as follows. A client Process that invokes
𝐴 can initialize 𝐵 to contain a separate Request 𝐴′ imple-
mented by 𝐴 itself (i.e., we are expressing 𝐴 → 𝐵 → 𝐴′).
Thus, 𝐵 is used to notify 𝐴 of 𝐵’s completion via 𝐴′. The
same mechanism can be used to implement a pipeline of
services, which return the results back to the client, as in the
example in Figure 2. Here, the application obtains Memory
and Request objects for the SSD, GPU and file system, and
connects them by initializing the respective Requests to form
the graph shown by the green lines in Figure 2.
Whereas the application must be familiar with the inter-

face used by each of the services (and set Request arguments
accordingly), the services do not know about each other
and simply invoke the received Requests as defined by their
own interfaces. As a result, the execution progresses in a
decentralized fashion across devices as set by the applica-
tion via the Requests and their arguments. This is, in fact,
a distributed form of the continuation-passing style (CPS)
model [8] that is adapted to the data center.
Dynamic Composition. The file system in Figure 2 presents
one interesting case where composition happens dynami-
cally. The output SSD is not accessible to the application,
which only has capabilities to the input SSD, GPU, and FS
Processes. Therefore, the application can only set up a Re-
quest graph that expresses a pipeline across the services it
uses: a → b → c → e . On the other hand, we want both
the application and the FS to be co-optimized by allowing the
application to access the output storage device, thus cutting
through the FS-service module boundaries. This should work
even if the FS service is developed by a third party and is
arbitrarily complex.

To achieve this, we leverage the fact that all Requests can
be refined with new arguments. The FS Process will take
the received input Memory buffer and continuation Request,
and refine its own output SSD Request to incorporate these
arguments when invoking SSD in d . The result is that the
output SSD, hidden from the application, reads its input data
from the GPU and invokes continuations in the application
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Process. This is a pattern that can be applied recursively
across Processes, giving FractOS a general mechanism for
dynamically composing services without breaking their encap-
sulation and isolation.

3.5 Capability Model
FractOS transparently integrates capabilities in all its opera-
tions, using them mostly under the hood without developer
involvement. Capabilities are created via memory_create(),
request_create(), derived via memory_diminish(), re-
quest_create() (with an existing Request), delegated dur-
ing request_invoke(), and revoked via cap_revoke(). Sim-
ilar functionality is found in existing capability OSs [1, 5, 6,
18, 25, 27, 50].

Each capability in a Process points to a single FractOS
object, i.e., a Request and Memory object. Delegation simply
creates a new capability in a delegatee Process that points
to the same object as the delegated capability. The delegatee
Process may be managed by a different FractOS Controller,
leading to a distributed capability system. Internally, a ca-
pability holds the address of the Controller it is registered
with, and the respective object ID. Creation adds a new ob-
ject in the system, whereas derivation creates a new object
from an existing one; a derived Memory object contains the
same or lesser permissions / smaller address range, whereas
a derived Request object contains the same or additional
arguments as its source. Both creation and derivation create
a new capability for the new object.
Besides the ability to create and derive capabilities, a se-

lective and immediate revocation is critical. Imagine that our
input SSD in Figure 2 delegated Requests, each granting ac-
cess to different SSD blocks. If at some point a user wants
to free one of their blocks, the SSD Process must selectively
revoke all capabilities granting access to the freed block, and
must do so as fast as possible so that the block can be reused.
Failing to do so would violate protection (i.e., use-after-free
attack) or cause resource leakage in the system. Therefore,
revocation must invalidate all the capabilities that point to
the revoked object.
Optimized Delegation and Revocation. Whereas main-
taining capability trees is effective in existing capability OSs,
it is not feasible in a distributed system like FractOS, as
it would require tracking every delegation using a fault-
tolerant protocol, or performing a system-wide sweep of
all capabilities on every revocation (similar to distributed
garbage collection). Instead, FractOS introduces a distributed
capability management protocol that is specifically designed
for disaggregated data centers in order to eliminate capability-
related network overheads in the critical path.

