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Abstract—Cache coherence protocols limit the scalability of LM alongside the cache hierarchy, forming a hybrid memory
chip multiprocessors. One solution is to introduce a local memory system. This approach is being currently used in GPGPUs [6]
alongside the cache hierarchy, forming a hybrid memory system. and in general purpose cores [7].

Local memories are more power-efficient than caches and they o fth - bl f the hvbrid "
do not generate coherence traffic but they suffer from poor ne of the main problems of the hybrid memory System

programmability. When non-predictable memory access patterns IS the potential replication of data between the two storages.
are found compilers do not succeed in generating code because ofCompilers succeed in generating code for LMs when the com-

the incoherency between the two storages. This paper proposespytation is based on predictable memory access patterns [8]
a coherence protocol for hybrid memory systems that allows the but, when non-predictable memory access patterns are found,

compiler to generate code even in the presence of memory aliasing i dt t b Vi |
problems. Coherency is ensured by a simple software/hardware compiiers need to ensure correctness by applying compiex

co-design where the compiler identifies potentially incoherent analyses such as memory aliasing and data flow analysis [9],
memory accesses and the hardware diverts them to the correct [10], [11]. When compilers cannot ensure that there is not
copy of the data. The coherence protocol introduces overheads going to be aliasing between two memory references that may
?(I (e)hza“;ﬁ '?hgxsgggg”o;”t‘;‘z ?\?/%r?; %ﬁ%?s/(‘;r;‘ Se;s‘i;%’ consumption arqet copies of the same data in the LM and in the cache

’ hierarchy, they must conservatively avoid using the LM. This
problem is caused by the fact that the copies of data in the
LM and in the cache hierarchy are incoherent.

Upcoming chip multiprocessor (CMP) architectures are ex- The main contribution of this paper is a novel coherence
pected to include a significant number of cores, as a resultgrbtocol for hybrid memory systems to achieve the pro-
the replication of general purpose and specialized accelerajsimmability of a cache-based system by safely enabling the
cores. As an immediate consequence, the memory subsystesa of the LM in the presence of memory aliasing problems.
has to evolve into some novel organization that satisfies tAecoherent memory view of the two storages is ensured by
inherent bandwidth requirements of such approach and avoisimple hardware/software mechanism implemented by two
potential bottlenecks in the shared levels of the memory hi@emponents: (1) a per-core hardware directory that keeps track
archy. Both the power consumption originated in the memoof which data is mapped to the LM and (2) guarded in-
hierarchy and the lack of scalability of current cache coherensieuctions for memory operations that the compiler selectively
protocols constrain the sharing and the size of caches whslaces in potentially incoherent data accesses, that are diverted
cores are replicated beyond certain levels [1], [2], [3]. to the correct copy of the data at execution time. The proposal

A possible solution to the power consumption and scalabdflows the compiler to use an straightforward algorithm to
ity problems of cache coherence protocols is the introductigenerate code for the hybrid memory system. The evaluation
of local memories (LMs), also known as scratchpad memshows that, compared to a compiler that is able to resolve all
ries [4]. The main advantages of LMs are that they offer accesemory aliasing problems, the proposal introduces overheads
delays similar to that of best-case cache delays in a much mof®.24% in execution time and 1.06% in energy consumption.
power-efficient way and they do not generate any coherenieese overheads are outweighted by the benefits coming from
traffic. The drawback is that LMs introduce programmabilitthe ability to generate code for the hybrid memory system,
difficulties due to the explicit data transfers they require, gbat provides an speedup of 36% and an energy saving of
usually programmers rely on compiler transformations th&aB% when compared to a cache-based system.
generate code to manage the LM. Although this limitation, The rest of this paper is organized as follows: Section II
LMs have been successfully introduced in the high perfogives some background of how a LM is integrated in a core
mance computing (HPC) domain in several ways. In the Calhd how the resulting architecture is programmed. Section llI
B.E. [5], accelerator cores access their private LM with regulaxplains the design of the coherence protocol and Section 1V
memory instructions and use explicit DMA transfers to movgresents its evaluation. Section V comments some related work
data between memories. A more recent trend is to introducard Section VI remarks the main conclusions of this work.

I. INTRODUCTION
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Il. BACKGROUND AND MOTIVATION Core

This section explains the hybrid memory system, its pro- o R v LA = e BT
gramming model and the coherence problem it exposes. I

Main
A. Baseline Architecture cpu M"I"“ | Memory
The hybrid memory system consists of extending a core
with a LM and a DMA controller (DMAC), as Figure 1 shows. WM PMAc

The LM is integrated into the core at the same level as the
L1 cache and is used to _store private data only. The system Fig. 1: Architecture of the hybrid memory system.
reserves a range of physical addresses for the LM and these
physical addresses are direct-mapped from a virtual memang number of accesses to any level of the cache hierarchy
range, which is identified by two registers that specify thdecreases when compared to a cache-based system with write-
base virtual address and the LM size. Thus, the CPU is albiack L2 caches. In this paper the hybrid memory system uses a
to access the LM using regular loads and stores to these virtsiabop-based coherence protocol with write-through L2 caches
addresses. In order to distinguish which memory has to servtoashow that, even in this worst case scenario, it provides many
memory instruction, a range check is performed on the virtua¢nefits compared to cache-based systems.
address, prior to any MMU [12] action. If the virtual address .
is in the range reserved for the LM the MMU is bypassed ar Programming Model
a physical address that points to the LM is generated [7]. ThisA CMP that uses the hybrid memory system can be
scheme has two important benefits. First, the access timeptogrammed using any programming model for cache-based
the LM is constant because no pagination is needed. SecoG¥|Ps. The only thing to be done for the hybrid memory
it allows the introduction of the LM in a very simple waysystem is to map private data to the LM. Typically program-
because only two extra registers are required to configure thing models rely on programmers to know how the data of a
LM and there is no interference with the cache hierarchy. parallel program has to be distributed. In distributed memory

