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Abstract—Heterogeneous systems formed by traditional
CPUs and compute accelerators, such as GPUs, are becoming
widely used to build modern supercomputers. However, many
different system topologies (i.e., how CPUs, accelerators, and
I/O devices are interconnected) are being deployed. Each
system organization presents different trade-offs when trans-
ferring data between CPUs, accelerators, and nodes within a
cluster, requiring different software implementations to achieve
optimal data communication bandwidth.

In this paper we explore the potential impact of two
optimizations to achieve optimal data transfer bandwidth:
topology-aware process placement policies, and double-buffer-
ing. We design a set of experiments to evaluate all possible
alternatives, and run each of them on different hardware
con�gurations. We show that optimal data transfer mechanisms
depend on both the hardware topology and the application
dataset size. Our experimental evaluation shows that auto-
tuning applications to match the hardware topology, and to �nd
the best double-buffering con�guration can improve the data
transfers bandwidth up to 70% for local communication and
is key to achieve optimal bandwidth in remote communication
for data transfers larger than 128KB.

I. INTRODUCTION

Heterogeneous computing systems that couple general

purpose CPUs and massively parallel accelerators are be-

coming common place in High Performance Computing

(HPC) environments. Besides the performance bene�ts [1],

heterogeneous architectures also provides higher energy

ef�ciency [2] than traditional homogeneous systems. Most

programming models for heterogeneous systems, such as

NVIDIA CUDA [3] and OpenCL [4], assume that the

code running in the CPU (i.e., host) and the accelerator

(i.e., device) has access to separate virtual address spaces.

Therefore, any data communication between the CPU and

accelerators, or between accelerators, requires explicit data

transfer calls to copy data across address spaces. The optimal

implementation of these data transfer calls heavily depends

on the underlaying hardware organization. Hence, the be-

haviour of applications have to be adapted to the hardware

topology where they are being executed.

The simplest design of an heterogeneous node includes

one multi-core CPU connected to one accelerator through

a PCIe bus. Each of these chips is connected to separate

physical memories, and Direct Memory Access (DMA)

transfers are used to move the data between the CPU and the

accelerator. A similar organization attaches several acceler-

ators to the same PCIe bus, making it possible to transfer

the data across accelerators using DMA transfers without

intervention of the CPU. Alternatively, systems with several

CPUs connected through a cache-coherent interconnect (e.g.,

HyperTransport or QPI) allow attaching accelerators to each

CPU through separate PCIe buses. In this scenario, data

communication across accelerators requires the intervention

of the CPU, since DMA transfers cannot interface with

the cache-coherent interconnect. In these systems, the data

transfer bandwidth between CPUs and accelerators varies

depending on whether the data requires going through the

interconnect or not. Besides the effects due to the hardware

topology, the performance of data transfers also depends

on the software implementation. A widespread technique to

hide the cost of data transfers is double-buffering, which

requires extra synchronization points that might actually

harm the overall performance. Similarly, the performance

of data transfers might be boosted by using pre-pinned

memory in user applications, since it removes the need for

intermediate copies from user buffers to DMA buffers. Pre-

pinned memory, however, is a scarce resource and cannot

be used for very large data sets.

The large number of design choices makes these codes

ideal candidates for auto-tuning. In this paper we study the

amenability of auto-tuning techniques to implement data

transfers in heterogeneous systems by analyzing the perfor-

mance characteristics of different data transfers techniques

on several heterogeneous architectures. Our experimental

results show that auto-tuning can achieve up to 70% speed-

ups on data transfers. The �rst contribution of this paper is

a description of different multi-GPU systems and the tech-

niques needed to achieve the highest data communication

throughput. The second contribution of this paper is a com-

prehensive set of benchmarks to measure the performance

of the most common data communication patterns in HPC

codes.