Our approach is based on the observation that the objects
referenced by capabilities can only be used by contacting
the owner of the object – the Controller with which it is reg-
istered. Therefore, capabilities to that object can be revoked

immediately and globally by invalidating that object at the
owner. This in turn obviates the need to perform expensive
tracking of delegations [18]. Thus, we split the revocation in
two steps: the object invalidation at its owner, and a cleanup
step to remove capabilities that reference invalidated objects.
Since delegations are not tracked, capabilities cannot be

organized as a tree like in other capability systems. Without
further measures, however, this implies that revoking any
capability would also revoke all other capabilities that refer-
ence the same object. To overcome this limitation, we added
the ability to create a separately invalidatable object from an
existing object, and organize these objects as a tree, similar
to indirection objects [50]. The call cap_create_revtree()
in FractOS creates a revocation tree: it derives a new (child)
capability from an existing (parent) one, while creating a
new object that is recorded as child of the parent capability’s
object. This "child" capability can be delegated to other Pro-
cesses and later revoked independently from the capabilities
referencing the "parent" object. These objects are organized
as a tree, and revoking any capability invalidates the object it
references as well as all its children objects, recursively. This
solution allows us to avoid delegation tracking, and we found
it to be acceptable because typically only resource owners im-
plementing a service create new entries on a revocation tree.
Thus, we replace the standard capability delegation trees
with a much smaller hierarchy of individually-revocable
objects; essentially an adaptation of Redell’s caretaker pat-
tern [31]. Note also that this design causes implicit revocation
of objects whose owner Controller fails, because they cannot
be accessed without that Controller being alive anyway. The
implicit revocation can be used as a failure detection mecha-
nism for a redundancy service built on top of the FractOS
primitives (see Section 3.6).
Creating or revoking capabilities requires a single mes-

sage to the owning Controller. To make revocation effective
immediately, the Controller invalidates the selected object.
At this point, the underlying resources held by the owning
Process can be freed (if any). Only the small revoked objects
remain in the Controller (a few bytes each), which are even-
tually cleaned up after ensuring no other Controllers have
capabilities referencing it. This cleanup step happens outside
the critical path and is neither security nor performance crit-
ical. It can be performed using existing distributed garbage
collection algorithms [7, 15, 28, 51], which ensure that no
capabilities remain at any Controller or in-flight.

3.6 Resource Management and Fault Tolerance
FractOS concerns itself with fault tolerance insofar a Process
needs a mechanism to either: detect when a resource it is
serving through one or more capabilities is no longer needed
(e.g., a GPU service must free some physical resources after
one of its clients fails); or to detect when a resource it is using
is no longer available (e.g., a GPU service client must abort
or request new GPU resources after a GPU it uses fails).



EuroSys ’22, April 5–8, 2022, RENNES, France Lluis Vilanova et al.

Since interactions are possible only through capabilities,
FractOS provides two new capability monitoring primitives
that serve to implement fault tolerance and resource manage-
ment, by detecting when specific capabilities become invalid
- either by explicit revocation or because of a failure. These
operations piggyback on the existing capability-revocation
machinery, minimizing their complexity.
Capability monitor operations. The monitor operations
register a “callback” on a capability using monitor_delegate
or monitor_receive (not shown in Table 1). This callback
is a user-specified value that the Controller sends back to the
user when that capability has no additional derived capabili-
ties or when its parent capability is invalidated, respectively.

monitor_delegate(cid, callback_id) tells FractOS to
monitor the destruction of all new immediate children of cid,
and to send message monitor_delegate_cb{callback_id}
back to the requesting Process when these children are in-
validated1. Internally, FractOS makes cid revocable, marks
it with the “monitor_delegator” flag, and creates a counter
for its immediate children. Every time a “monitor_delegator”
capability such as cid is delegated, the target capability is
marked as revocable with the “monitor_delegatee” flag on
the revocation tree. When a capability is revoked and has
the “monitor_delegatee” flag, the corresponding counter is
decreased and, in reaching zero, FractOS sends the corre-
sponding monitor_delegate_cb message.
monitor_receive(cid, callback_id) tells FractOS to

send monitor_receive_cb{callback_id} back to the re-
questing Process when cid is revoked. Internally, FractOS
makes cid revocable and records the requesting Process
and callback_id to send the appropriate message when
revocation is detected.
Resource management model. By using monitor_dele-
gate, a typical FractOS application such as the GPU service
will keep track of its clients to free any resources that it held
on their behalf. For example, the GPU service will create one
Request capability for each client, call monitor_delegate
on it, and then delegate that Request. If the client stops using
the SSD service and revokes that capability, the service will
notice it via monitor_delegate_cb and act accordingly.

Similarly, the GPU client can delegate such Request further
to a third party, who can then use monitor_receive on the
received Request to realize if the GPU client has revoked the
access it gave to this third party.
Failure translation model. FractOS handles failures in a
similar way to how it performs resource management, by
translating failures into capability revocations. The underly-
ing idea is that both resource and failure management need
to react to the same type of capability-revocation events.
For example, the GPU service will detect the failure of

a client Process via monitor_delegate, whereas the GPU
clientwill detect a GPU-service failure via monitor_receive.

