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Abstract
Cloud environments host many tenants, and typically there
is substantial overlap between the application binaries and
libraries executed by tenants. Thus, memory de-duplication
can increase memory density by allocating memory for shared
binaries only once. Existing de-duplication approaches, how-
ever, either rely on a shared OS to de-deduplicate binary ob-
jects, which provides unacceptably weak isolation; or exploit
hypervisor-based de-duplication at the level of memory pages,
which is blind to the semantics of the objects to be shared.

We describe Object Reuse with Capabilities (ORC), which
supports the fine-grained sharing of binary objects between
tenants, while isolating tenants strongly through a small
trusted computing base (TCB). ORC uses hardware sup-
port for memory capabilities to isolate tenants, which per-
mits shared objects to be accessible to multiple tenants safely.
Since ORC shares binary objects within a single address
space through capabilities, it uses a new relocation type to
create per-tenant state using thread-local storage when load-
ing shared objects. ORC supports the loading of objects by an
untrusted guest, outside of its TCB, only verifying the safety
of the loaded data. Our experiments show that, compared to
hypervisor-based de-deduplication, ORC achieves a higher
memory density with a lower performance overhead.

1 Introduction

In data centers, memory density determines how many appli-
cations can be deployed on machines with a given memory
amounts. It is a critical factor impacting the cost of data cen-
ters, as memory leads to significant capital and operational
expenses [3]. The problem of achieving high memory density
is expected to worsen as applications move to larger working
set sizes [20, 36], and machines encompass more memory to
satisfy these applications [10].

Higher memory density can be achieved by de-duplicating
memory pages that have the same contents across the constel-
lation of virtual machines (VMs), containers, and processes

running on machines. This exploits that, in practice, the same
OS is used across VMs, the same applications across contain-
ers, and the same libraries across processes [7, 31, 41, 61].

We observe that there is a trade-off between the efficiency
of de-duplication, and the achievable level of isolation be-
tween tenants. Containers and processes can achieve near-
perfect memory density when they use a shared OS with mech-
anisms in binary loaders that explicitly identify de-duplication
opportunities, e.g., through dynamic shared libraries [24, 25].
The high efficiency of de-duplication is due to the shared OS,
which has visibility of memory at a binary object level. Cloud
environments, however, require stronger isolation between
tenants, i.e., by using VMs without a shared OS.

In contrast, hypervisors implement strong isolation at the
instruction set architecture (ISA) level, moving OS-level se-
mantics to the guest OSs. While this removes complexity
from hypervisors, allowing them to provide strong isolation,
it comes at the cost of losing semantic information about
how memory pages are used by VMs for binary object al-
location. Memory de-duplication must thus occur at a page
level: the hypervisor compares page contents blindly across
VMs and performs expensive page table manipulations when
de-duplicating, both of which result in performance and tail
latency overheads [8, 39]. While hypervisors can accept de-
duplication hints from VMs to reduce the number of scanned
pages [1, 31, 40, 51], this does not eliminate overheads.

Our goal is to design a new software stack for cloud envi-
ronments that combines high memory density with low over-
head by explicitly sharing memory at a binary object level,
while providing strong isolation guarantees between tenants
an relying on a small trusted computing base (TCB).

We describe Object Reuse with Capabilities (ORC), a
new layer in a cloud stack that extends a binary program for-
mat such as ELF [9] to eliminate de-duplication overheads
across tenants with strong isolation and small TCB. ORC
enables isolation domains to share binary objects, i.e., pro-
grams and libraries, explicitly. For strong isolation, ORC only
shares immutable and integrity-protected objects. Object shar-
ing is also always explicit, which eliminates the performance



overheads that today’s hypervisors introduce with blind page
de-duplication. To keep ORC’s TCB simple and small, ob-
ject loading is performed by untrusted code, e.g., the guest
OS. ORC extends the compiler and binary format to allow
ORC-enabled objects to be shared at load time.

To design and implement ORC, we make the following
technical contributions:

(1) Efficient isolation with sharing. Current cloud stacks are
designed around the use of page tables to control isolation and
sharing, but page table manipulation is expensive: inter-VM
sharing requires exits into the hypervisor to modify nested
page tables [60]; de-duplication must temporarily downgrade
page table entries, which can severely affect tail latency [54].

Instead, ORC uses hardware support for memory capabili-
ties [14, 16, 34, 64, 66] to isolate domains into compartments.
Memory capabilities grant access to memory regions, can be
copied between memory and registers, and are protected by
hardware. They have been shown to be a building block for
isolating cloud tenants with a small TCB by supporting an
OS instance per compartment, as in today’s VMs [49].

By using capabilities, ORC isolates multiple compartments
within a single address space, while being able to share binary
objects between compartments with virtually no overhead.
ORC thus uses memory capabilities to isolate compartments
within a single page table, and to enable them to safely and
efficiently share binary objects in a controlled way.

(2) Sharing at object level. Current binary formats, memory
layouts, and loaders are designed for sharing across address
spaces. After an object is loaded into memory, formats such
as ELF [9] assume that global variables are mapped at fixed
addresses relative to the code. This is not a problem with per-
process page tables, because an object’s global variables are
mapped to different physical addresses in each process. ORC
uses a shared page table, which means that global per-process-
and-object variables must be handled differently when sharing
pages directly across compartments.

As a solution, ORC introduces a new type of variable relo-
cation for compartment-local storage (CLS). ORC maintains
absolute and code-relative references for code and read-only
data, and the area for per-thread variables, i.e., thread-local
storage (TLS). It also adds a new mechanism for per-process
variables that replaces the traditional global variable refer-
ences. This allows compartments to share immutable contents
directly, i.e., code and read-only data, while still having per-
process-and-thread state that is isolated across compartments.
Under the hood, ORC allocates writable, global variables into
each compartment’s CLS, and loads objects to refer always
to the executing compartment’s CLS (similar to TLS).