II. BACKGROUND AND MOTIVATION

In this Section we introduce different kinds of GPU-based

system organizations and how current programming models

expose their different characteristics.
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A. GPU-based systems

First programmable GPUs (e.g., NVIDIA G80) appeared

in the form of discrete devices attached to the system

through an I/O bus like PCIe. A discrete GPU has its own

high-bandwidth RAM memory (e.g.,GDDR5). Data must be

copied from host (i.e., CPU) to the GPU memory before any

code on the GPU accesses it and results must be copied back

to be accessed by the CPU code. While last generation I/O

buses deliver up to 16 GBps (PCIe 3.0 [5]), CPU�GPU

transfers can easily become a bottleneck. Later, designs

that integrate CPU and GPU in the same die have been

proposed (e.g., NVIDIA ION, AMD Fusion, Intel Sandy/

Ivy Bridge). In these designs, CPUs and GPUs share the

same physical memory, thus eliminating the need for data

transfers. However, the memory bandwidth delivered by the

host memory is an order of magnitude lower than memories

used in discrete GPUs (30 GBps vs 200 GBps). Therefore,

in this paper we focus on systems with discrete GPUs.

HPC systems commonly include several GPUs in each

node to further accelerate computations and handle large

datasets. GPUs can be directly connected to a PCIe root

complex or to a PCIe switch. Typically, each CPU socket in

the system has its own I/O controller that contains a PCIe

root complex.

Direct communication between GPUs connected to dif-

ferent PCIe root complexes (e.g., in a multi-socket system)

is not currently supported (due to limitations in the CPU

interconnect) and intermediate copies to host memory are

needed. Figure 1a shows a single-socket system in which all

GPUs are connected to the same PCIe bus. In this system, all

memory transfers go through the PCIe root complex found

in the I/O controller, that may become a bottleneck. Fig-

ure 1b shows a more complex topology that uses two PCIe

switches. While CPU�GPU transfers still suffer from the

same contention problems, GPU�GPU transfers can greatly

bene�t, since transfers between different pairs of GPUs can

proceed in parallel. Figure 1c shows a dual-socket system

with one I/O controller per socket. In this con�guration, two

CPU�GPU memory transfers can execute in parallel, one in

each I/O hub. However, the NUMA (Non-Uniform-Memory-

Access) nature of the system makes the management of

memory allocations used in data transfers more dif�cult [6].

There are several techniques to communicate GPUs with

I/O devices (e.g., disks, network cards). The most simple

implementation is using an intermediate copy to host mem-

ory. This guarantees compatibility with all device drivers

at the cost of extra memory transfers. NVIDIA introduced

the GPUDirect [7] technology to reuse host memory buffers

across different device drivers to avoid unnecessary copies,

that was mainly adopted by In�niband network interface

vendors. The second version of the technology allows GPUs

to directly communicate with devices connected to the same

PCIe root complex thus completely eliminating intermediate

copies to host memory.

B. Programming multi-GPU systems

Programming models for GPUs provide a host program-

ming interface to manage all the memories in the system.

CUDA [3] allows programmers to allocate memory in

any GPU in the system and provides functions to copy

data between them. Since copies between host and GPU

memories are performed using DMA transfers, pinned host

memory buffers must be used. This ensures that pages are

not swapped out to disk by the Operating System during the

transfer. Memory transfers that use regular user (non-pinned)

buffers are internally copied to pinned memory buffers by

the runtime.

Applications that run on multi-node systems usually use

the MPI (Message Passing Interface[8]) programming model

to communicate across nodes. MPI functions take host point-

ers as input/output buffers and, therefore, transferring data

between GPUs in different nodes requires using intermediate

copies to host memory. However, latest versions of some

MPI implementations allow the use of GPU memory point-

ers. This enables direct GPU�GPU data transfers between

MPI processes running on the same node, and GPU to NIC

transfers when data is transferred through the network.

III. EXPERIMENTAL METHODOLOGY

A. Description of the Experiments

We design experiments to measure the impact of locality

and double-buffering on the performance of data commu-

nication across CPUs, GPUs, and I/O devices. We cover

three possible scenarios: communication inside a node (intra-

node), communication between nodes (inter-node) and I/O

performance.

Communication inside the node can happen between the

CPU (host) and a GPU or between two GPUs. For the

CPU-GPU transfers, we measure the bandwidth of single

transfers, and two concurrent transfers in opposite directions.

Concurrent transfers are common in applications that overlap

the transfer of the output data of a previous kernel execution

with the transfer of the input for the next one. Host threads

are pinned to one CPU to force the allocation of host

memory buffers in the closer memory partition. We measure

the throughput of data transfers between a CPU and a GPU

connected to the CPU’s I/O hub, and a GPU connected to

the I/O hub of another CPU.

