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Abstract
Cloud stacks must isolate application components, while

permitting efficient data sharing between components de-
ployed on the same physical host. Traditionally, the MMU
enforces isolation and permits sharing at page granularity.
MMU approaches, however, lead to cloud stacks with large
TCBs in kernel space, and page granularity requires inefficient
OS interfaces for data sharing. Forthcoming CPUs with hard-
ware support for memory capabilities offer new opportunities
to implement isolation and sharing at a finer granularity.

We describe cVMs, a new VM-like abstraction that uses
memory capabilities to isolate application components while
supporting efficient data sharing, all without mandating ap-
plication code to be capability-aware. cVMs share a single
virtual address space safely, each having only capabilities to
access its own memory. A cVM may include a library OS, thus
minimizing its dependency on the cloud environment. cVMs
efficiently exchange data through two capability-based primi-
tives assisted by a small trusted monitor: (i) an asynchronous
read/write interface to buffers shared between cVMs; and
(ii) a call interface to transfer control between cVMs. Using
these two primitives, we build more expressive mechanisms
for efficient cross-cVM communication. Our prototype im-
plementation using CHERI RISC-V capabilities shows that
cVMs isolate services (Redis and Python) with low overhead
while improving data sharing.

1 Introduction
Cloud environments require application compartmentaliza-
tion. Today, isolation between application components is en-
forced by virtual machines (VMs) [10, 32, 63] and contain-
ers [2, 40], either separately or in combination. Yet, current
applications push the limits of these mechanisms in terms
of performance and security: when application components
communicate heavily with each other, VMs and containers
add substantial overheads, even when they are co-located to
improve communication performance; furthermore, the im-
plementation of the isolation mechanisms may also rely on a
large trusted computing base (TCB).

VMs provide strong isolation through a relatively narrow
hardware interface. Since a guest VM has its own OS kernel,
its TCB can be reduced to a relatively small hypervisor, which
multiplexes VM access to the hardware [56]. Efficient inter-
VM data sharing, however, is challenging to achieve due to
performance and page granularity trade-offs [17, 71].

In contrast, containers isolate processes into groups [2]
and provide faster inter-process communication (IPC) primi-
tives, including pipes, shared memory, and sockets. Similar
to VMs, they face problems of page-level sharing granularity
and overheads due to frequent user/kernel transitions. Their
richer IPC primitives for data sharing come at the cost of a
larger TCB—a shared OS kernel implements both namespace
isolation between process groups and complex IPC primitives,
increasing the likelihood of security vulnerabilities.

Existing cloud stacks thus face a fundamental tension when
application components are compartmentalized but must com-
municate. They must either copy data or modify page tables,
both of which are expensive operations that involve a privi-
leged intermediary, e.g., a hypervisor or OS kernel, and lead
to coarse-grained interfaces designed around page granularity.

In this work, we explore a different approach to designing
a cloud stack that isolates application components, while sup-
porting efficient sharing. We ask the question “if the hardware
supported dynamic, low-overhead sharing of arbitrary-sized
memory regions between otherwise isolated regions, how
would this impact the cloud stack design?” We exploit hard-
ware support for memory capabilities [23, 70], which impose
flexible bounds on all memory accesses, allowing components
to be isolated without page table modifications or adherence
to page boundaries. This offers a new opportunity to design
memory sharing primitives between isolated compartments
with zero-copy semantics.

We describe CAP-VMs (cVMs), a new VM-like abstrac-
tion for executing isolated components and sharing data across
them. cVMs are enforced by a small TCB that uses memory
capabilities to isolate and share data between compartments
efficiently. Through the use of a hybrid capability model [66],
cVMs avoid having to port application components to use



capability instructions, circumventing compatibility issues
that typically plague capability architectures.

Using memory capabilities as part of a cloud stack, how-
ever, raises new challenges: the cloud stack must (i) support
existing capability-unaware software without cumbersome
code changes, bespoke compiler support, or manual manage-
ment of capabilities across isolation boundaries; (ii) remain
compatible with existing OS abstractions, e.g., POSIX inter-
faces, all while keeping the TCB small; and (iii) offer efficient
IPC-like primitives for otherwise untrusted components to
share data safely and take advantage of the potential zero-copy
sharing enabled by capabilities.

To address the above challenges, cVMs make the following
design contributions:

(1) Strong isolation through capabilities. Multiple cVMs
share a single virtual address space safely through capabili-
ties. Each cVM is sandboxed by a pair of default capabilities,
which confine the accesses of all instructions inside a cVM to
its own memory boundaries. To avoid having to port existing
application components to a capability architecture, cVMs
allow them to execute unmodified by using CHERI’s hybrid
capability architecture [66], which integrates capabilities with
a conventional MMU architecture. In addition, cVMs strictly
limit how CHERI capabilities can be used to avoid known
capability revocation overheads: cVMs are not permitted to
store or export capabilities, and the transitions of communica-
tion capabilities are controlled by a trusted component.

(2) Bespoke OS support through a library OS. cVMs are
self-contained with a small TCB, reducing reliance on the
external cloud stack, while providing POSIX compatibility.
They include a bespoke library OS with POSIX interfaces
for, e.g., filesystem and network operations with cryptography
for transparent protection, which is protected from applica-
tion code using capabilities. In the library OS, each cVM
implements its own namespace for filesystem objects, virtual
devices, cryptographic I/O keys etc. Only low-level resources,
e.g., execution contexts for threads and I/O device operations,
are shared and provided by an external host OS kernel.

(3) Efficient data sharing primitives. cVMs offer two low-
level primitives to share data efficiently without exposing ap-
plication code to capabilities, which are hidden behind a small,
trusted Intravisor: (i) a CP_File API allows application com-
ponents to share arbitrary buffers through an asynchronous
read/write interface. Under the hood, the cVM implementa-
tion uses capability-aware instructions to exchange the rights
to safely access each other’s memory, and read/write data at
byte granularity at the cost of a single memory copy (whereas
traditional file-oriented IPC would require two copies); and
(ii) a CP_Call API transfers control between cVMs, which,
e.g., can be used to implement synchronization mechanisms.
By combining these two primitives, higher-level APIs are pos-
sible: (iii) a CP_Stream API supports efficient stream-oriented
data exchange between cVMs with one memory copy.

We implement cVMs on the CHERI RISC-V64 architecture,
executable on FPGA hardware with CHERI support and multi-
core RISC-V hardware. Our evaluation shows that cVMs
provide a practical isolation abstraction with efficient data
sharing: using the CP_Stream API for inter-cVM communi-
cation reduces latency for Redis by up to 54% compared to
classical socket interfaces, and reduces its standard deviation
by up to 2.1×. When isolating a cryptography component of
a Python-based service, cVMs introduce an overhead of up to
12% compared to a monolithic baseline.

2 Hardware Isolation Support
Next we survey the design space for isolation and sharing
in cloud environments in more detail (§2.1), provide back-
ground on capability support on modern hardware (§2.2), and
describe our threat model (§2.3).

