
Automatic Parallelization of Kernels in Shared-Memory
Multi-GPU Nodes

Javier Cabezas
Barcelona Supercomputing

Center, Spain
javier.cabezas@bsc.es

Lluís Vilanova
Barcelona Supercomputing

Center, Spain
lluis.vilanova@bsc.es

Isaac Gelado
NVIDIA Corporation

Santa Clara, CA, USA
igelado@nvidia.com

Thomas B. Jablin
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
jablin@illinois.edu

Nacho Navarro
Universitat Politècnica de

Catalunya
Barcelona Supercomputing

Center, Spain
nacho@ac.upc.edu

Wen-mei W. Hwu
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
w-hwu@illinois.edu

ABSTRACT
In this paper we present AMGE, a programming frame-
work and runtime system that transparently decomposes
GPU kernels and executes them on multiple GPUs in paral-
lel. AMGE exploits the remote memory access capability in
modern GPUs to ensure that data can be accessed regard-
less of its physical location, allowing our runtime to safely
decompose and distribute arrays across GPU memories. It
optionally performs a compiler analysis that detects array
access patterns in GPU kernels. Using this information, the
runtime can perform more efficient computation and data
distribution configurations than previous works. The GPU
execution model allows AMGE to hide the cost of remote
accesses if they are kept below 5%. We demonstrate that
a thread block scheduling policy that distributes remote ac-
cesses through the whole kernel execution further reduces
their overhead. Results show 1.98× and 3.89× execution
speedups for 2 and 4 GPUs for a wide range of dense com-
putations compared to the original versions on a single GPU.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.1.3 [Programming Techniques]: Parallel Programming

Keywords
Multi-GPU programming; NUMA

1. INTRODUCTION
In the race towards exascale, new node architectures are

being proposed to improve both performance and energy ef-
ficiency. For example, Summit and Sierra supercomputers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’15, June 8–11, 2015, Newport Beach, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3559-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2751205.2751218.

will include multiple GPUs and CPUs in each node con-
nected through a high-bandwidth interconnect [3]. This
interconnect will allow any CPU and GPU in the system
to transparently access all the memories in the system, al-
though with different latency and bandwidth characteristics
(i.e., NUMA). Current GPU programming models, such as
CUDA [24] and OpenCL [17], present GPUs as external de-
vices with their own private memory. Programmers are in
charge of splitting data and computation across GPUs and
taking care of data movement, making multi-GPU program-
ming tedious and error-prone. Programming models that
allow to easily exploit all the GPUs in the node are needed.

Ideally, all GPU resources should be presented as a single
virtual GPU, leaving the problem of computation and data
distribution to the compiler and runtime system. Some so-
lutions have been proposed [18, 20], but their designs ex-
hibit fundamental limitations. (1) Large memory footprint
overhead due to replication of portions of the arrays that are
never accessed. For example, consider a kernel that performs
n-dimensional tiling (a common pattern in dense GPU com-
putations [26, 30, 5]) where each computation partition ac-
cesses a non-contiguous memory region of a matrix. In such
a case, existing proposals transfer the whole memory ad-
dress ranges accessed by each computation partition, which
may include large portions of the array that are never used.
This limits the size of the problems that can be handled, and
imposes performance overheads due to larger data transfers.
(2) High costs due to data coherence as replicated output
memory regions need to be merged in the host memory af-
ter each kernel call, which often leads to higher performance
degradation. (3) Applications that use atomic and global
memory instructions resort to single-GPU execution.

In this paper we present AMGE (Automatic Multi-GPU
Execution), a programming interface, compiler support and
runtime system that automatically executes computations
that are programmed for a single GPU across all the GPUs
in the system. The programming interface provides a data
type for multidimensional arrays that allows for robust, trans-
parent distribution of arrays across GPU memories. The
compiler extracts the dimensionality information from the
type of each array, and is able to determine the access pat-
tern in each dimension of the array. The runtime system uses
the compiler-provided information to transparently choose

3

Figure 1: Multi-GPU architecture evaluated in this paper.

the best computation and data distribution configuration to
minimize inter-GPU communication and memory footprint.

AMGE assumes non-coherent non-uniform shared mem-
ory accesses (NCC-NUMA) between GPUs through a rela-
tively low-bandwidth interconnect, such that all GPUs can
access and cache any partition of the arrays. Thus, we en-
sure that arrays can be arbitrarily decomposed, distributed
and safely accessed from any GPU in the system. In current
systems based on discrete GPUs, we utilize Peer-to-Peer [1]
and Unified Virtual Address Space [24] technologies that
enable a GPU to transparently access the memory of any
other GPU connected to the same PCIe domain. While re-
mote GPU memory accesses have been used in the past [28],
this is the first work to use them as an enabling mechanism
for automatic multi-GPU execution.

We also present and discuss different implementation trade-
offs for computation and data distribution across GPUs us-
ing a prototype implementation of AMGE for C++ and
CUDA. The prototype includes a compiler pass that de-
tects array access patterns in CUDA kernels and generates
optimized versions of the kernels for different array decom-
positions. The runtime system distributes data and compu-
tation, and selects the appropriate kernel version. This pro-
totype is evaluated using a set of GPU dense-computation
benchmarks, originally developed for single-GPU execution.
Results on a real system show 1.98× and 3.89× kernel exe-
cution speedups for 2 and 4 GPUs respectively, compared to
the original version of the kernels running on a single GPU.

The main contributions of this paper are: (1) A multi-
GPU parallelization system that performs robust space-ef-
ficient data decompositions to enable larger problem sizes.
(2) A novel compiler analysis for GPU kernels that detects
per-dimension array access patterns, enabling the runtime
system to determine array distributions that minimize the
number of remote memory accesses. (3) A simple program-
ming interface that can be easily introduced into languages
such as CUDA and OpenCL to robustly and transparently
distribute computation and data across several GPUs. (4)
An evaluation that shows the efficacy of the remote memory
access mechanism for multi-GPU parallelization even when
built on an interconnect with limited bandwidth.

2. MULTI-GPU ARCHITECTURE
AMGE targets systems that contain several CPUs and

GPUs. Each processor is connected to one or more mem-
ory modules, but all CPUs and GPUs can access any mem-
ory module in the system. Accesses to remote memories
have longer access latency and lower bandwidth than lo-
cal accesses, thus forming a shared memory NUMA system.
CPU cores access memory through a coherent cache hier-
archy, while GPUs use weaker consistency models that do
not require cache coherence between cores. Similar shared
memory NCC-NUMA system architectures have been suc-
cessfully implemented in the past (e.g., Cray T3E [25]).

NVIDIA proposes a similar system architecture in the Ech-
elon project [16]. Moreover, NVIDIA will offer single-board
multi-GPU configurations in which GPUs share the memory
through a non-coherent interconnect named NVLink, in the
Pascal family of GPUs. AMD also implements coherent and
non-coherent memory hierarchies in their APU chips [2].

We evaluate AMGE on an existing commercial system
based on NVIDIA discrete GPUs (see Figure 1). In this
system, GPUs access their local memory (arc a) with full-
bandwidth. Accesses to CPU memories from the GPU (arc
b) are routed through the PCI Express (PCIe) interconnect
and the CPU memory controller. If the target address re-
sides in a memory connected to a different CPU socket, the
inter-CPU interconnect (HyperTransport/QPI) must be tra-
versed, too. GPUs can also access the memory in another
GPU through the PCIe interconnect (arc c) [1].

