
Hardware-Software Coherence Protocol for the
Coexistence of Caches and Local Memories

Lluc Alvarez∗†, Lluı́s Vilanova∗†, Marc Gonzalez∗†,
∗Barcelona Supercomputing Center

C. Jordi Girona, 29
08034 Barcelona, Spain

Email: name.surname@bsc.es

Xavier Martorell∗†, Nacho Navarro∗†, Eduard Ayguade∗†
†Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
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Abstract—Cache coherence protocols limit the scalability of
chip multiprocessors. One solution is to introduce a local memory
alongside the cache hierarchy, forming a hybrid memory system.
Local memories are more power-efficient than caches and they
do not generate coherence traffic but they suffer from poor
programmability. When non-predictable memory access patterns
are found compilers do not succeed in generating code because of
the incoherency between the two storages. This paper proposes
a coherence protocol for hybrid memory systems that allows the
compiler to generate code even in the presence of memory aliasing
problems. Coherency is ensured by a simple software/hardware
co-design where the compiler identifies potentially incoherent
memory accesses and the hardware diverts them to the correct
copy of the data. The coherence protocol introduces overheads
of 0.24% in execution time and of 1.06% in energy consumption
to enable the usage of the hybrid memory system.

I. I NTRODUCTION

Upcoming chip multiprocessor (CMP) architectures are ex-
pected to include a significant number of cores, as a result of
the replication of general purpose and specialized accelerator
cores. As an immediate consequence, the memory subsystem
has to evolve into some novel organization that satisfies the
inherent bandwidth requirements of such approach and avoids
potential bottlenecks in the shared levels of the memory hier-
archy. Both the power consumption originated in the memory
hierarchy and the lack of scalability of current cache coherence
protocols constrain the sharing and the size of caches when
cores are replicated beyond certain levels [1], [2], [3].

A possible solution to the power consumption and scalabil-
ity problems of cache coherence protocols is the introduction
of local memories (LMs), also known as scratchpad memo-
ries [4]. The main advantages of LMs are that they offer access
delays similar to that of best-case cache delays in a much more
power-efficient way and they do not generate any coherence
traffic. The drawback is that LMs introduce programmability
difficulties due to the explicit data transfers they require, so
usually programmers rely on compiler transformations that
generate code to manage the LM. Although this limitation,
LMs have been successfully introduced in the high perfor-
mance computing (HPC) domain in several ways. In the Cell
B.E. [5], accelerator cores access their private LM with regular
memory instructions and use explicit DMA transfers to move
data between memories. A more recent trend is to introduce a

LM alongside the cache hierarchy, forming a hybrid memory
system. This approach is being currently used in GPGPUs [6]
and in general purpose cores [7].

One of the main problems of the hybrid memory system
is the potential replication of data between the two storages.
Compilers succeed in generating code for LMs when the com-
putation is based on predictable memory access patterns [8]
but, when non-predictable memory access patterns are found,
compilers need to ensure correctness by applying complex
analyses such as memory aliasing and data flow analysis [9],
[10], [11]. When compilers cannot ensure that there is not
going to be aliasing between two memory references that may
target copies of the same data in the LM and in the cache
hierarchy, they must conservatively avoid using the LM. This
problem is caused by the fact that the copies of data in the
LM and in the cache hierarchy are incoherent.

The main contribution of this paper is a novel coherence
protocol for hybrid memory systems to achieve the pro-
grammability of a cache-based system by safely enabling the
use of the LM in the presence of memory aliasing problems.
A coherent memory view of the two storages is ensured by
a simple hardware/software mechanism implemented by two
components: (1) a per-core hardware directory that keeps track
of which data is mapped to the LM and (2) guarded in-
structions for memory operations that the compiler selectively
places in potentially incoherent data accesses, that are diverted
to the correct copy of the data at execution time. The proposal
allows the compiler to use an straightforward algorithm to
generate code for the hybrid memory system. The evaluation
shows that, compared to a compiler that is able to resolve all
memory aliasing problems, the proposal introduces overheads
of 0.24% in execution time and 1.06% in energy consumption.
These overheads are outweighted by the benefits coming from
the ability to generate code for the hybrid memory system,
that provides an speedup of 36% and an energy saving of
18% when compared to a cache-based system.

The rest of this paper is organized as follows: Section II
gives some background of how a LM is integrated in a core
and how the resulting architecture is programmed. Section III
explains the design of the coherence protocol and Section IV
presents its evaluation. Section V comments some related work
and Section VI remarks the main conclusions of this work.
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II. BACKGROUND AND MOTIVATION

This section explains the hybrid memory system, its pro-
gramming model and the coherence problem it exposes.

A. Baseline Architecture

The hybrid memory system consists of extending a core
with a LM and a DMA controller (DMAC), as Figure 1 shows.

The LM is integrated into the core at the same level as the
L1 cache and is used to store private data only. The system
reserves a range of physical addresses for the LM and these
physical addresses are direct-mapped from a virtual memory
range, which is identified by two registers that specify the
base virtual address and the LM size. Thus, the CPU is able
to access the LM using regular loads and stores to these virtual
addresses. In order to distinguish which memory has to serve a
memory instruction, a range check is performed on the virtual
address, prior to any MMU [12] action. If the virtual address
is in the range reserved for the LM the MMU is bypassed and
a physical address that points to the LM is generated [7]. This
scheme has two important benefits. First, the access time to
the LM is constant because no pagination is needed. Second,
it allows the introduction of the LM in a very simple way
because only two extra registers are required to configure the
LM and there is no interference with the cache hierarchy.

The DMAC is in charge of transferring data between the
LM and the system memory (SM, which includes caches
and main memory). It offers three operations: (1)dma-get
transfers data from the SM to the LM, (2)dma-puttransfers
data from the LM to the SM and (3)dma-synchwaits for the
completion of certain DMA transfers. These operations are
explicitly triggered by software using memory instructions to
non-cacheable memory-mapped registers in the DMAC.