2.1 Isolation and sharing in the cloud

We argue that VMs and containers are two extremes of com-
ponent isolation. VMs virtualize hardware interfaces such as
page tables, instructions, traps, and physical device interfaces
to manage both isolation and communication; containers vir-
tualize pure software interfaces such as processes, files, and
sockets for the same purposes.

Compatibility. Both VMs and containers are compatible with
existing applications, which is critical for adoption in cloud
environments. VMs can execute an unmodified guest OS
on top of a hypervisor, making virtualization transparent to
applications inside VMs. Conversely, containers execute un-
modified applications on top of the same host OS kernel that
manages other containerized and non-containerized applica-
tions. In both cases, OS interfaces and semantics used by the
virtualized applications remain unmodified compared to a
non-virtualized environment.

But the compatibility offered by these technologies lowers
communication performance, which is often exacerbated as
we try to achieve better isolation between components.

Isolation. Despite strict isolation between the memory of con-
tainers, there is a lack of isolation of the TCB that manages
the virtualization mechanism itself. Conventional container
platforms, e.g., Linux containers [2], share privileged state, as
they employ namespace virtualization: the OS kernel creates
separate process identifiers, devices, filesystem views etc.,
which offer the illusion that a process group exists in isola-
tion. In reality, containers share kernel data structures, and
privilege escalation inside one container may lead to the com-
promise of all containers [3,5]. In comparison, VMs are virtu-
alized through narrower interfaces, resulting in a conceptually
simpler hypervisor that is harder to compromise [15, 56].

Unfortunately, stronger isolation comes at a performance
price from both known hardware inefficiencies [14, 41, 61] as
well as less flexible mechanisms for data sharing.

Sharing. Components of cloud applications typically use



networking as a means of communication. Even if multiple
components are co-located on the same host, they may use
a reliable network transport protocol, e.g., TCP. While this
helps with scalability, it adds overhead for co-located compo-
nents, making optimizations based on direct memory sharing
attractive. Both VMs and containers use page-based memory
isolation, which limits the performance of memory sharing:
mechanisms must be aware of page boundaries to avoid leak-
ing sensitive data, and page table modifications for on-demand
sharing are known to be expensive [62].

Co-location opens up two avenues for performance im-
provements: (1) sharing can transparently speed up communi-
cation of co-located components [44, 47]; and (2) new com-
munication interfaces can be tailored toward efficient sharing
between components.

2.2 CHERI capability architecture

In cloud applications with many services [26], traditional
network-based communication shows its performance lim-
its between tightly-coupled components [33]. Therefore, we
aim to co-locate components and design a cloud stack with
efficient isolation and communication interfaces and mech-
anisms. This requires, however, new hardware support for
isolation and sharing that is free of the “MMU tax” of page-
level privileged memory protection.

Memory capabilities [18] are a protection and sharing
mechanism supported by the hardware. The CHERI archi-
tecture [64, 70] implements capabilities as an alternative to
traditional memory pointers. A capability is stored in memory
or registers, and encodes an address range with permissions,
e.g., referring to a read-only buffer or a callable function.

CHERI protects capabilities by enforcing three properties:
(1) provenance validity ensures that a capability can only
be “derived”, i.e., constructed, from another valid capability,
i.e., it is not possible to cast an arbitrary byte sequence to
a capability; (2) capability integrity means that capabilities
stored in memory cannot be modified, which CHERI achieves
through transparent memory tagging [70]; and (3) capability
monotonicity requires that, if a capability is stored in a register,
its bounds and permissions can only be reduced, e.g., a read-
only capability cannot be turned into a read-write one.

Building capability-based compartments. CHERI capabili-
ties can be used to compartmentalize software components,
e.g., plugins or libraries in a program, by giving each capa-
bilities to separate memory regions. The above properties
enforced by CHERI ensure that compartments can coexist in
the same address space, and remain isolated as long as their
initial capabilities point to disjoint data and code in memory.
The application can, of course, grant each compartment ex-
tra capabilities, e.g., to allow particular cross-compartment
memory accesses or function calls.

Pure- and hybrid-cap code. CHERI distinguishes between
two execution modes [66]: (i) in pure-cap mode, all point-

ers must be capabilities,1 and code must use a new set of
capability-aware instructions; and (ii) in hybrid-cap mode,
code can mix ordinary and capability-aware instructions,
which allows the coexistence of capability-unaware and pure-
cap code via wrapping functions. This facilitates the incre-
mental adoption of capabilities in software.

When accessing memory, pure-cap code must use new
instructions that use capability registers instead of regular
registers. In addition, secure calls across capability-isolated
components must use a CInvoke instruction, which requires
a pair of capabilities: the target function address, and an arbi-
trary value that is meaningful to the callee function (e.g., an
identifier for an object managed by the callee).

To ensure that both capabilities are used correctly by
CInvoke, e.g., thwarting a malicious caller from passing a
callee object identifier that was meant for a different callee
function, the callee can “seal” pairs of capabilities together
using the CSeal instruction. CInvoke only accepts correctly
sealed pairs of capabilities.

Hybrid-cap code relies on two new capability registers, the
default data capability (ddc) and the program counter capa-
bility (pcc), which are used implicitly by capability-unaware
instructions. The OS starts all processes by setting ddc and
pcc to the entire virtual address space. Capability-aware code
then creates new capabilities from these registers, preserving
CHERI’s provenance, integrity and monotonicity properties.

Pure-cap code thus introduces compatibility challenges:
• All pointers in pure-cap code are capabilities that occupy

16 bytes instead of the ordinary 8 bytes, and must be 16-
byte aligned. This decreases CPU cache effectiveness,
and may require extra effort to align capability and non-
capability elements in data structures.

• It is not possible to cast between addresses and various
types of capability-based pointers, because CHERI distin-
guishes between them and imposes bounds on pointers [65].
C/C++ code that uses raw casts—a commonly found idiom
in low-level system software—requires substantial modifi-
cations. For example, the strict bounds in capabilities are
typically incompatible with memory allocators that place
metadata before allocated data.

• While CHERI compresses capabilities, they can still result
in memory bloat, because larger sizes are subject to coarser
address discretization. Large allocations with capabilities
may require stronger alignment and extra padding [69].

• CHERI advocates for a trusted, system-wide garbage col-
lector to manage capabilities to dynamically-allocated
memory [66]. It is important to ensure that allocations
are not reused while valid capabilities pointing to them
still exist. Since new capabilities can be derived from ex-
isting ones, and stored on the heap, stack, and in registers,
all capabilities derived from an allocation must be either
invalidated (i.e., revoked), or allocations cannot be reused

1CHERI has separate registers for regular data and capabilities.



while such capabilities are valid. A garbage collector (as
opposed to expensive hardware support for capability re-
vocation) addresses this issue, but it is a disruptive change
in cloud environments, potentially leading to delays in re-
source reclamation and increased tail latencies.
Removing the need to use capability-aware code is impor-

tant in cloud environments with limited control over tenant
code. Therefore, we want to explore a design for a cloud
stack that compartmentalizes application components using
CHERI’s hybrid-cap mode, without the disadvantages of pure
capability-aware code.