While the execution model provided by GPUs can hide
large memory latencies, both CPU memory and the inter-
GPU interconnects (e.g., PCIe 2.0/3.0) deliver a memory
bandwidth which is an order of magnitude lower than the
local GPU memory (GDDR5). New interconnects that pro-
vide much higher bandwidth have been announced (e.g.,
NVLink is projected to deliver up to 100 GB/s), but the
memory technology will also keep improving, thus maintain-
ing this gap. Therefore, minimizing remote accesses is key
to maximize application performance.

2.1 GPU Programming Model
GPUs are typically programmed using a Single Program

Multiple Data (SPMD) programming model, like NVIDIA
CUDA [24] or OpenCL [17]. For simplicity, we adopt the
CUDA terminology in the remainder of the paper. A SPMD
model lets programmers spawn a large number of threads
that execute the same program, although each thread can
take a different control flow path. All these threads are
organized into a computation grid of groups of thread blocks
(i.e., groups of threads). Each thread block has an identifier
and each thread has an identifier within the thread block,
which can be used by programmers to map the computation
to the data structures. Both CUDA and OpenCL provide
weak consistency models: memory updates performed by a
thread might not be perceived by others, except for atomic
and memory fence instructions.

Multi-GPU Programming. In CUDA and OpenCL,
GPUs are presented as external devices with their own mem-
ories. Programmers typically decompose computation and
data so that each GPU only accesses its local memory. If
there are regions of data that are accessed by several GPUs,
programmers are responsible of replicating and keeping them
coherent through explicit memory transfers. CUDA exposes
a Unified Virtual Address Space (UVAS), which ensures that
virtual memory addresses are unique across all memories in
the system. Using UVAS, programmers can map the pages
of a memory allocation on different GPU memories. How-
ever, CUDA does not provide any means to control how
virtual addresses are mapped to physical memory, and allo-
cations are bound to a single GPU.

Oftentimes, data structures need to be accessed by both
CPU and GPU code, and programmers are in charge of us-
ing separate copies of the data structures and keeping them
coherent through explicit memory transfers. This extra code
incurs additional development time and harms maintain-
ability. Recently, CUDA introduced UVM (Unified Virtual

4

Figure 2: Overview of AMGE components. The compiler extracts array access pattern information and stores it in the
program binary. It also generates optimized kernel versions for different array decompositions. The runtime system uses this
information to decompose and distribute computation and data across the GPUs in the system.

Memory), which allows allocating memory that can be ac-
cessed by CPU and GPU code, but not concurrently. UVM
is based on the ADSM model [13], in which the memory
that is shared by CPU and GPUs is acquired/released by
the GPU at kernel call boundaries. OpenCL 2.0 also ex-
poses a Shared Virtual Memory space [17], but it does not
allow programmers to specify in which memory data is ac-
tually allocated. AMGE builds on remote memory accesses,
UVAS, and ADSM technologies.

3. AMGE OVERVIEW
AMGE is a programming framework that decomposes and

distributes GPU kernels and data to be collaboratively exe-
cuted on all the GPUs in the system. We implement AMGE
using C++ and CUDA, but it can be extended to other
languages. Figure 2 shows the components in AMGE and
how they interact with the hardware. AMGE aggregates the
GPU resources in the system and presents them as a single
virtual GPU. Thus, programmers are relieved from the bur-
den of decomposing the problem and explicitly managing
several GPUs.

The AMGE compiler is a source-to-source compiler, that
analyzes the CUDA kernels in the program to detect their
array access patterns and store this information in the pro-
gram executable. It also generates optimized kernel ver-
sions for the possible array decompositions. We argue that
the utilization of the array dimensionality information is
paramount in order to efficiently exploit multi-GPU systems.
However, CUDA is an extension of the C/C++ languages,
which do not provide data types with such information; pro-
grammers typically flatten the multi-dimensional arrays into
1D arrays and linearize the dimension indices in each array
reference. It is practically difficult, if not infeasible, for static
analysis to reliably recover the dimensionality information
once the accesses have been flattened. AMGE provides a
new data type for multi-dimensional arrays that makes this
information available to the compiler. Details on the imple-
mentation of the data type and the generation of optimized
kernel versions are discussed in Section 5.

The other key feature of AMGE is the utilization of re-
mote memory accesses between GPUs [1]. On each refer-
ence to the array, the underlying implementation determines
whether the element being referenced is hosted in the mem-
ory local to the GPU executing the code or on a different
GPU. References from a GPU to parts of the array stored in
different GPU memories are handled using remote memory
accesses. This approach ensures correctness regardless of the
chosen GPU computation and data distribution configura-
tion and removes the requirement for the compiler analysis

1 void sgemm(ndarray<float, 2, cmo> C, ndarray<float, 2, cmo> A,
2 ndarray<float, 2> B)
3 {
4 float partial[SGEMM_TILE_N];
5 __shared__ float b_tile_sh[SGEMM_TILE_HEIGHT][SGEMM_TILE_N];
6 for (int i = 0; i < SGEMM_TILE_N; i++) partial[i] = 0.0f;
7
8 int mid = threadIdx.y * blockDim.x + threadIdx.x;
9 int row = blockIdx.x * (SGEMM_TILE_N * SGEMM_TILE_HEIGHT) + mid;

10 int col = blockIdx.y * SGEMM_TILE_N + threadIdx.x;
11
12 for (int i = 0; i < A.get_dim(1); i += SGEMM_TILE_HEIGHT) {
13 b_tile_sh[threadIdx.y][threadIdx.x] = B(i + threadIdx.y, col);
14 __syncthreads();
15 for (int j = 0; j < SGEMM_TILE_HEIGHT; ++j) {
16 float a = A(row, i + j);
17 for (int k = 0; k < SGEMM_TILE_N; ++k)
18 partial[k] += a * b_tile_sh[j][k];
19 }
20 __syncthreads();
21 }
22 for (int i = 0; i < SGEMM_TILE_N; i++)
23 C(row, i + by * SGEMM_TILE_N) = partial[i];
24 }

Listing 1: Multi-GPU sgemm GPU code with AMGE.
cmo means column major order.

to unequivocally determine the bounds of the memory range
accessed by a computation partition.

However, remote accesses can impose performance over-
heads and they must be minimized. On each kernel call, the
AMGE runtime determines the best computation and array
decompositions using the information generated by the com-
piler, and distributes them across all GPUs in the system.

Memory model: Arrays are transparently decomposed
and/or replicated before each kernel call. Input arrays can
be replicated at the cost of additional space and data trans-
fers, but AMGE never replicates output arrays. Replicated
output arrays require from additional coherence manage-
ment to merge partial modifications on different GPUs. Pre-
vious works [18, 20] transfer all copies to the host memory for
a merging step after every kernel call, imposing a large per-
formance overhead in many workloads. Moreover, replicat-
ing output arrays prevents distributing codes with atomics
or memory fences. AMGE always distributes output arrays
across GPU memories instead, and relies on remote memory
accesses to guarantee that they are available to all GPUs.

AMGE implements the ADSM model [13] to allow arrays
to be used both by host and GPU code. The runtime trans-
fers arrays between CPU and GPU memories as needed.