The DMAC is in charge of transferring data between tharchitectures, programming models such as MPI [15] require
LM and the system memory (SM, which includes cachdbe user to explicitly partition the data. Allocations are private
and main memory). It offers three operations: @pa-get to each computational task and the programmer adds ex-
transfers data from the SM to the LM, (Bma-puttransfers plicit data transfers and synchronization points between tasks
data from the LM to the SM and ()ma-synctwaits for the when needed. In shared memory architectures the programmer
completion of certain DMA transfers. These operations agrides the data partitioning. In OpenMP [16] the programmer
explicitly triggered by software using memory instructions tadds code annotations to specify if the data is private or shared
non-cacheable memory-mapped registers in the DMAC. between threads and how the iteration space of a loop is split

DMA transfers are coherent with the SM [13], [14] bybetween the threads. Thus, in both cases, the data distribution
inspecting the cache hierarchy at every bus request. The between computational entities is solved by the intrinsics of
requests generated by dma-getlook for the data in the the programming models themselves.
caches. If the data is in some cache, it is copied from thereThe data assigned to each core is then mapped to its LM,
to the LM, otherwise it is copied from the main memory. Thenducing a particular execution model. The working set is
bus requests generated bydma-putcopy the data from the split in blocks, as the total amount of data typically exceeds
LM to the main memory and invalidate the cache line in thihe size of the LM, and these blocks are explicitly moved
whole cache hierarchy, if it exists. In a typical configuratiobetween the LM and the SM. In the case of a computational
with private write-through L1 caches, private write-back L#op, this is accomplished by converting the code into a two-
caches and a shared L3 cache the implementation of cohetem¢l nested iterative structure, as shown in Figure 2. Each
DMA transfers depends on the CMP cache coherence protodtgration of the outermost loop has three phases: (1) a control
The ideal case is to have a directory-based protocol, so itpkase where data is moved between the LM and the SM, (2) a
straightforward to access the cache that keeps the valid copygwihchronization phase to wait for the DMA transfers to finish
the data. Contrariwise, with a snoop-based protocol this is veagd (3) a work phase where the computation for the current
costly, since in a CMP every bus request performs a lookbfock is performed. These code transformations are usually
in the L2 cache of every core, generating a huge overhedohe by run-time libraries [8], [17] or compilers [18], [19].
in energy consumption. This situation can be alleviated by Automatic code transformations decide which data is
changing the write policy of the L2 caches to write-throughmapped to the LM by analyzing the memory accesses [20].
so the bus requests only do one lookup in the shared L3 cacRegular accesseare those that expose predictable access
Using write-through L2 caches is inefficient in cache-basguhtterns (e.g., with a constant stride). These are mapped to
systems because every store reaches the L3 cache, additiged M. Unpredictable memory accesses are difficult to map
big overhead in energy consumption and bus traffic. In the the LM [8], so they are served by the cache hierarchy. These
hybrid memory system this is less critical, since most accessee calledirregular accessesin Figure 2, accesses # and
are served by the LM so, even with write-through L2 cachels,are regular accesses, and the access tois irregular.




Original cod Transformed cod . . .
riginat code ranstormed code access is an irregular access that the compiler cannot ensure

f°r‘i=°; I<N; d+t) l jj;gie(im) it will never access data in the SM that is mapped to the LM.
a[i] = b[i]; { Another option is to introduce fine-grained DMA transfers
} *(ptria[i]])++; B xszz:m 2 i::z: ::3:; sgrrounding the potentially incoherent accesses [8]_, adding
|5 i ! ! big overheads because DMA transfers of small sizes are
O

n = (ititers>N) ? N : ititers; inefficient. Software caching is another solution [21], [8].
These keep track of the contents of the LM with a software
directory and do a costly lookup prior to every potentially
incoherent access to decide if it goes to the LM or to the SM.

Synch | SYNCH(tags);

for(_i=0; i<n; _i++,i++)

X { . . . .

g _a[_i] = b[_il; This paper proposes an efficient mechanism that ensures
, “(ptrl_al_ill)++; coherency in hybrid memory systems. The solution avoids the

T limitations stemming from the inability to solve the memory

. . ) aliasing problem, bringing the optimization opportunities to a
Fig. 2: Code transformation and 3-phase execution modeheyy |evel where automated optimization tools no longer have

In the control phase, the data needed for regular accedgckack-off their code transformations due to coherence issues.
in the next work phase is brought to the LN¥KP primitive m
in Figure 2). Blocks of data are copied from the SM to the o ) . .
LM, potentially sending back to the SM some previously used 1he main idea of the coherence protocol is to avoid main-
blocks. Even in case of mapping a block of data to the LM fd@ining two coherent copies of the data b_ut, instead, ensure
writing only, the transfer of the block from the SM to the LM isthat memory accesses always use the valid copy of the data.
done because otherwise, if only part of the block was modifiet® resulting design is open to data replication between the
the write-back to the SM would update the unmodified parts bM and the cache hierarchy. The system guarantees that, first,
the copy in the SM with garbage. In order to do these actiolfs €ase of data reph_catlon elt_her the copies are identical or
in a simple and efficient way fixed-size buffers are used. THae copy in the LM is the valid one and, second, always a
compiler decides how many buffers will be needed to handyalid copy of Fhe data is accessed. For data transfers thls_ is
all regular accesses in the loop and, depending on the sizééBfured by using coherent DMA transfers and by guaranteeing
the LM, sets the size of the buffers and assigns them to fixdtRt: at the eviction of replicated data, always the invalid
addresses in the LM. In Figure 2 there are two regular acces§@BY is discarded and then the valid version is evicted. For
(a andb) so two buffers (a and_b) would be allocated in data accesses, potentially mcohergnt accesses are diverted
the LM, each one of them occupying one half of the storagl®, the memory that keeps the valid copy. In order to do

The work phase is similar to the original loop, but with tw?© @ directory is introduced to keep track of what data is
differences. First, every instance of the work phase consume®@pPped to the LM. The DMAC updates the directory entries
subset of the original iteration space. The amount of iteratioh§en it executesima-getcommands. The compiler identifies
is determined by the stride of the regular accesses and the 8gintially incoherent memory accesses and eigitarded
of the LM buffers. Second, the original regular accesaeand Memory instructiondor them. The execution of a guarded
b) are substituted with their LM buffer counterpartsa(and Memory instruction triggers a lookup in the directory, diverting