(3) Untrusted loading of shared objects. When objects are
shared across isolation domains, loading is typically con-
trolled by the TCB. This object loading complexity bloats the
TCB: it requires access to I/O devices, must load binary data
into memory, and adjust memory contents to reflect load-time

addresses, e.g., through relocations. Such functionality spans
user-level, kernel-level and device driver code, and moving it
into the TCB exposes a wide attack surface.

ORC avoids this issue by allowing untrusted compartments
to handle most of the object loading process (i.e., storage
and file system I/O, data processing and copying, and mem-
ory contents adjustments). When an object is requested for
the first time, the untrusted compartment manages loading,
and requests the TCB to register an immutable and integrity-
protected version of the newly-loaded object. ORC’s TCB
verifies that the loaded object cannot be used to attack fu-
ture compartments that reuse the same object, and makes it
available to future compartment object load requests. The
verification process is simple: it only requires (i) scanning the
memory contents of the registered object to calculate a hash
(used in future load requests to ensure object integrity), and
(ii) ensuring that any capabilities it contains stay within the
object and ensure its immutability.

Our prototype implementation of ORC includes a new
compiler pass and loader support for compartment-local stor-
age (CLS), a small TCB that manages compartments and
enforces the properties for secure sharing of binary objects,
and a port of a library OS and C standard library, executing on
each compartment, that support various applications in ORC.

We evaluate ORC using three workloads: (1) we deploy a
set of real-time video transcoding instances and compare dif-
ferent mechanisms for increasing memory density, showing
that ORC performs equivalently or better than KSM while
having a lower performance overhead; (2) we also use an
in-memory key-value store to evaluate the impact of de-
duplication mechanisms on tail latency, demonstrating the
higher overhead of runtime mechanisms; and (3) we mea-
sure the performance cost of decomposition of applications
into sharable compartments, show the scalability of ORC’s
isolation mechanism.

2 Increasing Memory Density in the Cloud

Memory density in cloud computing defines how efficiently
the cloud provider is utilising memory. Improving memory
density is crucial for providers, because memory is often the
main resource that determines how many tenants can be ac-
commodated [33]. While providers want to exploit as many
memory-sharing opportunities as possible, they must ensure
that tenants and their workloads remain isolated. We first dis-
cuss different approaches and their associated challenges for
page-based isolation and memory sharing (§2.1). After that,
we provide background on memory capabilities, which can
act as an isolation mechanism without some of the drawbacks
of page table-based isolation (§2.2).



2.1 Page-based memory sharing and isolation

Cloud tenants expect strong isolation for their applications and
data from that of other tenants, while providers seek ways to
minimise total physical memory footprint by finding shareable
memory across tenants. The two goals are at odds with each
other: the mechanisms we have for efficient memory sharing
are, in essence, reducing the level of isolation between tenants.
With today’s isolation technologies, we must choose between
containers [35, 38] and VMs [2, 30, 61], which in turn dictate
the mechanisms used for memory sharing.

(1) OS-managed memory sharing. Container-based deploy-
ments rely on a shared OS for isolation. The OS provides
user-space abstractions for sharing memory, and a loader can
explicitly map the same binary object (e.g., dynamic library)
across multiple processes. The OS has thus enough user-level
information to de-duplicate object contents at load time, shar-
ing memory across containers without additional runtime
overhead.

Efficient memory density in containers comes at the ex-
pense of isolation. Containers are not considered as strongly
isolated compared to VMs, because they are managed by a
shared OS kernel. Such a large, shared TCB is too large and
complex to eliminate all vulnerabilities [11], which can be
exploited by a malicious container to access information from
other containers and tenants [12, 13].

(2) Hypervisor-managed memory sharing. VMs offer
stronger isolation compared to containers: they offer a nar-
row virtualization interface at the level of the ISA, with a
potentially small TCB (the hypervisor) that makes security
vulnerabilities less likely [29, 57]. To share memory between
VMs, typical hypervisors such as ESX [61] and KVM [30]
identify and eliminate redundant memory pages at runtime.
The hypervisor lacks visibility into the semantics of user-
space applications within each VM, so it must periodically
scan the memory of each VM to find pages with identical con-
tent, and remap these guest physical pages across VMs into
the same host physical page to de-duplicate their contents.

A popular implementation of this approach is Linux ker-
nel same-page merging (KSM) [1], which the Linux KVM
hypervisor leverages to eliminate duplicate memory pages
across VMs. KSM periodically scans physical memory to
find identical pages, and deduplicate them by mapping a
single physical copy to multiple virtual locations. It also
marks those pages as copy-on-write (COW), allowing the
shared page to be duplicated before any modifications are
made. KVM computes a hash of page contents, and stores it
in red-black trees to support content-based searches to find
page duplicates. KSM uses red-black tree structures to search
for memory pages with identical content. For efficiency, KSM
keeps two such trees with page hashes: (1) a stable tree with
already-shared pages, which are write-protected to support
copy-on-write; and (2) an unstable tree with pages that are
not shared but whose contents’ hash has been computed. For

efficiency, KSM utilizes two separate trees: (1) a stable
tree that contains already-shared pages, and (2) an unstable
tree that represents pages not shared but scanned previously.
During the scanning process of a memory page, KSM first
searches for a match in the stable tree. If the page is found
in the stable tree, the redundant copy is eliminated through
merging. If there is no match in the stable tree, KSM checks
whether the page has been modified since the last scanning
round by comparing checksums. If the page has not been
modified, it is considered a suitable candidate for searching
in the unstable tree. If the page is found in the unstable tree,
merging occurs, and the shared page is inserted into the sta-
ble tree. Otherwise, it is inserted into the unstable tree as
a scanned page. The unstable tree is also reinitialized af-
ter each scanning round. KSM periodically scans pages not
in the stable tree, and computes their contents’ hash to find
new de-duplication candidates (pages must be temporarily
write-protected to compute their hash). If the hash is already
present in the stable tree, the page is de-duplicated. If the
hash is already present in the unstable tree, for the same page,
the page is promoted into the stable tree. If the hash is already
present in the unstable tree, for another page, both pages are
de-duplicated and promoted into the stable tree. Otherwise,
the page is added to the unstable tree. KSM flushes the
unstable tree every time it finishes scanning all pages.

