
Hardware–Software Coherence Protocol for the
Coexistence of Caches and Local Memories

Lluc Alvarez, Member, IEEE, Lluís Vilanova, Marc Gonzàlez, Member, IEEE,
Xavier Martorell, Member, IEEE, Nacho Navarro, Member, IEEE, and Eduard Ayguadé

Abstract—Cache coherence protocols limit the scalability of multicore and manycore architectures and are responsible for an important
amount of the power consumed in the chip. A good way to alleviate these problems is to introduce a local memory alongside the cache
hierarchy, forming a hybridmemory system. Local memories aremore power-efficient than caches and do not generate coherence traffic,
but they suffer from poor programmability. When non-predictable memory access patterns are found, compilers do not succeed in
generating code because of the incoherence between the two storages. This paper proposes a coherence protocol for hybrid memory
systems that allows thecompiler to generatecodeeven in thepresenceofmemoryaliasingproblems.Coherence is ensuredbyasoftware/
hardware co-design where the compiler identifies potentially incoherent memory accesses and the hardware diverts them to the correct
copy of the data. The coherence protocol introduces overheads of 0.26% in execution time and of 2.03% in energy consumption to enable
the usage of the hybridmemory system,which outperforms cache-based systemsby an speedupof 38%and an energy reduction of 27%.

Index Terms—Coherence protocol, local memories, scratchpad memories, hybrid memory system

1 INTRODUCTION

UPCOMING multicore and manycore architectures are ex-
pected to include a significant number of cores, as a

result of the replication of general purpose and accelerator
cores. As an immediate consequence, the memory subsystem
has to evolve into somenovel organization that overcomes the
problems of traditional cache-based schemes. Two of the
major concerns are the important amount of power consumed
in the cache hierarchy and the lack of scalability of current
cache coherence protocols, which constrain the sharing and
the size of caches when cores are replicated beyond certain
levels [1]–[3].

A possible solution to the power consumption and scal-
ability problems of cache coherence protocols is the introduc-
tion of local memories (LMs), also known as scratchpad
memories [4]. Themain advantages of LMs are that they offer
access delays similar to that of best-case cache delays in a
much more power-efficient way and they do not generate
coherence traffic. The drawback is that LMs introduce
programmability difficulties due to the explicit data transfers
they require, so usually programmers rely on compiler trans-
formations that generate code to manage the LM. Although
this limitation, LMs have been successfully introduced in the
high performance computing (HPC) domain in several ways.
In the Cell B.E. [5], accelerator cores access their private LM
with memory instructions and use explicit DMA transfers to
move data between memories. A more recent trend is to

introduce a LM alongside the cache hierarchy, forming a
hybrid memory system. This approach is currently used in
GPGPUs [6]. One of themain problems of the hybridmemory
system is the potential replication of data between the two
storages. Compilers succeed in generating code for LMswhen
the computation is based on predictable memory access
patterns [7] but, when non-predictable memory access pat-
terns are found, compilers need to ensure correctness by
applying complex analyses such as memory aliasing [8]–[10].
When compilers cannot ensure that there is no aliasing be-
tween two memory references that may target copies of the
same data in the LM and in the cache hierarchy, they must
conservatively avoid using the LM. This problem happens
because the copies of data in theLMand in the cache hierarchy
are incoherent.

The main contribution of this paper is a novel coherence
protocol for hybrid memory systems to achieve the program-
mability of a cache-based system by safely enabling the use
of the LM in the presence of memory aliasing problems.
A coherent memory view of the two storages is ensured by
a simple hardware/software mechanism implemented by
two components: (1) a per-core hardware directory that keeps
track of which data is mapped to the LM and (2) guarded
instructions for memory operations that the compiler selec-
tively places in potentially incoherent data accesses. At exe-
cution time the guarded memory instructions access the
directory to identify which memory keeps the correct copy
of the data and are diverted to it. The proposal allows the
compiler to use an straightforward algorithm togenerate code
for the hybrid memory system. The evaluation shows that,
compared to a compiler that is able to resolve all memory
aliasing problems, the proposal introduces average over-
heads of 0.26% in execution time and 2.03% in energy con-
sumption. These overheads are outweighted by the benefits
coming from the ability to generate code for the hybrid

• The authors are with the Department of Computer Architecture, Universitat
Politècnica de Catalunya and the Barcelona Supercomputing Center,
Barcelona 08034, Spain. E-mail: lluc.alvarez@bsc.es.

Manuscript received 14 Jan. 2013; revised 22 July 2013; accepted 17 Sep. 2013.
Date of publication 30 Sep. 2013; date of current version 12 Dec. 2014.
Recommended for acceptance by A. Louri.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.194

152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

memory system, that provides an average speedup of 38%
and an average energy saving of 27% when compared to a
cache-based system.