1For simplicity, cid cannot have children when calling monitor_delegate.

Note that this also indirectly signals errors on in-flight op-
erations; if the GPU client receives monitor_receive_cb
while it has in-flight synchronous RPCs to that GPU ser-
vice, it knows those RPCs have failed. The combination
of monitor_receive and monitor_delegate also works in
more complex and asynchronous cases, since a single moni-
tor callback can result in a transitive cascade of additional
monitor callbacks as Processes start freeing resources (and
revoking capabilities). Importantly, in-flight Request cancel-
lation and explicit resource deallocation must be handled
by Processes themselves (such as cancellation tokens in C#
gRPC or a GPU deallocation Request, respectively), and Frac-
tOS only provides the necessary basic building blocks.
FractOS handles four types of failures. A Process failure

is detected by the owner Controller when their channel is
severed, and causes a revocation of all the capabilities held
by the failed Process (which in turn might trigger monitor-
ing callbacks). A node or Controller failure is detected by an
external monitoring service such as Zookeeper. After a node
failure, we inform the corresponding Controller to fail all
Processes running in it. After a Controller failure, we con-
sider all its Processes failed and their capabilities revoked2,
and rely on the asynchronous capability-revocation cleanup
described in section 3.5 to handle such revocations with all
relevant Controllers. Note that we can handle network fail-
ures as node or Controller failures, accordingly, but do not
explore how to handle transient network failures (we deploy
FractOS within a single data center).
We want this failure-to-revocation protocol to happen

asynchronously, while at the same time allowing us to im-
mediately reintegrate failed nodes and Controllers into the
system. To this end, we store a simple form of Lamport
timestamps on capabilities, and eagerly detect Controller
failure-triggered revocations when capabilities are used (re-
call that “normal” revocations are detected upon use via
revocation trees). Each capability contains the Controller’s
address (which is unique) and a Controller reboot counter
(which increases monotonically on every reboot). By com-
paring the reboot counter in the capability and the target
Controller, we can immediately detect a stale capability and
signal it as revoked.

4 Implementation
FractOS has 17.5K LoC of C++, not including user applica-
tions and device adaptors. The kernel is 6K LoC, and utility
libraries used by Processes are 5k LoC. FractOS also contains
other trusted services to implement authentication, node
management, and a key/value store to bootstrap capabilities
on new Processes (2.5K LoC, this would typically be replaced
by a resource manager).

2FractOS does not yet handle forceful Process termination, and we instead
rely on the host OS to kill it.
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Processes are decoupled from their Controller via an RoCE
queue pair, as well as Controllers between themselves – this
is similar to FlexSC [55], but we take this decoupling further
to explore various Controller deployment models (e.g., CPUs,
SmartNICs, and remote nodes). The Controller deployments
evaluated in section 6 use two cores per instance, using
polling to reduce latency (a dynamic poll/interrupt model is
the next step), consume 64MB of RoCE buffers per managed
Process, 64MB for each other Controller it connects to (we
are exploring shared receive queues to reduce memory costs),
a set amount of memory for the capability space as set at
Process creation time (can be capped via quotas), and 24 B per
revocation tree object. To put these numbers into perspective,
the SmartNIC we use in the evaluation has 16GB of memory.
FractOS implements congestion control by limiting the

number of outstanding FractOS responses in a Process, such
that Processes can apply back-pressure to Request invoca-
tions from other Processes.

We pervasively use C++ promises and futures to develop
asynchronous code, and build our own promise/future li-
brary to optimize per-thread concurrency (4.8K LoC). To-
gether with minimizing uses of shared_ptr, these optimiza-
tions reduced the latency of FractOS operations by an order
of magnitude (shared_ptr has a particularly large impact
on SmartNIC deployments).
Limitations.RoCE has no third-party RDMA support, which
would allow Controllers to perform direct Process-to-Process
RDMA. Instead, Controllers can only copy data to/from Pro-
cesses using intermediate RDMA bounce buffers in the Con-
troller (increasing the cost of memory_copy).
For simplicity, the cleanup step of capability revocation

(section 3.5) is based on a broadcast algorithm that invali-
dates all capabilities referencing a revoked object. We do not
yet implement monitor_* callbacks.

We do not implement a resource allocation and scheduling
layer. These layers are orthogonal to the key novel mecha-
nisms in FractOS, and can be easily integrated into FractOS.
We leave it for future work.