For GPU to GPU communication we also measure the

throughput of both single and concurrent bidirectional trans-

fers between two GPUs. In this case is to simulate a data

exchange pattern commonly found in multi-GPU applica-

tions. The GPU to GPU experiments are performed using

two GPUs sharing the same PCIe bus, and using two GPUs

installed in different PCIe buses, to quantify the advantage

of using peer-to-peer data transfers, when available, over

transfers requiring intermediate copies to the host memory.
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(a) System with two GPUs. (b) System with four GPUs. (c) System with a four GPUs in a NUMA system.

Figure 1: Multi-GPU system topologies.

To simulate cluster level applications, we also measure

the performance of intra-node GPU to GPU copies when

each GPU is managed by a different MPI process and the

transfer is performed using the MPI primitives. We use two

different versions of the OpenMPI library [9] (1.4.5 and 1.7)

to perform the inter-node GPU to GPU transfers, to evaluate

the advantages of using a GPU-aware MPI implementation.

Communication between the nodes (inter-node) is per-

formed over the network. In our experiments, we focus on

the MPI over In�niband network as the most representative

case in multi node GPU machines. We study the perfor-

mance of the transfers between GPUs of different nodes,

and between the host memory of one node and a GPU of

another node.

Many applications do �le I/O, either to store the input

data and the results, or as a backing store for big datasets.

We measure the performance of transfers between GPU and

the disk for both traditional Hard Disks (HDD) and Solid

State Drives (SSD). To avoid the interference of the Linux

operating system’s �le caches in our measures, we use the

O_DIRECT �ag of the POSIX open function to ensure that

data is actually read from and written to the disk instead of

the cache.

Depending on the scenario, different types of transfers

are possible. In experiments that transfer data between a

CPU and a GPU, or between two GPUs on the same PCIe

bus (including transfers using GPU-aware version of the

OpenMPI library), the data are transferred to the destination

directly. Whenever these direct transfers are not possible,

staging is performed through the host memory, either by

copying the whole memory structure to the host and then to

the destination memory, or by performing pipelined transfers

through host (or hosts) using the double-buffering technique.

B. Evaluation Systems

Table I shows the systems used in our evaluation. Sys-

tem A is a single-node NUMA machine with two quad-

core CPUs running at 2.4 Ghz and four GPUs. CPUs are

interconnected with Intel QPI and each one is connected to

System A System B System C

CPUs 2 Intel E5620 2 Intel E5649 1 Intel i7 3820

GPUs 4 Nvidia C2070 2 Nvidia M2090 4 Nvidia C2050

GPUs per PCIe 2 1 1

Disk
7200 rpm HDD SSD 7200 rpm HDD

SATA 3 6 Gbps SATA 3 6 Gbps SATA 3 6 Gbps

DRAM 1333 Mhz 1333 Mhz 1333 Mhz

NICs n/a MT26428 40 Gbps n/a

CUDA Driver 304.88 285.05.09 304.88

Linux Kernel 3.2.41 2.6.32 3.2.41

GCC 4.6.3 4.6.1 4.6.3

NVCC 4.2 4.1 5.0

Table I: System con�gurations

a I/O hub shared by two GPUs (Figure 1c). The system’s

hard disk is connected to the I/O controller of one of the

CPUs.

System B is a GPU cluster. Each node has two six-core

CPUs, running at 2.53 GHz, also connected with a QPI bus.

They have two GPUs, and two In�niband network adapters.

The system has two PCIe 2.0 buses, each shared by one GPU

and one network adapter (similar to Figure 1c, but replacing

one GPU for the NIC). This system uses a SSD disk, which

is able to deliver a higher throughput than traditional HDDs.

System C is a single-node machine with one quad-core

Intel Core i7 3820 CPU clocked at 3.6 Ghz. The main

difference of this system is that it has 4 GPUs that are

connected in pairs to two different PCIe switches, connected

to a single PCIe root complex (Figure 1b). This allows peer-

to-peer communication between all the GPUs in the system.

IV. LOCALITY EVALUATION

To compare the different locality con�gurations, we nor-

malize the results to the best achieved bandwidth for each

data size. This allows us to show the percentage of the

optimal bandwidth achieved by each con�guration.