The rest of this paper is organized as follows: Section 2
gives some background of how a LM is integrated in a core
and how the resulting architecture is programmed. Section 3
explains the design of the coherence protocol and Section 4
presents its evaluation. Section 5 comments some related
workandSection 6 remarks themain conclusions of thiswork.

2 BACKGROUND AND MOTIVATION

This section explains the hybridmemory system, its execution
model and the coherence problem it exposes.

2.1 Baseline Architecture
Thehybridmemory system consists of extending a corewith a
LM and a DMA controller (DMAC), as Fig. 1 shows.

TheLM is integrated into the core at the same level as theL1
cache and is used to store private data only. A range of the
virtual address space is devoted to the LM, and this range is
direct-mapped to the physical address space of the LM. The
CPU needs three registers to keep track of the address map-
ping of the LM: a register for the base address of the virtual
address range, a register for the base address of its physical
address range and a register for the size of the LM. The CPU is
able to access the LM using regular loads and stores to its
virtual address range. In order to distinguish which memory
has to serve amemory instruction, a range check is performed
on the virtual address, prior to any MMU [11] action. If the
virtual address is in the range reserved for theLM, theMMUis
bypassed and a physical address that points to the LM is
generated. This scheme is the preferred one to integrate a LM
alongside the cache hierarchy [12], [13] because it has two
important benefits. First, since no pagination is used for the
LM,memory accesses to theLMdonot need to access theTLB,
so they are extremely power efficient and they have a deter-
ministic latency. Second, it allows the introduction of the LM
in a very simple way because only three registers are required
to configure the LMand there is no interferencewith the cache
hierarchy. In addition, the typical size of a LM is extremely
small compared to the size of the RAM and of the virtual
address space of a 64-bit machine, so the virtual and physical
address ranges reserved for the LM occupy a very minor
portion of the whole address spaces.

The DMAC is in charge of transferring data between the
LM and the system memory (SM, which includes caches and
mainmemory). It offers three operations: (1) dma-get transfers
data from the SM to the LM, (2) dma-put transfers data from
theLMto the SMand (3) dma-synchwaits for the completionof
certain DMA transfers. These operations are explicitly trig-
gered by software using memory instructions to non-
cacheable memory-mapped I/O registers in the DMAC.
DMA transfers are coherent with the SM [14], [15] by inspect-
ing the cache hierarchy at every bus request. The bus requests
generated by a dma-get look for the data in the caches. If the
data is in some cache, it is copied from there to the LM,
otherwise it is copied from the main memory. The bus re-
quests generated by a dma-put copy the data from the LM to
the main memory and invalidate the cache line in the whole
cache hierarchy, if it exists.

2.2 Execution Model
Oneof the big challenges of the hybridmemory system is to be
more efficient than a cache-based system offering exactly the
same level of programmability. Since the introduction of a LM
imposes the software to explicitly manage the data, the only
way to offer the programmer a system that is as programma-
ble as a cache-based system is to give the compiler the
responsibility of generating the code that manages the LM.
In order to do so, the idea is that the programmer writes
conventional parallel code and the compiler, first, identifies
what data is better suited to be mapped to the LM and, then,
generates code to manage this mapping transparently.

The first thing to be done by the compiler is to identify
which data is private to each core, so it can be mapped to its
LM. Typically programming models rely on the programmer
to know how the data of a parallel program is distributed. In
distributed memory architectures, programming models
such as MPI [16] require the user to explicitly partition the
data. Allocations are private to each computational task and
the programmer adds explicit data transfers and synchroni-
zation points between tasks when needed. In sharedmemory
architectures the programmer guides the partitioning. In
OpenMP [17] the programmer adds code annotations to
specify if the data is private or shared between threads and
how the iteration space of a loop is split between the threads.
Thus, in both cases, the data distribution between computa-
tional entities is solved by the inherent properties of the
programming models themselves.

The data assigned to each core is then mapped to its LM,
inducing a particular execution model. In the case of a
computational loop, the code is converted into a two-level
nested iterative structure that uses blocking [7], as Fig. 2
shows. Each outermost iteration maps chunks of data to the
LM and computes a subset of iterations. It executes three
phases to do so: (1) a control phase that moves chunks of data
between the LM and the SM, (2) a synchronization phase that
waits for the DMA transfers to finish and (3) a work phase
where the computation for the current chunk of data is
performed. The three phases repeat until the whole iteration
space is computed. These code transformations are usually
done by run-time libraries [7], [18] or compilers [19], [20].

Automatic code transformations decide which data is
mapped to the LM by analyzing the memory accesses [21].
Regular accesses are those that expose predictable access pat-
terns (e.g., with a constant stride). These are mapped to the
LM. Unpredictable memory accesses are difficult to map to
theLM[7], so they are servedby the cachehierarchy. These are
called irregular accesses. In the original code in Fig. 2, the

Fig. 1. Overview of the hybrid memory system. The architecture consists
on extending a regular core with a Local Memory (LM) and a programma-
ble DMA controller (DMAC).