. DESIGN

b) while irregular accesses are left untouchptir(). the access to the memory that keeps the valid copy of the data.
- The coherence protocol is independent of the CMP cache
C. The Coherence Problem coherence protocol. The proposed coherence protocol is per

The coherence problem in the hybrid memory system apere and it ensures coherence between the caches and the
pears when two incoherent copies of the same data canlié of that core, without interacting with other cores nor with
accessed during the computation. This problem arises becatleeCMP coherence protocol. This is because the LMs in the
the compiler creates a copy of the data when maps it to thgbrid memory system are used to store per core private data
LM and, for regular accesses, it generates memory operati@my. One core cannot access the LM of another core and,
that access the copy in the LM while, for irregular accesseghen a core maps data to its LM, another core should not
it generates memory operations that access the copy in #uoeess the copy of this data in the SM. This is key to ensure
SM. Since the memories are incoherent, modifications are tloére is no interaction with the CMP cache coherence protocol
visible between paths, so the execution can be incorrect. and it is what allows the proposal to work by only monitoring

Compiler-based solutions for this situation are inefficienévents inside the core. This constraint is easily ensured when
All approaches rely on memory aliasing analyses [9], [L0§ compiler maps private data to the LM because the data
[11]. In Figure 2 this means predicting when, if ever, ondistribution is already specified in the parallelization model.
instance of thept r access aliases with any instance of th¥ the architecture is programmed by hand, the programmer
_a and_b accesses. Current algorithms are not able to soligeresponsible for not accessing the data mapped to one core
this problem in the general case, so compilers adopt restrictivem another core without using synchronization primitives.
solutions. The naive one is to discard using the LM in presenceThe next sections explain the task of the compiler and the
of a potentially incoherent acces#\ potentially incoherent hardware support the coherence protocol requires.



A. Compiler Support memories. A simple way to do it is that the compiler generates

With the proposed coherence protocol the compiler a|ga_double store one irr(_agulqr store that will updatg thg copy
rithm that transforms the code as shown in Figure 2 is straigffi-SM and one potentially incoherent store that will trigger a
forward and safe, even in the presence of memory aliasil@kup in the directory and will update the copy in the LM if it
problems. The algorithm has three steps: classification ®fiSts- Notice that if the lookup in the directory of the second

memory references, code transformation and code generat®A'® misses there will be two stores of the same data to the
1) Classification of Memory ReferenceShe main task Same SM address. The overhead of this unnecessary second

of the compiler in this phase is to identify which memor;‘ﬁtore is small. The performance impact is low because the two

accesses are suitable to be mapped to the LM and which othf§es are independent so they both can be issued in the same
to the SM. It does so by classifying the memory accesses gycle. The increase in power consumption is also small since

cording to their access patterns and possible aliasing hazaf§; -oad/Store Queue [12] will collapse the second store with
g%e first one if it is not yet committed, having one single cache

access and so not paying the cost of an extra memory access.

« lIrregular accessesre those that do not expose a strideﬂ. The implementation of the guarded memory operations is

access pattern and the compiler is sure there is no alias thl){hderse:der?t ?g éhe artchl(tje(gutre.dOnlla tRISCIi architec-
with the contents of the LM. They are served by the S ure the shou € extended fo duplicate al memory

. Potentially incoherent accessewe those that do nOtmstructions with a guarded form. As this might produce many

expose a strided access pattern and the compiler is Hog%,tvalfepz(;liise’ dtrl;ietrseo?rteheOtgii;raltreén?;g/:r?t.a:i) To?orl:gr%r(])rls
sure there is no aliasing with the contents of the L y rep y

They access the directory and then the SM or the LM.'hStrUCti.OnS’ as happens in PowerPC [22]. Anothgr optiqn Is
) _ _ to provide a fewer range of guarded memory instructions
2) Code Transformationin this phase the compiler does,,q regtrict the compiler to these. In CISC architectures
the code transforma_tlons for regula_r accesses shown in Fﬁ e x86 [23], where most instructions can access memory,
ure 2. These are typical transformat|0n§ to manage LMs Wity ction prefixes can be used to implement the guard. A
software caches [_19]’ [8]. The compiler also_ informs thgeneric solution for any ISA is to extend the instruction set by
hardware of the size of the LM buffers. For irregular ang; 5 single instruction that performs the computation of the
potentially incoherent accesses nothing is done in this phag@y ess using the directory and leaves the result in a register
3) Code Generationin this phase the compiler generateg, ¢ il he consumed by the memory instruction, conceptually
memory instructions for the references: converting the guarded memory access to a coherency-aware
« For regular accessethe compiler generates instructiongddress calculation plus a normal memory operation.
that directly access the LM. This is accomplished by
using addresses that are computed as a base addresskf Hardware Design
LM buffer plus an offset. The only hardware support needed for the coherence proto-
« Forirregular accessethe compiler generates instructiongol is a directory that keeps track of the contents of the LM.
that directly access the SM. This is accomplished byhis section explains how the directory is configured, updated
using addresses that are computed as a base addresgnilused in the address generation. Then some considerations
SM plus an offset. about its access time, its double buffering support and its side
« For potentially incoherent accesséise compiler gener- effects on the hybrid memory system are discussed.
ates guarded instructions. The instruction is first gener-Configuration: The directory can be configured to work
ated in the same way as the instructions generated {gith any LM buffer size. When the compiler transforms the
irregular accessgsso an initial SM address is generatedcode it partitions the LM into equally sized buffers and informs
Then the guard is inserted in the instruction, so it wilhe hardware of the LM buffer size through a memory-mapped
access the directory using the SM address and will be @égister. A directory entry is assigned to each of these LM
verted to the corresponding memory. The implementatigiuffers to map the starting address of the copy of the data in
of the guard is discussed later in this section. the SM (i.e., the directory tag) to the starting address of the
One special case has to be treated separately. When ltMebuffer where the data is mapped to. Since all LM buffers
compiler determines a write access is potentially incohereare equally sized, the base address of a LM buffer is equivalent
and it aliases with some data that is mapped for reading onlytcathe buffer number and, thus, the index of a directory entry.
guarded store is generated for it. The execution of the guardete buffer size is used to set the values of Bese Mask
store will hit in the directory and the write will be done to theand Offset Maskinternal registers. These registers allow to
LM. This may lead to an erroneous execution because, sirdecompose any address into a base address and an address
the mapping to the LM is for reading only, no write-back obffset, so the directory can be operated with any buffer size.
the data to SM will be programmed and, when the buffer is Update: Everydma-gebperation updates the directory. The
reused to map new data, tdena-getoperation will overwrite destination LM address of the transfer is used to identify the
the modifications done by the potentially incoherent store. THimse address of the LM buffer and the source SM address is
problem can be solved by making the modifications in the twesed to set the tag of the corresponding directory entry.

o Regular accesseare those that expose a strided acce
pattern. They are served by the LM.