2.3 Threat model

Cloud environments support multiple, isolated application
components, and thus we consider attacks in which an at-
tacker controls a malicious component that interferes with
another component by probing interfaces or trying to escape
its sandbox. We assume that the attacker has full control over
the application components and a library OS, e.g., by exploit-
ing vulnerabilities inside the compartment or by executing
arbitrary code that includes capability-aware instructions.

Our TCB includes the underlying host OS kernel, but the
entire application stack (program, libraries and library OS) is
considered untrusted. We assume that the CHERI hardware
implementation is correct. We do not analyse side-channel
attacks against CHERI, which is an important, yet orthogonal
consideration that affects both the architectural and micro-
architectural levels [67].

3 cVM Design
cVMs are a new virtualisation and compartmentalization ab-
straction for application components. Such components can
often be co-located and exchange data, and cVMs isolate them
with support for low-overhead data exchange using CHERI
capabilities. The design of cVMs has the following features:

Separate namespaces. Unlike containers, cVMs do not rely
on a shared OS kernel for namespace isolation. They use ca-
pabilities to add a new userspace-level isolation boundary,
moving OS kernel functionality from a privileged to an un-
privileged layer. cVMs only use the host OS for execution
contexts, synchronisation, and I/O, thus resembling VMs.

Bypassed communication. cVMs are mutually untrusted,
but communication bypasses the host OS kernel for perfor-
mance. They use capabilities for on-demand access to mem-
ory regions used for communication, without compromising
neighbouring memory.

Low-overhead isolation. cVMs use capabilities for low-
overhead isolation of both process and program modules.
For example, cVMs can isolate shared libraries with minimal
changes to the calling interface.

Compatibility. cVMs use CHERI’s hybrid-cap mode. Ca-
pabilities are thus hidden from application code, which only
needs changes to use new communication APIs.

syscall interface syscall interface

Library OS
(namespace+environment) Library OS

hostcall interfacehostcall interface

Intravisor

Host OS kernel

CP
FILE

C libraryC libraryC library

MicroserviceComponent 2Component 1
src

dst

cVM isolation

A
B B

CC

Fig. 1: cVM architecture

3.1 Architecture overview

Fig. 1 shows the architecture of cVMs. Each cVM A is an
application component, such as a process or library, and has
three parts: (i) program binaries and their libraries; (ii) a
standard C library; and (iii) a library OS.

cVMs add two new isolation boundaries, enforced through
capabilities. The Intravisor boundary B separates the Intravi-
sor from all cVMs, and cVMs from each other. The Intravisor
is responsible for the lifecycle and isolation of cVMs, allows
safe communication between them, and provides other prim-
itives that cannot be implemented inside the unprivileged
library OS (e.g., storage and networking I/O, time, thread-
ing and synchronisation). It has access to the memory of all
cVMs, but not the other way around.

The Program boundary C separates programs from the
library OS that provides them the namespace for all OS prim-
itives. A single library OS instance can thus host multiple,
mutually-isolated programs with their own code and data
(left-most cVM in Fig. 1).

These isolation boundaries are enforced by CHERI capa-
bilities; compartmentalized content cannot access memory
beyond its boundary, except through the controlled interfaces
described next. Finally, there is a classical separation from
the host OS, using CPU rings and MMU-based isolation.

3.2 Isolation boundaries

We now describe how cVM are isolated in more de-
tail (see Fig. 2). Each program compartment contains the
code and data of its binary, its dependencies (shared libraries),
and the standard C library; the cVM also contains the library
OS, which provides the OS functionality.

Isolation boundaries are enforced by giving each its own
default CHERI capabilities using the pcc and dcc regis-
ters (see §2.2) with non-overlapping address ranges; compart-
mentalized code thus cannot load, store or jump into memory
outside that granted by the capabilities that it holds. To allow
1 program → libOS and 2 libOS → Intravisor calls, cVMs
use extra capabilities that grant controlled access to functions
outside the respective compartment.



Tab. 1: cVM API

Type API function Description

Creation
cp_cvm_make(cp_config_t *cfg, char *libos, char *disk.img, int argc,
char *argv[])

Create new cVM

CP_File

cp_file_make(char *key, size_t key_size, void *addr, size_t size) Make CP_File for buffer addr & publish with key
cp_file_destroy(int file) Destroy CP_File
cp_file_get(char *key, size_t key_size) Get CP_File with key from another cVM
cp_file_read,cp_file_write(int file, char *key, size_t key_size) Read/write data via CP_File file
cp_file_wait,cp_file_notify(int file) Wait/notify signal via CP_File file

CP_Call
cp_call_make(char *key, size_t key_size, void *func) Make CP_Call for func & publish with key
cp_call_destroy(int call) Destroy previously created CP_Call
cp_call_get(char *key, size_t key_size) Get CP_Call with key from another cVM
cp_call(int call, bool async, void *arg, size_t size) Call CP_File call with arguments

CP_Stream

cp_stream_make(char *key, size_t key_size) Make CP_Stream & publish with given key
cp_stream_destroy(int stream) Destroy CP_Stream
cp_stream_get(char *key, size_t key_size) Get CP_Stream with key from another cVM
cp_stream_send(int stream, void *buf, size_t size) Send buffer through CP_Stream
cp_stream_recv(int stream, long id, void *buf, size_t size) Post buffer to receive through CP_Stream.
cp_stream_poll(int stream, long *id, size_t nid, int timeout) Poll for data on receive buffers of CP_Stream

C library (musl)

CAP control

Intravisor

threadsdisk I/O

time/rnet I/O

namespace /dev/cfstorage

network Library OS Init

Program/library Shared libraries (.so)

hostcall via CINVOKE

syscall via CINVOKE 1

2 A

B
C

Fig. 2: Anatomy of a cVM

cVMs need to implement the equivalent of user/kernel sep-
aration using CHERI capabilities in userspace. When loading
a program, a set of capabilities is therefore given to the syscall
handler functions of the library OS. The standard C library
uses these capabilities to invoke system calls on the library
OS through the CInvoke instruction, while the rest of the ap-
plication remains capability-unaware. The library OS has full
access to the programs that it manages.

cVMs also need to implement the equivalent of guest/host
(or VM/hypervisor) separation using CHERI capabilities in
userspace. When creating a cVM, the Intravisor installs capa-
bilities to its own host system call handlers on the new library
OS instance; in turn, the library OS uses CInvoke to invoke
Intravisor operations.

3.3 Creation and communication API

cVMs combine compatibility and flexibility when isolating
cloud services. They support the execution of complete appli-
cation components using a process isolation abstraction, but
also that of individual library components.