Despite the advantages of hypervisor-based isolation, its
memory de-duplication mechanisms introduces several chal-
lenges: (1) blindly scanning page contents and manipu-
lating their permissions comes with an overhead on aver-
age performance and tail latency [8, 39, 54]; (2) hypervi-
sors lack the visibility of a container’s OS to application-
level load-time semantics, and therefore must rely on page
scans; (3) the use of larger pages in the cloud improves
memory performance [27, 47], but can reduce memory den-
sity by making memory de-duplication less frequent; and
(4) the use of copy-on-write on de-duplicated pages has been
shown to be vulnerable to timing side-channel attacks across
VMs [26, 45, 58, 59, 67, 69].

2.2 Isolation with memory capabilities

Using paging for both translation and protection introduces
performance challenges in traditional virtualized environ-
ments, which are tied to the management granularity, as de-
scribed above. In contrast, memory capabilities offer an alter-
native memory protection mechanism that is more flexible,
robust, and efficient to manage. At the same time, memory
capabilities can co-exist with the use of paging for transla-
tion [4, 6, 18, 19, 64].

Memory capabilities replace integer-type pointers with pro-
tected capabilities. Unlike integer pointers, capabilities pro-
vide information to enforce accesses within a given address
range and access type. Capabilities can thus be used to par-
tition a single address space into multiple, isolated memory
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Fig. 1: Using capabilities to create compartments

regions, therefore allowing the use of a single page table
across isolation domains.

Memory capabilities. The CHERI [62] architecture provides
a modern implementation of memory capabilities. It intro-
duces new instructions, registers, and other hardware primi-
tives to support capabilities. CHERI enforces three properties:
(1) provenance validity ensures that a capability cannot be
created from an arbitrary sequence of bytes, and can only
be derived from another capability; and (2) capability in-
tegrity ensures that capabilities in memory cannot be modi-
fied. One-bit validity tags distinguish pointers from integers;
and (3) monotonicity ensures that a capability’s permissions,
including its bounds, cannot be expanded but only reduced.

CHERI can thus replace all pointers in an application with
capabilities to precisely enforce the permissions of each mem-
ory access. This is known as the pure-capability mode (or
pure-cap for short). Pure-cap enables spatial memory safety
and fine-grained memory sharing, but requires ABI changes
and other source code changes, e.g., to pointer-integer casts.
CHERI also support a hybrid mode, in which code uses legacy,
capability-unaware instructions. These are checked through
a pair of implicit registers, the program-counter and default
data capabilities, for code and data accesses, respectively.

Code can use the capability-aware CInvoke instruction to
perform function calls across isolated domains, carrying the
necessary capability arguments across domains.

Capability-based compartmentalization. Capabilities offer
a good mechanism to isolate software components, and their
flexibility and management efficiency can eliminate the over-
heads of page-based sharing. CAP-VM [49] proposes a new
capability-powered compartmentalization mechanism for the
cloud, which brings together some of the benefits of VMs
and containers. Each capability compartment (cVM) has its
own separate address sub-range within a shared address space,
and executes programs in CHERI hybrid mode. cVMs are

managed by a shared TCB component called the Intravisor,
similar to a VM hypervisor. The Intravisor is a host process
that starts cVMs as one or more host threads within its ad-
dress space, using the default capabilities in CHERI’s hybrid
mode to mutually isolate cVMs. In turn, each cVM has its
own library OS instance to support private namespaces and
program execution environments.

Fig. 1 shows how capabilities can be used to create multiple
capability compartments, potentially sharing binary objects
across compartments. An Intravisor, or some other compart-
ment TCB, can give each compartment the capabilities needed
to jump into/call code in other compartments, effectively shar-
ing binary objects if two or more components have capabili-
ties to the same object. The figure also shows how capabilities
can be used to request Intravisor operations too (hostcalls at
the bottom).

Note that the above figure suggests that it is possible to
share binary objects efficiently by compiling software com-
ponents using CHERI’s pure-cap mode. This is not possible
today, because: (1) the Intravisor has no explicit information
about the extent and shareability of objects; and (2) exist-
ing storage formats and memory layouts of pure-cap binary
objects assume that each compartment has its own page table.

In particular, existing binary object standards, such as
ELF [9], assume that global variables are reachable through
constant addresses relative to code locations. If we use a per-
process (or compartment) page table, we can physically share
non-writable pages across processes, while having separate
contents for writable pages. This is no longer the case if we
use a single page table, which is the only way to avoid the
page table management overheads identified above.

2.3 Efficiency and security considerations

The goal of this paper is to provide efficient memory density
in cloud environments. To achieve this goal, our solution must
fulfill the following requirements:

(1) Strong isolation with a minimal TCB: Memory sharing
is needed for density, but it should not undermine isolation
between tenants. We must thus reduce the attack surface by
providing a small TCB with a narrow interface to manage
isolation and sharing for density.

(2) Low performance overhead: The sharing mechanism
should not incur high overheads in terms of CPU cycles, and
it should not prevent the system from performing other opti-
misations, such as using large pages to reduce TLB misses.

(3) High sharing precision: The sharing mechanism should
support arbitrary object sizes and have visibility into the in-
tended object sharing semantics. An ideal solution should not
miss opportunities to share, nor unintentionally share mem-
ory that soon diverges into different contents. This can be a
problem with KSM, because it blindly de-duplicates pages
solely based on content and access frequencies.
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Note that sharing memory can be used as an unintended side
channel across compartments. This is an intrinsic trade-off
between memory density and isolation that all cloud providers
face, regardless of the employed mechanism. Given the impor-
tance of side channels, there are proposals to avoid or mitigate
them at both software and hardware levels [23, 44].