3.1 An example: matrix multiplication
Code programmed to run on a single GPU requires only

minor modifications to use AMGE. Listing 1 shows the GPU
code of a single-precision floating point matrix-matrix multi-
plication computation [12] (i.e., sgemm) using AMGE. A and
C matrices are stored in column major order, and B in row
major order, for optimal performance. The highlighted text
shows the modifications performed to the original code. The

5

1 // Initialize A and B in the host code
2 ndarray<float, 2, cmo> A;
3 ndarray<float, 2> B;
4
5 read_array("A.dat", A);
6 read_array("B.dat", B);
7
8 ndarray<float, 2, cmo> C(A.get_dim(1), B.get_dim(0));
9 // Computation grid size

10 dim3 block(MATRIXMUL_TILE_N, SGEMM_TILE_HEIGHT);
11 dim3 grid(C.get_dim(1)/(SGEMM_TILE_N * SGEMM_TILE_HEIGHT),
12 C.get_dim(0)/SGEMM_TILE_N);
13 // Kernel launch. A, B and C are used in the GPU code
14 sgemm<<<grid, block>>>(C, A, B);
15 // Write results for C into a file
16 write_array("C.dat", C);

Listing 2: Multi-GPU sgemm host code with AMGE.

only additional programming requirement for the kernel to
be automatically decomposed is the array data type (lines
1-2), and its associated indexing routines (lines 12, 13, 16
and 23). The data type is implemented by the ndarray<T,

Dims, Storage> C++ class template, where T is the type of
the elements, Dims is the number of dimensions of the ar-
ray, and Storage is an optional parameter that defines the
storage type (by default, the C/C++ row major order stor-
age convention is used). The kernel uses a 2D computation
grid, in which each thread block computes a 2D tile of C

by traversing A and B on their X and Y dimensions, respec-
tively. The compiler detects these patterns and stores them
in the program executable (access pattern info in Figure 2).

Listing 2 shows the CPU code of the sgemm computation.
First, float input matrices A and B are declared in lines 2 and
3. The bounds of each dimension of the array are defined
at run-time. The AMGE runtime intercepts the kernel call
and uses the information generated by the compiler to de-
compose the matrices, and distribute both computation and
data across all the GPUs. Note that ndarray objects can be
passed both to CPU and GPU routines, making explicit data
transfers between host and GPU memories unnecessary.

4. COMPUTATION/DATA DISTRIBUTION
AMGE decomposes GPU kernels at thread block bound-

aries. We choose this decomposition granularity because
threads within a thread block share resources (e.g., shared
memory), and perform barrier synchronization operations.
Hence, all threads within a thread block must be executed
in the same compute core of the same GPU. However, the
GPU programming model guarantees that there are no data
dependences across thread blocks within a kernel and, there-
fore, they can execute independently.

In CUDA, programmers specify a computation grid that
is a multidimensional space gridx × gridy × gridz of thread
blocks, similar to the iteration space in loop nests. Each
thread block has a unique identifier 0 ≤ blockx, blocky, blockz <

gridx, gridy, gridz within the computation grid. The AMGE
runtime decomposes the computation grid so that it can
be executed on several GPUs. In CUDA and OpenCL, the
computation grid is canonical and rectangular. Thus, the
computation grid can be uniformly decomposed into parti-
tions along one or several of its dimensions.

AMGE uses compiler analysis to generate array access
pattern information for all the GPU kernels in the program.
This information is later used by the runtime system to try
to place on each GPU the data accessed by the computation
partition assigned to it, in order to minimize the number of
remote memory accesses.

(a) BLOCK (b) BLOCK-CYCLIC
Figure 3: Computation-to-data mapping examples.

4.1 Compiler analysis
The AMGE compiler analyzes all array references in the

kernel. Each reference contains one index for each of the
dimensions of the array, allowing the AMGE compiler to de-
tect the individual access pattern in each dimension. This
is in contrast to previous works [18, 20] that treat all arrays
as one dimensional. Kim et al. [18] compute the upper and
lower memory addresses of the tiles accessed by each com-
putation partition to distribute the arrays. This may lead to
unnecessary replication of large portions of the application
dataset, also imposing higher data copy costs. For exam-
ple, TB0,0 in Figure 3a accesses a 2D tile composed of ele-
ments from two different rows of a matrix: {(0, 0) . . . (0, 3)} ∪
{(1, 0) . . . (1, 3)}. However, the linear memory address range
defined by the upper and lower bounds of the tile also con-
tains elements that belong to the neighboring tiles in the
X dimension of the matrix: {(0, 0) . . . (0, 15)}∪{(1, 0) . . . (1, 3)}.
Moreover, for output arrays this generates additional data
merging operations, as tiles might be wrongly classified as
overlapping. For example, the tiles for TB0,0 and TB1,0 do
not overlap, but the analysis in previous works uses their
linear address ranges, which do overlap. The per-dimension
access pattern information allows AMGE to identify multi-
dimensional tiles as non-overlapping entities.

We consider three classes of access patterns: (1) as a func-
tion of thread block indices, (2) local to a thread block, and
(3) data-dependent. The first class, the most commonly
found in GPU applications, is produced when programmers
access arrays using affine transformations of the block and
thread indices. As a result, threads belonging to thread
blocks with contiguous identifiers in one dimension access
elements that are contiguous in a dimension of the array. In
the sgemm example (Listing 1), blockx is used to access Ay

(line 16) and Cy (line 23), while blocky is used to access Bx

(line 13) and Cx (line 23). We use the notation Ai to refer to
the ith dimension of array A. This linear relationship allows
us to relate thread blocks with the portions of the arrays
accessed by them.

The second access pattern type is produced when array
dimensions are traversed through loop induction variables
or local thread indexes. In the sgemm example (Listing 1),
threads traverse Ax using the induction variables i+ j of the
nested loops (line 16).

The third type of accesses cannot be determined at com-
pile time since the indices are computed with values that are
only known at kernel execution time.

Only array dimensions accessed using the first pattern
class are eligible for decomposition, since the second class
refers to access patterns local to a single thread or thread
block, and the third class cannot be determined statically.
AMGE uses a novel compiler analysis, for the dimensions
that are eligible for decomposition, that identifies the thread
block-to-data mappings, and classifies them into the most

6

common distribution types: BLOCK, CYCLIC and BLOCK-CYCLIC

(illustrated in Figure 3 for a 2D array)[14, 19, 6]. This anal-
ysis tries to map the index expression used in each dimension
of each array reference to the following canonical form:

m× t×G + t× B + k (1)

where:

• m: index of the non-contiguous array tile accessed by a
thread block (an induction variable or a constant).

• t: array tile size. It is a multiple of the thread block size
when threads access different elements or 1 if all threads
access the same element of the array’s dimension (e.g.,
the same row in a matrix). The actual thread block size is
extracted from the kernel launch parameters at run-time.

• G: number of thread blocks in a dimension of the compu-
tation grid (e.g., gridx).

• B: thread block index (e.g., blockx). Expressions not using
this term do not belong to the first access pattern class.

• k: thread index or a constant. This value does not deter-
mine the access patterns across thread blocks.

We find that most GPU array-based computations use this
form to distribute the array across thread blocks.

The most common and simple index expression is found
when each thread block accesses a single contiguous array
tile (i.e., m = 0). This expression is classified as BLOCK. An-
other common index expression assigns non-contiguous ar-
ray tiles to each thread block (i.e., m > 0) using a grid-sized
stride. This expression is classified as BLOCK-CYCLIC. CYCLIC
is a special case of BLOCK-CYCLIC, in which t = 1.