REGISTERS DIRECTORY

Base Mask  Offeet Mask SM base LM base Presence generated until the bit is set at tldena-getcompletion. This
ase Mas se as

address address bit ensures correctness when a guarded memory access accesses
| | | | ] data that is being transferred to the LM using double buffering.
""" DIRECTORY UPDATE As a final remark, the introduction of the hardware directory
: from Base Mask sm-addr Im-addr does not undermine the benefits of the hybrid memory system.
D— The number of CAM lookups is kept low because only ac-
?r‘f)‘:;cjn?gdg;ztss cesses that are not regular trigger them: if they are potentially

- incoherent accesses they go through the directory and then

" ADDRESS GENERATION L | " to either the cache or the LM; if they are irregular accesses

Coherent

: Incoherent address i they are served directly by the cache. Regular accesses are
i from Base Mask base address @ku\p hit/miss directly served by the LM without any CAM lookup. Since

' nconerent \ f in HPC applications the vgst majqrity of memory accesses

i address LM base addr i are regular [25], [26], the directory is rarely accessed and the

| (from AGU) <M base addr goodnesses of the hybrid memory system are preserved.

Incoherent address offset

\,from Offset Mask -~ C. Data Coherency Management

Fig. 3: Scheme and main operations of the directory.  This section shows the correctness of the coherence proto-
col. The two previous sections described how memory opera-
Address generation:The directory is used in the addressions are diverted to one memory or another when replication
generation as shown in Figure 3. The Address Generation Uglists, considering that the valid copy of the data is in the LM.
(AGU) [12] generates a potentially incoherent SM addréss ( This section shows this situation is always ensured. First, the
coherent addregsvith the operands of the guarded instructionyifferent states and actions that apply to data in the system are
Notice that this is a SM address because it is generated byecribed. According to this, it is shown that whenever data
potentially incoherent access. Two bit-wise AND operations replicated in the LM and in the cache hierarchy, only two
between théncoherent addresand theBase MaslandOffset  sjtuations can arise: either both versions are identical, or the
Maskregisters split the address in &rcoherent base addressyersion in the LM is always more recent than the version in the
and anincoherent address offsefhelncoherent base addresscache hierarchy. Then it is shown that whenever replicated data
is used to do a lookup in the directory. If it hits, the instructiofs evicted to main memory, the version in the LM is always the
is accessing data in the SM that has a copy in the LM, so thge transferred, invalidating the cache version. This is always
access has to be diverted to the LM. The base address of g@ranteed unless both versions are identical, in which case
corresponding LM buffer is retrieved from the directoM  the system supports the eviction indistinctly.
base addy and a bit-wise OR with théncoherent address 1) pata States and Operation&igure 4 shows the possible
offsetis done, resulting in th€oherent addresdf the lookup ctions and states of data in the system. The state diagram
misses there is no copy in the LM, so the original SM addregs conceptual, it is not implemented in hardware. T¥d!
is preserved by performing a bit-wise OR between 8M  gtate indicates the data is resident in main memory and has no
base addrand thelncoherent address offset replica neither in the cache hierarchy nor in the LM. Thé
Access time:The directory is restricted to have 32 entriestate indicates that only one replica exists, and it is located
to keep the access time low. According to CACTI [24], withn the LM. In the CM state only one replica in the cache
a process technology of 45nm, the latency of the directoryhserarchy exists. In th&M-CM state two replicas exist, one
0.348 nanoseconds. Taking into account that this latency wogldthe LM and the other in the cache hierarchy.
be significantly lower with nowadays process technology, thatActions prefixed with tM-" correspond to LM control
current CPUs work with frequencies between 2GHz and 3GHgtions, activated by software. There is a distinction between
and that the directory is accessed jUSt after the address g_qm—.map and LM-unmap a|th0ugh both actions Correspond
eration in the AGU, which is an extremely simple operationg the execution of alma-get which unmaps the previous
it is feasible to generate the address and to do the lookupcightents of a LM buffer and maps new contents instéadk.
the same cycle. Having 32 entries constrains the softwarenfapindicates that @ima-getransfers the data to the LM. The
use 32 LM buffers at most, which is not a limitation sincg M-unmapindicates that alma-gethas been performed that
loops with more than 32 regular references are rare. If a logperwrites the data in question, so it is no longer mapped to
needs more than 32 buffers the compiler can simply not mgge LM. TheLM-writebackcorresponds to the execution of a
the exceeding regular accesses to the LM. dma-puthat transfers the data from the LM to the SM. Actions
Double buffer support: The directory contains Bresence prefixed with ‘CM-" correspond to hardware activated actions
bit that indicates if the data of a LM buffer is currently beingn the cache hierarchy. ThEM-accesscorresponds to the
transferred into the LM by @ma-get This bit is reset when placement of the cache line that contains the data in the cache
the dma-getis triggered. If a guarded memory access hits thHderarchy. TheCM-evictcorresponds to the replacement of the
directory entry and this bit is unset, an internal exception ache line, with its write-back to main memory if needed.