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 153

accesses to a and b are regular accesses, and the accesses to c

and ptr are irregular.
In the control phase, chunks of data aremovedbetween the

LM and the SM. In order to do this task in a simple and
efficientway, the compiler declares asmany buffers in the LM
as regular accesses appear in the loop. All buffers have the
same size, determinedby the size of the LMand the number of
regular accesses. In Fig. 2 there are two regular accesses (a and
b) so twobuffers (a and b)wouldbe allocated in theLM, each
one of them occupying half the storage. In every instance of
the control phase, for each regular access, the chunk of data
that is needed innextworkphase ismapped to its correspond-
ing LM buffer (MAP statements in Fig. 2), potentially sending
back to the SM the previously used chunk. Even in case of
mapping a chunk of data to the LM for writing only, the
transfer of the chunk from the SM to the LM is done because
otherwise, if only part of the chunk was modified, the write-
back to the SMwouldupdate theunmodifiedparts of the copy
in the SM with garbage.

The work phase is like the original loop, but with two
differences. First, every instance of the work phase consumes
asubsetof theoriginal iterationspace.Theamountof iterations
depends on the stride of the regular accesses and the size of the
LMbuffers. Second, the original regular accesses (a and b) are
substituted with their LM buffer counterparts (a and b)
while irregular accesses are left untouched (c and ptr).

2.3 The Coherence Problem
The coherence problem in the hybridmemory systemappears
when two incoherent copies of the same data can be accessed
during the computation. When some data is mapped to the
LM, a copy of the data is created. For regular accesses, the
compiler generatesmemory operations that access the copy in
the LM while, for irregular accesses, it generates memory
operations that access the copy in the SM. Since the memories
are incoherent,modifications are not visible betweenpaths, so
the execution can be incorrect.

Compiler-based solutions for this situation are inefficient.
All approaches rely on memory aliasing analyses [8]–[10]. In
Fig. 2 this means predicting when, if ever, any instance of the
accesses to c or ptr aliases with any instance of the accesses to
a or b. Current algorithms are not able to solve this problem in
the general case, so compilers adopt restrictive solutions in its

presence. The naive one is to discard the usage of the LM in
presence of a potentially incoherent access. A potentially inco-
herent access is an irregular access that the compiler cannot
ensure itwill never access data in the SM that ismapped to the
LM. Another option is to introduce fine-grained DMA trans-
fers surrounding the potentially incoherent accesses [7], add-
ing big overheads because DMA transfers of small sizes are
inefficient. Software caching is another solution [22], [7].
These keep track of the contents of the LM with a software
directory and perform a costly associative search on it prior to
every potentially incoherent access to determine if the access
has to go to the LM or to the SM.

This paper proposes an efficient mechanism that ensures
coherence in hybridmemory systems. The solution avoids the
limitations stemming from the inability to solve the memory
aliasingproblem, bringing the optimization opportunities to a
new levelwhere automated optimization tools no longer have
to back-off their code transformationsdue to coherence issues.

3 DESIGN

The main idea of the coherence protocol is to avoid main-
taining two coherent copies of the data but, instead, ensure
that memory accesses always use the valid copy of the data.
The resulting design is open to data replication between the
LMand the cache hierarchy. The systemguarantees that,first,
in case of data replication, either the copies are identical or the
copy in the LM is the valid one and, second, always a valid
copy of the data is accessed. For data transfers this is ensured
by using coherentDMA transfers and by guaranteeing that, at
the eviction of replicated data, always the invalid copy is
discarded and then the valid version is evicted. For data
accesses, potentially incoherent accesses are diverted to the
memory that keeps thevalid copy. Inorder todo soadirectory
is introduced to keep track of what data is mapped to the LM.
The DMAC updates the directory entries when it executes
dma-get commands. The compiler identifies potentially inco-
herent memory accesses and emits guarded memory instruc-
tions for them.The executionof a guardedmemory instruction
triggers a lookup in the directory, diverting the access to the
memory that keeps the valid copy of the data.

The proposed coherence protocol is independent of the
cache coherence protocol. The proposed coherence protocol is
per core and it ensures coherence between the caches and the
LM of that core, without interacting with other cores nor with
the cache coherence protocol. The proposed coherence proto-
col can be integrated in a multicore with the hybrid memory
systemby simply replicating theper core hardware support in
every core. This is because the LMs in the hybrid memory
system are used to store per core private data only. One core
cannot access the LM of another core and, when a core maps
data to its LM, another core should not access the copy of this
data in the SM. This is key to ensure there is no interaction
with the cache coherence protocol and it is what allows the
proposal to work by only monitoring events inside the core.
This constraint is easily ensured when a compiler maps
private data to the LMbecause the data distribution is already
specified in the parallelization model. If the architecture is
programmed by hand, the programmer is responsible for not
accessing the data mapped to one core from another core
without using synchronization primitives.