Information generation for the runtime: The com-
piler analysis generates a record with the following infor-
mation for each dimension of each array used in each GPU
kernel: (1) the dimension of the computation grid whose
thread block index is used to index the array dimension;
(2) the access type (Read/Write); (3) the distribution type
(BLOCK, CYCLIC, BLOCK-CYCLIC). This information is built by
combining the values from the different references to the
array in the kernel: (1) the intersection of the used compu-
tation grid dimensions; (2) the union of the access types; (3)
the intersection of the distribution types. Thus, if an array
dimension is indexed using block indices of different dimen-
sions of the computation grid or different distribution types,
an empty record is generated for that dimension. Array di-
mensions that are not indexed using the first data access
pattern class, get empty records, too. Only array dimen-
sions with non-empty records can be distributed.

4.2 Run-time distribution
On each kernel execution, the runtime identifies all pos-

sible computation grid decompositions. Then, it uses the
compiler-provided information to compute the distribution
configurations for each potential computation grid decom-
position. Since the computation grid is limited to three
dimensions, there are, at most, eight potential decomposi-
tions. Finally, the runtime ranks each distribution configu-
ration using an analytical model (details in Section 5.3) and
distributes the arrays and computation using the highest-
ranked configuration.

4.2.1 Computation grid distribution
For a specific computation grid decomposition, the AMGE

runtime defines a grid of GPUs (gpu0×gpu1×. . . gpuN−1) with

Figure 4: Data and computation distribution configurations
for sgemm and transpose on a 4-GPU system. A, B, C are
the arrays used in the kernels, Pi,j is a partition of the com-
putation grid, Gi,j is a GPU in the GPU grid.

as many dimensions as decomposed dimensions in the com-
putation grid. Then, the computation grid is decomposed
into as many partitions as the number of GPUs in each di-
mension of the GPU grid, and each partition is assigned to
a GPU. We refer to the mapping of the computation grid
to the GPU grid as computation distribution configuration.

4.2.2 Array distribution
The runtime system uses the compiler-generated access

pattern information to determine how arrays must be de-
composed for a specific computation distribution configura-
tion. An array is decomposed along those dimensions that
are indexed with the thread block indices of the decomposed
computation grid dimensions. This creates an m-dimen-
sional grid of tiles, where m is the number of decomposed
dimensions in the array. Output arrays that are not accessed
with any of the thread block indexes of the decomposed com-
putation grid dimensions, are arbitrarily decomposed along
their highest-order dimension.

The size and number of tiles depend on the computation
distribution configuration. If blocki is used to index Lj , and
gridi is mapped on the k dimension of the GPU grid, then
Lj is decomposed into as many tiles as GPUs in gpuk and
distributed among them. Figure 4 shows the relationship
between the computation grid, the GPU grid and the ar-
ray decomposition grid in different computation distribu-
tion configurations for sgemm and transpose. In the sgemm

example, Cx, Cy, Ay and Bx can be potentially decomposed,
as they are indexed with thread block indices. For a con-
figuration that decomposes the computation grid on its Y

dimension (gridy, second row of Figure 4), Cx and Bx are
decomposed. However, since blockx is used to index Ay but
gridx is not decomposed, Ay is not decomposed either. In
transpose, both blockx and blocky are used to index the two
dimensions of A and B matrices and are always decomposed.
The distribution of tiles among the GPU memories follows
the mapping of the computation grid partitions on the GPU
grid. For example, in the XY computation grid decomposi-
tion of sgemm (third row of Figure 4), neighboring tiles in Cx

are distributed across neighboring GPUs in gpuy.
Input arrays that are not decomposed are replicated in

all GPU memories. Moreover, tiles from input arrays that
are not indexed using the thread block indexes of all the de-
composed dimensions of the computation grid, are partially
replicated. In this case, the array tiles are only replicated in
the memories of those GPUs that belong to the GPU grid

7

dimensions on which the unused computation grid dimen-
sions are distributed. For example, in sgemm, C is indexed
with both blockx and blocky and its tiles are not replicated for
any computation grid decomposition. However, A is indexed
with blockx, and B is indexed with blocky, only. Thus, A and
B are fully replicated in all GPUs for Y and X computation
grid decompositions, respectively. In the XY configuration,
the tiles in A are distributed across the GPUs in gpux and
each tile is replicated in all GPUs in gpuy. For example, the
upper tile of A is accessed by both P1,1 and P1,2 computation
partitions, and it is replicated in the memories of GPUs G1,1

and G1,2. Conversely, the tiles in B are distributed across
the GPUs in gpuy and replicated in the GPUs in gpux.

5. IMPLEMENTATION DETAILS

5.1 Array data type
We utilize the UVAS support to place different parts of

the array in different GPU memories while having a continu-
ous representation of the array in the virtual address space.
Hence, decomposed arrays can be referenced by using reg-
ular linearization operations on the indexes: (a1, · · · , an) →
n∑

i=1
ai ×

n∏
j=i+1

Dj where ai is the index and Di the number of

elements in the ith dimension of the array. Indexes are or-
dered from the highest-order to the lowest-order dimension.
We refer to this scheme as VM implementation.

This implementation decomposes arrays with page-size
granularity which, in current GPUs, is in the order of a few
kilobytes. Nevertheless, we have experimentally determined
that current versions of CUDA impose a 1 MB (instead of
page-size) granularity to allocate contiguous virtual memory
ranges on different GPUs. This produces data distribution
imbalance if partitions cannot be stored in balanced-sized
groups of 1 MB chunks, resulting in an increased number of
remote memory accesses. One solution to reduce the imbal-
ance is to add padding to the lower order dimensions that
are not decomposed. However, achieving perfect balancing
using 1 MB chunks can impose a footprint overhead in the
order of hundreds of times, especially for arrays’ lowest-or-
der dimensions, whose elements are stored contiguously in
memory. Another solution is to permute the dimensions of
the array to ensure that decomposed dimensions are not con-
tiguous in memory. Unfortunately, this can break memory
coalescing [27].

Therefore, we also provide an alternate implementation
proposed in [4] that reshapes the arrays. In this imple-
mentation, each GPU contains a memory allocation that
holds all the elements in a partition, and it is padded to
the 1MB boundary. The array is reorganized by adding a
new dimension for each decomposed one (i.e., strip-mining),
that indicates the GPU in which each partition is stored.
In each array reference, the original indexes are transformed
into a new set of indexes. This approach allows arrays to
be decomposed on any dimension as they do not have to be
stored contiguously in the virtual address space. However,
this flexibility comes at the cost of extra computation. For
example, if a 3D volume is decomposed along its highest-or-
der dimension using a BLOCK distribution, the index for this
dimension a1 is transformed as follows:

(a1, a2, a3)→ (

⌊
a1

D′1

⌋
, a1 mod D

′
1, a2, a3) (2)

where D′1 =
⌈
D1
P1

⌉
and P1 is the number of tiles in the first

dimension of the array’s decomposition grid. The operations
needed to compute the location of the element a1, a2, a3, are
divided into: the computations of the offset of the block in
the dimension being decomposed, and the linearization of
the index within the block. Therefore, an extra division and
modulo operations are performed in each access to the array,
compared with the regular index linearization. For CYCLIC

and BLOCK-CYCLIC, similar transformations are performed.
Providing a generic indexing routine that supports all pos-

sible array decompositions can impose an unacceptable per-
formance overhead due to the extra operations needed to
transform all the indexes. In order to ensure maximum per-
formance, our prototype provides different implementations
of the indexing routines optimized for the different array
decompositions and distribution types.