5 Applications and Services
Here we describe our implementation of an end-to-end appli-
cation similar to that in Figure 2, as well as the constituting
accelerator, file system, and storage services it uses.
Accelerator Service: GPU. We build a GPU adaptor to ex-
pose a disaggregated GPU. The GPU adaptor runs on the host
CPU, using the OS GPU driver, and offers several RPCs ex-
posed through Requests: GPU context initialization, memory
de/allocation, kernel loading, kernel invocation, and cleanup.
An application obtains a capability to the GPU initializa-

tion Request. When invoked, the adaptor creates and returns
the Request objects for memory allocation and kernel loading
RPCs, which implicitly refer to the respective GPU context.
A Process can use these Requests to create a Memory object

Block Device 
Server

SSD

File System 
Server

Application

FS Interface Block Interface

Block Interface

Figure 4. Overview of the FractOS storage stack. The red
and green arrows denote the data flow for the normal file
system and the DAX optimization, respectively.

pointing to a buffer in GPU memory, or load a kernel and
obtain a Request for the specific kernel invocation. It can fur-
ther delegate these Memory and kernel invocation Request
to other Processes. Those can refine them further, but the
GPU kernel, the Memory buffer and the context stay fixed.

To allow composition, the GPU-kernel invocation Requests
expect two Request arguments used to signal success/error
of the kernel invocation; all other immediate arguments are
forwarded to the GPU kernel itself.
Storage Stack: File System and Block Device. We imple-
ment a storage stack that is internally composed of inde-
pendent Processes for the FS and a block-device adaptor for
an NVMe SSD. Storage clients only see the capabilities re-
turned by the FS Process. We use this multi-tier architecture
to demonstrate composition across multiple layers.
The stack works in two different modes: FS and DAX

(Figure 4). In the FS mode, we implement a simple FS layer
that stores data from clients. It follows the centralized exe-
cution model, where all operations are mediated by the FS
Process. The FS Process exposes Requests to open extent-
based files [30, 46]. A successful completion returns Requests
to read/write the file contents. Internally, the FS uses one
logical volume in the block device for each file extent. The
block-device adaptor exposes Requests that read/write the
contents of logical volumes (managed through separate Re-
quests), and delegates them to the FS Process. Thus, for each
read/write Request, the FS copies the contents from/to the
provided Memory capabilities and invokes and block-device
Requests as synchronous RPCs.
In DAX mode (for “direct-access”), applications bypass

the FS Process to directly read/write into a device after suc-
cessfully opening a file in the FS. In this case, the FS returns
to the clients the Requests delegated by the block device to
access the corresponding volumes (one per file extent), after
setting their read/write access permissions according to the
file’s open mode. This way, client applications can directly
set an offset and size to access inside the extent, and the
Request is served by the underlying block device.
Application: Face Verification.We develop an end-to-end
application that composes the storage and GPU services in a
way similar to the example in Figure 2. The application is a
face-verification service used to verify the identity of a person
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Host CPU Intel Xeon E5-2620 v2
Host memory 64GB, DDR3 @ 1333MHz
SSD Samsung 970evo Plus (500GB)
GPU NVIDIA Tesla K80
Smart NIC Mellanox BlueField MT416842, RoCEv2
Network 10Gbps fabric and switch (split cables)

Table 2. Evaluation environment.

Latency (usec)

Raw loopback w/ server @ CPU 2.42
Raw loopback w/ server @ sNIC 3.68
FractOS @ CPU 3.00 ± 0.02
FractOS @ sNIC 4.50 ± 0.13

Table 3. Latency of a null FractOS operation, compared to
raw loopback latency. The serving side (ping-pong server or
FractOS Controller) executes on either a CPU or sNIC.

by matching the photo and the ID in the input with the photo
corresponding to that ID from a secure database [24].

Our service receives a batch of photos and their associated
IDs. The images from the database are read from storage;
the face matching algorithm runs on the GPU.

The application creates and builds a pipeline of Requests
to (1) open and read the corresponding files from storage into
the GPU (it uses a small pool of pre-allocated GPU memory
buffers), (2) execute the face-verification GPU kernel, (3)
copy the results from the GPU into the application memory,
and (4) send a response to the client.

6 Evaluation
We seek to answer the following questions: (1) What is the
performance of the core Memory and Request operations
in FractOS? (2) What is the cost of deploying FractOS Con-
trollers outside the node’s local CPU? (3) Can FractOS effi-
ciently manage accelerators and storage? (4) What are the
benefits of distributed data transfer and control flow opti-
mizations in higher-level services, such as an FS server? (5)
What is the end-to-end application performance?

Experiments are performed on a 3-node cluster with the
characteristics listed in Table 2. All measurements have a
standard deviation below 3% of the mean, with 2𝜎 confidence.