The sharing of binary objects in this work is limited to
side channels on accesses to (i) code and (ii) read-only data
only. Since the user controls which binary objects to share
and when, they can decide on a suitable policy for trading off
between memory efficiency and side-channel resistance. We
leave the exploration of such policies to future work.

3 Design of the ORC system

In this paper, we exploit the capabilities implemented by the
CHERI architecture [62] to implement both software com-
partmentalization and efficient binary object sharing.

ORC makes the sharing of binary objects explicit, so that
the use of expensive physical memory can become denser
without the performance overheads of de-duplication. Fig. 2
shows an example of this with two applications (app1 and
app2) that use multiple object binaries that are identical across
VMs, including the OS kernel (database, libC and kernel).

Fig. 2a shows our baseline system, in which each applica-
tion is deployed in separate VM for maximum isolation. In
this case, the hypervisor incurs typical overheads of memory
de-duplication.

In contrast, Fig. 2b shows the approach taken by ORC.
Programs are isolated into compartments – shown as light
yellow boxes – which contain all the needed objects (app1,
app2, database and libC) as well as their own OS kernel
instance (kernel). ORC compartments are deployed using
a shared page table, and obtain access to non-overlapping
addresses using memory capabilities. Both the page table and
capabilities are controlled by the TCB, shown as Intravisor.

Compartments are strongly isolated: each has its own OS
instance, and are restricted to access non-overlapping mem-
ory address ranges. Sharing objects across compartments is
supported through capabilities, which provide access to the
object’s contents (light red boxes with objects database, libC
and kernel). If possible, the ORC program loader requests
capabilities from the Intravisor for an object that has already
been loaded by another compartment. Otherwise, the compart-
ment loads the object itself and registers it with the Intravisor,
so that future compartments can reuse it.

To make object sharing across compartments safe, the In-
travisor must ensure that a shared object cannot be modified
after registration. This, of course, implies that the registering
compartment cannot change the object after registering it, but
also that shared objects cannot contain writable state. We indi-
cate this with the dotted lines in Fig. 2b: each shared object is
recompiled to have per-compartment instances of any writable
state. We refer to this as compartment-local storage (CLS).

As a result, objects can be efficiently shared across domains,
while retaining strong isolation down to the level of separate
OS instances. Furthermore, sharing is part of the cloud soft-
ware stack, ensuring that the memory density benefits do not
come at the expense of performance overheads.

3.1 Architecture overview

Fig. 3 shows the high-level architecture of ORC. Programs
execute within a compartment (shown as yellow boxes) and
have statically and dynamically-linked objects, as usual.

1 All potentially shareable objects, including the main pro-
gram, must be compiled with our ORC-specific extensions.
These extensions move all the writable state of an object
into the CLS, i.e., all global writable variables, which is sup-
ported by extending the binary storage format and the loader
(technical details below). The figure includes an example
with three global variables, a constant, a thread-local, and
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a writable variable (var0, var1 and var2, respectively). Of
the three variables, only var2 is moved to the CLS, because
thread-local variables are already stored in a per-thread data
structure (the TLS [17]).

Note that none of these elements are part of the TCB –
compartments can still uses private copies of objects without
the ORC extensions, and only references to global writable
variables are changed to point to the CLS. Heap allocations
are supported as usual, which results in private allocations to
each compartment.

Each compartment has its own, untrusted loader (ld.so in
Linux systems). The compartment itself therefore loads the
required objects by reading them from storage and parsing
their contents according to the binary format (e.g., ELF). 2

When the loader finds an ORC shareable object, it allocates
the necessary memory to load the object into memory and
prepares it for execution.

3 After loading, the compartment calls the Intravisor’s
orc_register operation to safely register the loaded object
for future use. The compartment passes the capabilities to
where the object’s contents are loaded, and a list of variable
references in the object’s code. The Intravisor then copies the
object to a new location controlled by itself, computes a hash
of its contents, resolves the variable references to the new
load address, and registers the object’s hash and allocation
capabilities for future use. At this point, all compartments,
including the registering one, proceed in with knowledge that
the shareable object is available in the Intravisor.

4 When a shareable object is registered in the Intravisor,
the compartment requests it via orc_request, passing it the
expected object content hash. If the hash matches that of a reg-
istered object by orc_register above, the Intravisor releases
the capabilities for that object. The loader then proceeds by al-
locating the memory for the CLS variables, and subsequently
loaded objects can reference this one.

Note that the main program itself can be an ORC shareable

object. In that case, after loading it with orc_request, the
whole application is ready for execution.

3.2 Compiler support and binary format
To support shared ORC objects, the compiler extends the bi-
nary format with support for CLS variables. When the ORC
options are enabled, the compiler adds a flag to identify the
object as ORC-enabled, and moves every writable global vari-
able to the CLS.

To support CLS, the compiler replaces each reference to a
global, writable variable with a new relocation type. Such re-
locations are resolved at load time to point to the per-container
instance of that variable (see below), similar to how thread-
local variables are moved to the TLS at load time.

We can see this process on the left-hand side of Fig. 3.
Code, constant variables, such as var0, and thread-local vari-
ables, such as var1, are handled as usual by the compiler,
placed in the .code, .rodata and .tdata sections of the
ELF object, respectively, generated with their standard reloca-
tions. Global, writable variables, such as var2, are placed in
a new .cdata section, and references identified with the new
@cls relocation.

3.3 Secure object loading and reuse
The compartment loader brings the object’s file contents into
memory, and handles all relocations that are independent of
the load address. It then calls the Intravisor’s orc_register
operation by passing the capabilities that delimit the memory
regions in which the object was loaded and a description of
the yet-unprocessed relocations.

