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Abstract—Translation Lookaside Buffers (TLBs) are ubiqui-
tously used in modern architectures to cache virtual-to-physical
mappings and, as they are looked up on every memory access, are
paramount to performance scalability. The emergence of chip-
multiprocessors (CMPs) with per-core TLBs, has brought the
problem of TLB coherence to front stage.

TLBs are kept coherent at the software-level by the operating
system (OS). Whenever the OS modifies page permissions in a
page table, it must initiate a coherency transaction among TLBs,
a process known as a TLB shootdown. Current CMPs rely on
the OS to approximate the set of TLBs caching a mapping and
synchronize TLBs using costly Inter-Proceessor Interrupts (IPIs)
and software handlers.

In this paper, we characterize the impact of TLB shootdowns
on multiprocessor performance and scalability, and present the
design of a scalable TLB coherency mechanism.

First, we show that both TLB shootdown cost and frequency
increase with the number of processors and project that software-
based TLB shootdowns would thwart the performance of large
multiprocessors. We then present a scalable architectural mecha-
nism that couples a shared TLB directory with load/store queue
support for lightweight TLB invalidation, and thereby eliminates
the need for costly IPIs. Finally, we show that the proposed
mechanism reduces the fraction of machine cycles wasted on
TLB shootdowns by an order of magnitude.

I. INTRODUCTION

Virtual memory has long been the standard mechanism that

guarantees memory protection between applications. Protec-

tion is provided through an abstract linear address space. The

decoupling of application-level memory addressing from the

processor’s physical address space is typically implemented

using hierarchical page tables that map the virtual page ad-

dresses to their corresponding physical pages, as well as store

page access permissions. A virtual-to-physical mapping is

obtained by traversing the hierarchical page table, commonly

referred to as a page table walk. This process requires a num-

ber of memory accesses that corresponds to the depth of the

page table (modern Intel and AMD processors employ page

tables with 4 levels). Page tables are managed by the operating

system, which controls the physical memory resources.

Fast mapping of virtual addresses to their associated phys-

ical addresses is critical to processor performance, as it takes

place on every memory operation. Therefore, all processors

employ a Translation Lookaside Buffer (TLB), which caches

address translation information in an on-chip, content-addre-

ssable memory, and thereby eliminates the need for a full page-

table walk in the common case.
The performance criticality of TLBs mandates that many-

core architectures include a TLB on each processing core. This

replication requires that all TLBs must be kept consistent with

the OS page tables, so that the information cached across

all the TLBs preserves a globally consistent view of virtual

memory. TLBs are read-only structures, and thus the only way

to change any value in the TLB is to invalidate some entries

and reload them from the page table. However, due to a lack

of proper hardware support, current systems must maintain

TLB coherency at the software level using Inter-Processor
Interrupts (IPIs), in a process known as TLB shootdown [10].

The term refers to the coherence transaction initiated by the OS

after performing page table modifications. OS code, running

on the core making the modifications, sends an IPI to all cores

whose TLBs might be caching a mapping affected by the

modification, and thereby “shoot down” stale TLB mappings.
The overheads associated with interrupt processing make

TLB shootdowns a performance bottleneck that impedes the

scalability of multiprocessors. Moreover, as the OS cannot

accurately track the contents of TLBs, it must conservatively

approximate the set of TLBs that contain stale mappings,

potentially resulting in false positives in the form of unneces-

sarily interrupted cores.
In this paper, we describe DiDi 1, a two-level TLB architec-

ture that consists of a per-core TLB and a shared, inclusive,

second-level TLB with an associated directory.
In addition, DiDi includes a dedicated per-core mechanism

that provides support for invalidating TLB entries on remote

1DiDi is an acronym for Dictionary Directory, which is the semantic service
provided by the second-level TLB of the processing cores. DiDi also means
“tell me” in Spanish.
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cores without interrupting the instruction stream they execute,

thereby eliminating the need to use costly IPIs. We show

that this design reduces the performance impact of TLB

shootdowns by an order of magnitude.

The main contributions of this paper are the following:

• A detailed characterization of the TLB shootdown prob-

lem. We quantify the performance impact of the TLB

shootdown on real machines (both Intel and AMD) and

its implications on multiprocessor scalability.

• Use of a global TLB directory to eliminate false positives

when establishing the set of cores that must be notified on

a TLB shootdown. We evaluate the proposed design on

a simulated manycore platform using several commercial

benchmarks.

• Introduction of a non-intrusive remote TLB invalidation

mechanism that does not rely on costly inter-processor

interrupts, thereby minimizing the overhead of TLB

shootdowns.