DMA transfers are coherent with the SM [13], [14] by
inspecting the cache hierarchy at every bus request. The bus
requests generated by adma-get look for the data in the
caches. If the data is in some cache, it is copied from there
to the LM, otherwise it is copied from the main memory. The
bus requests generated by adma-putcopy the data from the
LM to the main memory and invalidate the cache line in the
whole cache hierarchy, if it exists. In a typical configuration
with private write-through L1 caches, private write-back L2
caches and a shared L3 cache the implementation of coherent
DMA transfers depends on the CMP cache coherence protocol.
The ideal case is to have a directory-based protocol, so it is
straightforward to access the cache that keeps the valid copy of
the data. Contrariwise, with a snoop-based protocol this is very
costly, since in a CMP every bus request performs a lookup
in the L2 cache of every core, generating a huge overhead
in energy consumption. This situation can be alleviated by
changing the write policy of the L2 caches to write-through,
so the bus requests only do one lookup in the shared L3 cache.
Using write-through L2 caches is inefficient in cache-based
systems because every store reaches the L3 cache, adding a
big overhead in energy consumption and bus traffic. In the
hybrid memory system this is less critical, since most accesses
are served by the LM so, even with write-through L2 caches,

Fig. 1: Architecture of the hybrid memory system.

the number of accesses to any level of the cache hierarchy
decreases when compared to a cache-based system with write-
back L2 caches. In this paper the hybrid memory system uses a
snoop-based coherence protocol with write-through L2 caches
to show that, even in this worst case scenario, it provides many
benefits compared to cache-based systems.

B. Programming Model

A CMP that uses the hybrid memory system can be
programmed using any programming model for cache-based
CMPs. The only thing to be done for the hybrid memory
system is to map private data to the LM. Typically program-
ming models rely on programmers to know how the data of a
parallel program has to be distributed. In distributed memory
architectures, programming models such as MPI [15] require
the user to explicitly partition the data. Allocations are private
to each computational task and the programmer adds ex-
plicit data transfers and synchronization points between tasks
when needed. In shared memory architectures the programmer
guides the data partitioning. In OpenMP [16] the programmer
adds code annotations to specify if the data is private or shared
between threads and how the iteration space of a loop is split
between the threads. Thus, in both cases, the data distribution
between computational entities is solved by the intrinsics of
the programming models themselves.

The data assigned to each core is then mapped to its LM,
inducing a particular execution model. The working set is
split in blocks, as the total amount of data typically exceeds
the size of the LM, and these blocks are explicitly moved
between the LM and the SM. In the case of a computational
loop, this is accomplished by converting the code into a two-
level nested iterative structure, as shown in Figure 2. Each
iteration of the outermost loop has three phases: (1) a control
phase where data is moved between the LM and the SM, (2) a
synchronization phase to wait for the DMA transfers to finish
and (3) a work phase where the computation for the current
block is performed. These code transformations are usually
done by run-time libraries [8], [17] or compilers [18], [19].

Automatic code transformations decide which data is
mapped to the LM by analyzing the memory accesses [20].
Regular accessesare those that expose predictable access
patterns (e.g., with a constant stride). These are mapped to
the LM. Unpredictable memory accesses are difficult to map
to the LM [8], so they are served by the cache hierarchy. These
are calledirregular accesses. In Figure 2, accesses toa and
b are regular accesses, and the access toptr is irregular.



Fig. 2: Code transformation and 3-phase execution model.

In the control phase, the data needed for regular accesses
in the next work phase is brought to the LM (MAP primitive
in Figure 2). Blocks of data are copied from the SM to the
LM, potentially sending back to the SM some previously used
blocks. Even in case of mapping a block of data to the LM for
writing only, the transfer of the block from the SM to the LM is
done because otherwise, if only part of the block was modified,
the write-back to the SM would update the unmodified parts of
the copy in the SM with garbage. In order to do these actions
in a simple and efficient way fixed-size buffers are used. The
compiler decides how many buffers will be needed to handle
all regular accesses in the loop and, depending on the size of
the LM, sets the size of the buffers and assigns them to fixed
addresses in the LM. In Figure 2 there are two regular accesses
(a andb) so two buffers (_a and_b) would be allocated in
the LM, each one of them occupying one half of the storage.

The work phase is similar to the original loop, but with two
differences. First, every instance of the work phase consumes a
subset of the original iteration space. The amount of iterations
is determined by the stride of the regular accesses and the size
of the LM buffers. Second, the original regular accesses (a and
b) are substituted with their LM buffer counterparts (_a and
_b) while irregular accesses are left untouched (ptr).

C. The Coherence Problem

The coherence problem in the hybrid memory system ap-
pears when two incoherent copies of the same data can be
accessed during the computation. This problem arises because
the compiler creates a copy of the data when maps it to the
LM and, for regular accesses, it generates memory operations
that access the copy in the LM while, for irregular accesses,
it generates memory operations that access the copy in the
SM. Since the memories are incoherent, modifications are not
visible between paths, so the execution can be incorrect.

Compiler-based solutions for this situation are inefficient.
All approaches rely on memory aliasing analyses [9], [10],
[11]. In Figure 2 this means predicting when, if ever, one
instance of theptr access aliases with any instance of the
_a and_b accesses. Current algorithms are not able to solve
this problem in the general case, so compilers adopt restrictive
solutions. The naive one is to discard using the LM in presence
of a potentially incoherent access. A potentially incoherent

access is an irregular access that the compiler cannot ensure
it will never access data in the SM that is mapped to the LM.
Another option is to introduce fine-grained DMA transfers
surrounding the potentially incoherent accesses [8], adding
big overheads because DMA transfers of small sizes are
inefficient. Software caching is another solution [21], [8].
These keep track of the contents of the LM with a software
directory and do a costly lookup prior to every potentially
incoherent access to decide if it goes to the LM or to the SM.