5.2 Source-to-source transformations
Kernel versioning: Using specialized indexing routines

for each decomposition requires changes in the kernels, as
(1) the kernel code must explicitly call the proper versions
of the routines, and (2) the array decomposition to be used is
not known at compile time. Thus, AMGE generates differ-
ent kernel versions for all the possible array decompositions
of the arrays used in the kernel. In each version, array ref-
erences use the indexing routines that are optimized for a
chosen decomposition. On each kernel execution, when the
runtime system selects the distribution for all the arrays, it
uses the specialized kernel version for that configuration.

Global thread block identifiers: Since computation
partitions are executed independently, CUDA assigns new
thread block identifiers in the kernel invocations on each
GPU. In order to retain the original identifiers, we store the
offsets of each computation partition in the memory of each
GPU. The compiler modifies replaces blockIdx with code
that computes the original indexes using these offsets.

Memory consistency model: Distributed kernels must
honor the memory consistency of the GPU programming
model. Data propagation across thread blocks in the GPU
model is only guaranteed for atomic memory operations and
memory fences. For atomic operations we exploit the hard-
ware support provided by modern system architectures (e.g.,
atomic operations in PCIe 3.0). GPU-wide memory fences
are translated to system-wide memory fences to ensure cor-
rectness. Finally, since a GPU may cache remote array par-
titions, GPU caches are flushed at kernel exit boundary.

AMGE toolchain: AMGE provides a toolchain based on
the LLVM framework. The first pass performs the array ac-
cess pattern analysis introduced in Section 4.1 on the LLVM
IR generated by the CUDA compiler, and generates code to
pass the information to the runtime system. The second
pass handles blockIdx and memory fence translations. The
third pass generates specialized kernel versions for the pos-
sible array decompositions, and code for the runtime system
to retrieve the version for a chosen configuration. Generated
code is compiled into the program executable.

5.3 Run-time distribution selection policy
As explained in Section 4.2, on a kernel call, the runtime

system selects the best distribution configuration. Our pro-
totype implements a policy that (1) favors the array imple-
mentation that imposes the least overhead, (2) minimizes
the number of remote accesses. Thus, the VM implemen-

8

tation is preferred (since it does not impose any indexing
overhead) unless it introduces too many remote memory ac-
cesses due to data distribution imbalance. Our policy ranks
the array decompostions given by the runtime system for
both VM and reshape implementations. For VM, the score
is calculated using the data distribution imbalance intro-
duced by the coarse allocation granularity. The imbalance
is computed analytically by counting the bytes that belong
to an array partition that should be stored in a different
GPU, with respect to the total array size. The cost of this
computation is negligible compared to the kernel execution
time. When the imbalance exceeds a threshold, the score
becomes zero (effectively choosing the reshape implementa-
tion). If several configurations get the same score, decompo-
sitions on the highest-order dimension are preferred because
they allow for more efficient CPU↔GPU transfers.

6. EXPERIMENTAL METHODOLOGY
All experiments were run on a system containing a quad-

core Intel i7-3820 at 3.6 GHz with 64 GB of DDR3 RAM
memory, and 4 NVIDIA Tesla K40 GPU cards with 12 GB
of GDDR5 each, connected through a PCIe 3.0 in x16 mode
(containing two PCIe switches like in Figure 1). The ma-
chine runs a GNU/Linux system, with Linux kernel 3.12
and NVIDIA driver 340.24. Benchmarks were compiled us-
ing GCC 4.8.3 for CPU code and NVIDIA CUDA compiler
6.5 for GPU code. Execution times were measured using the
CUPTI profiling library that provides support for sampling
and nanosecond timing accuracy. For runs with more than
one GPU, graphs show the time for the slowest GPU.

We evaluate AMGE using a number of dense scientific
computations that use different computation and array ac-
cess patterns. The list of benchmarks is summarized in Ta-
ble 1. Some of them are found in the Parboil benchmark
suite [15], some in the NVIDIA SDK, and the rest have
been developed in-house. This benchmark selection pro-
vide a good variety of access patterns and thus challenges.
Both CPU and GPU codes have been modified to use the
ndarray data type instead of the flat 1D arrays which are
commonly used. The benchmarks have been compiled using
our toolchain and linked to our runtime system. The ndarray

implementation has an impact on the register usage count
of the kernels (columns 4-7). In the column titles, “Orig”
stands for original, “VM” for virtual memory and “Re” for
reshape, while“B”stands for BLOCK, “C”for CYCLIC and“B-C”
for BLOCK-CYCLIC. BLOCK and CYCLIC are in the same column
(“#Reg Re B/C”) as they use the same number of registers.

Columns 8 and 9 show the array decompositions and dis-
tributions suggested by AMGE for the possible computation
distribution configurations. A, B, C are the names of the ar-
rays used in the computation. In the case of the kernels in
merge sort, a suffix has been added for keys (Ak, Bk) and
values (Av, Bv). In the last column, “D” stands for distribu-
tion and “R” for replication in the GPU grid. X and Y make
reference to the decomposed dimensions of the computation
grid. Array decompositions are shown using the notation in
HPF [19], but dimensions are ordered (left to right) from
highest to lowest order as they are stored in memory. For
example, the sgemv configuration says that for a computa-
tion decomposition on X, the A matrix is decomposed on its
Y dimension and the C vector is decomposed on its X dimen-
sion. Tiles in A and C are distributed across the GPUs in the
X dimension of the GPU grid while B vector is replicated.

Figure 5: Grey bars show the slowdown imposed by the in-
dexing routines for the reshape array implementation com-
pared to the baseline (left axis). Lines indicate the increase
in number of executed instructions (right axis).

7. PERFORMANCE EVALUATION

7.1 Indexing overhead
Table 1 shows that register utilization greatly varies de-

pending on the used ndarray implementation. The VM im-
plementation only performs the index linearization and the
register count is similar to, or even slightly lower than the
original version of the benchmarks. reshape, on the other
hand, uses more registers in most of the kernels, especially
in BLOCK-CYCLIC decompositions and those configurations in
which arrays are decomposed along several dimensions.

Figure 5 shows the overheads imposed by the indexing
routines for the reshape implementation on a single GPU.
While AMGE suggests the utilization of the BLOCK dis-
tribution type in all kernels, we study the overhead of the
routines for all the distribution types. Grey bars show the
slowdown imposed by the indexing overhead of the data dis-
tributions for each computation distribution configuration
(left axis). Lines represent the increase in number of exe-
cuted instructions due to the extra operations performed on
the indexes (right axis). BLOCK and CYCLIC are grouped (dark
gray bar and solid line) as they perform very similar trans-
formations on the indexes and the performance is virtually
the same (±1%). BLOCK-CYCLIC (light Gray bar and dashed
line) is consistently the slowest implementation (up to 4.48×)
and the one that executes more instructions, too. This is
caused both by the extra executed instructions and the lower
achieved occupancy in the GPU due to the increased number
of registers. Slowdowns are large for kernels in which thread
blocks perform little work (convolution2D, reduction, saxpy,
sort_merge_*, stencil2D, transpose and vecadd). Results for
VM implementation are not shown because performance is
within ±5% of the baseline in all kernels.