The rest of this paper is organized as follows: Section II

reviews the implications of DiDi on different TLB-shootdown

scenarios. We then discuss related work on TLB coherency

management in Section III and describe our evaluation

methodology in Section IV. Section V describes and evaluates

the costs of a TLB shootdown operation. This includes a

characterization and real-world analysis of the costs of all the

operations and layers involved in this operation, as well as

showing how the cost of this operation increases with the

number of cores in a multiprocessor. Section VI describes

the proposed TLB architecture, and Section VII presents its

performance evaluation. Finally, we conclude in Section VIII.

II. ON THE BROAD IMPLICATIONS OF

TLB SHOOTDOWNS

TLB shootdowns are initiated by the OS whenever the

access permissions of a page are modified. This includes a

number of well-known scenarios, such as marking a page as

read-only as part of a copy-on-write optimization, reclaiming

physical frame when swapping memory out to disk, or sim-

ply handling system calls that affect the page-table such as

mprotect and munmap.

The prohibitive cost of a TLB shootdown affects both

existing multiprocessor workloads, as well as impedes the de-

velopment of novel software models such as high-level parallel

programming models [20], accelerator-based systems [16], and

software transactional memory [1], among others. This section

briefly presents several such effects.

Emerging high-level programming models, such as MapRe-

duce [20], use filesystem-based buffering as means of inter-

process communication. However, the frequent page-table

modifications triggered by mapping and unmapping files trig-

ger TLB shootdowns to synchronize all TLBs on the system.

Reducing the overheads associated with TLB shootdowns can

boost the scalability of these models.

In the high-performance computing (HPC) domain, systems

are moving towards accelerator-based CPU/GPGPU designs,

which frequently change page permissions and lock physical

pages in memory to facilitate data transfers between the CPU

and the accelerator [15]. These operations trigger frequent

TLB shootdowns and thereby degrade the overall system

performance.

Finally, strong atomicity is an important property of trans-

actional memory (TM) systems, which guarantees that data

accessed within a transaction cannot be concurrently accessed

by any non-transactional code [18]. But while this property

is inherent in hardware hardware TM proposals, software TM

(STM) systems can only provide strong atomicity by modi-

fying page access permissions inside a transaction. However,

the prohibitive cost of TLB shootdowns, triggered by page

permission changes, inhibit support for strong atomicity in

STM systems [1].

In conclusion, hardware support for low-overhead TLB

shootdowns is highly desirable, as its benefits will mani-

fest across multiple software domains. We demonstrate these

benefits through our selection of benchmarks (described in

Section IV), which span across all the above domains.

III. RELATED WORK

The need for address translation coherency has motivated a

number of studies aiming to reduce its associated overhead.

Rashid et al. [21] showed that consistency between the

TLBs and page tables can be relaxed, and presented the

concept of lazy TLB consistency in cases where page per-

missions are amplified (a common operation in copy-on-write

scenarios). The key idea is that TLB consistency need not

be immediately enforced. Instead, if the application wrote to

a page that is writeable in the page mapping, but cached as

read-only in the TLB, the OS page-fault handler can detect

such a scenario, force the eviction of the TLB entry and return

control to the application.

Several studies have addressed the costly effects of inter-

rupting the execution of all processors when performing a

TLB consistency operation [10], [21], [24], [26]. Black et

al. [10] presented an efficient software algorithm to enforce

TLB consistency in multiprocessors by avoiding a complete

machine-wide TLB invalidation. The authors also argued for

high-priority software interrupts and non-blocking MMU op-

erations to make the algorithm more scalable. The Barrelfish

OS [5] implemented user-level TLB shootdowns by sending

messages between monitors — user-space components of the

OS. The use of user-level communications thus eliminated the

need for costly IPIs.

Jacob et al. [17] compared several virtual memory designs

and TLBs, showing the relevance of TLB size to the overhead

of TLB shootdowns.

Recent studies have dealt with the TLB performance on

CMPs. Bhattacharjee et al. [6], [7] showed that TLB misses are

predictable and that inter-core TLB cooperation and prefetch-

ing mechanisms can be applied to improve TLB performance.

However, this implies that a TLB shootdown must also inval-

idate mappings in the TLB prefetch buffers.