A. Locality-aware Intra-node GPU Communication

First, we study how locality affects data transfers between

a GPU and the host memory. We measure the bandwidth of

data transfers to/from a GPU connected to the PCIe hub

local to the CPU, and a GPU connected to the PCIe hub

of the other CPU (remote). We measure both single data
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Figure 2: Percentage of the best achieved bandwidth for different locality con�gurations when transferring data between a

GPU and host memory (2-way: two concurrent transfers in opposite directions).

transfers (one-way) and two concurrent transfers in opposite

directions (two-way). Figure 2 shows the results obtained

in systems A and B. System C is not considered for this

test, because all GPUs are connected to the same PCIe hub.

Both systems follow a similar trend, where the impact of

locality increases with the transfer size until 8 MB, where

all the con�gurations reach a steady state. As expected, one-

way local transfers are the best performing in both systems,

while one-way remote transfers reach from 70% to 80% of

the optimal bandwidth for large transfer sizes, depending

on the direction of the copy. In system A, host to GPU

copies are faster than their respective copy from GPU to

host, however in system B GPU to host copies have better

bandwidths. Even though they have similar GPU and CPU

models, they have different hardware characteristics that can

favor one direction or the other. Two-way data transfers

are the slowest ones, obtaining up to 70% of the optimal

measured bandwidth.

Figure 3 shows the results obtained for intra-node GPU

to GPU data transfers in systems A and C. Since system B

has only two GPUs, it cannot be used to study the effects of

locality for GPU to GPU transfers. In this case, the local and

remote meaning is not the same in both systems. In system

A, local transfers are between GPUs installed in the same

PCIe hub, and remote transfers are done using two GPUs

connected to different PCIe hubs. Thus, in this system peer-

to-peer copies are only available for local data transfers. In

system C, all four GPUs are connected to the same PCIe

hub, allowing peer-to-peer copies between all the GPUs. In

this case, we consider transfers between two GPUs in the

same PCIe bridge to be local, and transfers across bridges

to be remote. Besides the GPU to GPU copy functions

provided by CUDA, we also measure the bandwidth of our

own GPU to GPU copy implementation, using a double-

buffering technique through host memory.

The advantage of peer-to-peer copies is clear in both

systems. In system A, the best bandwidth obtained by

remote transfers is only 65% of the optimal one, because

they have to be implemented as a two step copy using

intermediate stagging in the host memory. In system C, since

all the copies can use peer-to-peer transfers, the bandwidth

difference is small (up to 15%).

Most HPC applications are programmed using MPI to

run on modern clusters. To model this scenario, we also

measure how intra-node transfers perform when the GPUs

are managed by different MPI processes. Figure 4 shows the

percentage of the optimal bandwidth achieved for local MPI

process communication in two different hardware con�gura-

tions. In both con�gurations, locality-aware policies provide

the optimal bandwidth when MPI processes are running

in the same node. These experimental results show that if

processes are not correctly placed (i.e., the MPI process uses

the CPU and GPU in the same PCIe domain), local MPI

inter-processes communication can be up to 75% slower than

when topology-aware placement is used.

Results in Figure 4 also show that ensuring the MPI

processes locality also provide large bene�ts for MPI inter-

process communication when each process is assigned to

a GPU from different PCIe domains. There is a potential

bandwidth penalty of up to 70% if MPI communication

requires crossing PCIe domains several times on each data

communication operation. This shows the viability of auto-

tuning policies to assign GPUs in the same PCIe domain to

MPI processes that most frequently exchange data.

B. Locality-aware Disk I/O

We measure the performance of disk reads and writes

in System A (HDD disk) and System B (SSD disk), using
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Figure 3: Percentage of the best achieved bandwidth for different locality con�gurations in GPU to GPU data transfers.

(2-way: two concurrent transfers in opposite directions, db: hand-written double-buffered implementation).
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Figure 4: Percentage of the best achieved bandwidth for different locality con�gurations in intra-node GPU to GPU data

transfers using MPI (each GPU managed by a different MPI process).

different locality con�gurations for both the disk and the

GPU, with respect of the CPU where the host thread is

running. System C is not studied because it can be treated as

a subset of System A for these experiments. For reasonable

big �les (1 MB or more), both systems show a small impact

of locality on the performance of GPU-Disk data transfers

(less than 20%). For �le writes smaller than 1 MB, consider-

able variability is seen due to inability to isolate disk traf�c

generated by our experiments from the traf�c generated by

the operating system services.