7.2 Multi-GPU performance
Figure 6 shows the speedup achieved by AMGE on our

multi-GPU system for all possible distribution configura-
tions. Results are shown for the VM and reshape implemen-
tations of the ndarray data type, and for an ideal implemen-
tation with optimal data distribution (no remote accesses).
Bars labeled with “Impl” show the geometric mean for the
three implementations of the speedups achieved in each ker-
nel by the best computation distribution configuration. The
reshape implementation exhibits linear speedups (1.91× and
3.54× on average for 2 and 4 GPUs, respectively) for all
kinds of distribution configurations in most kernels. The

9

Kernel Suite Inputset
#Reg #Reg #Reg #Reg Array Array
Orig VM Re B/C Re B-C Decompositions Distribution

convolution2D Parboil 2
16K×16K

17 19
19 22 X→A,B(*,BLOCK) C(*,*) A,B:{Dx} C:{Rx}
19 22 Y→A,B(BLOCK,*) C(*,*) A,B:{Dx} C:{Rx}

C: 9×9 19 22 XY→A,B(BLOCK,BLOCK) C(*,*) A,B:{Dx,y} C:{Rx,y}
fft1D Parboil 256M 22 24 24 24 X→A(*) B(BLOCK) A:{Rx} B:{Dx}
reduction SDK 256M 12 12 11 18 X→A,B(BLOCK) A,B:{Dx}
saxpy - 256M 8 8 8 17 X→A,B(BLOCK) A,B:{Dx}

sgemm Parboil 2
41 41 X→A,C(*,BLOCK) B(*,*) A,C:{Dx} B:{Rx}

4K×4K 38 33 40 40 Y→A(*,*) B(*,BLOCK) C(BLOCK,*) A:{Rx} B:{Dx} C:{Dx}
42 42 XY→A,B(*,BLOCK) C(BLOCK,BLOCK) A:{Dx,Ry} B:{Dy ,Rx} C:{Dx,y}

sgemv - 8K×8K 11 11 11 16 X→A(BLOCK,*) B(*) C(BLOCK) A:{Dx} B:{Rx} C:{Dx}
sort merge global

SDK 256M
17 16 18 28 X→Ak,Av ,Bk,Bv(BLOCK) Ak,Av ,Bk,Bv :{Dx}

sort merge shared 17 16 18 27 X→Ak,Av ,Bk,Bv(BLOCK) Ak,Av ,Bk,Bv :{Dx}
sort shared 17 18 19 28 X→Ak,Av ,Bk,Bv(BLOCK) Ak,Av ,Bk,Bv :{Dx}

stencil2D -
16K×16K

17 18
17 23 X→A,B(*,BLOCK) A,B:{Dx}

+ 17 19 Y→A,B(BLOCK,*) A,B:{Dx}
halos 19 26 XY→A,B(BLOCK,BLOCK) A,B:{Dx,y}

stencil3D Parboil 2
1K×1K×512

24 26
30 34 X→A,B(*,*,BLOCK) A,B:{Dx}

+ 29 31 Y→A,B(*,BLOCK,*) A,B:{Dx}
halos 33 41 XY→A,B(*,BLOCK,BLOCK) A,B:{Dx,y}

transpose SDK 16K×16K 16 14
17 24 X→A(*,BLOCK) B(BLOCK,*) A,B:{Dx}
16 23 Y→A(BLOCK,*) B(*,BLOCK) A,B:{Dx}
18 26 XY→A,B(BLOCK,BLOCK) A:{Dx,y} B:{Dy,x}

vecadd - 256M 10 10 10 18 X→A,B,C(BLOCK) A,B,C:{Dx}
Table 1: Benchmark description.

Figure 6: Speedup over baseline for different computation decomposition configurations using reshape and VM implementa-
tions. Arrows point to the configuration chosen by the runtime system for each kernel. Results shown for 2/4 GPUs.

main exceptions are X and XY configurations in stencil3D

due to remote memory accesses, and saxpy, vecadd, sort_-

merge_global and the XY configuration in stencil2D due to
the overhead of the indexing function. The VM implementa-
tion outperforms reshape in some configurations in which the
array partitions are large enough not to suffer from imbal-
ance due to the memory allocation granularity imposed by
CUDA, but performs very poorly in the other configurations,
producing lower speedups on average (1.02× and 1.27× for 2
and 4 GPUs). For example, in transpose at least one of the
matrices must be decomposed along its X dimension, which
is contiguous in memory, thus leading to an imbalanced data
distribution. Therefore, performance is poor for VM in all
configurations in transpose. Another example is stencil3D,
for which the Y distribution configuration should provide
reasonable performance since each plane of the volume can
be distributed across GPUs. Nevertheless, the size of each
plane still produces an imbalanced distribution. We study
this example in more detail in Section 7.3.

On each kernel call, AMGE’s runtime system tries to
choose the best computation and data distribution config-
uration. In this evaluation, AMGE implements the policy
introduced in Section 5.3, using a 5% ditribution imbalance
threshold to choose between VM and reshape implementa-
tions. We choose this number because we have determined
experimentally (Figure 7) that the GPUs in our evaluation
system can hide the costs of up to 10% remote accesses de-
pending on (1) how they are distributed in the kernel execu-
tion (Batch or Spread); and (2) the computational intensity
of the kernel (FLOPS/load). We can see that, using this
value, the policy correctly selects the best performing config-

(a) Batch (b) Spread
Figure 7: Performance overhead imposed by remote accesses
for different computation intensities; when they are concen-
trated (Batch) or evenly distributed in time (Spread).

uration for most of the kernels. Figure 6 highlights with an
arrow the chosen configurations. The average performance
across all the benchmarks (i.e., bars labeled with “AMGE”)
is 1.98× and 3.89× for 2 and 4 GPUs; very close to ideal.

7.3 Impact of remote accesses on performance
Figure 8 shows the percentage of accesses to RAM mem-

ory that are served by remote GPUs in all the kernels when
they are distributed across 4GPUs. reshape eliminates the
need for remote accesses in most of the configurations. Only
kernels in which computation partitions share some data use
them (e.g., convolution2D, stencil{2,3}D). The worst cases
are the X and XY decompositions for stencil3D in which
17.43% and 7.61% of accesses to memory are remote, re-
spectively. This is the reason why these configurations show
poor speedups in Figure 6. In contrast, VM introduces a

10

Figure 8: Memory requests served by remote GPUs.

(a) Imbalanced distribution

(b) Balanced distribution

(c) Balanced distribution + transposed thread block scheduling

Figure 9: Execution timeline of stencil2D for 4 GPUs.

lot of remote accesses in many configurations due to the
memory allocation granularity in CUDA.

Fighting data distribution imbalance in VM : The
dimensions of the arrays in stencil2D and stencil3D kernels
make it difficult to evenly split them using 1 MB granularity,
causing imbalance and, therefore, remote memory accesses.
The computation distribution configuration that we study
is Y . Using this configuration, the volumes of stencil3D are
distributed by allocating partitions of each plane alterna-
tively in different GPUs. The size of each plane (1K×1K
+ halos) produces an imbalanced distribution (2/1/1/1MB
for 4GPUs). This results in excessive communication that
limits the performance (0.87× and 0.91× for 2 and 4 GPUs).
Adding padding to the X dimension of the volume to obtain
a balanced distribution results in a 127.01× memory foot-
print increment. Having a 4 KB granularity would reduce
this overhead to 1.49×. Using more friendly problem sizes
that do not produce imbalance results in much improved
performance, reaching linear speedups of 2.08× and 3.95×
for 2 and 4 GPUs.