Fig. 2. Code transformation for the hybrid memory system and three-
phase execution model of the transformed code.

154 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

The next sections explain the compiler and hardware
support for the coherence protocol, show an example of how
everything works together and describe of how the system
manages the copies of the data, in such a way that the

conditions for the correctness of the coherence protocol are
always fulfilled.

3.1 Compiler Support
With the proposed coherence protocol the compiler algorithm
that transforms the code as shown in Fig. 2 is straightforward
and safe, even in the presence of memory aliasing problems.
The compiler support, as shown in Fig. 3, consists on three
phases: classification of memory references, code transforma-
tion and code generation.

Phase 1—Classification of memory references: In this
phase the compiler identifies which memory accesses are
suitable to be mapped to the LM and which others to the
SM. It does so by classifying thememory references according
to their access patterns andpossible aliasing hazards. This last
analysis is done using the alias analysis function, which
receives two pointers as inputs and gives an outcome with
three possible values: the pointers alias, the pointers do not
alias or the pointers may alias. The information generated in
this phase is added to the intermediate representation of the
compiled code and is used in the next phases. The classes of
memory references are:

Regular accesses are those that expose a strided access
pattern. They access the LM.
Irregular accesses are those that do not expose a strided
access pattern and the compiler determines they do not
alias with any regular access. They access the SM.
Potentially incoherent accesses are those that donot expose a
strided access pattern and the compiler determines they
alias or may alias with some regular access. They access
the directory and then the SM or the LM.

In the example shown inFig. 3, the compiler classifies a and
b as regular accesses because they expose a strided access
pattern. Accesses c and ptr do not follow a strided access
pattern so, depending on the outcome of the alias analysis,
they are categorized as irregular or as potentially incoherent
accesses. The example assumes the compiler succeeds in
ensuring that c does not alias with any regular access and
that it is unable to do so for ptr, so it classifies c as an irregular
access and ptr as a potentially incoherent access.

Phase 2—Code transformation: In this phase the com-
piler transforms the code for regular accesses as explained in
Section 2.2. These are typical transformations to manage LMs
using tiling [20], [7]. For irregular and potentially incoherent
accesses nothing is done in this phase.

In Fig. 3 the code is transformed in exactly the same way
as explained in Section 2.2. The only difference is the existence
of a new class of memory accesses, the potentially incoherent
ones, like ptr. Since the compiler does not have to do any
transformations for them, the resulting code is the same as in
Fig. 2

Phase 3—Code generation: In this phase the compiler
generates the assembly code for the target architecture:

For regular accesses the compiler generates memory in-
structions that directly access the LM. This is accom-
plished by using as source operands the base address of
a LM buffer and an offset.

Fig. 3. Example of application of the three phases of the compiler support.
In the first phase thememory referencesare classifiedas regular, irregular
or potentially incoherent. In the second phase the code is transformed to
follow the execution model for the hybrid memory system. In the third
phase the assembly code is emitted, generating guardedmemory instruc-
tions for the potentially incoherent memory instructions (lines 17 and 19)
and the double store if needed (line 20).

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 155

For irregular accesses the compiler generates memory
instructions that directly access the SM. This is accom-
plished by using as source operands a base address in the
SM and an offset.
For potentially incoherent accesses the compiler generates
guardedmemory instructions with an initial SM address.
This is accomplished by using as source operands a base
address in the SM and an offset. When it is executed, the
guardedmemory instruction accesses the directory using
the SM address and is diverted to the corresponding
memory. The implementation of the guarded memory
instruction is discussed later in this section.

Fig. 3 shows the assembly code that the third phase emits
for the body of the innermost loop. In the statement that uses
regular accesses (line 10), a conventional load (ld in line 11)
and a conventional store (st in line 12) are emitted to,
respectively, read a value from b and write it in . When
these instructions are executed, its addresses will guide the
memory accesses to the LM. Similarly, in the statement that
uses an irregular access to store the zero value in random
positions of c (line 13), the compiler emits a conventional store
(st in line 15) with an address that will access the SM at
execution time. Finally, to increment the value that is accessed
via potentially incoherent accesses (line 16), the compiler
emits a guarded load (gld in line 17) to read the value and
a guarded store (gst in line 19) to write the value after
incrementing it. When these two guarded memory instruc-
tions are executed, the initial SM addresses based on ptrwill
be used to look up the directory and they will be changed to
LM addresses if a copy of the data exists there.