Tab. 1 shows the cVM API. New cVMs are created by
cp_cvm_make(); similar to fork()/exec(), it accepts a disk
image file, a program binary to load into the cVM, and a func-
tion in that binary to launch. If a cVM isolates a standalone

library, cp_call() invokes functions in the library.
cVMs use CHERI capabilities for efficient inter-cVM com-

munication. The Intravisor exchanges an initial set of capabil-
ities between cVMs to allow communication.

CP_File. This primitive introduces a file-like API to access
memory from another cVM at arbitrary granularity; the use
of capabilities in CP_File permits bypassed access to memory
without repeated mediation by the Intravisor.

A donor cVM registers a memory region with the Intravi-
sor to share with other cVMs via cp_file_make(); a recipi-
ent cVM calls cp_file_get() with the same key to obtain
access. The cVMs then access data in the memory region
via cp_file_read/write(). Internally, the library OS uses
capability-aware code to copy data directly between the cVMs
(using capcpy; see §4).

To support asynchronous data transfers, cp_file_wait()
and cp_file_notify() allow callers to wait for and notify
events on a CP_File, respectively. Finally, the donor cVM
calls cp_file_destroy() to destroy it, revoking all access.

CP_Call. This primitive invokes functions outside the calling
cVM, e.g., a callback function in the library OS, or a func-
tion in a shared library. cVMs manage CP_Calls as follows:
cp_call_make() registers a function in the donor that recip-
ients can look up using cp_call_get() and then call with
cp_call(). The call is received by the Intravisor, which cre-
ates a new thread in the donor’s cVM, sets it to execution
to the target function with given arguments and, optionally,
waits for its completion, based on the async argument.

CP_Stream. By composing the CP_Files and CP_Calls APIs,
it is possible to construct more complex communication mech-
anisms. For example, we have built a stream-oriented API for
inter-cVM communication in which the sender does not need
to know where data is copied.

A recipient cVM calls cp_stream_recv() to register
buffers for incoming messages (internally, a list of CP_Files);
a sender cVM calls cp_stream_send() to copy data into any
of the buffers available in the recipient. The recipient is then
informed of data transfers when calling cp_stream_poll().



3.4 Capability management

The use of CHERI capabilities introduces two problems that
cVMs must avoid: avoiding the need for application code to
become capability-aware and performance problems when
revoking capabilities.

As explained in §2.2, making an application fully
capability-aware requires code changes. The design of cVMs
avoids this by limiting the use of capability-aware code to a
small portion of the standard C library, the library OS and the
Intravisor, which explicitly handle the CP_Files and CP_Calls
abstractions through syscall trampolines.

In the cVM design, we want to avoid centralized trusted
mechanisms for capability revocation (see §2.2), as this goes
against our goal of minimizing overheads and TCB size.
Therefore, only the Intravisor is permitted to store CHERI
capabilities in memory: all capabilities that are passed by the
Intravisor to cVMs have the CAP_STORE permission withheld.
Instead of having to perform expensive garbage collection,
revocation can now be done by clearing a small number of ca-
pability registers. This can be done efficiently when programs
call the cVM API to avoid interrupting execution.

4 Implementation
Next, we report implementation details of cVMs on the
CHERI RISC-V64 platform. Our implementation consists
of 5,200 lines of C code and 100 lines of assembly for the In-
travisor, and 1,800 lines of C code and 200 lines of assembly
for the Init service, the Hostcall interface and CAP Devices.
It uses the Linux Kernel Library (LKL) v4.17.0 [36] as the
library OS and the musl standard C library v1.2.1 [42]. As
the host OS kernel, we use CheriBSD [25].

4.1 cVM lifecycle

Initialisation. The boot process of a cVM is trigged by the In-
travisor. It receives a deployment configuration for the cVM,
which includes the heap size, the disk image location, the per-
mitted interfaces, etc. It also defines the version and location
of an Init service (see below) and the library OS binaries. The
Intravisor first allocates memory for the cVM binary, stack
and heap. It also allocates memory for the thread stack pool.
Our implementation of cVMs cannot change the size of heap
and stack at runtime, but this is a minor limitation given the
size is in terms of virtual memory, and is only committed to
physical memory on demand. Just as cloud providers prefer
re-instantiating VMs over the use of memory ballooning, we
expect large resource size changes to re-instantiate cVMs.

All threads must be created inside a compartment’s mem-
ory, thus the Intravisor pre-allocates memory for future thread
stacks. After that, the Intravisor deploys the image of the Init
service into the cVM and spawns the initial thread in the con-
text of the cVM. This thread prepares the hostcall callback
tables, and enters the cVM via the CInvoke-based interface
created by the Intravisor.

SETUP :
SC RET.seal
SC MON.DDC.seal

CALL(Init,arg1,arg2) :
CSeal ENTRY
$a0=arg1
$a1=arg2
$t0=ID_INIT
$ddc=COMP.DDC
CInvoke ENTRY.seal

RET :
$ddc=MON.DDC

ENTRY :
JR CALL_TABLE[$t0]

LC MON.DDC.seal
LC RET.seal
CInvoke RET.seal, MON.DDC.seal

OR :
CInvoke OCALL.seal, MON.DDC.seal

Outer Compartment
(e.g. Intravisor)

Inner Compartment
(e.g. Init)

Fig. 3: ICALL and OCALL implementation

The Init service (see Fig. 2) is responsible for initializing
all components at deployment, and creates the communication
interface between the library OS and the host system. It is
part of the library OS isolation layer, which means that it can
access the memory of the application component. It initialises
the library OS, builds the syscall interface for the program (or
library), deploys its binary and calls the entry function (e.g.,
c_start()). For an executable binary, it launches the pro-
gram; for a library, the entry function initializes a CP_Stream
and registers the public library functions with the Intravisor.

Execution. cVMs use the Linux kernel library (LKL) [36] as
a library OS that provides a Linux-compatible environment.
LKL processes system calls and requests the host OS kernel
to perform actions as needed.

LKL’s storage and networking backends implement lean
interfaces for hardware I/O devices: disk I/O has three host-
calls (disk_read/write(), disk_getsize()); networking
uses only net_read/write(). The disk_read/write func-
tions are applied to a file descriptor of the disk image; the net-
work functions are invoked on a TAP device. The remaining
functions in the hostcall interface are straightforward: they of-
fer support for time and timer functions, debug output, thread-
ing and locking, and management of CAP Devices (see §4.3).

Threading. For simplicity, cVMs use a 1-to-1 threading
model. When a cVM creates a thread, the pthread library re-
quests an execution context from LKL, which in turn, requests
a new thread from the host OS kernel. This requires the inte-
gration of the pthread implementations inside the cVM and
the host—both must maintain their own thread-local stores,
pointers to thread_structs, etc.

When LKL requests a thread, it prepares a structure with
an address of the entrance function, and a pointer to the argu-
ments. This is passed to the host OS kernel, and the Intravisor
creates a new thread with the provided arguments: it allocates
a stack for the thread from the thread stack pool, pre-allocated
at boot. After that, the new thread is ready to enter the cVM
using CInvoke and capabilities are created by the hostcall
interface. Prior to entering, the Intravisor switches the thread
pointer tp register. Inside a cVM, threads have LKL TP val-
ues; when processing hostcalls, they have host ones.