Srikanraiah et al. [25] presented the concept of Synergistic
TLBs, where a TLB is able to allocate victim entries on

other TLBs during evictions, as well as migrate entries among

TLBs in order to improve the overall TLB hit ratio by
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replicating translations among multiple TLBs. However, the

authors did not address the TLB shootdown problem; there is

no information on which TLBs hold a page, so false positives

still exist during a TLB shootdown, and the invalidation of

remote TLB entries still uses IPIs.

Romanescu et al. [23] proposed UNITD, a scalable,

hardware-based TLB coherence protocol. UNITD uses a bit

on each TLB entry to store sharing information, thereby

eliminating the use of IPIs. However, UNITD still resorts

to broadcasts for invalidating shared mappings. Furthermore,

UNITD adds a costly CAM (Content-Addressable Memory)

to each TLB in order to perform reverse address translation

when checking if a page translation is present in a specific

TLB, thereby greatly increasing the TLB power consumption.

Still, in terms of performance, UNITD is equivalent to DiDi,

as both eliminate both the use of IPIs as well as false positive

remote TLBs invalidations.

Bhattacharjee et al. [8] targetted the effective caching ca-

pacity of TLBs. They thus introduced a shared last-level TLB

and evaluated the benefit of using a shared last-level TLB

compared to a private second-level TLB. However, their design

still relies on IPI-based coherency transactions. In addition,

their proposed last-level TLB is not fully-inclusive and is thus

still susceptible to invalidations with false positives.

In contrast to previous work, we emphasize the charac-

terization and modeling of the performance impact of TLB

shootdowns on existing hardware in order to estimate its

impact on future large-scale multiprocessors. Moreover, our

solution addresses the two main problems in TLB shootdowns:

(1) we eliminate the use of IPIs for invalidating remote TLB

entries, and (2) we eliminate false positives by providing a

completely accurate set of cores caching specific TLB entries.

IV. METHODOLOGY

We characterize the performance impact of TLB shoot-

downs on existing hardware. Specifically, we evaluate the

overhead of processing a TLB shootdown, their frequency,

and the number of cores affected by a single TLB shootdown.

The characterization is then used to project the performance

impact of TLB shootdowns on future, large-scale muticores.

Finally, we evaluate DiDi using the TaskSim trace-based sim-

ulator [22], which simulates DiDi’s multilevel TLB hierarchy.

This methodology was selected in favour of cycle-accurate

full-system simulations of a CMP system, which may require

weeks or months just to evaluate a few seconds of simulated

time. To determine how many false positives would happen in

real applications runs, we use a PIN tool to simulate the TLB

directory.

Our CMP model is summarized in Table I, consisting of 32–

256 cores with private L1 caches and a shared L2. Coherence

is maintained using a directory-based MSI protocol, embedded

in the L2. The interconnect has a two-level ring topology,

where each core is connected to a processor ring (8 cores per

ring), and a global ring connects the processor rings, L2 banks,

and the memory controllers.
a) Characterization Platform: The TLB shootdown char-

acterization was performed on both Intel and AMD architec-

tures, described in Table II.

Parameter Value

Per-core TLB 128 entries, 4-way set-associative, 2 cycles latency
Shared DiDi 4096 entries, 6 cycles latency
L1 Private, 64KB, 4-way set-associative, 3 cycle latency,

split D/I
L2 Shared, 8MB banked design, 8-way set-associative, 22

cycles latency
Memory 4 memory controllers (MC), 2 channels per MC, single

800MHz DDR3 DIMM per ch.
Interconnect Segmented two-level ring, 16 bytes/cycle, 4 concurrent

connections per segment

TABLE I
SIMULATED SYSTEM PARAMETERS.

Intel AMD

Processor Xeon E5640 Opteron 6128
Frequency 2.67GHz 2.0GHz
RAM 8 GB 32GB
Cores 16 (4x 4-core chips)
Kernel Linux 2.6.36

TABLE II
EVALUATION PLATFORMS.

The Linux kernel was traced using the Linux Trace Toolkit

(LTT) [14]. Specifically, we have inserted LTT markers to

trace the different steps of a TLB shootdown (see Section V):

locking the page table; constructing the set of affected cores;

sending IPI to remote cores; executing the interrupt handler on

the remote cores; acknowledging invalidations to the initiating

core; and releasing the page-table lock.

b) Applications: The applications used for our evaluation

are listed in Table III. The set consists of server applications,

as well as the set of microbenchmarks used by Romanescu et

al. [23]. Moreover, to stress the TLB-shootdown mechanism

we implement a simplified version of the strong atomicity for

STM systems as described in [1] by modifying the TL2 [12]

and using the STAMP [11] applications as workloads. (as all

STAMP benchmarks exhibit similar behavior with regards to

TLB shootdowns, we only show results for three).