To ensure that the object contents cannot be changed once
shared, the Intravisor allocates new memory in capabilities C,
copies the object contents into them, and checks that the object
contains no capabilities pointing outside the C allocations (to



avoid a malicious use of orc_register). At this point, the In-
travisor computes a hash H of the object contents in memory,
resolves the remaining relocations that depend on the infor-
mation of the secure load location, and registers the object’s
hash and a non-writable version of the allocation capabilities,
H and C, respectively. The CLS relocations are replaced with
a value that points to a per-compartment memory address that
holds all CLS variables of that object (see §4).

When a compartment calls orc_request in the Intrav-
isor, it passes the hash H. If an object with hash H ex-
ists in the Intravisor (e.g., it was previously registered with
orc_register), the Intravisor returns the capabilities for it,
which are ready to use by the calling compartment.

The object hash H is computed by the Intravisor before
any location-dependent relocations, and so it is also known
by the requesting compartment. If an object with hash H ex-
ists in the Intravisor, we know its integrity and isolation are
ensured. The Intravisor does not ensure object correctness be-
yond relocation resolution, which should be handled through
other means, e.g., attestation checks as part of software supply
chains, for which hash H can be helpful.

4 Implementation

We implement ORC on the Morello platform, a development
board from Arm that has support for the CHERI capability ex-
tensions. In this section we describe how we: build ORC com-
partments by extending CAP-VMs [49] with our own library
OS to maximize object sharing; add CLS support through a
new LLVM compiler pass; and implement the necessary logic
to securely load shared objects.

Both our Intravisor and the host OS are implemented as
hybrid capability code based on the existing CAP-VMs and
CheriBSD [22] projects. We extend the Intravisor to support
pure-cap compartments, i.e., using the pure-cap CHERI ABI,
and the program loading operations, which adds 530 and
240 lines of C and assembly code, respectively.

For our evaluation, we also port the SQLite database [56],
FFmpeg [21] with the libav libraries, and Redis [48] to sup-
port the pure-cap CHERI ABI and ORC. In total, the porting
requires approximately 350 lines of code. Note that besides
adding the system functionality specific to ORC, efforts went
into porting code to the pure-cap model.

Library OS and standard C library. To increase object
sharing across compartments, we make the library OS and
low-level C library support a pure-cap build, as no such soft-
ware components exist with the necessary functionality. We
implement our own pure-cap library OS kernel, which is based
on Unikraft [32] and CubicleOS [50], from which we use
40 system calls and 9,061 lines of code. We extend it with
support for the CHERI ABI and add a capability-aware mem-
ory allocator.

We also use a pure-cap version of the C library for our

evaluation applications. It is based on musl-libc [43], whose
pure-cap support is maintained by Arm. Our fork has 494 func-
tions and 19,717 lines of code. We modify it to introduce a
capability-aware memory allocator based on dlmalloc, and
a few extra changes for compatibility with our library OS.

Compiler support and CLS. We prototype our ORC
compiler as an LLVM pass. It replaces all references to
global, writable, non-TLS variables with a call to func-
tion __cls_get_addr, which returns the compartment-local
version of that variable. Internally, __cls_get_addr() is
implemented using regular capability-aware instructions
(cgetaddr, cincoffset, csetlen, etc.). The function re-
trieves the address of the variable from the input capability
and makes it relative to the beginning of the data section. After
that, it applies the relative offset to the capability that points
to the shadow data section. Finally, it creates the replaced
capability by limiting its size to match that of the original
capability.

The __cls_get_addr function works similarly to how
TLS is supported, i.e., through __tls_get_addr in the TLS
definition for ELF [17]. It takes the shared object’s identifier
(assigned at load time) and the variable offset within the CLS
(assigned at compile time), and returns a capability granting
access to calling compartment’s copy of that variable.

For simplicity, our compiler pass inlines __cls_get_addr
into the generated code – a production implementation should
use a separate CLS relocation type – and it uses a TLS vari-
able to point to the compartment’s CLS buffer for that object.
This means that the loader (described below) only needs to
implement TLS variables, accessed through the tp register in
Arm, to support both TLS and CLS.

Secure object loader. To simplify application deployment,
we implement a loader that takes deployment scenarios, i.e.,
list of binary paths to load into memory. The program de-
ployment logic loads binaries into the target memory regions,
resolves relocations, and generates all capabilities needed in
the PLT and GOT of a pure-cap program [63].

The deployment scenario also identifies shareable objects
and provides their hash, so that they can be reused if previ-
ously loaded through orc_register and orc_request.

Discussion. Our current implementation showcases the core
ideas of ORC, but has a few shortcomings that affect memory
density and performance:

CLS performance. The current CLS implementation uses
TLS variables for simplicity. This results in new capabili-
ties fetched from the TLS and adjusted to the correspond-
ing variable on every call to __cls_get_addr (except for
reuse optimizations in the compiler). In a future version, we
would consider pre-calculating the per-variable capability at
dynamic link time, so that no new capabilities are created at
runtime by __cls_get_addr.

CLS compatibility. Since we use a compiler pass, we cannot
support pre-initialized variable references on other data struc-



tures, e.g., a statically-initialized array entry pointing to a CLS
variable address. In our library OS (Unikraft), we found only
a single place where this was necessary. Adding compiler
support for new CLS relocations would solve this problem by
adjusting data structure addresses at dynamic link time.

In addition, our __cls_get_addr implementation assumes
a per-compartment CLS. We plan support per-process CLS,
allowing for multiple processes within the same compartment.

5 Evaluation

We ask the following evaluation questions: (1) how efficient
is ORC compared to KSM? (2) what is the impact of ORC on
tail latency compared to KSM and (3) what is the execution
and compilation overhead of ORC, as a function of the degree
of binary object sharing.