This paper proposes an efficient mechanism that ensures
coherency in hybrid memory systems. The solution avoids the
limitations stemming from the inability to solve the memory
aliasing problem, bringing the optimization opportunities to a
new level where automated optimization tools no longer have
to back-off their code transformations due to coherence issues.

III. D ESIGN

The main idea of the coherence protocol is to avoid main-
taining two coherent copies of the data but, instead, ensure
that memory accesses always use the valid copy of the data.
The resulting design is open to data replication between the
LM and the cache hierarchy. The system guarantees that, first,
in case of data replication either the copies are identical or
the copy in the LM is the valid one and, second, always a
valid copy of the data is accessed. For data transfers this is
ensured by using coherent DMA transfers and by guaranteeing
that, at the eviction of replicated data, always the invalid
copy is discarded and then the valid version is evicted. For
data accesses, potentially incoherent accesses are diverted
to the memory that keeps the valid copy. In order to do
so a directory is introduced to keep track of what data is
mapped to the LM. The DMAC updates the directory entries
when it executesdma-getcommands. The compiler identifies
potentially incoherent memory accesses and emitsguarded
memory instructionsfor them. The execution of a guarded
memory instruction triggers a lookup in the directory, diverting
the access to the memory that keeps the valid copy of the data.

The coherence protocol is independent of the CMP cache
coherence protocol. The proposed coherence protocol is per
core and it ensures coherence between the caches and the
LM of that core, without interacting with other cores nor with
the CMP coherence protocol. This is because the LMs in the
hybrid memory system are used to store per core private data
only. One core cannot access the LM of another core and,
when a core maps data to its LM, another core should not
access the copy of this data in the SM. This is key to ensure
there is no interaction with the CMP cache coherence protocol
and it is what allows the proposal to work by only monitoring
events inside the core. This constraint is easily ensured when
a compiler maps private data to the LM because the data
distribution is already specified in the parallelization model.
If the architecture is programmed by hand, the programmer
is responsible for not accessing the data mapped to one core
from another core without using synchronization primitives.

The next sections explain the task of the compiler and the
hardware support the coherence protocol requires.



A. Compiler Support

With the proposed coherence protocol the compiler algo-
rithm that transforms the code as shown in Figure 2 is straight-
forward and safe, even in the presence of memory aliasing
problems. The algorithm has three steps: classification of
memory references, code transformation and code generation.

1) Classification of Memory References:The main task
of the compiler in this phase is to identify which memory
accesses are suitable to be mapped to the LM and which others
to the SM. It does so by classifying the memory accesses ac-
cording to their access patterns and possible aliasing hazards:

• Regular accessesare those that expose a strided access
pattern. They are served by the LM.

• Irregular accessesare those that do not expose a strided
access pattern and the compiler is sure there is no aliasing
with the contents of the LM. They are served by the SM.

• Potentially incoherent accessesare those that do not
expose a strided access pattern and the compiler is not
sure there is no aliasing with the contents of the LM.
They access the directory and then the SM or the LM.

2) Code Transformation:In this phase the compiler does
the code transformations for regular accesses shown in Fig-
ure 2. These are typical transformations to manage LMs with
software caches [19], [8]. The compiler also informs the
hardware of the size of the LM buffers. For irregular and
potentially incoherent accesses nothing is done in this phase.

3) Code Generation:In this phase the compiler generates
memory instructions for the references:

• For regular accessesthe compiler generates instructions
that directly access the LM. This is accomplished by
using addresses that are computed as a base address of a
LM buffer plus an offset.

• For irregular accessesthe compiler generates instructions
that directly access the SM. This is accomplished by
using addresses that are computed as a base address in
SM plus an offset.

• For potentially incoherent accessesthe compiler gener-
ates guarded instructions. The instruction is first gener-
ated in the same way as the instructions generated for
irregular accesses, so an initial SM address is generated.
Then the guard is inserted in the instruction, so it will
access the directory using the SM address and will be di-
verted to the corresponding memory. The implementation
of the guard is discussed later in this section.

One special case has to be treated separately. When the
compiler determines a write access is potentially incoherent
and it aliases with some data that is mapped for reading only, a
guarded store is generated for it. The execution of the guarded
store will hit in the directory and the write will be done to the
LM. This may lead to an erroneous execution because, since
the mapping to the LM is for reading only, no write-back of
the data to SM will be programmed and, when the buffer is
reused to map new data, thedma-getoperation will overwrite
the modifications done by the potentially incoherent store. This
problem can be solved by making the modifications in the two

memories. A simple way to do it is that the compiler generates
a double store: one irregular store that will update the copy
in SM and one potentially incoherent store that will trigger a
lookup in the directory and will update the copy in the LM if it
exists. Notice that if the lookup in the directory of the second
store misses there will be two stores of the same data to the
same SM address. The overhead of this unnecessary second
store is small. The performance impact is low because the two
stores are independent so they both can be issued in the same
cycle. The increase in power consumption is also small since
the Load/Store Queue [12] will collapse the second store with
the first one if it is not yet committed, having one single cache
access and so not paying the cost of an extra memory access.

The implementation of the guarded memory operations is
highly dependent on the architecture. On a RISC architec-
ture the ISA should be extended to duplicate all memory
instructions with a guarded form. As this might produce many
new opcodes, there are other alternatives. One solution is
to take unused bits of the binary representation of memory
instructions, as happens in PowerPC [22]. Another option is
to provide a fewer range of guarded memory instructions
and restrict the compiler to these. In CISC architectures
like x86 [23], where most instructions can access memory,
instruction prefixes can be used to implement the guard. A
generic solution for any ISA is to extend the instruction set by
only a single instruction that performs the computation of the
address using the directory and leaves the result in a register
that will be consumed by the memory instruction, conceptually
converting the guarded memory access to a coherency-aware
address calculation plus a normal memory operation.

B. Hardware Design

The only hardware support needed for the coherence proto-
col is a directory that keeps track of the contents of the LM.
This section explains how the directory is configured, updated
and used in the address generation. Then some considerations
about its access time, its double buffering support and its side
effects on the hybrid memory system are discussed.