V. TLB SHOOTDOWN CHARACTERIZATION

In order to model the performance impact of TLB shoot-

downs, we have characterized their behavior. This includes the

Server

Phoenix MapReduce Engine [20] (wordcount)
Apache Web Server and Test Suite [2]

Transactional Memory

genome Gene sequencing
vacation Client/server travel reservation system
labyrinth Maze routing

Microbenchmarks

machtest Basic cost of a TLB shootdown
cowsingle Copy-on-write (single thread)
cowmultiple Copy-on-write (multi-threaded)

TABLE III
LIST OF BENCHMARKS USED IN THE PAPER.
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TLB shootdown overhead components, their frequency, and

the number of cores they affect.

A. Anatomy of a TLB Shootdown

A TLB shootdown is effectively a two-phase commit trans-

action in which the core modifying the page-table verifies that

all cores that may be caching the affected mapping evict it

from their TLBs. Figure 1 illustrates the time line of a TLB

shootdown:

1) One of the cores (top timeline) begins executing an

operation that modifies the page-table, triggering the OS

to lock the corresponding page table entry. This core is

referred to as the initiator core.

2) The OS builds a list of cores that requested a translation

of the modified page-table entry in the past. These are

referred to as slave cores. To this end, the OS has to

continuously track the usage of memory regions on the

different cores. The list of slave cores is approximated,

as the translation may have already been evicted from a

slave core’s TLB (it might contain false positives).

3) The initiator sends an IPI to all the slave cores, re-

questing them to invalidate the TLB entries referring

to the modified mapping. Meanwhile, the initiator core

invalidates the mapping in the local TLB and waits for

the acknowledgments from all the slave cores.

4) All slave cores are interrupted by the IPI and execute the

IPI handler for TLB invalidations (switching protection

levels and saving/restoring the application’s execution

context before and after executing the handler). The in-

terrupt handler code invalidates any affected TLB entries

and sends an acknowledge message to the initiator core.

5) Once all acknowledge messages are received by the ini-

tiator core, it unlocks the page-table entry and continues

its execution.

As discussed above, the excessive overhead of a TLB

shootdown stems from its usage of IPIs and the associated

protection level switches. In addition, due to the lack of a

proper directory mechanism, the OS can only approximate the

set of slave cores, which results in false positives that end up

interrupting the execution of cores that are not actually caching

the affected mapping.

B. TLB Shootdown Overhead

The first step towards understanding the system performance

impact of TLB shootdowns is evaluating the direct overhead

of a single shootdown on both the initiator and the slave cores.

To this end, we have instrumented the Linux kernel using

the Linux Tracing Toolkit [14] and measured the different

overhead components.

Figure 2 depicts the breakdown of the TLB shootdown

overhead for Apache and Wordcount as a function of the

number of cores in the system, running on both Intel and

AMD machines. As results were consistent for all applications,

including the micro-benchmarks, they are only shown for

Apache and Wordcount. The figure shows the breakdown of

the overhead into three distinct components:

1) Send IPI Computing the (approximate) set of slave

cores, and sending the IPIs. This component is only

incurred by the initiator core.

2) Execute Handler Executing the interrupt handler that

invalidates the modified mapping from the local TLB.

This component is incurred by both the initiator and the

slave cores.

3) Wait for Ack Waiting for an acknowledgment message

from all the slave cores indicating that they have flushed

the modified mapping from their TLBs, and that the

initiator can release the page-table lock.

The overhead incurred by the initiator core includes all

three components shown in the figure, whereas the overhead

incurred by slave cores consists only of executing the TLB-

invalidating IPI handler.

As expected, the overhead of sending the IPIs and waiting

for acknowledgments highly depends on the number of cores

in the system: the overhead for computing the set of affected

cores and sending the IPIs increases by 4x as the number of

cores increases from 2 to 16. Also the time spent waiting for

acknowledgments increases by ∼10x as the number of cores

increase. The reason for this difference lies in the asynchrony

of the latter operation, as evident by the difference in the ac-

knowledgment wait time between the two applications shown.

This difference is a direct result of the per-core application

workload, which affects the timing of executing the interrupt

handler on each core.

Another interesting (and somewhat surprising) result is that

the overhead incurred by the execution of the interrupt handler

increases by ∼2x as the number of cores in the system goes

from 2 to 16. This is due to memory contention caused when

all slave cores read a shared datum containing the invalidation

information and, more importantly, write to a bitmask in the

shared datum to acknowledge the completion of the operation.