5.1 Experimental set-up

Workloads. We evaluate a real-time video transcoding micro-
service that scales out to a large number of clients. The micro-
service uses FFmpeg [21] to perform transcoding. A single
FFmpeg instance consumes a fraction of the CPU and memory
resources on the machine, allowing multiple instances to be
run. By de-duplicating memory, we can support more FFmpeg
instances and thus more concurrent clients. We compare the
deployment of the micro-service using ORC to one that uses
Linux KSM as a baseline for memory de-duplication.

We also consider other workloads to evaluate specific
characteristics of ORC: (1) we use Redis [48] with the
memtier benchmark [37] to understand the impact on request
tail latency of ORC and KSM; and (2) we use the SQLite
database [56] and its speedtest1 benchmark [55] to compare
the performance of different object sharing scenarios.

Test-bed. We deploy ORC on a Morello board [42], which
has an Armv8-A CPU with hardware support for CHERI [66].
The board has 4 CPU cores running at 2.5 GHz, with 16 GB of
DDR4 memory (64 KB L1, 1 MB L2, and 1 MB L3 caches).

The experiments compare two OSs: (1) Ubuntu 22.04.1
LTS with Linux v5.15.0, which only runs native arm64 bi-
naries with no CHERI support, and (2) Hybrid CheriBSD
version 14 (release/22.05p1) [22]. The Linux OS is used to
measure KSM, and can also run the entire ORC stack with-
out isolation guarantees (i.e., disabling our compiler pass and
eliminating capability management instructions in the Intravi-
sor and loader). The CheriBSD OS is used to measure ORC
with all its isolation guarantees, as described in this paper (all
ORC results use CheriBSD unless otherwise noted).

Note that the same source code executes on all compart-
ments, so that we can compare ORC and KSM despite the
different compiler options and underlying OS support.
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Fig. 4: Efficiency vs. overhead of de-duplication (FFmpeg). The
shading indicates the difference between ORC and the best-
performing alternative.

5.2 Efficiency and performance overhead

We now evaluate the trade-off between memory efficiency and
performance overhead, comparing ORC and KSM. We deploy
our transcoding micro-service, which can increase throughput
(number of deployed instances) with higher memory density.

The experiment deploys new transcoding instances until
it hits one of two limits: (i) memory limit – when the in-
stances consume all available physical memory, but there
are still spare CPU resources to support more instances; and
(ii) CPU limit – when at least one of the instances can no
longer transcode at real-time due to a lack of CPU resources.

Each micro-service instance has FFmpeg’s main program
and libraries, our library OS and the standard C library
(see §4), and occupies around 111 MB of memory (11 MB
in binaries with read-only variables, sharable by ORC, and
100 MB of heap). The transcoded video has a resolution
and frames-per-second configuration such that, without de-
duplication, the experiment hits the memory limit, while op-
timal de-duplication leads a higher number of deployed in-
stances that eventually hit the CPU limit.

We deploy multiple KSM configurations with different
de-duplication and overhead trade-offs:

KSM-tuned: This is the default policy of the ksmtuned dae-
mon [70]. Every 60 secs, it checks the share of free memory,
and starts KSM if it is below 20%. It also dynamically ad-
justs KSM parameters: the number of pages to scan on each
iteration (pages_to_scan) is gradually increased when de-
duplication speed is insufficient.

KSM-ON: This hand-tuned policy achieves the best mem-
ory efficiency for our workload, but consumes significant
CPU resources. KSM operates constantly and assumes 20,000
pages_to_scan.

FFmpeg instances. Fig. 4 reports the number of active FFm-
peg instances over time, under ORC and the various KSM
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Fig. 5: Efficiency vs. overhead of de-duplication (large binary).
The shading indicates the difference between ORC and the best-
performing alternative.

configurations. Given the performance of a single FFmpeg
instance, we have enough CPU resources for up to 180 in-
stances, but only enough memory for up to 127 instances
without de-duplication.

The results show that KSM-tuned first reaches the memory
limit (127 instances) after 119 secs, and does not de-duplicate
memory until 58 secs later. It then hits the memory limit again
at around 227 secs, and after 23 secs is able to de-duplicate
enough memory to deploy 180 instances.

In contrast, ORC is designed to get maximum density al-
most instantaneously, creating 142 instances in just 11 secs –
this is a 20× speedup over KSM-tuned for the same number
of instances. Note that the 142 instances deployed by ORC
correspond to 11% more than the 127 instances we would get
without de-duplication. This is because code occupies 11%
of memory on each compartment (see above). KSM is able to
de-duplicate further pages by also looking at all data contents.

The speedy deployment of ORC instances is critical for
achieving high overall performance, measured by the num-
ber of processed images over time. Even if it deploys fewer
instances over the long run, ORC outperforms various KSM-
based policies by processing between 15% to 35% more im-
ages in a 300-second timeframe. To achieve the same number
of processed images as ORC, KSM-tuned deployment requires
an extra 141 seconds beyond its peak performance of 180 in-
stances, while none of the other policies are able to outperform
ORC since they never reach ORC peak performance.

The de-duplication rate of the default KSM policy is quite
slow, as it minimizes CPU overheads by operating only under
memory pressure (80%) and then at a limited rate of mem-
ory scanning (pages_to_scan). This can negatively impact
environments where processes are frequently created and de-
stroyed, so we also evaluate the case where KSM maximizes
de-duplication rate with KSM-ON. KSM is probabilistic in
nature, so we show the best and worst results of twenty dif-
ferent runs of the same KSM-ON experiment. KSM-ON (best)

Tab. 1: Impact of memory de-duplication on Redis tail latency

set requests get requests
p50 p99 p50 p99

Linux 0.5 ms 9.7 ms 0.5 ms 9.3 ms
Linux+KSM 0.5 ms 20.9 ms 0.5 ms 20.8 ms

CheriBSD 2.1 ms 3.7 ms 2.2 ms 3.6 ms
CheriBSD+CC 2.1 ms 4.2 ms 2.1 ms 4.3 ms
CheriBSD+CC+ORC 2.1 ms 4.9 ms 2.1 ms 4.8 ms

peaks faster than KSM-tuned, but instances are created more
slowly and peak at just 140 (98.6% of ORC) because KSM
is constantly consuming a lot more CPU resources. KSM-ON
(worst) creates instances at the same rate as KSM-ON (best),
until its probabilistic heuristics stop at only 100 instances
(70% of ORC).