One special case has to be treated separately. When the
compiler determines a write access is potentially incoherent
it has to ensure also that the access does not alias with some
data that is mapped to the LM as read-only. If it cannot
ensure this, emitting a single guarded store can lead to an
erroneous execution. This is caused by a typical optimization
of tiling transformations that consists on not triggering a
write-back to the SM of a chunk of data that is mapped as
read-only. With this optimization, what will happen at
execution time is that the guarded store will hit in the
directory and the modification will be done to the LM. Since
the buffer will not be written-back to the SM, when the buffer
is reused to map new data, the corresponding dma-get oper-
ation will overwrite the contents of the buffer and the
modifications done by the potentially incoherent store will
be lost. A naive solution to this problem is to disable the tiling
optimization, forcing that the write-back is always per-
formed and so incurring in high performance penalties. A
more efficient solution is to make the modifications in the
two memories. A simple way to do it is that the compiler
generates a double store: one irregular store that will update
the copy in the SM and one potentially incoherent store that
will trigger a lookup in the directory and will update the
copy in the LM if it exists. Note that if the lookup in the
directory of the potentially incoherent store misses there will
be two stores of the same data to the same SM address.
The overhead of this unnecessary second store is small. The
performance impact is low because the two stores are inde-
pendent so they both can be issued in the same cycle. The
increase in power consumption is also small since the Load/
Store Queue [11] will collapse the second store with the first

one if it is not yet committed, having one single cache access
and so not paying the cost of an extra memory access. Note
also that, in presence of a potentially incoherent store, the
compiler almost always generates a double store since, in
general, it is unable to ensure that the aliasing is not with
some read-only data. This happens because typically the
compiler is unable to determine what is the accessible
address range of a potentially incoherent access, therefore
it is also unable to ensure there is no read-only data in this
potentially infinite accessible address range.

The final code of Fig. 3 shows how the compiler generates
the double store. For the increment of a random position of
ptr (line 16), the value is readwith a guarded load (gld in line
17), incremented and finally written with a double store. The
double store consists of a guarded store (gst in line 19) that
will modify the copy in the LM if it exists and a conventional
store (st in line 20) with the same source operands that will
always update the value in the SM.

The implementation of the guarded memory operations is
highly architecture-dependent. The trivial implementation is
to duplicate all memory instructions with a guarded form. As
this might produce many new opcodes, it may be unaccept-
able for some ISAs, specially in RISC architectures. One
alternative is to take unused bits of the binary representation
ofmemory instructions, as happens in PowerPC [23]. Another
option is to provide a fewer range of guarded memory
instructions and restrict the compiler to these. In CISC archi-
tectures like x86 [24], where most instructions can access
memory, instruction prefixes can be used to implement the
guard. A generic solution for any ISA is to extend the instruc-
tion set by only a single instruction that performs the compu-
tation of the address using the directory and leaves the result
in a register that is consumed by the memory instruction,
conceptually converting the guarded memory access to a
coherence-aware address calculation plus a normal memory
operation.

3.2 Hardware Design
The only hardware support needed for the coherence protocol
is a directory that keeps track of the contents of the LM. This
section explains how the directory is configured, updated and
used in the address generation. Then some considerations
about its access time, its double buffering support and its side
effects on the hybrid memory system are discussed.

Configuration: The directory can be configured to work
with any LM buffer size. When the compiler transforms the
code it partitions the LM into equally sized buffers and
informs the hardware of the LM buffer size through a
memory-mapped register. A directory entry is assigned to
each of these LM buffers to map the starting address of the
copyof thedata in the SM(i.e., the directory tag) to the starting
address of theLMbufferwhere thedata ismapped to. Since all
LM buffers are equally sized, the base address of a LM buffer
is equivalent to the buffer number and, thus, the index of a
directory entry. The buffer size is used to set the values of the
Base Mask and Offset Mask internal registers. These registers
allow to decompose any address into a base address and an
address offset, so the directory can be operated with any
buffer size.

156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Update: Every dma-get operation updates the directory.
The destination LM address of the transfer is used to identify
the base address of theLMbuffer and the source SMaddress is
used to set the tag of the corresponding directory entry.

Address generation: The directory is used in the
address generation as shown in Fig. 4. The Address
Generation Unit (AGU) [11] first generates a potentially
incoherent SM address (Incoherent address). Notice that this
is a SM address because it is generated by a potentially
incoherent access. Two bit-wise AND operations between
the Incoherent address and the Base Mask and Offset Mask
registers split the address in an Incoherent base address and
an Incoherent address offset. The Incoherent base address is used to
do a lookup in the directory. If it hits, the instruction is
accessing data in the SM that has a copy in the LM, so the
access has to be diverted to the LM. The base address of the
corresponding LM buffer is retrieved from the directory (LM
baseaddr) and a bit-wise ORwith the Incoherent address offset is
done, resulting in the Coherent address. If the lookup misses
there is no copy in the LM, so the original SM address is
preserved performing a bit-wise OR between the SM baseaddr
and the Incoherent address offset.