The write operation causes thrashing among the coherent L1

caches and thereby increases the time to complete the handler

execution. Naturally, the amount of cache thrashing and the

resulting increase in memory access latency depends on the

number of cores participating in the shared operation, and, as

discussed in Section V-D, the number of cores involved in

a TLB shootdown increases with the number of cores in the

system.

Finally, in Figure 2, we can observe that for all applications

and all machine sizes, the cost of a TLB shootdown is around

50% higher in AMD processors. This may be due to (1)

Intel machine has a 33.5% faster clock frequency as shown

in Table II, and (2) several architectural optimizations on the

Intel platform, which reduce the overhead of invalidating a

specific entry in the TLB, plus faster IPIs.

C. TLB Shootdown Frequency

The frequency of TLB shootdowns is detrimental to the

characterization of their impact on system performance, and is

purely workload-dependent. Workloads that perform memory

or file I/O, such as Apache and Wordcount, require large

amounts of memory remapping and therefore trigger lots of

TLB shootdowns. In contrast, workloads that do not modify
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Fig. 1. Timeline of a TLB shootdown, illustrating how the timeline of the initiator core (top) relates to the timelines of the slave cores (bottom).

(a) Apache (b) Wordcount

Fig. 2. Decomposition of the TLB shootdown overheads for Apache and Wordcount. The initiator core incurs the full overhead (shown in figure), whereas
slave cores only incur the Execute Handler overhead.

their memory mappings, such as the PARSEC and NAS bench-

marks, do not generate TLB shootdowns and are therefore

hardly affected by them.

Figure 3 shows the frequency of TLB shootdowns as a func-

tion of the number of system cores for Apache and Wordcount

running on Intel and AMD platforms, respectively (frequency

is shown in KHz). Measurements are shown for 2, 4, 8, and

16 cores. As expected, increasing the number of system cores

results in an increased frequency of TLB shootdowns for

both applications, and in both cases the frequency increases

between 5–10x as the number of system cores increases from

2 to 16.

The figure also shows that the frequency measurements

for both applications (on both architectures) fit well on a

linear regression curve. This suggests that the TLB shootdown

frequency can be modeled as a linear relation, and it increases

1KHz/core for Wordcount and 200Hz/core for Apache. The

reason for this linear relation stems from the throughput-

oriented nature of both applications, which partition a fixed

amount of work on an increasing number of cores. Moreover,

the linear model can also be used to project the TLB shoot-

down frequency for larger multiprocessors, as depicted in the

figure.

Finally, the figure also demonstrates that the TLB shoot-

down frequency is application-dependent rather than architec-

ture dependent, as the differences between the Intel and AMD

systems are small.

D. Number of Slave Cores

Figure 4 depicts the average number of slave cores in a

TLB shootdown as a function of the number of cores in the

system, for both Wordcount and Apache, running on both

Intel and AMD architectures. The figure clearly shows that

the number of cores affected by a TLB shootdown increases

with the number of cores in the system and that, once again,

the linear regression model is a good fit for the resulting curve.

Furthermore, the figures also show the (in)effectiveness of

an OS-level minimization of the set of slave cores in a TLB

shootdown. The OS only manages to exclude ∼30% of the

cores in the system for Apache-triggered TLB shootdowns,

while Wordcount-triggered TLB shootdowns still interrupt

all the cores in the system. Even more, as we will see in

Section VII, ∼80% of the interrupted slave cores are selected

due to false positives, and in fact do not cache the affected

mapping.

This result indicates that on the event of a TLB shootdown,

current systems typically stop the execution of most, if not all,

cores in the system.

E. Modeling The Impact of TLB Shootdowns On System
Performance

The characterization of the different parameters affecting the

overhead incurred by TLB shootdowns allows us to develop a

model to estimate their effect on overall system performance.
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(a) Intel (b) AMD

Fig. 3. Shootdown frequency as a function of the number of system cores.

(a) Intel (b) AMD

Fig. 4. The number of cores affected by a TLB shootdown as a function of the number of system cores.

Furthermore, as the different parameters can be characterized

using a linear regression, the model can be used to both project

the performance impact on larger multiprocessors, as well as

to evaluate alternative TLB synchronization mechanisms.

Specifically, for a system with p processors, the total number

of system cycles spent executing a TLB shootdown is:

Cyclesshootdown = S(p)× Tslave(p) + Tinitiator(p)

Where S(p) is the linear model for the number of slave

cores participating in a TLB shootdown, Tslave(p) is the local

cycles executed by each slave, and Tinitiator(p) is the local

cycles executed by the initiator core.