Configuration: The directory can be configured to work
with any LM buffer size. When the compiler transforms the
code it partitions the LM into equally sized buffers and informs
the hardware of the LM buffer size through a memory-mapped
register. A directory entry is assigned to each of these LM
buffers to map the starting address of the copy of the data in
the SM (i.e., the directory tag) to the starting address of the
LM buffer where the data is mapped to. Since all LM buffers
are equally sized, the base address of a LM buffer is equivalent
to the buffer number and, thus, the index of a directory entry.
The buffer size is used to set the values of theBase Mask
and Offset Maskinternal registers. These registers allow to
decompose any address into a base address and an address
offset, so the directory can be operated with any buffer size.

Update: Everydma-getoperation updates the directory. The
destination LM address of the transfer is used to identify the
base address of the LM buffer and the source SM address is
used to set the tag of the corresponding directory entry.



Fig. 3: Scheme and main operations of the directory.

Address generation:The directory is used in the address
generation as shown in Figure 3. The Address Generation Unit
(AGU) [12] generates a potentially incoherent SM address (In-
coherent address) with the operands of the guarded instruction.
Notice that this is a SM address because it is generated by a
potentially incoherent access. Two bit-wise AND operations
between theIncoherent addressand theBase MaskandOffset
Mask registers split the address in anIncoherent base address
and anIncoherent address offset. TheIncoherent base address
is used to do a lookup in the directory. If it hits, the instruction
is accessing data in the SM that has a copy in the LM, so the
access has to be diverted to the LM. The base address of the
corresponding LM buffer is retrieved from the directory (LM
base addr) and a bit-wise OR with theIncoherent address
offsetis done, resulting in theCoherent address. If the lookup
misses there is no copy in the LM, so the original SM address
is preserved by performing a bit-wise OR between theSM
base addrand theIncoherent address offset.

Access time:The directory is restricted to have 32 entries
to keep the access time low. According to CACTI [24], with
a process technology of 45nm, the latency of the directory is
0.348 nanoseconds. Taking into account that this latency would
be significantly lower with nowadays process technology, that
current CPUs work with frequencies between 2GHz and 3GHz
and that the directory is accessed just after the address gen-
eration in the AGU, which is an extremely simple operation,
it is feasible to generate the address and to do the lookup in
the same cycle. Having 32 entries constrains the software to
use 32 LM buffers at most, which is not a limitation since
loops with more than 32 regular references are rare. If a loop
needs more than 32 buffers the compiler can simply not map
the exceeding regular accesses to the LM.

Double buffer support: The directory contains aPresence
bit that indicates if the data of a LM buffer is currently being
transferred into the LM by adma-get. This bit is reset when
the dma-getis triggered. If a guarded memory access hits the
directory entry and this bit is unset, an internal exception is

generated until the bit is set at thedma-getcompletion. This
ensures correctness when a guarded memory access accesses
data that is being transferred to the LM using double buffering.

As a final remark, the introduction of the hardware directory
does not undermine the benefits of the hybrid memory system.
The number of CAM lookups is kept low because only ac-
cesses that are not regular trigger them: if they are potentially
incoherent accesses they go through the directory and then
to either the cache or the LM; if they are irregular accesses
they are served directly by the cache. Regular accesses are
directly served by the LM without any CAM lookup. Since
in HPC applications the vast majority of memory accesses
are regular [25], [26], the directory is rarely accessed and the
goodnesses of the hybrid memory system are preserved.

C. Data Coherency Management

This section shows the correctness of the coherence proto-
col. The two previous sections described how memory opera-
tions are diverted to one memory or another when replication
exists, considering that the valid copy of the data is in the LM.
This section shows this situation is always ensured. First, the
different states and actions that apply to data in the system are
described. According to this, it is shown that whenever data
is replicated in the LM and in the cache hierarchy, only two
situations can arise: either both versions are identical, or the
version in the LM is always more recent than the version in the
cache hierarchy. Then it is shown that whenever replicated data
is evicted to main memory, the version in the LM is always the
one transferred, invalidating the cache version. This is always
guaranteed unless both versions are identical, in which case
the system supports the eviction indistinctly.

1) Data States and Operations:Figure 4 shows the possible
actions and states of data in the system. The state diagram
is conceptual, it is not implemented in hardware. TheMM
state indicates the data is resident in main memory and has no
replica neither in the cache hierarchy nor in the LM. TheLM
state indicates that only one replica exists, and it is located
in the LM. In the CM state only one replica in the cache
hierarchy exists. In theLM-CM state two replicas exist, one
in the LM and the other in the cache hierarchy.

Actions prefixed with “LM-” correspond to LM control
actions, activated by software. There is a distinction between
LM-map and LM-unmap although both actions correspond
to the execution of adma-get, which unmaps the previous
contents of a LM buffer and maps new contents instead.LM-
mapindicates that adma-gettransfers the data to the LM. The
LM-unmapindicates that adma-gethas been performed that
overwrites the data in question, so it is no longer mapped to
the LM. TheLM-writebackcorresponds to the execution of a
dma-putthat transfers the data from the LM to the SM. Actions
prefixed with “CM-” correspond to hardware activated actions
in the cache hierarchy. TheCM-accesscorresponds to the
placement of the cache line that contains the data in the cache
hierarchy. TheCM-evictcorresponds to the replacement of the
cache line, with its write-back to main memory if needed.
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Fig. 4: State diagram of possible data replication states.

The MM→LM transition occurs when the software causes
an LM-map action. Switching back to theMM state occurs
when anLM-unmapaction happens due to adma-getmapping
new data to the buffer. Notice that anLM-writeback action
does not imply a switch to theMM state, as transferring data
to the main memory does not unmap the data from the LM.