The size (16K×16K + halos) of the plane in stencil2D al-
lows for a more balanced data distribution (65/64/64/64MB
for 4GPUs). However, there are still some effects on the
performance. Figure 9a shows the memory bandwidth con-

Benchmark Conf Kim[18] Lee[20] AMGE

convolution2D
X 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
Y 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K

XY 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
fft1D X 750M 750M 3G
reduction X 2.99G 2.99G 11.99G
saxpy X 6G 6G 6G

sgemm
X 31.6K×31.6K 31.6K×31.6K 44.7K×44.7K
Y 44.7K×44.7K 31.6K×31.6K 44.7K×44.7K

XY 38.7K×38.7K 31.6K×31.6K 48.9K×48.9K
sgemv X 77.4K×77.4K 38.7K×38.7K 77.4×77.4
sort X 750M 750M 3G

stencil2D
X 38.7K×38.7K 38.7K×38.7K 77.4K×77.4K
Y 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K

XY 44.7K×44.7K 38.7K×38.7K 77.4K×77.4K

stencil3D
X 1.1K3 1.1K3 1.8K3

Y 1.3K3 1.1K3 1.8K3

XY 1.2K3 1.1K3 1.8K3

transpose
X 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K
X 48.9K×48.9K 38.7K×38.7K 77.4K×77.4K

XY 54.7K×54.7K 38.7K×38.7K 77.4K×77.4K
vecadd X 4G 4G 4G

Table 2: Maximum problem size for a 4-GPU system in
AMGE and in the related work.

sumption due to remote loads and stores (left axis), and the
number of instructions per cycle (right axis) during the exe-
cution of the stencil2D kernel for each GPU in the system.
For the sake of clarity, we concatenate the execution time-
lines of the four GPUs, although they execute in parallel.
GPU 0 does not perform any remote memory access and
the IPC (instructions per cycle) remains stable during the
kernel execution. GPUs 1, 2 and 3 perform remote memory
accesses to the previous GPU memories (note that the im-
balance increases with the GPU identifier). Remote accesses
degrade the performance of the GPU as reflected in the lower
IPC. Using padding to obtain a fully balanced array distri-
bution would increase the memory footprint by 7.99×. In-
stead, we reduce the imbalance by offsetting the beginning of
the array so that GPUs 0 and 3, and GPUs 1 and 2 perform
the same amount of remote memory accesses (Figure 9b).
The improved balancing lowers the remote memory band-
width consumption (2.5 GBps vs 4 GBps), and the period in
which remote accesses are performed is shorter. This results
in a 8.2% execution speedup on the slowest GPU.

Reducing instantaneous bandwidth demands: In
stencil2D, memory accesses concentrate at the beginning/
end of the kernel execution because the default thread block
scheduler in the GPU issues thread blocks that are con-
tiguous in the X dimension in order. Thus, thread blocks
that access the boundaries of the matrix partitions tend
to execute concurrently, increasing the instantaneous band-
width demands and reducing the achieved IPC. We evalu-
ate the performance of a thread block scheduler that issues
thread blocks that are contiguous in the Y dimension in-
stead. We emulate it by transposing the mapping of thread
block identifiers on the matrices. Figure 9c shows that, using
this scheduler, remote accesses are distributed throughout
all kernel execution, thus reducing the instantaneous band-
width demands to 200MBps. Now the IPC is not affected,
since the cost of remote accesses is hidden with the execu-
tion of other thread blocks that only perform local accesses,
reducing execution time by a 5.8%.

7.4 Comparison with previous works
Memory footprint overhead. AMGE performs more

space-efficient data decompositions than previous works. We
quantify the benefits of AMGE over Kim et al. [18] and Lee
et al. [20] by comparing the maximum problem size that can
be executed by the three solutions on our 4-GPU system.

11

Figure 10: Overhead of the coherence mechanisms in AMGE
and in the related work [18].

Table 2 shows that AMGE is able to run bigger problem
sizes than previous works for most benchmarks, which is one
of the major motivations for using multiple GPUs, especially
on those that work on multi-dimensional arrays.

Coherence overhead: AMGE ensures coherence by not
replicating output arrays and using remote memory accesses
when needed. The related work relies on replication and a
merge step after kernel execution. Besides, data needs to be
copied from CPU to GPU memories before kernel execution.
Figure 10 shows the overhead of both solutions. AMGE
shows lower CPU/GPU transfer times in most cases (CPU-
GPU transfer), because of the more efficient partitioning
of multi-dimensional data structures, which requires smaller
regions of the arrays to be resident in each GPU memory.
The overhead of the merge step is even larger compared with
the cost of remote accesses. The most extreme case is the
sort benchmark, since it executes kernels iteratively and the
merge step needs to be performed after each kernel call.

8. RELATED WORK
Auto-parallelization in shared memory NUMA sys-

tems: High Performance Fortran[19] provides primitives to
distribute data and implements the owner-computes rule [8],
that schedules loop iterations in such a way that communica-
tion is minimized. AMGE relieves programmers from spec-
ifying the distribution of data. Performance degradation
due to remote access is much larger in GPUs than in CPU
NUMA systems, and bad programmer choices might lead
to large slowdowns. Therefore, providing a system that ac-
complishes this without programmer intervention is key for
GPUs. Other proposals exploit architectural mechanisms to
implement dynamic memory distribution policies (e.g., first
touch placement) or data migration [7, 23, 21]. Neverthe-
less, current GPUs do not provide the necessary mechanisms
(e.g., user-managed memory protection or appropriate per-
formance counters) to implement these proposals. We rely
on compiler analysis to minimize inter-GPU communication.

Compiler-based transparent multi-GPU execution:
Kim et al. [18] introduce an OpenCL framework that com-
bines multiple GPUs and treats them as a single compute
device. In order to split data, they compute the array ranges
accessed by computation partitions by performing sampling
runs of the kernels on the CPU. The runtime system chooses
the computation decomposition that minimizes the size of
the data transfers between CPU and GPU memories. How-
ever, this only works for kernels in which array references
are affine functions of the thread and thread block iden-
tifiers. Otherwise they fall back to replication. But even
in cases where data can be decomposed, any array decom-
position not performed on its highest-order dimension will
produce tiles whose memory address ranges overlap, thus

replicating big portions of the array in all memories. Array
regions that are potentially modified from different compu-
tation partitions need to be merged after kernel execution.
Lee et al. [20] extend the same idea to heterogeneous sys-
tems with CPUs and GPUs. They do not use the sampling
runs on the CPU and generate a merge kernel that is more
efficient than in Kim et al.; although both solutions require
the merge step to be executed on the CPU, thus increasing
the CPU↔GPU traffic. AMGE uses a similar approach but
the compiler analysis uses the array dimensionality informa-
tion by the ndarray type. Thanks to this information and
the utilization of remote memory accesses, AMGE avoids
replication in most cases, enabling bigger problem sizes and
minimizing unnecessary CPU↔GPU communication. More-
over, AMGE adds support for cyclic data distributions, and
exploits hardware support required by codes that use atomic
operations and global memory fences.