6.1 FractOS primitives

Null-operation latency. We first evaluate the latency of
invoking a simple null syscall in FractOS. The results shown
in Table 3 compare the latency seen by a CPU Process when
deploying its Controller either on the same CPU package or
a co-located SmartNIC (sNIC), and the lower-bound latency
using the ibv_rc_pingpong benchmark.

The results indicate that FractOS’s decoupled architecture
is quite efficient and adds only 0.6 usec in CPUs. Running the
controller on an sNIC adds 1.3 usec due to remote access via
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Figure 6. Latency of invoking a two-way Request (i.e., RPC)
between Processes placed on one (1×) or two (2×) nodes
(Shorter is better).

PCIe, and an additional 0.7 usec for slower Controller execu-
tion (the sNIC has an ARM core running at 800Mhz, which
is slow, in particular when performing atomic operations).
Memory copy.We compare memory_copy() and raw RDMA
– the best possible baseline. Source and destination Memory
objects are on separate nodes, and Controllers on either the
node’s CPU or sNIC.

Figure 5 shows the results. FractOS uses double buffering
for buffers larger than 16 KB, achieving the full throughput
at 256KB. Smaller buffers under-perform due to interme-
diate bounce buffer copies – 1-Byte RDMA takes 3,3 usec,
whereas Controllers take 12.7 usec and 24.5 usec on a CPU
and sNIC, respectively. The red line (“HW copies”) shows
the throughput after replacing bounce buffers with 3rd-party
RDMAs in the NIC (modeled as: null + raw RDMA copy -
raw loopback latency). Concurrent copies (not shown for
brevity) quickly saturate throughput at 4 KB and 32KB for
CPU and sNIC Controllers, respectively.

We conclude that FractOS is slower than RDMA, but would
attain its latency and throughput even on a sNIC deployment,
if it could use existing hardware acceleration on the NIC.
Request invocation. We evaluate the latency of an RPC us-
ing Request invocation (Processes exchange Requests ahead
of time to avoid delegations; measured later). We compare
invocation inside a node and across two nodes with different
Controller placement and argument sizes.
The results in Figure 6 show that the CPU deployment

adds 1.41 usec for Request handling both ways (including
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user and FractOS code) and that (de)serializing Requests
across the network adds additional 4.41 usec. The sNIC de-
ployment adds 5.11 and 12.21 usec for Request handling and
(de)serialization, respectively, whereas the cost of immediate
arguments is in line with memory-copy throughput.
Our cross-node latency with FractOS on CPUs is in line

with existing, latency-optimized RPC frameworks [22] (con-
sidering the 3 hops over a NIC each way, which hardware of-
fload would eliminate), whereas the sNIC is less competitive
(more than 30% of the time is spent on atomic shared_ptr
operations related to capability and object lookups, which
software engineering or hardware offload would eliminate).
Capability management. To evaluate the cost of common
capability operations we measure the latency of an RPC with
capability delegation (i.e., capability arguments), as well as
capability revocation across two Processes on different nodes.
For revocations, we explicitly revoke capabilities while com-
paring revocable (traditional) capabilities, (implemented by
creating one revocation tree per capability) with the FractOS-
optimized ones (which point to the same indirection object)
that disallow individual revocations (one revocation tree for
all). For the experiment we vary the number of capabilities
on the revocation tree in the latter case.

The delegation results in Figure 7 show the RPC roundtrip,
which indicates that (de)serializing a single capability during
delegation takes about 2.4 usec and 3.8 usec for the CPU and
sNIC deployments, respectively. For the revocation, the tra-
ditional capabilities (1 revtree/cap in the Figure) incur high
linear overhead as we increase the number of capabilities,
whereas the optimized ones incur a small cost as they all
belong to the same revocation tree.

We conclude that our revocation optimizations are essen-
tial, and capability delegation has an acceptable cost that
could be reduced through additional optimizations, e.g., by
caching serialized Requests.

6.2 Service composition
Now we measure the performance gains of service com-
position in FractOS. We use a simple multi-stage pipeline
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Figure 8. Request latency for processing pipelines with cen-
tralized application model (star), centralized control flow
but distributed data flow (fast-star), and a fully distributed
model (chain) (Lower is better).

where data is streamed across stages. Consecutive stages are
deployed on different nodes. We compare the traditional cen-
tralized model (star), a centralized control with direct data
transfers across stages (fast-star), and a fully distributed
model with direct data transfer and direct control flow across
stages (chain). In the context of the related works, these con-
figurations cover the design space represented in Figure 1.
The first one corresponds to the centralized designs (top
left quadrant in Figure 1, e.g., rCUDA [10]), the second cor-
responds to the centralised application but distributed OS
(e.g., LegoOS [49]), and the last one corresponds to fully
distributed designs (e.g., Apache Beam [13]).
The results in Figure 8 confirm the cumulative gains of

optimized service composition with FractOS. As we increase
the memory-copy size or number of stages, optimizing data
transfers is crucial for performance (star vs. fast-star:
1.6 x for 64 KB on CPU). Optimizing distributed control flow
dominates when data transfers are of 4 KB or less (fast-star
vs. chain: 1.45 x; star vs. fast-star: 1.4 x for 4 KB on CPU).
Note that the workload is I/O bound, and thus shows the
highest speedups due to reduced message complexity.