Furthermore, as the frequency F (p) of TLB shootdown can

also be represented as a linear model, the overall fraction of

compute cycles lost on executing TLB shootdowns is:

Cyclesshootdown × F (p)

Processor frequency

Figure 5 illustrates the percentage of machine cycles lost on

TLB shootdowns, based on the performance impact model, as

a function of the number of cores in the system. The figure

depicts the average curve for Apache and Wordcount, based

on the parameters for the Intel platform.

This demonstrates the importance of the TLB shootdown

problem for future parallel machines. The percentage of

machine cycles spent on TLB shootdowns increases linearly

from ∼4% for the 16-core test machine, and up to 10% and

24% for future machines consisting of 64 and 128 processors,

respectively.

Therefore, Figure 5 motivates the need for an efficient

inter-TLB synchronization mechanism that will reduce the

overheads associated with invalidating TLB entries, as well

as maintain the accurate set of cores that cache a tainted page

mapping.

VI. DIDI - A TLB DIRECTORY

This section describes the design of the proposed shared

and inclusive last-level TLB, as well as how this is extended

to include a non-intrusive and highly-efficient mechanism for

remote TLB invalidation.
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Fig. 5. The percentage of compute cycles lost on executing TLB shootdowns,
as a function of number of cores in the system (based on the Intel model)

A. Shared Second-Level TLB Directory

As described in Section I, TLB shootdowns introduce a

high performance penalty. As a synchronization process, the

first step in a TLB shootdown and, also, the first problem

for the performance of an application, is to establish which

TLBs hold the page translation that is being invalidated. To

this purpose, our design includes a shared second-level TLB.

This second-level TLB is an associative cache that acts as a

Dictionary Directory (DiDi). Its goal is to track the location

of every address translation stored on the first-level TLBs

of the whole system. Basically, all insertions and deletions

on the first-level TLBs are intercepted by DiDi, such that it

can always have up-to-date information on the system’s TLBs

state. The DiDi cache is located between the TLBs in the cores

and the off-chip main memory. It acts as an intermediate proxy

with no latency or delay on the message interception. All TLB

updates are captured within this structure without affecting the

performance.

Figure 6 depicts the proposed DiDi TLB architecture. As it

can be observed, the OS page table is not always synchronized

with the contents of the TLBs in the cores. The oval in the

figure shows the page table containing information of a false

positive on a page-table entry, as processor N-2 does not

actually contain the page-table entry in its TLB.

On a TLB shootdown, a core TLB sends the invalidation to

DiDi. Therefore, only cores containing the entry are notified,

without the possibility of false positives. Core TLB invalida-

tions to the second-level TLB are performed independently of

the execution of the cores, as described in Section VI-B.

Whenever the first-level TLB performs an entry insertion

or eviction, a message is sent to DiDi to maintain its property

of being inclusive and always up-to-date. As the frequency

of first-level TLB insertions and deletions is expected to be

low, the fact that DiDi is centralized should not add noticeable

contention to the interconnection network. TLB updates hap-

pen on a ratio of 1% or less. In a larger architectures, DiDi

could be distributed, and it would only require some extra

synchronization between several DiDi caches.

Fig. 6. DiDi architecture components (per-core private first-level TLB
plus DiDi directory of system-wide TLB state), and non-intrusive remote
invalidation mechanism.

Note that the same address translation might be held by

more than one TLB. Thus, each DiDi entry contains a Direc-
tory Bitmap, which identifies which cores are actually holding

that specific translation on their private TLBs. As shown on

Figure 6, this eliminates all cases of false-positives during a

TLB shootdown.

The inclusiveness of the shared directory implies that direc-

tory evictions, following a miss on one of the cores’ TLBs,

may trigger an eviction in another core’s TLB. Nevertheless,

an evaluation of the inclusive property using the set of refer-

ence application, as well as the NAS [3] and PARSEC [9]

parallel benchmark suites, has shown negligible effect on

performance, and is therefore not shown.

In our evaluation, DiDi is implemented as a 2-way set

associative cache of 4096 entries, which requires a total size

around 4KB. Based on the CACTI [19] model, we estimate

the proposed hardware structure would require a die area of

0.145 mm2 and a power consumption of 13.5mW.