Access time: The directory is restricted to have 32
entries to keep the access time low. According to CACTI
[25], with a process technology of 45 nm, the latency of the
directory is 0.348 ns. Taking into account that this latency
would be significantly lower with nowadays process
technology, that current CPUs work with frequencies
between 2 GHz and 3 GHz and that the directory is
accessed just after an extremely simple operation in the
AGU, it is feasible to generate the address and to do the
lookup in the same cycle. Having 32 entries constrains the
software to use 32 LM buffers at most, so loops can only map
32 regular references to the LM. This is not a big limitation
since loops with more than 32 regular references are rare. If a

loop needs more than 32 buffers the compiler can simply not
map the exceeding regular accesses to the LM.

Double buffer support: The directory contains a
Presence bit that indicates if the data of a LM buffer is
currently being transferred into the LM by a dma-get. This
bit is reset when the dma-get is triggered. If a guarded
memory access hits the directory entry and this bit is unset,
an internal exception is generated until the bit is set at the dma-
get completion. This ensures correctness when a guarded
memory access accesses data that is being transferred to the
LM using double buffering.

As a final remark, the introduction of the hardware direc-
tory does not undermine the benefits of the hybrid memory
system.Thenumber ofCAMlookups is kept lowbecause only
accesses that are not regular trigger them: if they are poten-
tially incoherent accesses they go through the directory and
then to either the cache or the LM; if they are irregular accesses
they are served directly by the cache. Regular accesses are
directly served by the LMwithout any CAM lookup. Since in
HPC applications the vast majority of memory accesses are
regular [26], [27], the directory is rarely accessed and the
goodnesses of the hybrid memory system are preserved.

3.3 Example of Operation
The cooperation between the compiler support and the hard-
ware additions for the coherence protocol achieve that the
memory accesses are always served by amemory that keeps a
valid copy of the data. This section shows an example of how
the whole mechanism operates together in order to do so.

Fig. 5 shows an example of operation. The leftmost part of
thefigure shows thefinal code generated by the compiler after
applying the three-phase transformations explained in Sec-
tion 3.1. This code is the same as the resulting code of Fig. 3.
The rightmost part of the figure shows how the hardware
executes the code. The execution is divided in four steps that
correspond to four pieces of code. For every step the figure
explains which memory serves the memory operations trig-
gered by the corresponding piece of code. Note that the
memory operations are labeled indicating the instruction and
the line of the code that triggers them (e.g., MAP represents the
memory operation triggered by the statement MAP of the 4th
line of code). Note also that, for simplicity, the cache hierarchy
in the figure only shows the first level of cache.

The execution starts with the step 1. Its first statement (line
4)maps a chunkofa to theLMbuffer a. At execution time, the
transition MAP showshowaDMAtransfermakes a copy from
a in the SM to a in the LM. It is assumed the caches are empty,
so the data is transferred from the main memory. If some
cache kept the valid copy of the data, the coherent DMA
transfers would read the data from the cache. Similarly, the
second statement of this step (line 5) maps a chunk of b to b,
which at execution time provokes the data movement from
the main memory to the LM represented by MAP .

Once the control phase has been executed, the step 2 takes
place. This step is the assignment from b to a done with
regular accesses (line 10). In assembly language the assign-
ment is done using a conventional load (line 11) and a
conventional store (line 12). At execution time, the load to
b is served directly by the LM, as represented by ld , and the

Fig. 4. Schemeandoperationsof thedirectory for the coherence protocol.
Thedirectory is updatedat everydma-get. In theaddressgenerationstage
of the guardedmemory instructions, the directory is looked up to generate
a SM or a LM address.

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 157

store to a is also directly sent to the LM, as st represents.
These direct accesses to the LMhappen because the addresses
of thememory operations are in the range reserved to the LM.

In the step 3 an irregular store sets to zero a random
position of c (line 13). The store is irregular because it does
not expose a strided access pattern and the example assumes
the compiler can ensure the access does not alias with any
regular access. The assembly code for this statement consists
onplacing thevalue zero in a register (line 14) and then storing
this value to memory using a conventional store to some
position of c (line 15). This store, labeled as st , is served by
the L1 cache at execution time, since the address it modifies is
not in the LM address space. Assuming the caches are empty,
the L1 cache requests the cache line to the upper levels of
the hierarchy (not shown in the figure) and these forward the
request to the mainmemory. The cache line is then sent to the
requesters, reaching the L1 cache so the modification can be
done.