6.3 Accelerator service: GPU
We now compare a remote GPU service on FractOS with the
same service implemented with the rCUDA generic GPU-
remoting framework [10]. We run the face-verification ker-
nel (section 5).
The left part of Figure 9, shows the latency of executing

the GPU kernel on a single image, with a breakdown for
data transfer and FractOS overheads (not for rCUDA as it
is closed source). FractOS is substantially faster; rCUDA ac-
cesses remote GPUs transparently by interposing CUDA dri-
ver calls, whereas FractOS GPU service uses a single round-
trip Request invocation per kernel invocation. We can also
see that our simple GPU-service prototype has relatively
small FractOS-related overheads, and even the sNIC deploy-
ment of the FractOS Controller is still faster than rCUDA.
The right part of Figure 9, shows that FractOS achieves

near-optimal throughput (on par with "Local GPU") with



EuroSys ’22, April 5–8, 2022, RENNES, France Lluis Vilanova et al.

256 512 1024
Number of images in a batch

0

2000

4000

La
te

nc
y 

[u
se

c]

1 Clients
1 Req.

1 Clients
2 Req.

1 Clients
4 Req.

2 Clients
1 Req.

2 Clients
2 Req.

2 Clients
4 Req.

Client concurrency

0

500

Tp
ut

 [r
eq

/s
ec

]

System
Data Tr.

GPU

Local baseline Disaggregated baseline FractOS@CPU FractOS@sNIC

Figure 9. Left: Latency of executing the Face Verification kernel on a remote GPU vs. the image batch size (Lower is better);
Right: Throughput with a fixed batch size of 1024 images vs. the number of clients and in-flight requests (Higher is better).

more than one in-flight request, evenwhen running on sNICs.
This result demonstrates the ability to serve multiple clients
with FractOS.

6.4 Composition: storage stack
We now evaluate the storage stack described in Section 5.
We compare the results of a traditional storage stack imple-
mented with FractOS (FS), its DAX-style optimizations for
data transfers (DAX), a baseline that uses the same FractOS
FS service with a remote NVMe-oF device (Disaggregated
Baseline), and a local block device (Local Baseline).

Figure 10 shows the latency for both random read and ran-
dom write storage operations. The breakdown shows raw
device times, data transfers, and FractOS software overheads.
For latency, FS is competitive compared to the Disaggregated
Baseline for random reads, as the Linux cache on the FS-
service node is ineffective in this case (two network transfers
per read). However the random writes are slower because
the NVMe-oF device in Disaggregated Baseline absorbs
writes through the cache, whereas we did not implement
caching in FS for simplicity. More interestingly, the client-
block service composition in DAX optimizes network data
transfers by 2×. DAX speedup goes from 1.1× for 4 KB reads,
where the NVMe latency dominates (70 usec), to 1.3× for
larger sizes where network transfer makes up for most of the
service time. Write operations in Disaggregated Baseline
go through Linux’ block cache, which makes its write la-
tency almost as good as DAX. With sequential operations,
DAX latency is equivalent to the Disaggregated Baseline
due to its effective read-ahead caching (results not shown
for brevity). When running FractOS on sNICs, the system
overheads grows, leading to a higher overall latency. We
believe that it is mostly caused by the lower clock rate of the
ARM chips on the BlueField cards.

We also evaluate the throughput of storage operations
with FractOS. For brevity, we only show a comparison be-
tween random and sequential read operations with a block
size of 1024KiB and four requests in flight (Figure 11). For
this configuration, the storage stack of FractOS is capable
of saturating the network line rate when running the DAX
optimization. The traditional storage stack as well as the

Disaggregated Baseline yield roughly 20% less through-
put, demonstrating that the DAX optimization is also benefi-
cial for achieving higher storage bandwidths.

In summary, these results show that a traditional storage
stack using FractOS is competitive with existing hardware-
accelerated NVMe-oF, while FractOS-based compositions
can enable DAX-style interface without compromising ser-
vice encapsulation or isolation.