start which means that eviction of data can only happen when one
replica exists in the system. This is a key point to ensure
coherency. In case data is in thé1-CM state, its eviction
can only occur if first one of the replicas is discarded, which
corresponds to a transition to th& or CM states. According

to the previous section, it is ensured that in thd-CM state

the two replicas are identical or, if not, the version in the
LM is the valid one. Consequently, the eviction discards the
cache version unless both versions are identical, in which case
. . ) o either version can be evicted. This behavior is guaranteed by
Fig. 4: State diagram of possible data replication states. ihe transitions exiting theM-CM state. When &M-writeback
action is triggered by dma-putthe associated DMA transfer
SRvalidates the version of the data that is in the cache hierarchy.
The CM-evicttransition is caused by an access to some other
data in SM that causes a replacement of the cache line that
holds the current data, leaving just one replica, the one in

LM

The MM—LM transition occurs when the software caus
an LM-map action. Switching back to th&M state occurs
when anLM-unmapaction happens due todama-getmapping
new data to the buffer. Notice that drM-writeback action

does not imply a switch to theIM state, as transferring dat he LM, and thus transitioning to tHeM state. Once theM

to the m_a_un memory does not unmap the data from the L state is reached, at some point the program will execute a
_ Transitions between théM andCM states happen accord-yma_nutoperation to write-back the data to the SM. Finally,
ing to the execution of load and store operations that cayse transitionLM-CM—CM caused by aM-unmapaction
CM-accessand CM-eviction actions. Notice that unless the,qesnonds to the case where the program explicitly discards
data reaches theM-CM state, no coherence problem cag,q copy in the LM when new data is mapped to the buffer that
appear due to the use of a LM. DMA transfers are cohergiifiys it The programming model imposes that this will only
with the SM, ensuring the system coherence as long as {ig,hen when both versions are identical, because if the version
data switches between thé/ andMM states. Similarly, the j, yhe | M had modifications it would be written-back before

cache coherence protocol ensures the system coherence %Hg replaced. So, after tHeM-unmap the only replica of
the data switches between théM and CM states. In both e qata is in the cache hierarchy and it is valid, and the cache

Cases, never more than one replica is generated. coherence protocol will ensure the transfer of the cache line
CM states. ”_‘ thg—M state, a gua_\rded instruction will never |5 conclusion, the system always evicts the valid version
cause a replica in the caches since the access goes throyigthe data. When two replicas exist, first the invalid one

is impossible to have unguarded memory instructions to thgachanisms correctly manage the eviction of the valid replica.
SM because the compiler never emits them unless it is sure

that there is no aliasing, which cannot happen in this state. IV. EVALUATION

In the LM state, only the execution of a double store can Thjs section evaluates the coherence protocol for the hybrid
cause the transition to theM-CM state. The double store ISmemory system. A microbenchmark and a set of real bench-
composed of a guarded store and a store t0 S8ufraea &N marks are used to study the overhead of the proposal in terms
sten). Thestqy is served by the cache hierarchy, so a replicg execution time and energy consumption. Then a comparison

of the data is generated and updated in the cache, while figyinst a cache-based system is presented.
Stguardea Modifies the LM replica with the same value, so

two replicas generated throughLM—LM-CM transition are A. Experimental Framework
always identical. The transitio@M—LM-CM happens due to  The proposal has been evaluated using PTLsim [27], ex-
an LM-mapaction, and the DMA coherence ensures the tWanding it with a LM, a DMAC and the directory of the
versions are identical. Once in thé/-CM state, the double coherence protocol. For the energy results Wattch [28] has
store updates both versions, whil€guaraea @ndstin modify  heen embedded into the simulator. Cycle-accurate single-core
the LM version andsts, will never be generated. simulations are presented because the coherence protocol is
In conclusion, only two possibilities exist for having twoper core. Table | shows the parameters of the simulator.
replicas of data. Each one is represented by one path reachingix typical HPC benchmarks from the NAS benchmark
the LM-CM state from theMM state. In both cases, the twosuite [31] are used for the evaluation. The benchmarks have
versions are either identical or the version in the LM is thgeen compiled using GCC 4.6.1 with the -O3 optimization
valid one. The next section shows the valid version is alwajiag on. SimPoint [32] has been used to identify the simulation
selected at the moment of evicting the data to main memopsints and at least 150 millions of x86 instructions have been
2) Data Eviction: The state diagram shows that the evictiosimulated for each benchmark.
of data can only occur from theM andCM states. There is  To generate guarded memory instructions for the potentially
no direct transition from thé.M-CM state to theMM state, incoherent accesses it has been checked the outcome of the



TABLE I: PTLsim configuration parameters. TABLE II: Scheme of the microbenchmark.

| Parameter | Description | [ Microbenchmark | Mode [ Assembly code |
Pipeline Out-of-order, 4 instructions wide mov a(, esi, 4), ebx
. Hybrid 4K selector, 4K G-share, 4K Bimodal Baseline | add 0x0(c), ebx
Branch predictor 4K BTB 4-way, RAS 32 entries mov ebx, a+4(, esi | 4)
Functional units 3 INT ALUs, 3 FP ALUs, 2 load/store units mov a(, esi, 4), ebx
Register file 256 INT registers, 256 FP registers int a[N; RD add 0x0(c), ebx
L1 I-cache 32 KB, 8-way set-associative, 2 cycles latency int c; nov_ebx, a+4(, esi, 4)
L1 D-cache 32 KB, 8-way set-associative, 2 cycles latency for(i=0; i <N-1; i++) { mov a(, esi, 4), ebx
L2 cache 256 KB, 24-way set-associative, 15 cycles laten¢y a[i+1] =a[i] +c; WR add 0x0(c), ebx
L3 cache 4 MB, 32-way set-associative, 40 cycles latenc } mov ebx, a+4(, esi, 4)
Prefetcher IP-based stream prefetcher [29], [30] to L1, L2, 3 mov_ebx, a+4(, esi, 4)
Local memory 32 KB, 2 cycles latency mov a(, esi, 4), ebx

add 0x0(c), ebx
ebx, a+4(, esi, 4)
nov ebx, a+4(, esi, 4)