1) Virtual Address Homonyms: As virtual address spaces

are independent address namespaces, there exist homonyms
between them. In the case of the Intel and AMD architectures,

this is solved by performing a complete TLB flush 2 whenever

the OS changes the current address space. Instead, some other

architectures like MIPS tag the TLB entries with some extra

bits, which are usually known as the Virtual Process Identifier
(VPID) or Address-Space Identifier (ASID). Unfortunately, as

the TLBs have very tight delay constraints, the ASID stored in

the TLB must have very few bits. This incurs on very frequent

ASID reuse and, thus, the need to flush all the entries that

were associated to the ASID being reused prior to using it for

a different address space.

As DiDi contains entries from all cores, which might be

running different address-spaces, we also need to tag its entries

with an ASID. Fortunately, the optimal number of bits needed

for the ASID in DiDi are bound by the number of hardware

execution contexts in the system (the number of cores in a

non-SMT architecture).

2In order to boost the OS performance, there is an extra page table entry
bit which identifies pages that are never flushed during a context switch. This
is typically used by the OS to map its own pages, which are common to all
address spaces.
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2) Other Considerations: Second-level TLBs have already

been integrated into existing processors such as Intel Ne-

halem [4]. The common goal, as for second-level caches, is

to provide additional cache capacity beyond what is provided

by first-level caches.

Although DiDi is originally targeted to improve TLB co-

herency management, it could also be used as a second-level

TLB to improve the system’s address translation capacity, with

the benefit of letting a TLB act as a “prefetcher” of page table

walks for the other TLBs [7]. In such a case, a physical address

field and page permission bits should be added to the page in

the DiDi line.

In the case of an SMT system, the TLBs can be shared

by the hardware contexts in a core, in which case entries are

tagged. Thus, there is also a need to map the DiDi ASID to

the execution context in each core.

Finally, in the case of large pages, these must be taken into

account when an invalidation takes place. In such a case, the

invalidation or eviction of a page must trigger the “reset” of

all DiDi bits corresponding to all the entries covered by the

large page in the Directory Bitmap.

B. Non-Intrusive Remote TLB Invalidation

As seen in Figure 2, much of the performance overhead

incurred by a TLB shootdown is related to interrupt process-

ing. In order to eliminate this cost, we add a per-core Pending
TLB Invalidation (PTLBI) buffer that DiDi is able to control

in order to perform remote TLB invalidations. Note that this

is the very same mechanism used to perform the remote TLB

invalidations triggered by capacity constraints in DiDi, with

the only addition that the OS is also able to issue an instruction

to explicitly invalidate a TLB entry on all the cores.

In Figure 6 we can observe the steps to perform a system-

wide TLB entry invalidation, which is conceptually a copy-cat

hardware implementation of today’s TLB shootdown software

transaction:

1) An initiator core requests the invalidation of a TLB entry

by sending a message to DiDi, which contains the virtual

address and the currently executing ASID on the initiator

core.

2) Using the received virtual address and ASID, DiDi

looks up the target entry and retrieves the Directory
Bitmap for the selected page. Using that bitmap, a TLB

entry invalidation operation is sent to the affected cores

(slaves) using a multicast message that contains the

target virtual address.

3) When a slave finishes the invalidation of the selected

TLB line, replies to DiDi with an acknowledgement

message.

4) Once all requested cores have replied to DiDi, it clears

the selected page from the directory and delivers a

last acknowledgement message to the initiator core (the

invalidation of the initiator core can be performed either

at the beginning or the end of the transaction).

Figure 7 shows a high-level organization of the per-core

PTLBI and the interactions between the PTLBI buffer and the

core’s components.

Fig. 7. Interactions between the PTLBI buffer and the core architectural
components.

Upon receiving an invalidation request from DiDi, the

PTLBI buffer injects a memory barrier into the core’s

Load/Store Queue (LSQ) in order to allow any outstanding

memory operations to complete. Once the barrier completes,

the PTLBI instructs the invalidation of the TLB entry identified

by DiDi and sends an acknowledgement message back to

DiDi. The purpose of the memory barrier injection is to ensure

that no new memory instructions, which could conflict with

the page being invalidated, will be executed. Thus, we estimate

the cost of this operation to have an upper bound latency equal

to a round-trip access to off-chip memory.
Figure 8 depicts the new time-line of a TLB shootdown in

more detail. Using DiDi, the OS sends the invalidation request

to the directory, which forwards the request to the PTLBI

buffers on the cores that store the affected mapping (if any).

It is important to note here that DiDi does not interrupt the

execution of the remote cores, avoiding the costly pipeline

flush and context saving and restoring that the OS would

perform when receiving an IPI. The overhead of this operation

will not take more than a few hundred cycles, compared to the

typical interrupt overhead that can be as much as ten times

higher [13].