6.5 Multi-service application: face verification
This application combines the storage stack and the GPU ser-
vice to demonstrate FractOS’ ability to optimize both the con-
trol and data paths, which should manifest in lower latency
and higher throughput results compared to conventional
solutions. For the baseline, we use existing disaggregation
technologies that support device disaggregation. Specifically,
we use a frontend node that fetches files from a remote ext4
file system via NFS. The file system is backed by NVMe-over-
Fabrics storage. Both NFS andNVMe-oF use in-kernel drivers
in Linux. The image data is then copied to and processed by
a remote GPU via rCUDA. This setup uses the same level of
disaggregation as our FractOS application: remote GPU and
two-tiered remote storage. Storage and GPU configurations
are otherwise the same as above.
We show latency results for different image batch sizes

(Figure 12) and throughput results for multiple in-flight re-
quests (Figure 13) of a single client. In the baseline, data is
transferred over network three times: over NVMe-oF, NFS,
and rCUDA. Since FractOS replaces these disparate disaggre-
gation technologies with a unified one, it can optimize the
data path down to a single transfer: from NVMe directly to
GPU. This benefit manifests in lower per-request latencies
for FractOS for both CPU and sNIC deployments. Baseline
throughput is bottlenecked by rCUDA as discussed above.
With four requests in-flight, the GPU itself becomes the bot-
tleneck for FractOS.

FractOS achieves further benefits on the control path due
to request composition. In contrast to FractOS, the baseline
operates in a star topology: After opening the file, the fron-
tend service node requests the data from NFS, which in turn
calls to the NVMe storage, replies travel back to the frontend.
The frontend then actively calls the GPU to invoke compu-
tation. A total of eight control messages (two for open, four
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Figure 10. Left: latency of random reads; Right: latency of random writes vs. I/O size (Lower is better).
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Figure 11. Throughput of random and sequential reads with
1024 KiB block size and 4 requests in flight (Higher is better).
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Figure 13. End-to-end throughput of the face verification
application (Higher is better).

for reading, two for GPU). With FractOS’ distributed control
plane, this is reduced to five messages (two for open, call to
storage to GPU to frontend is chained).

We also evaluate the configuration where all the Processes
connect to a single FractOS Controller running on a CPU
(Shared HAL). Such a deployment offers a middle ground
between the per-node and sNIC configurations that frees
some per-node CPUs for application logic.

7 Discussion
Early prototype with salient results. Micro-benchmarks
show promising results, but highlight that sNIC deployments
suffer from lower performance. Future sNICs, however, will
likely perform better due to more powerful cores and new
hardware offloads on the sNIC. Importantly, even on existing

sNICs, the end-to-end benchmarks perform with FractOS
better than the baseline in all configurations.
Decoupled architecture. FractOS follows a micro-kernel
design that allows us to decouple devices, Processes and
Controllers from each other. This decoupling makes them
agnostic to each other’s physical location, and allows us
to take various isolation, performance, and cost trade-offs.
For example, device adaptor Processes can choose a number
of strategies, from traditional programs in co-located host
CPUs (e.g., NVIDIA GPU drivers are sufficiently complex
that other options are not yet realistic) to compute logic em-
bedded in the device itself (e.g., in a programmable SSD [48]).
Furthermore, we demonstrated that the same is true for Con-
trollers, and we envision future systems where the Controller
placement is dynamically chosen between host CPUs (iso-
lated by the host OS or hypervisor), co-located sNICs (which
can offer isolation from untrusted devices and the host OS
or hypervisor), and remote-aggregated Controllers (e.g., by
defining a rack-scale Controller that can be particularly cost
effective when combined with hardware acceleration).
Present-proof. FractOS is readily deployable and compati-
ble with existing hardware: Controllers and device adaptor
Processes are regular user-level Linux programs, and device
adaptors use existing device drivers from the host OS.
Future data-center architecture. We envision a FractOS-
native data center with separate racks for storage, CPUs,
GPUs, etc., all of them accessible using RDMA offloads. In
this vision, we have FractOS-capable sNICs to run Con-
trollers, possibly a few per rack, and each rack, enclosure or
device is FractOS-native by having some modest CPUs or
embedded controllers to execute device drivers and FractOS
adaptors, reducing their cost as there is no client application
logic deployed on them.
Optimizing Controllers and device adaptors. We have
identified a number of optimizations to speed up FractOS
Controllers on sNICs; a lot still remains to be optimized on
our code (e.g., lock contention and memory coherency traf-
fic). The same lessons can be used when deploying in-device
adaptor Processes as they are will execute on wimpy in-
device CPUs. Additionally, we will explore how to accelerate
critical Controller and device-adaptor operations via hard-
ware offloads. For example, small-size memory_copy() calls
would substantially benefit from hardware support for third-
party RDMAs in the sNIC (eliminating the bounce buffers
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we use). Further, Controllers perform frequent lookups for
capabilities and objects. Such lookups can be accelerated by
sNICs. Additionally, request/response queues over RoCE lead
to redundant memory transfers, which can be eliminated
with inline receives that currently are not supported by stan-
dard Infiniband verbs. Furthermore, in-device acceleration
of adaptor Processes would also improve their integration
and offloading the critical path in a similar way we would
offload the Controllers.
High-level programmingmodels. FractOS’s user-level API
(libfractos) is only slightly more higher-level than the
equivalent libc on a Linux system, but one could easily use
it as a backend for existing RPC-based systems. We plan to
explore how well-known programming models and frame-
works such as streaming and dataflow [13, 21] can leverage
FractOS to build more efficient applications while composing
them with other FractOS-aware services and devices.