Finally, the step 4 increments an element of ptr using
potentially incoherent loads and stores (line 16). These mem-
ory accesses are potentially incoherent because they are not
strided and the example assumes the compiler does not
succeed in ensuring they do not alias with any regular access.
In addition, the potentially incoherentwrite access needs to be
treatedwith a double store. The instructions for this statement
are a guarded load of some element of ptr (line 17), the
increment (line 18), a guarded store that will write the new
value in the LM in case it exists (line 19) and a conventional
store that will always write the new value in the SM (line 20).
When these instructions are executed, the guarded load gld

does a lookup in the directory. If it hits, the access is diverted
to the LM as gld H shows. This happens, for instance, if ptr
equals a and ptr a i is a position of a that has beenmapped
to the LM in the step 1. Otherwise, if the directory lookup

misses, the load labeled as gld M is served by the L1 cache,
which requests the cache line if needed. This happens, for
instance, if ptr equals a but ptr a i is a position of a that
has not beenmapped to the LM in the step 1. After loading the
value, it is incremented and written to memory with the
guarded store gst . The execution of the guarded store,
analogous to the guarded load, first does a lookup in the
directory. If there is a copy of the data in the LM the lookup
hits, the address is changed to point to the LM and the access
goes there as gst H shows. If there is no copy in the LM the
lookup misses and the SM address is preserved, so the L1
cache serves the access as gst M shows.With thismechanism,
always the valid copy of the data is accessed. To prevent
losing themodificationswhen there is aliasingwith read-only
data in theLM, the irregular store st modifies the copy in the
SM. The address of the store guides the operation to the L1
cache, which requests the cache line if necessary.

3.4 Data Coherence Management
This section shows the correctness of the coherence protocol.
The two previous sections described howmemory operations
are diverted to one memory or another when replication
exists, considering that the valid copy of the data is in the
LM. This section shows this situation is always ensured. First,
the different states and actions that apply to data in the system
are described. According to this, it is shown that whenever
data is replicated in the LM and in the cache hierarchy, only
two situations can arise: either both versions are identical, or
the version in the LM is alwaysmore recent than the version in
the cachehierarchy. Then it is shown thatwhenever replicated
data is evicted to main memory, the version in the LM is
always the one transferred, invalidating the cache version.
This is always guaranteed unless both versions are identical,
in which case the system supports the eviction indistinctly.

Fig. 5. Example of the hardware handling memory operations in the hybrid memory system with the coherence protocol. The code is divided in four
pieces, each one of them corresponding to a step in the execution diagram. Every step shows how the data is moved between memories and what
memory serves the memory accesses triggered by the corresponding piece of code.

158 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

3.4.1 Data States and Operations
Fig. 6 shows the possible actions and states of data in the
system. The state diagram is conceptual, it is not implemented
in hardware. The MM state indicates the data is in main
memory and has no replica neither in the cache hierarchy
nor in the LM. The LM state indicates that only one replica
exists, and it is located in the LM. In the CM state only one
replica in the cache hierarchy exists. In the LM-CM state two
replicas exist, one in the LM and the other in the cache
hierarchy.

Actions prefixed with “LM-” correspond to LM control
actions, activated by software. There is a distinction between
LM-map and LM-unmap although both actions correspond to
the execution of a dma-get, which unmaps the previous con-
tents of a LM buffer and maps new contents instead. LM-map
indicates that a dma-get transfers the data to the LM. The LM-
unmap indicates that a dma-get has been performed that over-
writes the data in question, so it is no longer mapped to the
LM. The LM-writeback corresponds to the execution of a dma-
put that transfers the data from the LM to the SM. Actions
prefixed with “CM-” correspond to hardware activated
actions in the cache hierarchy. The CM-access corresponds
to the placement of the cache line that contains the data in
the cache hierarchy. The CM-evict corresponds to the replace-
ment of the cache line, with its write-back to main memory if
needed.

The transition occurs when the software
causes an LM-map action. Switching back to the MM state
occurs when an LM-unmap action happens due to a dma-get
mapping new data to the buffer. Notice that an LM-writeback
action does not imply a switch to theMM state, as transferring
data to the main memory does not unmap the data from
the LM.

Transitions between the MM and CM states happen
according to the execution of load and store operations that
cause CM-access and CM-eviction actions. Notice that unless
the data reaches the LM-CM state, no coherence problem can
appear due to the use of a LM. DMA transfers are coherent
with the SM, ensuring the systemcoherence as longas thedata
switches between the LM andMM states. Similarly, the cache
coherence protocol ensures the system coherence when the
data switches between theMM and CM states. In both cases,
never more than one replica is generated.

The LM-CM state is reachable from both the LM and the
CM states. In the LM state, a guarded instruction will never
cause a replica in the caches since the access goes through the

directory, and this will divert the access to the LM. It is
impossible to have unguarded memory instructions to the
SM because the compiler never emits them unless it is sure
that there is no aliasing, which cannot happen in this state. In
theLM state, only the execution of adouble store can cause the
transition to the LM-CM state. The double store is composed
of a guarded store and a store to the SM (st and st).
The st is served by the cache hierarchy, so a replica of the
data is generated and updated in the cache, while the st
modifies the LM replica with the same value, so two replicas
generated through a LM LM-CM transition are always
identical. The transition CM LM-CM happens due to an
LM-map action, and the DMA coherence ensures the two
versions are identical. Once in the LM-CM state, the double
store updates both versions, while st and st modify
the LM version and st will never be generated.