Transitions between theMM andCM states happen accord-
ing to the execution of load and store operations that cause
CM-accessand CM-eviction actions. Notice that unless the
data reaches theLM-CM state, no coherence problem can
appear due to the use of a LM. DMA transfers are coherent
with the SM, ensuring the system coherence as long as the
data switches between theLM and MM states. Similarly, the
cache coherence protocol ensures the system coherence when
the data switches between theMM and CM states. In both
cases, never more than one replica is generated.

The LM-CM state is reachable from both theLM and the
CM states. In theLM state, a guarded instruction will never
cause a replica in the caches since the access goes through
the directory, and this will divert the access to the LM. It
is impossible to have unguarded memory instructions to the
SM because the compiler never emits them unless it is sure
that there is no aliasing, which cannot happen in this state.
In the LM state, only the execution of a double store can
cause the transition to theLM-CM state. The double store is
composed of a guarded store and a store to SM (stguarded and
stsm). Thestsm is served by the cache hierarchy, so a replica
of the data is generated and updated in the cache, while the
stguarded modifies the LM replica with the same value, so
two replicas generated through aLM→LM-CM transition are
always identical. The transitionCM→LM-CM happens due to
an LM-map action, and the DMA coherence ensures the two
versions are identical. Once in theLM-CM state, the double
store updates both versions, whilestguarded andstlm modify
the LM version andstsm will never be generated.

In conclusion, only two possibilities exist for having two
replicas of data. Each one is represented by one path reaching
the LM-CM state from theMM state. In both cases, the two
versions are either identical or the version in the LM is the
valid one. The next section shows the valid version is always
selected at the moment of evicting the data to main memory.

2) Data Eviction:The state diagram shows that the eviction
of data can only occur from theLM andCM states. There is
no direct transition from theLM-CM state to theMM state,

which means that eviction of data can only happen when one
replica exists in the system. This is a key point to ensure
coherency. In case data is in theLM-CM state, its eviction
can only occur if first one of the replicas is discarded, which
corresponds to a transition to theLM or CM states. According
to the previous section, it is ensured that in theLM-CM state
the two replicas are identical or, if not, the version in the
LM is the valid one. Consequently, the eviction discards the
cache version unless both versions are identical, in which case
either version can be evicted. This behavior is guaranteed by
the transitions exiting theLM-CM state. When aLM-writeback
action is triggered by adma-putthe associated DMA transfer
invalidates the version of the data that is in the cache hierarchy.
The CM-evict transition is caused by an access to some other
data in SM that causes a replacement of the cache line that
holds the current data, leaving just one replica, the one in
the LM, and thus transitioning to theLM state. Once theLM
state is reached, at some point the program will execute a
dma-putoperation to write-back the data to the SM. Finally,
the transitionLM-CM→CM caused by aLM-unmapaction
corresponds to the case where the program explicitly discards
the copy in the LM when new data is mapped to the buffer that
holds it. The programming model imposes that this will only
happen when both versions are identical, because if the version
in the LM had modifications it would be written-back before
being replaced. So, after theLM-unmap, the only replica of
the data is in the cache hierarchy and it is valid, and the cache
coherence protocol will ensure the transfer of the cache line
to the main memory is done coherently.

In conclusion, the system always evicts the valid version
of the data. When two replicas exist, first the invalid one
is discarded and, then, the DMA and the cache coherence
mechanisms correctly manage the eviction of the valid replica.

IV. EVALUATION

This section evaluates the coherence protocol for the hybrid
memory system. A microbenchmark and a set of real bench-
marks are used to study the overhead of the proposal in terms
of execution time and energy consumption. Then a comparison
against a cache-based system is presented.

A. Experimental Framework

The proposal has been evaluated using PTLsim [27], ex-
tending it with a LM, a DMAC and the directory of the
coherence protocol. For the energy results Wattch [28] has
been embedded into the simulator. Cycle-accurate single-core
simulations are presented because the coherence protocol is
per core. Table I shows the parameters of the simulator.

Six typical HPC benchmarks from the NAS benchmark
suite [31] are used for the evaluation. The benchmarks have
been compiled using GCC 4.6.1 with the -O3 optimization
flag on. SimPoint [32] has been used to identify the simulation
points and at least 150 millions of x86 instructions have been
simulated for each benchmark.

To generate guarded memory instructions for the potentially
incoherent accesses it has been checked the outcome of the



TABLE I: PTLsim configuration parameters.

Parameter Description

Pipeline Out-of-order, 4 instructions wide

Branch predictor Hybrid 4K selector, 4K G-share, 4K Bimodal
4K BTB 4-way, RAS 32 entries

Functional units 3 INT ALUs, 3 FP ALUs, 2 load/store units
Register file 256 INT registers, 256 FP registers
L1 I-cache 32 KB, 8-way set-associative, 2 cycles latency
L1 D-cache 32 KB, 8-way set-associative, 2 cycles latency
L2 cache 256 KB, 24-way set-associative, 15 cycles latency
L3 cache 4 MB, 32-way set-associative, 40 cycles latency
Prefetcher IP-based stream prefetcher [29], [30] to L1, L2, L3

Local memory 32 KB, 2 cycles latency

alias analysis performed by GCC on every memory reference.
The references that GCC is not able to determine the aliasing
for are the potentially incoherent accesses. Once these accesses
have been identified, the source code of the benchmarks
has been modified by hand to generate the guarded memory
instructions using assembly macros. Instruction prefixes are
used to implement the guards as explained in Section III-A.

B. Overhead of the Coherence Protocol

A microbenchmark that stresses the coherence protocol is
used to facilitate the study of its performance overheads. Ta-
ble II shows its characteristics. The microbenchmark consists
of a loop that makes a sequence of load/add/store instructions
that can be configured in four modes. In the baseline mode
no guarded instructions are generated for any access. The RD
mode assumes the read accessa[i] may alias, so a guarded
load is generated. The guard is represented in bold font in the
assembly code. In the WR mode it is assumed the write access
to a[i+1] is potentially incoherent and it cannot be ensured
a write-back to the SM will be performed, so a double store
is generated. The RD/WR mode is a combination of the RD
mode and the WR mode. In addition, it is possible to adjust
the percentage of memory operations that need to be guarded
in order to model all possible scenarios in terms of the ratio
of accesses that are potentially incoherent.