V. DATA TRANSFERS DOUBLE-BUFFERING EVALUATION

A. Intra-node GPU to GPU communication

Figure 5 shows the two-way transfers between remote

GPUs in System B. One labeled DB is our hand implemen-

tation of the double-buffered transfer while the other uses

the CUDA provided call, which is also internally double

buffered, but with the �xed buffer size. We compare the two

methods to conclude that for the transfer sizes of 512 KB

or more, CUDA provided implementation achieves from

85% to 95% of the auto-tuned transfer performance, while

small transfer sizes achieve higher performance than double-

buffering due to the extra overhead of synchronization and

inef�ciency of issuing small transfer sizes.

B. Disk I/O

The bandwidth provided by disks is much lower than that

of the PCIe interconnect. However, results show that using
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Figure 5: Ef�ciency of the auto-tuned and non-tuned double-

buffered transfers between GPUs.

double buffered transfers is still bene�cial compared to sim-

ple transfers staging all the data in the host memory. Double-

buffered transfers are slower for transfer sizes smaller that

512 KB. After this point, double-buffering delivers 10-20%

more throughput than simple transfers for both transfer

directions. Tests on the SDD disk exhibit the same behavior.

The effect of the size of the buffers used in the implemen-

tation of the double-buffered transfer follows a similar trend

in both systems. The bandwidth increases (from 20% of the

optimal bandwidth) as the buffer size increases, reaching

the maximum achieved bandwidth at a speci�c buffer size.

After this point, the bandwidth achieved by larger buffer

sizes stays close the optimal value. The buffer size at which

the optimal bandwidth is reached depends on the disk type

and the transfer size. The HDD disk reaches the optimal

bandwidth with smaller buffer sizes, due to its limited
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transfer rate compared to the SSD one (e.g., 128 KB vs.

4 MB in 128 MB transfers).

C. Inter-node GPU Communication
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Figure 6: Performance of MPI transfers

Figure 6 shows the performance of inter-process MPI

communication for data transfers across CPU and GPU

memories. These results show that topology-aware place-

ment of MPI processes barely affects the performance of

remote MPI data transfers. The results in Figure 6 also shows

the bene�ts of double-buffering remote communication; in

all cases double-buffering provides the optimal bandwidth

for data transfer sizes larger than 128 KB. The only case

where double-buffering performs worse than direct transfers

is when communicating data smaller than 128KB from the

network to the GPU memory, if both network interface and

the GPU are attached to the same PCIe bus. The optimal

buffer size in all cases is 2 MB. When larger buffers are

used, the bandwidth slowly decreases, while smaller buffers

provide sub-optimal bandwidths due to the overhead of the

staging.

VI. CONCLUSIONS

In this paper we have analyzed the importance of auto-

tuning applications to match the system topology and select

the most adequate data transfer mechanism to achieve opti-

mal bandwidth on data transfers between CPUs, GPUs, and

nodes within a cluster. To evaluate the potential impact of

each of these optimizations on different scenarios, we have

developed and executed synthetic benchmarks that stress

common data transfer scenarios. We have presented the

experimental results of running these benchmarks on three

different systems that represent most of the existing hetero-

geneous architectures currently used in HPC environments.

Our experimental results highlight the bene�ts of auto-

tuning applications to match the node topology. By ensuring

that applications run on the CPU and GPUs connected to the

same PCIe bus, the data transfer bandwidth can improve up

to 70%. We have shown, that locality-aware policies have

little impact when communicating MPI processes running on

different nodes. We have also shown that double-buffering

is key to achieve optimal performance on inter-process com-

munication when processes are running on the same node as

well as when running on separate nodes. However, double-

buffering only provides marginal gains when transferring

data between GPUs and I/O devices, such as disks, due to

the low read/ write bandwidth of existing I/O devices.

The results presented in this paper show that auto-tuning

is key to optimize data transfers in existing heterogeneous

HPC systems. Our experimental data also shows that simple

auto-tuning policies, such as different code paths depending

on the data transfer size, can provide impressive performance

gains.
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