RD/WR

D
3
<

alias analysis performed by GCC on every memory reference.
The references that GCC is not able to determine the aliasing
for are the potentially incoherent accesses. Once these acces 130———+—r—""v—"—+—+——+——
have been identified, the source code of the benchmark 12s{ """ RD e
has been modified by hand to generate the guarded memo, 120f| e —
instructions using assembly macros. Instruction prefixes ardvsf e '
used to implement the guards as explained in Section IlI-A. %110— e :
1.05

B. Overhead of the Coherence Protocol B |

A microbenchmark that stresses the coherence protocol i ool . . ., . . . . |
used to facilitate the study of its performance overheads. Tz 0 0 bEDNSTRCTIONs 0 e
ble 1l shows its characteristics. The microbenchmark consists
of a loop that makes a sequence of load/add/store instructions
that can be configured in four modes. In the baseline motd®des, if the compiler could ensure the potentially incoherent
no guarded instructions are generated for any access. The Rile access aliases with some data in the LM that will be
mode assumes the read accaps] may alias, so a guardedwritten back to the SM, a single guarded store would be
load is generated. The guard is represented in bold font in thenerated instead of the double store, and the overhead would
assembly code. In the WR mode it is assumed the write accbsszero as in the case of a single guarded load.
toa[ i +1] is potentially incoherent and it cannot be ensured In conclusion, the coherence protocol adds no performance
a write-back to the SM will be performed, so a double stor@verhead when the potentially incoherent memory accesses are
is generated. The RD/WR mode is a combination of the Rior reading data or when they are for writing and the double
mode and the WR mode. In addition, it is possible to adjustore is not needed. Only the double store adds overhead,
the percentage of memory operations that need to be guardeaching a maximum 28% in the microbenchmark. In real
in order to model all possible scenarios in terms of the rat&tuations it is common that the number of potentially incoher-
of accesses that are potentially incoherent. ent write accesses is low with respect to the total number of

Figure 5 shows the performance overhead of the proposaémory accesses and the computation is more complex than
in the microbenchmark. Three lines appear in the figure, otfee one performed in the microbenchmark, so the expected
per each mode of the microbenchmark. The X axis shows theerheads are far from this reported upper bound.
percentage of references that are potentially incoherent within order to study the overheads in real benchmarks, the
respect to the total number of references. The overheads laybrid memory system extended with the coherence protocol
computed against the baseline mode. is compared against an incoherent hybrid memory system with

The RD mode line shows no overhead at all. The onBn oracle compiler. In this baseline architecture the potentially
differences in the execution of a guarded load and a nadneoherent accesses are left unguarded and are always served
guarded load are that the prefix has to be decoded and thélyahe memory that has the valid copy of the data.
lookup in the directory is triggered. Both operations fit in the Figure 6 shows the overhead introduced by the coherence
cycle time so there is no performance overhead for guardeabtocol in terms of execution time and energy consumption
loads. In the WR and the RD/WR modes it can be observadreal benchmarks. The performance overhead in CG, MG
a linear overhead as the percentage of potentially incoherantd SP is zero because the compiler does not find any
accesses grows. The overhead is caused by the extra spaentially incoherent write access that needs to be treated
added. When the double store is used at every write accessith a double store. This happens only in FT and IS, which
adds an overhead of 28%, which is provoked by an increasepiresent overheads of 0.99% and 0.43%, respectively, and in
executed instructions of 26%. The overhead decreases to EEBswhich presents no overhead. FT uses 34 strided references,
than 10% when 35% or less of the write access are guardedotentially incoherent read references and 2 potentially
and need the double store, which provokes an increase of 8%oherent write references (treated with a double store) to
in executed instructions. Notice that in the WR and RD/WRo complex operations on floating point data. The cost of the

Fig. 5: Overhead in all microbenchmark modes.
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|j| cyd;s - Ene@ ‘ ‘ hybrid memory system has a 32KB LM and the directory of
105} ] the coherence protocol. For fairness, the capacity of the L1
of the cache-based system is increased to 64KB, matching the
32KB of LM plus the 32KB of L1 in the hybrid memory
system. Second, the write policy of the L2 is write-through in
the hybrid memory system and write-back in the cache-based
system. Table Ill summarizes the statistics of the memory
3 & n @ g % subsystem that are the dominating factors of the improve-
Fig. 6: Overhead in real benchmarks. ments. This table is used throughout this section to explain the

differences between the two architectures. For each benchmark

computation and the small percentage of references that nged 1opje shows the ratio of references that are potentially

to be treated with the double store keep the overhead low.; oherent, the average memory access time (AMAT), the

IS the computation is very simple and the double store is USeY it ratio, the number of write-throughs or write-backs
in 2 out of 5 references, so the extra store provokes a N4Aat are performed from the L2 to the L3 (L3 WT/WB)

negligible increase in executed instructions. This increase Rd the number of accesses to all the components of the
instructions barely affects the performance because most of gmory subsystem in thousands. The accounting of accesses

Flmes the out-of-order engine 1S able to ISsue the potentia cludes hits, misses, lookups and invalidations provoked by
incoherent store and the irregular store in the same cy

) - - “YHTiemory instructions, prefetchers, placement of cache lines by
effectively hiding the latency of the double store. A S|mlla{he MSHRs, write-through and write-back policies and bus
situation happens in EP, that has 3 strided references

. ; ) ) ' r%ﬁuests of the DMA commands.
local variables and 1 potentially incoherent write reference-l-he immediate consequence of the coherence protocol is

for which the double store is used. In this case the issueﬁ%i‘t any computational loop can be executed on the hybrid