Figure 5 shows the performance overhead of the proposal
in the microbenchmark. Three lines appear in the figure, one
per each mode of the microbenchmark. The X axis shows the
percentage of references that are potentially incoherent with
respect to the total number of references. The overheads are
computed against the baseline mode.

The RD mode line shows no overhead at all. The only
differences in the execution of a guarded load and a non-
guarded load are that the prefix has to be decoded and that a
lookup in the directory is triggered. Both operations fit in the
cycle time so there is no performance overhead for guarded
loads. In the WR and the RD/WR modes it can be observed
a linear overhead as the percentage of potentially incoherent
accesses grows. The overhead is caused by the extra store
added. When the double store is used at every write access it
adds an overhead of 28%, which is provoked by an increase in
executed instructions of 26%. The overhead decreases to less
than 10% when 35% or less of the write access are guarded
and need the double store, which provokes an increase of 9%
in executed instructions. Notice that in the WR and RD/WR

TABLE II: Scheme of the microbenchmark.

Microbenchmark Mode Assembly code

Baseline
mov a(,esi,4),ebx
add 0x0(c),ebx
mov ebx,a+4(,esi,4)

RD
mov a(,esi,4),ebx

int a[N]; add 0x0(c),ebx
int c; mov ebx,a+4(,esi,4)
for(i=0; i<N-1; i++) {

WR

mov a(,esi,4),ebx
a[i+1] = a[i] + c; add 0x0(c),ebx

} mov ebx,a+4(,esi,4)
mov ebx,a+4(,esi,4)

RD/WR

mov a(,esi,4),ebx
add 0x0(c),ebx
mov ebx,a+4(,esi,4)
mov ebx,a+4(,esi,4)
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Fig. 5: Overhead in all microbenchmark modes.

modes, if the compiler could ensure the potentially incoherent
write access aliases with some data in the LM that will be
written back to the SM, a single guarded store would be
generated instead of the double store, and the overhead would
be zero as in the case of a single guarded load.

In conclusion, the coherence protocol adds no performance
overhead when the potentially incoherent memory accesses are
for reading data or when they are for writing and the double
store is not needed. Only the double store adds overhead,
reaching a maximum 28% in the microbenchmark. In real
situations it is common that the number of potentially incoher-
ent write accesses is low with respect to the total number of
memory accesses and the computation is more complex than
the one performed in the microbenchmark, so the expected
overheads are far from this reported upper bound.

In order to study the overheads in real benchmarks, the
hybrid memory system extended with the coherence protocol
is compared against an incoherent hybrid memory system with
an oracle compiler. In this baseline architecture the potentially
incoherent accesses are left unguarded and are always served
by the memory that has the valid copy of the data.

Figure 6 shows the overhead introduced by the coherence
protocol in terms of execution time and energy consumption
in real benchmarks. The performance overhead in CG, MG
and SP is zero because the compiler does not find any
potentially incoherent write access that needs to be treated
with a double store. This happens only in FT and IS, which
present overheads of 0.99% and 0.43%, respectively, and in
EP, which presents no overhead. FT uses 34 strided references,
2 potentially incoherent read references and 2 potentially
incoherent write references (treated with a double store) to
do complex operations on floating point data. The cost of the
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Fig. 6: Overhead in real benchmarks.

computation and the small percentage of references that need
to be treated with the double store keep the overhead low. In
IS the computation is very simple and the double store is used
in 2 out of 5 references, so the extra store provokes a non-
negligible increase in executed instructions. This increase in
instructions barely affects the performance because most of the
times the out-of-order engine is able to issue the potentially
incoherent store and the irregular store in the same cycle,
effectively hiding the latency of the double store. A similar
situation happens in EP, that has 3 strided references, 16
local variables and 1 potentially incoherent write reference
for which the double store is used. In this case the issue of
the two stores is always done in the same cycle, that is why
the overhead is zero. The resulting average overhead of the
benchmarks is negligible, 0.24%.

Figure 6 also shows the energy consumption overhead is less
than 2% in all benchmarks except in IS. These benchmarks
have many strided references and do complex computations,
so the directory is very seldomly accessed and, moreover, the
energy it consumes is much lower than the energy consumed
by other components such as the memory subsystem, ALUs
and issue queues, resulting in a very low overhead. In IS the
overhead is 4.5%. The overhead generated by the directory is
around 1.5%, the remaining 3% is caused by the execution of
the double store. The average overhead in energy consumption
of all benchmarks is 1.06%.

In conclusion, the coherence protocol adds a very low
overhead in performance and in energy consumption. In 3 of
the 6 benchmarks the double store is not needed, so there are
no performance penalties and the utilization of the directory
generates an increase in energy consumption of less than 2%.
When the double store is needed the increase in the number
of instructions provokes a very minor performance degradation
and a slightly higher energy consumption.

C. Comparison with Cache-Based Architectures

The immediate result of the coherence protocol is that any
computational kernel can now be executed on the hybrid mem-
ory system no matter the restrictions coming from coherence
problems. In order to show the usefulness of this achievement,
this section evaluates the benefits in performance and energy
consumption of the coherent hybrid memory system when
compared to a cache-based system.

This section compares the coherent hybrid memory system
with a cache-based system. The two architectures have exactly
the same characteristics but with two differences. First, the

hybrid memory system has a 32KB LM and the directory of
the coherence protocol. For fairness, the capacity of the L1
of the cache-based system is increased to 64KB, matching the
32KB of LM plus the 32KB of L1 in the hybrid memory
system. Second, the write policy of the L2 is write-through in
the hybrid memory system and write-back in the cache-based
system. Table III summarizes the statistics of the memory
subsystem that are the dominating factors of the improve-
ments. This table is used throughout this section to explain the
differences between the two architectures. For each benchmark
the table shows the ratio of references that are potentially
incoherent, the average memory access time (AMAT), the
L1 hit ratio, the number of write-throughs or write-backs
that are performed from the L2 to the L3 (L3 WT/WB),
and the number of accesses to all the components of the
memory subsystem in thousands. The accounting of accesses
includes hits, misses, lookups and invalidations provoked by
memory instructions, prefetchers, placement of cache lines by
the MSHRs, write-through and write-back policies and bus
requests of the DMA commands.