Language/Library-based transparent multi-GPU
execution: GlobalArrays [22] (GA) is a library that al-
lows execution of computations across a distributed system
using an array-like interface, and GA-GPU [29] extends GA
to GPUs. The memory model in GA-GPU allows memory
accesses to be ordered and, hence, it does not fit into bulk
synchronous SPMD programming models such as CUDA or
OpenCL. Therefore, GA-GPU recommends the utilization
of GA data-parallel primitives (at the cost of lower perfor-
mance due to the overhead of launching one kernel for each
of the primitive operations). X10 [10] and Habanero [9]
present the programmer with a single partitioned global ad-
dress space. The compiler and the runtime system transpar-
ently redirect remote memory accesses to the proper mem-
ory. Sequoia [11] tries to address the problem of program-
ming systems with different memory topologies/hierarchies.
Programs are composed of two parts: (a) an algorithmic
representation of the computation using a C-like program-
ming language that decomposes data structures and defines
how to map the computation on them; and (b) a mapping
of the algorithm to the specific system using a declarative
language. PGAS languages require a complete rewrite of the
program, while AMGE requires minor code modifications.

9. CONCLUSIONS AND FUTURE WORK
Modern GPUs provide mechanisms that enable efficient

auto-parallelization. In this paper we introduce AMGE, a
programming interface, compiler support and runtime sys-
tem that enables multi-GPU execution of computations writ-
ten for a single GPU. Thanks to remote memory accesses,
AMGE imposes much lower memory footprint and coher-
ence management overheads than previous works. We also
demonstrate that transparent data distribution can be effi-
ciently implemented on current GPUs using the UVAS and
compiler/runtime-assisted code versioning. Using the array
data type provided in AMGE results in shorter and cleaner
code, too. AMGE achieves almost linear speedups for most
of the benchmarks on a real 4-GPU system with an inter-
connect with moderate bandwidth. Further performance im-
provements can be achieved by reducing the virtual mem-
ory mapping granularity exposed by CUDA and by allowing
programmers to tune the thread block scheduling policy.

We believe that AMGE could be used in future systems
such as NVIDIA Pascal boards to automatically scale the
performance of GPU kernels to multiple GPUs. We plan to
extend our evaluation to irregular computation patterns.

12

Acknowledgments
We would like to thank the anonymous reviewers, on their
comments and help improving our work. This work is sup-
ported by NVIDIA through the UPC/BSC CUDA Center
of Excellence, the Spanish Government through Programa
Severo Ochoa (SEV-2011-0067), and the Spanish Ministry of
Science and Technology through the TIN2012-34557 project.

10. REFERENCES
[1] NVIDIA GPUDirect.

https://developer.nvidia.com/gpudirect, 2012.

[2] APU 101: All about AMD Fusion Accelerated
Processing Units, 2013.

[3] An Inside Look at Summit and Sierra
Supercomputers.
http://info.nvidianews.com/CoralWhitepapers.html,
2014.

[4] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam.
Data and computation transformations for
multiprocessors. PPoPP ’95, 1995.

[5] M. Araya-Polo, J. Cabezas, M. Hanzich, M. Pericas,
F. Rubio, I. Gelado, M. Shafiq, E. Morancho,
N. Navarro, E. Ayguadé, J. Cela, and M. Valero.
Assessing Accelerator-Based HPC Reverse Time
Migration. TPDS, 22(1), 2011.

[6] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C.
Whaley, J. Demmel, I. Dhillon, K. Stanley,
J. Dongarra, S. Hammarling, G. Henry, and
D. Walker. ScaLAPACK: a portable linear algebra
library for distributed memory computers - design
issues and performance. SC ’96, 1996.

[7] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J.
Fowler, and A. L. Cox. NUMA policies and their
relation to memory architecture. ASPLOS IV, 1991.

[8] D. Callahan and K. Kennedy. Compiling programs for
distributed-memory multiprocessors. The Journal of
Supercomputing, 2(2), 1988.

[9] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar.
Habanero-Java: the new adventures of old X10. PPPJ
’11, 2011.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. OOPSLA ’05, 2005.

[11] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem,
M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken,
W. J. Dally, and P. Hanrahan. Sequoia: programming
the memory hierarchy. SC ’06, 2006.

[12] M. Garland, S. Le Grand, J. Nickolls, J. Anderson,
J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and
V. Volkov. Parallel computing experiences with
CUDA. IEEE Micro, 28(4), July 2008.

[13] I. Gelado, J. E. Stone, J. Cabezas, S. Patel,
N. Navarro, and W.-m. W. Hwu. An asymmetric
distributed shared memory model for heterogeneous
parallel systems. ASPLOS XV, 2010.

[14] M. Gupta and P. Banerjee. Demonstration of
automatic data partitioning techniques for

parallelizing compilers on multicomputers. TPDS,
3(2), Mar. 1992.

[15] IMPACT Group. Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php, 2012.

[16] S. Keckler, W. Dally, B. Khailany, M. Garland, and
D. Glasco. GPUs and the future of parallel computing.
Micro, IEEE, 31(5), 2011.

[17] The Khronos Group Inc. The OpenCL Specification,
2013.

[18] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a
single compute device image in OpenCL for multiple
GPUs. PPoPP ’11, 2011.

[19] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L.
Steele, Jr., and M. E. Zosel. The high performance
Fortran handbook. 1994.

[20] J. Lee, M. Samadi, Y. Park, and S. Mahlke.
Transparent CPU-GPU collaboration for data-parallel
kernels on heterogeneous systems. PACT ’13, 2013.

[21] J. Marathe, V. Thakkar, and F. Mueller.
Feedback-directed page placement for ccNUMA via
hardware-generated memory traces. Journal of
Parallel and Distributed Computing, 70(12), 2010.

[22] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global Arrays: A portable ”shared-memory”
programming model for distributed memory
computers. SC ’94, 1994.

[23] D. Nikolopoulos, T. Papatheodorou,
C. Polychronopoulos, J. Labarta, and E. Ayguadé.
User-level dynamic page migration for
multiprogrammed shared-memory multiprocessors.
ICPP 2000, 2000.

[24] NVIDIA Corporation. CUDA C Programming Guide,
2015. http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/.

[25] S. L. Scott. Synchronization and communication in
the T3E multiprocessor. ASPLOS VII, 1996.

[26] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and
K. Schulten. GPU-accelerated molecular modeling
coming of age. Journal of Molecular Graphics and
Modelling, 29(2), 2010.

[27] J. A. Stratton, C. I. Rodrigues, I.-J. Sung, L.-W.
Chang, N. Anssari, G. D. Liu, W. mei W. Hwu, and
N. Obeid. Algorithm and data optimization techniques
for scaling to massively threaded systems. IEEE
Computer, 45(8), 2012.

[28] I. Tanasic, L. Vilanova, M. Jordà, J. Cabezas,
I. Gelado, N. Navarro, and W.-m. W. Hwu.
Comparison based sorting for systems with multiple
GPUs. GPGPU-6, 2013.

[29] V. Tipparaju and J. S. Vetter. GA-GPU: extending a
library-based global address space programming
model for scalable heterogeneous computing systems.
CF ’12, 2012.

[30] J. Tölke. Implementation of a Lattice Boltzmann
kernel using the Compute Unified Device Architecture
developed by NVIDIA. Computing and Visualization

in Science, 13(1), 2010.

13