VII. EVALUATION

A. Overhead of DiDi TLB Shootdown
As we have described in the previous sections, our archi-

tectural support mitigates the impact of the TLB shootdown

in two dimensions: first, it minimizes the number of affected

cores by maintaining the information in the DiDi directory;

and second, it minimizes the overhead in the slave cores with

the PTLBI non-intrusive mechanism.
In Figure 9 we show a comparison of the overhead cycles

caused by TLB shootdown in the baseline case, and using

our architecture support (DiDi + PTLBI). The frequency of

shootdown is the same in both cases, as measured in Apache

and Wordcount in Section V, although it is possible that DiDi

would filter out the false-positives from the broadcast. The

overhead of a TLB invalidate using PTLBI is one order of

magnitude smaller.
Our results show that the percentage overhead of TLB

shootdown still increases with the number of processors, how-

ever, it stays within perfectly reasonable limits even at high

processor counts, enabling scalability that was not possible

under the baseline conditions.
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Fig. 8. Timeline of a DiDi TLB shootdown.

Fig. 9. Projection of the overhead of TLB shootdown over application time
using current TLB Shootdown cost vs DiDi TLB Shootdown.

B. False positives detection with DiDi

The primary goal of DiDi’s shared directory is to provide

accurate information about which TLBs contain a stale map-

ping, and reduce the number of cores affected during a TLB

shootdown by eliminating false-positives.

Figure 10 depicts the mean number of cores affected by

a TLB coherence transaction, both for DiDi and a standard

Linux TLB shootdown, for the set of the transactional mem-

ory benchmarks running with 8 threads, under the execution

scenario explained in Section IV.

The figure shows that while typically only a single TLB

caches an affected mapping, as reported by DiDi, the Linux

kernel interrupts 2-7 cores due to false-positives, resulting

from the need to approximate the affected set of core. Together

with Figure 4, which shows that the Linux kernel typically

interrupts most of the machine cores during a TLB Shootdown,

these results highlight the detrimental effect of inaccurate

approximation of the affected set of cores and the importance

of DiDi’s shared TLB directory.

C. Performance evaluation

Finally, we evaluate the performance results of DiDi show-

ing the evaluated benchmarks using the proposed directory and

Fig. 10. Number of slave cores containing the page affected on the TLB
Shootdown. Comparison on a 8-core simulation of DiDi vs real execution of
the benchmarks on a real Linux machine with a 8 cores configuration.

the less intrusive remote TLB invalidation mechanism.

Figure 11 shows the speedup obtained for the performance

cost of the TLB Shootdown using DiDi vs the conventional

Linux TLB Shootdown. The X-axis shows the number of cores

for each configuration. Configurations for 8 and 16 cores are

experimental results, while 32 and 64 are projections based

on the previous configurations results. The Y-axis shows the

percentage of speedup over the results obtained in the Intel

machine. We compare to Intel instead of the AMD machine

since the TLB Shootdown cost in this architecture is shown

to be less. As we can observe in the Figure, all benchmarks

obtain some speedup and the speedup increases as the number

of cores in the configuration increases. Furthermore, Genome
and Vacation obtain a speedup over 2.5 for the larger con-

figurations. As it can be observed from Figures 3, 4, this is

because both benchmarks have the greatest number of slave

cores and the highest TLB Shootdown frequency.

VIII. CONCLUSIONS

In this paper, we have characterized the performance impact

of TLB shootdowns, and have shown they pose a serious
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Fig. 11. Speedup of DiDi on the evaluated benchmarks. DiDi is evaluated
on a 8,16 core CMP. For larger configurations, 32 and 64 core, we show a
projection of the speedup

impediment to the scalability of future multiprocessors. Our

analysis shows that the TLB shootdown problem stems both

from the use of costly IPIs for TLB synchronization, as well

as the inability of the OS to accurately identify the subset of

cores that caches a tainted mapping.

To mitigate the harmful performance impact of TLB shoot-

downs, we have proposed DiDi, a TLB coherence mechanism

based on a shared directory and a non-intrusive mechanism for

remote TLB invalidation that does not interrupt the execution

of the invalidated core. The proposed design therefore replaces

the complex OS implementation of TLB coherence transac-

tions with an accurate, lightweight hardware mechanism.

Finally, we have demonstrated that DiDi can mitigate the

TLB shootdown problem and decrease the fraction of machine

cycles wasted on executing TLB shootdowns by an order of

magnitude.
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