The immediate consequence of the coherence protocol is
that any computational loop can be executed on the hybrid
memory system. The benchmarks that take benefit of this
achievement are all but SP. In Table III this is reflected in the
column of the number of guarded references. All benchmarks
but SP have potentially incoherent references for which the
compiler generates guarded accesses. Without the coherence
protocol the usage of the hybrid memory system would not
be possible in these cases, so the performance and energy
consumption benefits it provides would not be exploited.

The reduction in execution time the hybrid memory system
achieves when compared to a cache-based system can be
observed in Figure 7. For each benchmark two bars are
presented. The leftmost bar is the execution time of the cache-
based system and the rightmost bar is the execution time of
the hybrid memory system. Both bars are normalized to the
cache-based system execution time and show the weight of
each execution phase, considering as work time the whole
execution time of the cache-based system. All benchmarks
but EP present some degree of reduction. The reductions are
mainly due to the reduction of execution time of the work
phase, more than 34% in all cases. This big reduction in the
work phase is caused by the better management of memory
references in the hybrid memory system. First, the irregular
accesses that reuse data along the execution of the benchmarks
have a much higher L1 hit ratio in the hybrid memory
system. This is because the hybrid memory system uses the
LM to serve the regular accesses and the L1 to serve the
irregular ones, so the data placed in the L1 is much less often
evicted than in the cache-based system, where every access is
served by the L1 so the data brought for irregular accesses
is evicted when new data needs to be brought for regular
references, causing misses when irregular accesses reuse data.
The second important observation is that the hybrid memory
system imposes an execution model that does extra work in
the control and synchronization phases, but in the work phase



TABLE III: Activity in the memory subsystem for the hybrid memory and the cache-based systems.

Benchmark Guarded AMAT L1 L2 L3 LM Directory
Name Mode References Hit ratio Accesses Accesses WT/WB Accesses Accesses Accesses

CG Hybrid coherent 1/7 (14%) 3.15 90.52 19319 26376 2388 14973 30235 10566
CG Cache-based 0 4.31 82.23 70371 62822 8654 84202 0 0
EP Hybrid coherent 1/20 (5%) 2.14 99.93 37152 10266 10069 10589 3862 3519
EP Cache-based 0 2.37 98.93 43814 13219 166 797 0 0
FT Hybrid coherent 4/34 (11%) 2.60 96.61 912779 761009 654686 879602 1155150 55118
FT Cache-based 0 4.95 78.54 1379688 789765 69253 352269 0 0
IS Hybrid coherent 2/5 (25%) 6.27 74.00 140663 194465 99344 168968 73400 25714
IS Cache-based 0 7.93 64.10 169425 182716 34315 127692 0 0

MG Hybrid coherent 1/60 (1.66%) 2.24 99.71 605269 252799 237447 281129 798562 19377
MG Cache-based 0 3.89 90.65 827239 238099 19783 127176 0 0
SP Hybrid coherent 0/497 (0%) 2.41 98.37 331832 162441 149649 174211 235024 0
SP Cache-based 0 4.73 79.59 407952 164515 11866 82301 0 0
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Fig. 7: Reduction in execution time.

it is able to execute the strided accesses without cache misses,
since they are served by the LM. In the cache-based system,
when a lot of strided memory references are being used, they
cause collisions in the history tables of the prefetchers and also
the big amount of prefetched data causes conflict misses in the
whole cache hierarchy. These two situations are reflected in
the AMAT and the L1 hit ratios shown in Table III. MG and
SP show a very similar behaviour, with respective reductions
of 38% and 40% (or speedups of 1.61x and 1.64x). The big
amount of regular references they have provoke conflict misses
and collisions in the prefetchers in the cache-based system,
that cause very important penalties compared to the execution
time spent in control phases in the hybrid memory system.
CG, IS and FT show reductions of 25%, 35% and 21% (or
speedups of 1.32x, 1.25x and 1.54x), respectively. These loops
have fewer strided references but their critical path contains
a potentially incoherent access with a high degree of reuse.
These memory references almost always miss in the L1 in
the cache-based system, while they are served very efficiently
in the hybrid memory system. EP presents no speedup at all.
In both architectures all accesses are served very efficiently,
with similar AMATs and L1 hit ratios of 99.9% and 98.9%.
An irregular store causes this difference in the hit ratio and
this access is not in the critical path, so the differences in
performance are less than 0.5%. On average, the speedup in
all benchmarks is 1.36x, or a reduction of 27%.

Figure 8 shows, for each benchmark, the energy consump-
tion of the cache-based system in the leftmost bar and of the
hybrid memory system in the rightmost bar. Both bars are
normalized to the cache-based system energy consumption and
show the weight of each component of the processor on the
total consumption. All benchmarks but EP show reductions
in energy consumption of 36% to 11%. In IS, MG and SP
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Fig. 8: Reduction in energy consumption.

the major savings come from the CPU. This is provoked by
the reduction of cache misses, which cause energy penal-
ties in the pipeline in the form of re-executed instructions.
Other benchmarks like CG and FT present important energy
reductions in the cache hierarchy. This is because, first, the
hybrid memory system does fewer accesses to the L1 and L2
because it uses the LM instead and, second, cache misses and
data prefetches are more frequent in the cache-based system,
provoking energy consumption due to cache line lookups and
placements. These numbers can be observed in Table III. The
number of accesses to the L3 increases due to the write-
through policy in the L2, but this increase is lower than the
savings in the rest of the hierarchy and so energy savings
are achieved. Furthermore, the energy savings in the cache
hierarchy are bigger than the energy consumed by the LM in
the hybrid memory system, which has a weight of less than
5%. Unlike the rest of benchmarks, EP has an overhead of less
than 1%. In the hybrid memory system the strided accesses
are served by the LM, but every store to the L1 reaches the
L3 due to the write-through policy in the L2. The gain and
the loss compensate one with each other to result in roughly
the same energy consumption. The average savings in energy
consumption in the benchmarks is 18%.