Conclusions: The results show that ORC is much more
efficient than KSM at de-duplicating memory, as long as it
is explicitly identified. Furthermore, an aggressive KSM con-
figuration such as KSM-ON wastes CPU resources and drives
aggregate application throughput as low as 70% of ORC,
whereas a more conservative and adaptive configuration such
as KSM-tuned wastes memory resources and takes up to 20×
longer to de-duplicate memory, making the system ineffective
in scenarios with frequent process creation and destruction.

Large binary instances. We now evaluate how a larger
amount of shareable memory affects ORC and KSM, given
that language runtimes and programming frameworks can
easily consume hundreds of megabytes1. To this end, we run
the same experiment after manually injecting an additional
100 MB of code on the FFmpeg binary, resulting in 53% of
shareable contents on each identical instance.

Fig. 5 shows the results for this experiment, which supports
up to 68 and 136 instances without and with perfect code de-
duplication, respectively. We see the same expected pattern
when looking at the KSM-tuned and ORC results, where KSM
is further disadvantaged due to its runtime performance over-
heads (136 instances in 18 secs vs. 377 secs). In this case,
we also report the best results for KSM-ON with two fixed
values for pages_to_scan (1,200 and 20,000), which reach
132 instances 52 secs earlier than the default policy.

Conclusions: As we increase the amount of shareable mem-
ory, ORC remains optimally effective and becomes compara-
tively faster than KSM at de-duplicating (20× vs. 21×).

5.3 Impact on service tail latency

In this experiment, we investigate the impact of ORC and
KSM on the tail latency of a typical cloud service. We observe
that KSM consumes up to an entire CPU core when active, and

1For example: database system MongoDB: 104 MB, machine learning
stack LibTorch with CUDA: >200 MB, Python-based data science pipeline
with TensorFlow: >300 MB
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Fig. 6: Query execution times for different compartments using ORC (SQLite)

can issue TLB shootdowns when scanning and de-duplicating
pages.

We spawn four instances of the Redis key-value store ser-
vice [48] and use the memtier benchmark [37] as a workload:
it pre-fills each instance with 2.5G GB of data and then ex-
ecutes a 1:10 set:get request workload, using 4 threads with
4 concurrent connections for each instance.

Tab. 1 shows the results of four different deployments:
Linux acts as our baseline (arm64 binaries without using
CHERI or KSM); Linux+KSM adds memory de-duplication
with an always-on KSM; CheriBSD is our baseline with a
CHERI-capable host OS but without ORC or enabling ca-
pabilities when compiling Redis; CheriBSD+CC uses ORC
to compartmentalize Redis but disables de-duplication; and
CheriBSD+CC+ORC uses ORC for memory de-duplication.

Note that we run both Linux and CheriBSD to decouple
the impact of KSM and ORC from the intrinsic differences
between the two host OSs. CheriBSD shows worse throughput
and mean/tail latencies than Linux on all operations, which
can be attributed to the different device driver and network
stack implementations.

Linux+KSM retains the p50 latencies of Linux, but the CPU
overheads and TLB shootdowns introduced by KSM more
than double the p99 latency. In contrast, ORC has a very
small impact on tail latency. Support for compartmentalization
alone (CheriBSD+CC; i.e., compiling the program in pure-
cap mode and crossing isolation boundaries) drives a 13%
and 19% increase in p99 latency for set and get operations,
respectively. Fully enabling ORC (CheriBSD+CC+ORC) has
an additional 17% and 12% increase in p99 latency, can be
attributed to the overheads of our current implementation for
CLS accesses.

Conclusions: The necessary page table management and
memory hashing overheads of blind page de-duplication of
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KSM leads to more than 2× increase in p99 latency, whereas
the explicit sharing of binary objects in ORC limits these
overheads to 12–17%.

5.4 Cost of isolation

Finally, we examine how increasing the number of shareable
binary objects in an application affects its performance. We
control both the overheads introduced by our CLS compiler
pass, and those of capability-based crossings between binary
objects.

To measure this, we execute a single compartment with
the speedtest1 benchmark and its embedded SQLite instance,
and incrementally build some of its components into different
binary objects, as shown in Fig. 7. We start with X1, which
statically contains all components into a single binary ob-
ject, where we disable the compiler pass for CLS (we do not
need CLS with a single object and compartment). We then
incrementally build some of these components into separate
shareable objects in X2–X5, where each additional object is
compiled with CLS support. The VFS and RamFS compo-



nents correspond to internal components of our library OS,
whereas ST1 corresponds to the benchmark binary.

Fig. 6 shows the execution times of the Speedtest1 bench-
mark for different SQLite query types and each of the bi-
nary object configurations. We can see that all configurations,
except X5, have either a minor or negligible performance
overhead. The average difference between X1 (everything
monolithic; no CLS support) and X4 (all system components
but LibC are shareable objects) is 10%, with a median of 3%.
Even when isolating all the various components into separate
shareable objects (X5), which suffers from many cross-object
calls, has an average slowdown of 53%, with a median of
39%.

Conclusions: Based on the results, we can draw two con-
clusions. First, the overhead of supporting CLS is very small,
especially when compared to the performance cost of cross-
object calls. Second, while the cost of cross-object calls exists,
it is small enough that we can afford sharing across multiple
fine-grained objects.