4.2 Calls between nested compartments

cVMs use the CInvoke instruction to call functions be-
tween isolation layers, both (i) from an outer to an inner
layer (ICALL), e.g., when the Intravisor invokes Init; and
(ii) from an inner to an outer layer (OCALL), e.g., when per-
forming a syscall or hostcall.

CInvoke takes two sealed capabilities (see §2.2) as argu-
ments: (i) one with a new Program Counter Capability (pcc)
value and another that points to a memory region that becomes
accessible after the instruction execution. The pcc is replaced
by the first unsealed capability; the second capability moves
to the ct6 (C31) register in the unsealed form.

Next, we explain how CInvoke is used to implement both
ICALLs and OCALLs:

ICALLs. Fig. 3 shows the switching mechanism for ICALLs.
In this example, the Intravisor in the outer layer calls Init in
the inner layer. To make the call, the caller prepares the first
capability that points to the entry point inside the compart-
ment. This capability, together with the corresponding data
capability, defines the default capabilities of the inner compart-
ment. Inside the compartment, these capabilities, COMP.DDC
and ENTRY.PCC become ddc and pcc, respectively. While the
ENTRY.PCC capability can be passed as the first argument
of CInvoke, COMP.DCC must be loaded by the caller prior to
switching (see Fig. 3).

To return from the compartment or grant permission to
invoke functions in the outer layer from the inner layer, fur-
ther capabilities are needed: these are stored in memory by
the Intravisor before CInvoke is called, in a structure that
we call the Affix. They include a sealed ddc of the outer
layer (MON.DDC.sealed). Without this capability, the Intravi-
sor could not change ddc from the inner to the outer layer on
return in order to access the Intravisor’s data. This capabil-
ity can only be fetched from the inner layer—the accessible
memory is restricted by the ddc of the inner layer.

The Affix also includes RET.sealed and OCALL.sealed,
which are two sealed pcc capabilities to entry functions in
the outer layer. The former is used to return from the com-
partment; the latter points to an entry function, which is used
when the inner layer calls a function of the outer layer (e.g.,
print()) and returns to continue execution inside the com-
partment. This is used for the syscall and hostcall interfaces.
Capabilities in the Affix are created by the Intravisor and
stored on the stack and inside per-compartment private stores.

OCALLs share many similarities with ICALLS. The caller
prepares a sealed capability of the return address. After the
end of a function, the callee uses CInvoke and the execu-
tion of the caller continues from the desired address. To-
gether with CInvoke, the callee passes the sealed capability
MON.DDC.seal, which was passed originally inside the Affix.
It is put into ddc after the function returns.
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Fig. 4: Implementation of communication mechanisms

4.3 Communication mechanisms

The data sharing API between cVMs from §3.3 is also based
on capabilities. Data referenced by capabilities, however, can
only be manipulated by capability-aware instructions, which
do not exist in native code. To resolve this issue, we mediate
the interaction between hybrid-cap code and capabilities using
virtual devices called CAP Devices.

The CP_Files, CP_Calls, and CP_Streams primitives are
implemented using character devices, which are created by the
library OS and Intravisor. A program can read/write from/to
these devices, and the corresponding operations are performed
by capability-aware code inside drivers.

This design has two advantages: (i) despite its one mem-
ory copy, it is faster than traditional communication inter-
faces (see §6.5); and (ii) it supports a simple mechanism to
revoke capabilities. A remote cVM can inform the Intravisor
of the revocation, which then requests the library OS to de-
stroy the corresponding CAP Device. To revoke capabilities
in pure-cap code, a Intravisor would have to stop the cVM
execution and destroy capabilities manually.

CP_Files support regular POSIX file operations. In contrast
to ordinary files, the content of CP_Files is not cached by the
page cache, and read/write operations can be unaligned.

Fig. 4a shows the implementation. A donor cVM advertises
one or more memory regions defined by keys, and a recipient
cVM probes the Intravisor for a given key. The Intravisor
verifies the access control list and builds a CAP Device for the
target CP_File (e.g., /dev/cf0). For the donor cVM to revoke
access, it uses its own CAP Device to request revocation,
and the Intravisor, together with the library OS, destroy the
CP_Files (cf0) driver along with its capabilities.

When the recipient cVM issues a cp_file_read() call,
the driver uses capcpy to copy data. For cp_file_read(), it
uses ld.cap to read data from a remote cVM and store it via
sd; a cp_file_write() does the reverse.

CP_Calls. To expose a function, a cVM creates an ICALL
entry and registers it with the Intravisor (see Fig. 4b). The In-



travisor maintains a table of exported functions for each cVM,
called cVM-RPCs. It consists of access control records with
capabilities, name identifiers and permissions. Application
components interact with the cVM-RPCs via CAP Devices, a
management interface (/dev/cf), and the Intravisor.

Any function can be invoked by CP_Calls including ones
inside the library OS. This enables the use of CP_Calls as a
notification mechanism between CP_Files. The donor blocks
execution until the recipient cVM reads data. It makes the
wait() call with the driver, the driver puts the execution
thread in the work queue and waits for the signal. Prior to
blocking, it registers a wake-up CP_Call with the Intravisor.
The recipient cVM, in turn, finishes its operations with the
CP_Files, and notifies the donor via this CP_Call.

These basic operations can be composed to create higher-
level protocols, and a single CAP Device can handle multiple
memory regions. For example, for Redis (see §6.3), we use
a series of read/write operations with a single notification as
well as batched reads with different capabilities.

CP_Streams. In contrast to CP_Files, when sending
data, the destination for CP_Streams is unknown, and
cp_stream_send() only knows the source. Therefore,
one side of the communication pre-registers one or
more destination buffers via cp_stream_recv(), and uses
cp_stream_poll() to block. The remote side uses CP_Call
to enter the remote compartment, atomically fetches one des-
tination buffer from a pre-registered queue of buffers, and
copies into this buffer data via capcpy. It then wakes up the
poll queue and returns.

Hostcall Interface. The Intravisor does not impose restric-
tions on the number of calls in the hostcall interface. For
the LKL library OS, the Intravisor provides 24 hostcalls for
minimal operation. In addition, 2 hostcalls are necessary for
disk I/O, 3 for network I/O, and 10 for the capability-based
communication primitives.

4.4 Capability revocation

Data transfers (capcpy) are performed by the drivers of CAP
Devices without direct involvement of the Intravisor, which
enhances performance and reduces the TCB. This, however,
means that the driver must have access to the capabilities pro-
vided by the donor. We do not consider the driver trusted, thus
it may be compromised by an adversary who obtains access
to capabilities and memory outside the cVM after the end of a
communication session. To mitigate against this threat, cVMs
support a revocation mechanism. It guarantees that, once the
donor cVM revokes capabilities, they are destroyed, and a
recipient cVM cannot use them.