OVERHEAD
-
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S

o
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the two stores_ is always done in_the same cycle, that is w emory system. The benchmarks that take benefit of this
Lhe or:/erhiad_ IS zelr_ozb'll'heo rzej(;ltmg average overhead of ievement are all but SP. In Table IlI this is reflected in the
enchmarks 1S negligible, U.24%. i . column of the number of guarded references. All benchmarks
Figure 6 also shows the energy consumption overhead is IBﬁ? SP have potentially incoherent references for which the

than 2% in aII.benchmarks except in IS. These benChm?‘%ﬂpiler generates guarded accesses. Without the coherence
have many strided references and do complex computatiofgyiqcol the usage of the hybrid memory system would not

so the o_lirectory is very seldomly accessed and, moreover, possible in these cases, so the performance and energy
energy it consumes is much lower than the energy consume,q,;mption benefits it provides would not be exploited.
by other components such as the memory subsystem, ALUSrq requction in execution time the hybrid memory system
and issue queues, resulting in a very low overhead. In IS theniaves when compared to a cache-based system can be
overhead is 4.5%. The overhead generated by the directoryjsaed in Figure 7. For each benchmark two bars are
around 1.5%, the remaining 3% is caused by the execution gt qenteq. The leftmost bar is the execution time of the cache-
the double store. The average overhead in energy cOnSUMPHAdey system and the rightmost bar is the execution time of
of all benchmarks is 1.06%. the hybrid memory system. Both bars are normalized to the
In conclusion, the coherence protocol adds a very lowche hased system execution time and show the weight of
overhead in performance and in energy consumption. In 3 9f, execution phase, considering as work time the whole
the 6 benchmarks the double store is not needed, so there grg.,tion time of the cache-based system. All benchmarks
no performance penalties and the utilization of the directopy,; gp present some degree of reduction. The reductions are
generates an increase in energy consumption of less than 29%iny due to the reduction of execution time of the work
When the double store is needed the increase in the numbgrse  more than 34% in all cases. This big reduction in the
of instructions p_rovokes a very minor pe_rformance degradatigprk phase is caused by the better management of memory
and a slightly higher energy consumption. references in the hybrid memory system. First, the irregular
accesses that reuse data along the execution of the benchmarks
have a much higher L1 hit ratio in the hybrid memory
The immediate result of the coherence protocol is that asystem. This is because the hybrid memory system uses the
computational kernel can now be executed on the hybrid metrM to serve the regular accesses and the L1 to serve the
ory system no matter the restrictions coming from coherenieeegular ones, so the data placed in the L1 is much less often
problems. In order to show the usefulness of this achievemesiticted than in the cache-based system, where every access is
this section evaluates the benefits in performance and enesgyed by the L1 so the data brought for irregular accesses
consumption of the coherent hybrid memory system whés evicted when new data needs to be brought for regular
compared to a cache-based system. references, causing misses when irregular accesses reuse data.
This section compares the coherent hybrid memory syst@ithe second important observation is that the hybrid memory
with a cache-based system. The two architectures have exastigtem imposes an execution model that does extra work in
the same characteristics but with two differences. First, tlige control and synchronization phases, but in the work phase

C. Comparison with Cache-Based Architectures



TABLE l1I: Activity in the memory subsystem for the hybrid memy and the cache-based systems.

Benchmark Guarded AMAT L1 L2 L3 LM Directory
Name | Mode References Hit ratio | Accesses|| Accesses|| WT/WB | Accesses|| Accesses|| Accesses
CG Hybrid coherent 1/7 (14%) 3.15 90.52 19319 26376 2388 14973 30235 10566
CG Cache-based 0 4.31 82.23 70371 62822 8654 84202 0 0
EP Hybrid coherent 1/20 (5%) 2.14 99.93 37152 10266 10069 10589 3862 3519
EP Cache-based 0 2.37 98.93 43814 13219 166 797 0 0
FT Hybrid coherent|| 4/34 (11%) 2.60 96.61 912779 761009 654686 879602 1155150 55118
FT Cache-based 0 4.95 78.54 1379688 789765 69253 352269 0 0
IS Hybrid coherent 2/5 (25%) 6.27 74.00 140663 194465 99344 168968 73400 25714
IS Cache-based 0 7.93 64.10 169425 182716 34315 127692 0 0
MG Hybrid coherent|| 1/60 (1.66%) 2.24 99.71 605269 252799 237447 281129 798562 19377
MG Cache-based 0 3.89 90.65 827239 238099 19783 127176 0 0
SP Hybrid coherent || 0/497 (0%) 2.41 98.37 331832 162441 149649 174211 235024 0
SP Cache-based 0 4.73 79.59 407952 164515 11866 82301 0 0
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it is able to execute the strided accesses without cache misties,major savings come from the CPU. This is provoked by
since they are served by the LM. In the cache-based systehg reduction of cache misses, which cause energy penal-
when a lot of strided memory references are being used, th@s in the pipeline in the form of re-executed instructions.
cause collisions in the history tables of the prefetchers and afSther benchmarks like CG and FT present important energy
the big amount of prefetched data causes conflict misses in thductions in the cache hierarchy. This is because, first, the
whole cache hierarchy. These two situations are reflectedhiybrid memory system does fewer accesses to the L1 and L2
the AMAT and the L1 hit ratios shown in Table Ill. MG andbecause it uses the LM instead and, second, cache misses and
SP show a very similar behaviour, with respective reductiodsta prefetches are more frequent in the cache-based system,
of 38% and 40% (or speedups of 1.61x and 1.64x). The hgovoking energy consumption due to cache line lookups and
amount of regular references they have provoke conflict misggacements. These numbers can be observed in Table Ill. The
and collisions in the prefetchers in the cache-based systammber of accesses to the L3 increases due to the write-
that cause very important penalties compared to the executibrough policy in the L2, but this increase is lower than the
time spent in control phases in the hybrid memory systesavings in the rest of the hierarchy and so energy savings
CG, IS and FT show reductions of 25%, 35% and 21% (are achieved. Furthermore, the energy savings in the cache
speedups of 1.32x, 1.25x and 1.54x), respectively. These lodyararchy are bigger than the energy consumed by the LM in
have fewer strided references but their critical path contaittee hybrid memory system, which has a weight of less than
a potentially incoherent access with a high degree of reus8s. Unlike the rest of benchmarks, EP has an overhead of less
These memory references almost always miss in the L1tlman 1%. In the hybrid memory system the strided accesses
the cache-based system, while they are served very efficierghg served by the LM, but every store to the L1 reaches the
in the hybrid memory system. EP presents no speedup at BB. due to the write-through policy in the L2. The gain and
In both architectures all accesses are served very efficienthye loss compensate one with each other to result in roughly
with similar AMATs and L1 hit ratios of 99.9% and 98.9%.the same energy consumption. The average savings in energy
An irregular store causes this difference in the hit ratio armbnsumption in the benchmarks is 18%.
this access is not in the critical path, so the differences inlt is important to show that it is possible to have write-
performance are less than 0.5%. On average, the speedughipugh L2 caches in the hybrid memory system. This config-
all benchmarks is 1.36x, or a reduction of 27%. uration is the worst case scenario to implement coherence at
Figure 8 shows, for each benchmark, the energy consuntipe DMA transfer level in a CMP, as explained in Section II-A.
tion of the cache-based system in the leftmost bar and of thable 11l shows it is viable to have write-through L2 caches in
hybrid memory system in the rightmost bar. Both bars athis architecture. The column L3 WT/WB shows the number
normalized to the cache-based system energy consumption ahdccesses to the L3 that are provoked by write-throughs from
show the weight of each component of the processor on ttie L2 in the hybrid memory system and by write-backs from
total consumption. All benchmarks but EP show reductiortke L2 in the cache-based system. The best case for the hybrid
in energy consumption of 36% to 11%. In IS, MG and SPhemory system is to use the cache hierarchy for irregular read