8 Related Work
FractOS touches on various research areas that study similar
challenges but either do not focus on the data center or, in
isolation, lead to different designs and trade-offs.
Distributed computations. Programming frameworks such
as Apache Beam [13], Dryad [21], Naiad [34], PTask [47] or
Ray [32] express distributed computations at a high-level,
similar to FractOS, but cannot perform the same optimiza-
tions across services, and are impervious to disaggregation.
Service orchestration frameworks. Frameworks such as
Apache Airflow [2] and Netflix Conductor [35] address ser-
vice composition via external orchestration frameworks, but
cannot enable optimizations across services (e.g., d and e
in Figure 2). FaaS storage hooks (e.g., AWS S3 with Lambda
hooks) behave similarly: storage acts as an intermediate data
and control exchange point. In contrast, FractOS allows op-
timizations across services and devices.
Device-oriented disaggregation. Existing disaggregation
solutions [3, 10, 12, 14, 16, 20, 23, 40, 43–45, 49, 57] focus on
transparency, but fail to meet many of our requirements (e.g.,
composition, delegation, or encapsulation), thus failing to
eliminate the associated redundant network traffic.
Accelerator-centric OSes. Several prior works highlight the
limitations of a centralized OS architecture in heterogeneous
systems, such as lack of network and storage abstractions for
GPUs [24, 39, 54]. Lynx [56] focused on a server architecture
that uses SmartNICs to manage accelerators in accelerator-
heavy servers. OmniX [53] and Helios [36] are accelerator-
centric OS architectures that enable decentralized application
execution via peer-to-peer interaction among heterogeneous
devices in a single server. Similarly, M3x [4] showed how ac-
celerators can get direct access to each other and OS services
based on a new inter-device communication hardware. Frac-
tOS generalizes these ideas to a disaggregated environment,

by introducing a novel RPC mechanism that supports decen-
tralized execution and composition, and is fully integrated
with distributed capabilities for dynamic authorization.
Distributed capabilities. Distributed capabilities have re-
ceived a lot of attention across many OSes [6, 18, 33] and
languages [31]. FractOS presents a unique design point in
this space that removes costly capability-tracking network
messages from the critical path without compromising fault
tolerance, by specializing revocation and reliability for disag-
gregated devices (via its owner-centric capability indirection
objects). While SemperOS [18] and Barrelfish [6] are tech-
nically distributed capability OSes, they are designed for
low-latency many-core interconnects, disregarding reliabil-
ity, which makes it hard to scale them out over the network.

9 Conclusions
We describe FractOS, a new distributed OS for heteroge-
neous disaggregated data centers. FractOS has the goal of
decentralizing application execution across multiple services
and devices, and therefore eliminating redundant network
messages that are intrinsic to existing centralized systems.
FractOS offers a comprehensive solution by reconciling

disaggregation and heterogeneous devices with the way we
build applications and the OSes that manage them. It ele-
vates devices to the status of first-class citizens in the system,
and enables direct device-to-device interaction by provid-
ing mechanisms to encapsulate device-specific protocols, to
compose functionality across devices, and to manage access
to them in a decentralized and dynamic way.
Our results show that FractOS achieves higher perfor-

mance than the existing solutions, enabling speedups of 47%
and a 3× reduction in network traffic for a realistic applica-
tion using multiple disaggregated devices and services. We
demonstrate that FractOS can outperform existing acceler-
ator and storage disaggregation solutions, while reducing
network traffic by up to 2×.
We believe that the core concepts in FractOS provide a

path to substantially reduce the network tax of disaggrega-
tion in heterogeneous data centers, and envision that our
work will motivate the development of new disaggregation-
friendly hardware management interfaces.
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