First, cVMs or communication capabilities are not created
with the PERMIT_STORE_CAP permission. Code inside a cVM
thus cannot store capabilities to memory: it can load them,
modify, create new capabilities, but it fails on ST. The commu-
nication capabilities are stored once by the Intravisor, when
the communication is established, and destroyed at the end.

Second, the revoked capabilities in the CPU context are de-
stroyed after a context switch by the host OS kernel.

5 Security Analysis
According to our threat model from §2.3, an attacker can
gain control over a cVM. However, we guarantee that they
cannot escape the compartment or access memory beyond its
boundary due to the CHERI architectural properties (see §2.2):
the ddc and pcc capabilities always apply, are non-extensible,
and are controlled by the Intravisor.

Hybrid-cap code may be vulnerable to attacks that attempt
to break execution flow. An adversary may inject capability-
aware instructions (e.g., CLD/CSD, CInvoke) to access data and
code outside of the compartment. To do this, the adversary
requires capabilities, which they cannot construct from the
available data inside a cVM.

To escape a compartment, an adversary must obtain ap-
propriate capabilities. Each cVM, however, only maintains
a few capabilities: a compartment (i) receives three sealed
capabilities via Affixes, which can be inspected by an adver-
sary but not unsealed to create new capabilities; and (ii) may
receive capabilities used by CP_Files and CP_Streams. These
capabilities can be exploited by an adversary after gaining full
control over the library OS. Since these are data capabilities,
they cannot be used to create code capabilities, which are
needed to escape the compartment. The adversary also can-
not store these capabilities due to their permissions. Finally,
they also cannot be exported outside of the compartment via
the hostcall interface, because the interface does not handle
capabilities and instead corrupts them.

Hybrid-cap code may contain security flaws, but an adver-
sary cannot escape confinement, unless a flaw in the outer
level provides them with unsealed capabilities. In our de-
sign, this is unlikely due to the Intravisor’s small TCB. The
adversary cannot export or import capabilities via the host-
call interface or use them beyond a communication session.
Vulnerable hybrid-cap code cannot abuse host system calls,
escalate privileges or attack other cVMs, because the host OS
kernel ignores all direct system calls from cVMs.

cVMs are intra-process compartments that share micro-
architectural state and rely on the correctness of the CHERI
architecture, which does not have special mechanisms to pre-
vent side-channel attacks. Nonetheless, there are plans for
CHERI to include explicit compartment identifiers (CIDs) in
a future version of the architecture [67]. This will ensure that
sensitive micro-architectural state is appropriately tagged by
each cVM, similar to tagged TLB entries. This can be used to
prevent attacks, such as training the branch predictor by one
cVM to direct speculative execution in another cVM.

6 Evaluation
We now explore the performance of cVMs and the proposed
communication interfaces. We begin with an overview of our
evaluation platforms and workloads (§6.1). We then compare



the performance of applications deployed with cVMs and
Docker containers (§6.2). In §6.3, we validate the efficiency
of inter-cVM communication mechanisms; in §6.4, we ex-
plore the use of cVMs for component compartmentalisation;
and in §6.5, we compare inter-cVM communication mecha-
nisms with existing OS mechanisms. Finally, §6.6 explores
the deployment performance of cVMs and Docker containers.

6.1 Experimental environment

The CHERI architecture is under active development and,
while ARM’s Morello board with CHERI support has been
announced [9], it is unavailable at the time of writing. There-
fore, we use two evaluation platforms: (1) a single-core
FPGA-based CHERI implementation [21]; and (2) a multi-
core SiFive RISC-V implementation without CHERI support.

FPGA CHERI. We synthesize an FPGA image from DARPA’s
CHERI FETT program [22] (agfi-026d853003d6c433a),
that ships with a single-core RISC-V64 CHERI system based
on the FLUTE core (5-stage, in-order pipeline, running at
100 MHz) [49], and execute it on AWS F1 [8]. We use
CheriBSD as the host OS kernel, compiled as a hybrid-cap
system with LLVM v11.0.0 and cheribuild [16].

The FPGA implementation enables a quantitative evalu-
ation of cVMs, but has limitations: (i) it has a single-core
CPU with low clock frequency; (ii) its peripheral devices,
in particular storage devices, are emulated by the host; and
(iii) DRAM latency is disproportionately low compared to the
CPU clock speed. As a consequence, we cannot realistically
execute typical cloud workloads that are memory- and I/O-
bound and use multiple CPU cores. We also cannot eliminate
system noise by pinning tasks to separate cores.

SiFive RISC-V. To avoid the abovementioned limitations,
we also evaluate cVMs on a HiFive Unmatched RISC-V
board [30], which has 4 RISC-V64 (dual-issue, in-order)
CPU cores running at 1.2 GHz. The CPU does not have
CHERI support, and we instead replace all CHERI instruc-
tions with their native RISC-V versions. Our applications ex-
ecute on Ubuntu v20.04 with Linux v5.11.0 and the RISC-V
Docker port [48] with Alpine containers [7]. Our IPC micro-
benchmarks execute on FreeBSD 14, as the FPGA version
uses CheriBSD, and we run them on both platforms.

This approach allows us to execute realistic cloud applica-
tions. We run CHERI-equivalent code and data paths while re-
maining compatible with existing RISC-V platforms (e.g., by
replacing capability loads/stores with ordinary ld/st instruc-
tions, CInvoke with jr, etc.). Note that security is therefore
not enforced.

Application workloads. We explore cVMs using several
cloud applications and micro-benchmarks to evaluate their
performance and isolation requirements:

NGINX/Redis (§6.2). This is a two-tier microservice deploy-
ment that evaluates the YCSB benchmark [72] using the NG-
INX [43] web server and the Redis [46] key/value store. NG-
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Fig. 5: Control/data flow in multi-tier deployment (NGINX/Redis)

INX acts as an API gateway and translates REST requests into
Redis queries. When co-located, these services have a substan-
tial amount of communication between them. We demonstrate
that the cVMs interfaces, CP_Files and CP_Streams, signifi-
cantly reduce overhead, using the SiFive platform to compare
cVMs against a deployment using Docker containers [40].

Redis (§6.3). We execute a single-core Redis instance [46] and
measure the latency of fixed-size GET and SET operations,
comparing sockets and the equivalent cVM interface with
CP_Streams. This experiment validates our previous results
by also comparing the FPGA and SiFive environments.

Python/Library (§6.4). We measure the cost of using cVMs to
isolate the components of a simple cryptographic application
in Python, by deploying the Python runtime [58] and the
PyCrypto cryptographic library [1] in mutually isolated cVMs
that use the CP_Call and CP_File interfaces to communicate.
This experiment runs on the FPGA environment.

6.2 Multi-tier deployment with NGINX/Redis

First, we compare the benefits of using cVMs when co-
locating communicating components, compared to a tradi-
tional deployment with Docker containers [40].