references only and serve all the stores with the LM, like in This paper relies on previous works on DMA coher-
CG. In this case the number of write-throughs is lower thaence [14]. The IBM Cell architecture [5], [13] ensures DMA
the number of write-backs done by the cache-based syst@wherence by doing lookups in the cache hierarchy when DMA
resulting in a 6 times lower number of accesses to the LtBansfers are performed. In the Cell architecture only DMA
When the cache hierarchy is used only to serve irregular writansfers can generate data replication and there are no coher-
references (IS) the increase in L3 accesses is 33%. The werste problems because, with regular memory instructions, the
case is when there are a lot of stores to local variables, eitheaicelerator cores can only access their LMs and the general
the computational kernel (EP) or because of the complexity pfirpose core can only access the cache hierarchy. Whenever
the control phases due to the big amount of strided refereneesiodification has to be visible to other cores DMAs are used
(FT, MG and SP). The number of accesses to the L3 groas the coherence is ensured. In the hybrid memory system
by factors between 5x to two orders of magnitude, but thikis approach is extended to support coherence at the memory
increase is balanced by the reduction of accesses to theihdtruction level because a core can access both memories.
and the L2. In addition, solutions like a hardware stack or D. Tang et al. [34] introduce on-chip storage to separate 10
mapping the stack to the LM could eliminate this problem. data from CPU data. Although with different motivations, this

In conclusion, the hybrid memory system outperformsork faces similar coherence problems as the ones the pro-
cache-based systems because it is able to serve data yp&rsed coherence protocol addresses. The introduction of the
efficiently: the strided accesses are served by the LM so th&1A-cache creates potential incoherences that are solved by a
first levels of the cache hierarchy are less frequently accessefinement of the MOESI and ESI cache coherence protocols.
and their capacity can be devoted to the data accessed byrirthe coherent hybrid memory system data invalidation only
regular and potentially incoherent accesses, avoiding evictidreppens along dma-putand never a memory access to the
of data that is going to be reused. Moreover, fewer collisiomache hierarchy can modify the contents of the LM.
in the history tables of the prefetchers happen due to the lower
activity in the first cache levels. This lower activity directly
translates to less energy consumption, being the major saving$he hybrid memory system, which consists of adding a local
due to the reduction of re-executed instructions caused mgmory alongside the cache hierarchy, can be a solution to
cache misses. The energy savings in the L1 and the L2 cactieslack scalability of future CMPs. One of the main problems
are very important also, but are almost compensated by tfesuch approach is the lack of coherence between the two
increase in the energy consumed in the L3. This increasesiorages. The main contribution of this paper is the design of
the L3 is caused by the write-through policy of the L2 cache & coherence protocol for hybrid memory systems.
the hybrid memory system, that generates an important amounthe protocol admits data replication in the two storages
of accesses to the L3 when a lot of local variables are usednd avoids keeping them coherent. Instead, it ensures that the
valid copy of the data is always accessed. The design consists
of a hardware directory that keeps track of the contents of

The idea of adding a LM alongside the cache hierarchy tise local memory and guarded memory instructions that the
not novel. Bertran et al. [7] propose such organization in a geeempiler selectively emits for potentially incoherent memory
eral purpose core, and it is also present in commercial produatEesses. Guarded instructions access the directory and then
like the NVIDIA Fermi GPGPU [6]. These two approacheare diverted to the storage where the correct copy of the data
do not solve the coherence problem between the two storagesThis coherence protocol has important goodnesses. The task
Bertran et al. [7] give the compiler the responsibility to discardf the compiler when it generates code for the hybrid memory
loop transformations in case of coherence problems, restrictisgstem becomes straightforward and is always safe because it
the effective utilization of the hybrid memory system. In thé not limited by memory aliasing problems. Furthermore, the
NVIDIA Fermi [6] the global memory (that is cached) and theoherence protocol can be implemented with simple hardware
LM are incoherent, and it is the programmer who explicithadditions and the design does not introduce any overheads in
manages them. The programming language provides keywocdsles that do not present coherence problems.
that are used in the declaration of the variables to specifyThe evaluation shows the coherence protocol introduces
which memory will store them, so data replication does notverheads of 0.24% in execution time and of 1.06% in energy
happen. If two copies of data exist in the two memories @onsumption to enable the usage of the hybrid memory system,
is the programmer who has to explicitly declare and manageat achieves an average speedup of 36% and an energy
them, since neither the hardware nor the compiler give amduction of 18% when compared to a cache-based system.
support for coherency management between both memories.

Cohesion [33] allows the software to dynamically select
which cache lines are cache coherent by enabling and disablingVe thankfully acknowledge the support of the the Spanish
the cache coherence protocol for specific lines. This approddmistry of Education (TIN2007-60625 and CSD2007-00050),
faces the same problem as the hybrid memory system becathige Generalitat de Catalunya (2009-SGR-980), the HIPEAC
it opens the door to incoherent copies of data, relying on tiNetwork of Excellence (contracts EU FP7/ICT 217068 and
programmer to explicitly manage them. 287759), and the BSC-IBM collaboration agreement.
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