It is important to show that it is possible to have write-
through L2 caches in the hybrid memory system. This config-
uration is the worst case scenario to implement coherence at
the DMA transfer level in a CMP, as explained in Section II-A.
Table III shows it is viable to have write-through L2 caches in
this architecture. The column L3 WT/WB shows the number
of accesses to the L3 that are provoked by write-throughs from
the L2 in the hybrid memory system and by write-backs from
the L2 in the cache-based system. The best case for the hybrid
memory system is to use the cache hierarchy for irregular read



references only and serve all the stores with the LM, like in
CG. In this case the number of write-throughs is lower than
the number of write-backs done by the cache-based system,
resulting in a 6 times lower number of accesses to the L3.
When the cache hierarchy is used only to serve irregular write
references (IS) the increase in L3 accesses is 33%. The worst
case is when there are a lot of stores to local variables, either in
the computational kernel (EP) or because of the complexity of
the control phases due to the big amount of strided references
(FT, MG and SP). The number of accesses to the L3 grows
by factors between 5x to two orders of magnitude, but this
increase is balanced by the reduction of accesses to the L1
and the L2. In addition, solutions like a hardware stack or
mapping the stack to the LM could eliminate this problem.

In conclusion, the hybrid memory system outperforms
cache-based systems because it is able to serve data very
efficiently: the strided accesses are served by the LM so the
first levels of the cache hierarchy are less frequently accessed
and their capacity can be devoted to the data accessed by ir-
regular and potentially incoherent accesses, avoiding evictions
of data that is going to be reused. Moreover, fewer collisions
in the history tables of the prefetchers happen due to the lower
activity in the first cache levels. This lower activity directly
translates to less energy consumption, being the major savings
due to the reduction of re-executed instructions caused by
cache misses. The energy savings in the L1 and the L2 caches
are very important also, but are almost compensated by the
increase in the energy consumed in the L3. This increase in
the L3 is caused by the write-through policy of the L2 cache in
the hybrid memory system, that generates an important amount
of accesses to the L3 when a lot of local variables are used.

V. RELATED WORK

The idea of adding a LM alongside the cache hierarchy is
not novel. Bertran et al. [7] propose such organization in a gen-
eral purpose core, and it is also present in commercial products
like the NVIDIA Fermi GPGPU [6]. These two approaches
do not solve the coherence problem between the two storages.
Bertran et al. [7] give the compiler the responsibility to discard
loop transformations in case of coherence problems, restricting
the effective utilization of the hybrid memory system. In the
NVIDIA Fermi [6] the global memory (that is cached) and the
LM are incoherent, and it is the programmer who explicitly
manages them. The programming language provides keywords
that are used in the declaration of the variables to specify
which memory will store them, so data replication does not
happen. If two copies of data exist in the two memories it
is the programmer who has to explicitly declare and manage
them, since neither the hardware nor the compiler give any
support for coherency management between both memories.

Cohesion [33] allows the software to dynamically select
which cache lines are cache coherent by enabling and disabling
the cache coherence protocol for specific lines. This approach
faces the same problem as the hybrid memory system because
it opens the door to incoherent copies of data, relying on the
programmer to explicitly manage them.

This paper relies on previous works on DMA coher-
ence [14]. The IBM Cell architecture [5], [13] ensures DMA
coherence by doing lookups in the cache hierarchy when DMA
transfers are performed. In the Cell architecture only DMA
transfers can generate data replication and there are no coher-
ence problems because, with regular memory instructions, the
accelerator cores can only access their LMs and the general
purpose core can only access the cache hierarchy. Whenever
a modification has to be visible to other cores DMAs are used
so the coherence is ensured. In the hybrid memory system
this approach is extended to support coherence at the memory
instruction level because a core can access both memories.

D. Tang et al. [34] introduce on-chip storage to separate IO
data from CPU data. Although with different motivations, this
work faces similar coherence problems as the ones the pro-
posed coherence protocol addresses. The introduction of the
DMA-cache creates potential incoherences that are solved by a
refinement of the MOESI and ESI cache coherence protocols.
In the coherent hybrid memory system data invalidation only
happens along adma-putand never a memory access to the
cache hierarchy can modify the contents of the LM.

VI. CONCLUSIONS

The hybrid memory system, which consists of adding a local
memory alongside the cache hierarchy, can be a solution to
the lack scalability of future CMPs. One of the main problems
of such approach is the lack of coherence between the two
storages. The main contribution of this paper is the design of
a coherence protocol for hybrid memory systems.

The protocol admits data replication in the two storages
and avoids keeping them coherent. Instead, it ensures that the
valid copy of the data is always accessed. The design consists
of a hardware directory that keeps track of the contents of
the local memory and guarded memory instructions that the
compiler selectively emits for potentially incoherent memory
accesses. Guarded instructions access the directory and then
are diverted to the storage where the correct copy of the data
is. This coherence protocol has important goodnesses. The task
of the compiler when it generates code for the hybrid memory
system becomes straightforward and is always safe because it
is not limited by memory aliasing problems. Furthermore, the
coherence protocol can be implemented with simple hardware
additions and the design does not introduce any overheads in
codes that do not present coherence problems.

The evaluation shows the coherence protocol introduces
overheads of 0.24% in execution time and of 1.06% in energy
consumption to enable the usage of the hybrid memory system,
that achieves an average speedup of 36% and an energy
reduction of 18% when compared to a cache-based system.
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