The computational limitations of our FPGA and SiFive plat-
forms make it unfeasible to execute a complete microservice
benchmark suite such as DeathStarBench [26]. Instead, we
deploy a representative YCSB benchmark [72] (workloadb;
1 KB records; read/update ratio of 95%/5%) on the SiFive
platform with two-tiers: the NGNIX web server [43] acts
as an API gateway that redirects incoming HTTP requests
to the Redis key/value store [46], which acts as a cache for
frequently used data. We use wrk2 [6] to generate NGINX
requests over a 1 GbE network, measuring the latency of
different configurations (10 connections; 4 I/O threads).

The application components benefit from co-location due
to the frequent interaction between the (NGINX) API gateway
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Fig. 6: Multi-tier deployment performance (NGINX/Redis)

and its (Redis) cache. Fig. 5 compares the Docker and cVM
deployments. Docker incurs multiple data copies between
the components and the TCP/IP network stacks. As Fig. 5a
shows, Redis copies values into a send buffer that is passed to
the TCP/IP stack, which NGINX copies into an output buffer
that is, in turn, passed to the client’s network stack (for a total
of 4 copies, including the kernel’s TCP/IP stack).

In contrast, cVMs reduce the number of copies. Fig. 5b
shows that the CP_Stream primitive requires only 2 copies:
Redis values are always copied directly into NGINX’s output
buffer. To support this optimization, NGINX and Redis must
replace their use of sockets with CP_Streams. NGINX regis-
ters the output buffer with a CP_Stream, and the CP_Stream
write in Redis uses capabilities to copy data directly into the
output buffer, which NGINX can then send to the client.

Fig. 6 shows the median and 95th percentile latencies for
the 4 YCSB queries under various throughput regimes, com-
paring the baseline Docker deployment with cVMs. We can
see that cVMs are more efficient: they have lower latencies
in all cases (20–40% for median latency), and substantially
higher throughput, with send latencies below 5 ms (33–50%
for median latency).

Conclusion. In a typical deployment with multiple applica-
tion components, cVMs can achieve isolation while lowering
latencies and increasing throughput compared to containers.
This performance gain is due to a reduced number of memory
copies (via CP_Stream), using fast calls to the capability-
hiding TCB in cVMs (via CP_Call within CP_Streams). Fur-
thermore, cVMs come with a smaller TCB compared to con-
tainers. We also expect cVMs to outperform VMs because
of VMs’ higher overheads caused by memory virtualization
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Fig. 7: Latency CDF for Redis (platform validation)

(especially for memory-bound applications) and communi-
cation mechanisms (e.g., extra data copies by the guest OS
and/or hypervisor, or cross-VM copies via PCIe with directly
assigned devices).

6.3 Platform validation with Redis

We now validate our results by comparing the FPGA and
SiFive platforms. We use Redis with a single connection
that measures the latency of 1000 GET or SET operations
with fixed-size keys (1 byte) and values (100 bytes). We use
a simple client application that is co-located with the Redis
instance. The baseline system uses separate processes and
TCP/IP sockets; we use separate cVMs for each application
and CP_Stream for communication (similarly to §6.2).

Fig. 7 shows the latency distribution of the GET and SET
requests for all configurations. The results indeed validate
our observations from the multi-tier YCSB benchmark in
§6.2. cVMs exhibit lower latencies with less deviation on
both platforms, compared to a native system with TCP/IP
sockets: 90% of cVM requests take 14–19 ms; the baseline
takes 19–35 ms on the FPGA platform. The SiFive platform
supports the same conclusions, albeit with different absolute
numbers. This is because the FPGA device runs at a lower
clock frequency, and two processes must be co-scheduled on
the same core (with both the baseline and cVMs).

Conclusion. The CP_Stream primitive in cVMs shows better
performance on both the FPGA and SiFive platforms, achiev-
ing lower communication latencies across the whole through-
put spectrum. We thus conclude that our end-to-end evaluation
in §6.2 is representative of how cVMs would perform on a
real-world CHERI-enabled CPU. In §6.5, we re-validate this
by comparing cVMs against IPC primitives on all platforms.
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6.4 Process compartmentalization with Python library

Next, we explore the overhead of compartmentalizing a shared
library with cryptographic operations in Python. In this case,
we harden the security of a cloud application by mutually
isolating the Python runtime and a native cryptographic mod-
ule, PyCryptodome [1]. By using separate cVMs, we can
safeguard the application against malicious interference by
package managers [59], or protect the library against unau-
thorized access to its cryptographic keys [4].

Python creates CP_Files for the input/output buffers that
it passes to the PyCryptodome library, and it uses CP_Call
to transfer control to the library, using the CP_Files as argu-
ments. (The original version instead passes raw buffer point-
ers.) PyCryptodome then uses these CP_Files to read its input
and encrypt/decrypt it into the output buffer(using AES-128.
Finally, it uses CP_Call to return execution to Python.

Fig. 8 shows the average throughput for encryption/decryp-
tion with different buffer sizes for cVMs, using the FPGA
platform, and the baseline (non-isolated) system. Note that
the low absolute numbers and variance (shown as shaded
areas) are due to the platform limitations (single core), de-
scribed in §6.1. The results in §6.3, however, show the same
trend on a platform without these limitations.

We observe that cVMs have a negligible performance im-
pact. Throughput grows until its peak with 32 KB buffers,
where the encryption/decryption rates of cVMs are only 7%
and 12% lower than the baseline, respectively. This amounts
to 0.79 MB/s and 0.96 MB/s for the baseline, and 0.74 MB/s
and 0.85 MB/s for cVMs, respectively. As expected, these
overheads become even smaller as the buffer sizes grow.

Our experiment shows that CP_Call and calls into the In-
travisor are reasonably efficient. For reference, the mean ex-
ecution time for the AES cryptographic code with a 16 byte
buffer is comparable to the time for a C binding invocation in
Python. At such sizes, CP_Call invocations account for half
of the overhead, which is at 97% and 101% for encryption
and decryption, respectively, only slightly above a C binding
invocation. The overhead reduces to 7% with larger buffers.

Conclusion. cVMs is effective at hardening applications by
isolating some of their components, such as shared libraries.
The required changes are minimal and do not change the se-
mantics of the application interfaces, because the CP_File and
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Fig. 9: Comparison of communication mechanisms

CP_Call primitives follow well-understood memory copy and
function call semantics. Note that CP_Streams are constructed
on top of these. The cost of this extra isolation is small, even
for small buffers, and it becomes negligible as the amount of
work performed between cVMs-enabled operations increases.

6.5 Inter-cVM communication

We compare cVMs to other IPC primitives in a baseline sys-
tem, and re-validate our performance results across our two
platforms (FPGA and SiFive). The baseline system uses two
threads in a single process instead of cVMs; otherwise the
FPGA implementation shows low TLB performance. We
measure the performance of CP_Files and CP_Streams, pipes
(PIPE), unix sockets (UNIX), TCP/IP sockets (TCP) and a com-
bination of mmap+memcpy+munmap (MAP+CPY). For compari-
son, we also consider a raw local memcpy (MEMCPY; 4 instruc-
tions; aligned data; double-word load/store operations) as an
upper performance bound. We do not evaluate CP_Calls due
to the lack of an equivalent operation in the baseline kernel.