6 Related Work

Page-level memory sharing. Several modern hypervisors
support dynamic page sharing among VMs. VMWare
ESX [61] pioneered inter-VM page sharing without guest
OS support by periodically scanning physical pages and trans-
parently discovering pages with identical contents using their
hash values. KSM [1] also periodically scans physical pages
but uses a balanced tree to find duplicated pages (see §2.1).
Dynamic page sharing by hypervisors, however, results in an
inflexible sharing granularity due to the lack of OS seman-
tics, unpredictable latency spikes due to runtime scans, and
vulnerabilities to side-channel attacks due to copy-on-write
semantics.

Hypervisors that perform page sharing on disk reads have
also been proposed. Disco [5] intervenes in DMA to sup-
port copy-on-write shared disks and copy-less NFS shares
among VMs, allowing page sharing without runtime scanning.
Satori [41] also proposed similar sharing-aware block devices
that enable copy-on-write sharing as well as content-based
sharing through enlightenment (para-virtualization). Sharing
in these systems is still page-based, and copy-on-write issues
also remain.

VM introspection (VMI) or graybox approaches can be
used to improve the efficiency of deduplication by extracting
semantic information from in-VM memory data. Sindelar et
al. [53] used VMI techniques to identify memory pages be-
longing to free memory pools in Windows and Linux without
making kernel version-specific assumptions, and treated them
as zero pages to improve deduplication and VM migration
efficiency. Singleton [52] uses KSM page information to de-
duplicate pages in the guest page cache by dropping them
from the host page cache. VMI, however, is not always able

to obtain semantic information reliably without cooperation
from the guest, and these techniques are still page-based.

Overall, ORC has the advantage over page-level sharing in
that it allows for reliable, flexible, and efficient sharing that
leverages the semantic information about objects.

Efficient inter-VM page sharing techniques can be applied
to optimize inter-server VM placement for cloud-wide mem-
ory density. Memory buddies [65] aggregates memory finger-
print information into a centralized control plane to determine
VM placement for increased sharing and dynamically opti-
mizes VM placement with live migration. Sindelar et al. [53]
show that inter-VM sharing largely occurs hierarchically and
use a tree structure to manage sharing. ORC could leverage
semantic knowledge about shared memory objects and could
be applied to improve memory density in the cloud through
optimal VM placement.

Mixed-granularity sharing. Sharing at a finer granularity
than pages can help increase memory density, as many pages
are found to be nearly identical with only some differences.
Gupta et al. [28] propose a Difference Engine as an extension
to Xen [2], which supports sharing at the sub-page level in
addition to page level. The Difference Engine stores patches
against reference pages for similar but not identical pages, and
compresses pages that are unique but accessed infrequently.
Several studies on VM live migration also leverage sub-page
granularity for differentiation, compression and write detec-
tion [15, 46, 71]. Although such proposals could increase
memory density, unlike ORC, they do not semantically rea-
son about what should be shared across different tenants.

Several studies to improve scanning efficiency by grouping
pages based on access characteristics use a granularity finer
than pages. CMD [8] identifies page access characteristics
by measuring the distribution of writes per subpage within
a page using dedicated hardware, in addition to the address
and number of writes to the page. UKSM [68] proposes adap-
tive partial hashing, which hashes only a portion of the page
and gradually changes its size. These studies allow for fine-
grained sharing and reduce the cost of hash computation, but
still lack semantic information, making sharing opportunities
non-deterministic.

In recent virtualized environments, it has become increas-
ingly important to leverage large page sizes to minimize the
overhead of TLB misses, while the opportunity for page-
level memory sharing decreases as the page size increases.
SmartMD [27] splits large but cold pages with high repetition
rates for de-duplication, while reconsolidating small but hot
pages for improved memory access performance. GLUE [47]
attempts to maintain large-page performance in regions that
are broken into small pages (splintered) for de-duplication
by extending the hardware to perform speculative large-page
translation while using normal-sized TLBs. These studies
mitigate inefficiencies caused further by large pages, but page-
level issues still remain.

Overall, while these studies attempt to leverage finer granu-



larity than a page, ORC still has a significant advantage in its
ability to share per-object at byte granularity using semantic
information.

7 Conclusions

We have described ORC, a new memory de-duplication ap-
proach that improves the memory density of cloud environ-
ments using capability-protected compartments. Our motiva-
tion was to create a practical, capability-based cloud stack, in
which tenants can enjoy strong isolation and cloud providers
benefit from more efficient use of memory resources.

Unlike conventional hypervisors, which blindly scan mem-
ory for identical memory pages, ORC takes advantage of
a semantic separation of sharable and non-sharable objects.
Therefore, ORC is not subject to the performance overhead of
existing runtime methods that arise from the scanning and de-
duplication of pages. Thanks to its use of capabilities, ORC
allows for more precise sharing of memory objects at a word
granularity (i.e., spatial precision), while avoiding uninten-
tional sharing of runtime objects (i.e., temporal precision).
The management of compartments is done via a narrow inter-
face with a small TCB, providing strong isolation guarantees.

Discussion. In this paper, we use a capability-based architec-
ture to increase memory density. The proposed design relies
solely on hardware memory capabilities. However, some de-
sign decisions could be implemented differently by using a
hybrid approach that is based on the combination of MMU
and capabilities, or only MMU, due to similarities in func-
tionality that exist between these technologies. For example,
sharing of code between cVMs and sharing of pages between
processes/VMs are similar. However, architectural capabili-
ties offer additional mechanisms and security features com-
pared to that of MMU, such as spatial memory protection and
fast switches between compartments. To avoid duplication
of features, we are considering future systems as no-MMU,
where protection and isolation are wholly implemented at the
ISA level. As a consequence, our solution is entirely based on
capabilities and applicable to both MMU-based and no-MMU
architectures.
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