Fig. 9 shows the results under different buffer sizes on both
the FPGA and SiFive platforms. First, the peak performance
of MEMCPY on the FPGA platform is limited and fluctuates
due to the TLB size and simple indexing function of its Flute
CPU—these issues carry onto the other primitives, too.

The overhead of CP_Files is 6% compared to MEMCPY on
the FPGA platform and negligible for SiFive; it significantly
outperforms all baseline IPC mechanisms. This is because we
do a simple cross-cVM memcpy using CHERI’s ld.cap and



cincoffsetimm instructions to perform the memory access
and to increment the capability offset, respectively. The results
also show that domain transitions via CInvoke are efficient,
as every CP_File operation requires one capability call and
its return (user→library OS, and back).

All baseline IPC primitives have 2× overhead or more,
because they perform more data copies than MEMCPY and
CP_Files, closely following ideal performance. Interestingly,
CP_Streams have worse performance on the FPGA platform,
despite the lower number of copies, whereas they show per-
formance close to CP_File on the SiFive platform. This is
because CP_Streams offer an asynchronous communication
primitive in which two concurrent processes time-share a sin-
gle CPU core on the FPGA platform when using the cVM
API. For the same reason, all IPC primitives have lower rela-
tive performance on the FPGA platform compared to SiFive.

UNIX sockets are the closest to CP_Streams, because both
are bi-directional, support more than two parties, and have
sequenced packet modes. They exhibit only 10% and 54%
of the performance of CP_Streams for 4 MB buffers on the
FPGA and SiFive platforms, respectively. Here, the impact of
MMU manipulation can be seen: the combination of memory
copies and remapping reaches 3.4 MB/s and 89 MB/s on the
FPGA and SiFive platforms, respectively. This mechanism
lacks a notification primitive, and, compared to CP_Files, it
is 15× and 1.5× slower on each platform, respectively.

Conclusion. For a multi-core CPU architecture with CHERI,
we would expect the results to be close to those of the SiFive
platform, with a minor performance decrease, similar to the
difference between memcpy and CP_Files in Fig. 9a. This
potential performance degradation is significantly smaller
than the measured improvements: they range between 2×
for the multi-core SiFive platform against the best baseline
primitive, and 2× to an order of magnitude for the single-core
FPGA platform, depending on the mechanism and buffer size.

6.6 Deployment time

We compare the deployment time of cVMs with that of
Docker containers. We create a Docker image with a sim-
ple “hello world” program and measure the time to execute it
using a cVM and a container. For the cVM, we use a debug-
free binary with the LKL library OS and the musl standard C
library (≈30 MB in size) and a 10 MB application disk image.
We measure two intervals, averaged over 5 runs: from the
start until the output of the program, and until its termination.

On average, the Docker container requires 1.9 s to produce
the output, and 2.8 s until container termination. The times
for the cVM deployment are comparable, which demonstrates
their low overhead: 1.7 s and 2.6 s, respectively.

7 Related Work

Intra-process compartments. Various projects apply intra-
process isolation or introduce isolation primitives. Cubi-
cleOS [52] isolates components of a user-level library OS

using Intel MPK; unlike cVMs, it cannot readily and effi-
ciently support legacy POSIX calls. Shreds [20], Janus [28],
Erim [60], Hodor [29], and Donkey [53] use page tag-based
isolation (ARM Domains, Intel MPK, or a custom RISC-V
implementation) to implement protection domains and com-
munication. In cases in which tags can be manipulated directly
by user code, e.g., using MPK’s wrpkru instruction, the sys-
tem requires a trusted toolchain or program verifier, unlike
cVMs. Page tags also limit the number of compartments and
communication buffers, as well as their granularity, which is
not a problem for cVMs with capabilities.

NaCl [73] and WASM [27] face similar problems, as they
require obsolete Intel segmentation and/or proof-carrying
code that must be verified by a toolchain or loader. Conf-
LLVM [12] also uses MPK to isolate code inside a process,
but only supports two domains with asymmetric data ex-
change: trusted code can only interact with untrusted code.
cVMs do not limit the number of protection domains, and
inter-cVM communication is symmetric.

LwCs [37] are an OS abstraction for intra-process protec-
tion, but they have page granularity, and switching domains
comes at the cost of switching page tables. XFI [24] provides
fine-grained memory protection and control flow integrity by
extending software-based fault isolation (SFI), but SFI incurs
runtime overheads and is error-prone due to its complexity.

Compartmentalisation frameworks. cVMs allow the de-
ployment of isolated shared libraries. Prior work proposes
frameworks for such compartmentalization: Wedge [11] iden-
tifies code parts that can be isolated; PrivTrans [13] is a
source-code partitioning tool that separates trusted and un-
trusted components; Glamdring [35] does the same for trusted
execution. These approaches are orthogonal to cVMs, and
they could be used to generate application components.

Trusted execution. Intel SGX [31, 38, 39] provides enclaves
as an intra-process isolation primitive. Enclaves are part of
processes and cannot be accessed by privileged software or
other enclaves. Frameworks, such as Graphene-SGX [19],
SGX-LKL [45], Panoply [55], and Spons and Shields [51],
deploy programs inside enclaves together with a library OS.
Such designs decrease the potential impact of the untrusted
OS kernel on enclaved software.

cVMs also use a library OS and share design features with
these frameworks, but provide effective data sharing that can-
not be implemented using enclaves. Enclaves can only share
untrusted memory and cannot access each others memory,
which is necessary for fast inter-cVM communication. Since
enclaves do not trust the host, they must use encryption, im-
pacting performance [50]. Therefore, an interface similar to
CP_Files cannot be implemented with enclaves.

Library OSs can be used to de-privilege OS kernel compo-
nents or create user-level containers. µKontainer [57] offers
containers based on the LKL library OS [36]; Williams et
al. [68] show that library OSs can be executed efficiently on



top of processes instead of bare VMs; X-Containers [54] offer
a cloud platform using library OSs. cVMs share similarities
with user-level library OS-based containers but enhance them
with strong isolation and a secure communication mechanism
using capabilities.
Machine and process isolation. As discussed in §2.1, tradi-
tional process-based isolation has shortcomings in terms of
performance and TCB size when compared to cVMs. One
could envision using virtualization and Intel’s vmfunc to
strike a balance between shared TCB size and communica-
tion performance [34]. Virtualization introduces well-known
I/O and memory translation overheads, which are costly in a
cloud stack, but are not present in cVMs.

8 Conclusions
cVMs are a new VM-like abstraction for cloud applications
that use memory capabilities for secure isolation. cVMs in-
clude a library OS to minimize how much of the cloud envi-
ronment is within the TCB. Multiple cVMs safely share an
address space, allowing more efficient interaction of applica-
tion components than when crossing current VM/container
boundaries. Their asynchronous read/write and synchronous
call interfaces allow capability-unaware, legacy code to run
within cVMs.
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