In conclusion, only two possibilities exist for having two
replicas of data. Each one is represented by one path reaching
the LM-CM state from the MM state. In both cases, the two
versions are either identical or the version in the LM is the
valid one. The next section shows the valid version is always
selected at the moment of evicting the data to main memory.

3.4.2 Data Eviction
The state diagram shows that the eviction of data can only
occur from the LM andCM states. There is no direct transition
from the LM-CM state to the MM state, which means that
eviction of data can only happenwhenone replica exists in the
system. This is a key point to ensure coherence. In case data is
in theLM-CM state, its eviction can only occur iffirst one of the
replicas is discarded, which corresponds to a transition to the
LM or CM states. According to the previous section, it is
ensured that in the LM-CM state the two replicas are identical
or, if not, the version in the LM is the valid one. Consequently,
the eviction discards the cache version unless both versions
are identical, in which case either version can be evicted. This
behavior is guaranteed by the transitions exiting the LM-CM
state.When aLM-writeback action is triggered by a dma-put the
associated DMA transfer invalidates the version of the data
that is in the cachehierarchy. TheCM-evict transition is caused
by an access to some other data in the SM that causes a
replacement of the cache line that holds the current data,
leaving just one replica, the one in the LM, and thus transi-
tioning to the LM state. Once the LM state is reached, at some
point the program will execute a dma-put operation to write-
back the data to the SM. Finally, the transition

caused by a LM-unmap action corresponds to the
casewhere the program explicitly discards the copy in the LM
when new data is mapped to the buffer that holds it. The
programmingmodel imposes that thiswill onlyhappenwhen
both versions are identical, because if the version in the LM
had modifications it would be written-back before being
replaced. So, after the LM-unmap, the only replica of the data
is in the cache hierarchy and it is valid, and the cache coher-
ence protocol will ensure the transfer of the cache line to the
main memory is done coherently.

In conclusion, the system always evicts the valid version of
the data. When two replicas exist, first the invalid one is
discarded and, then, the DMA and the cache coherence
mechanisms correctlymanage the evictionof thevalid replica.

Fig. 6. State diagramof the possible replication states of the data. A piece
of data can be in main memory only (MM), replicated only in the LM (LM),
replicated only in the cache hierarchy (CM), or replicated in the LM and in
the cache hierarchy at the same time (LM-CM). Creating and discarding
copies of the piece of data cause transitions between the states.

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 159

4 EVALUATION

This section evaluates the coherence protocol for the hybrid
memory system. A microbenchmark and a set of real bench-
marks are used to study the overhead of the proposal in terms
of execution time and energy consumption. Then a compari-
son against a cache-based system is presented.

4.1 Experimental Framework
The proposal has been evaluated using PTLsim [28], extend-
ing it with a LM, a DMAC and the directory of the coherence
protocol. For the energy results Wattch [29] has been inte-
grated into the simulator. Single-core simulations are pre-
sented because the coherence protocol is per core. Table 1
shows the parameters of the simulated speculative out-of-
order core.

Six memory intensive HPC benchmarks from the NAS
benchmark suite [32] are used for the evaluation. The bench-
marks have been compiled using GCC 4.6.3 with the -O3
optimization flag on. SimPoint [33] has been used to identify
the simulation points and at least 150 millions of x86 instruc-
tions have been simulated for each benchmark.

The outcome of the alias analysis performed by GCC on
every memory reference has been checked to generate the
guardedmemory instructions. The references that GCC is not
able to determine the aliasing for are the potentially incoher-
ent accesses. Once these accesses have been identified, the
source code of the benchmarks has been modified by hand to
generate the guarded memory instructions using assembly
macros. x86 instruction prefixes are used to implement the
guarded instructions as explained in Section 3.1.

4.2 Overhead of the Coherence Protocol
A microbenchmark that stresses the coherence protocol is
used to facilitate the study of its performance overheads.
Table 2 shows its characteristics. The microbenchmark is a
loop that makes a sequence of load/add/store instructions
that can be configured in fourmodes. In the baselinemode no
guarded instructions are generated for any access. The RD
modeassumes the read access a i is potentially incoherent, so
a guarded load is generated. The guarded memory instruc-
tions are represented in bold font in the assembly code. The
WR mode assumes the write access to a i 1 is potentially

incoherent and it cannot be ensured a write-back to the SM
will be performed, so a double store is emitted. The RD/WR
mode is a combinationof theRDand theWRmodes. Tomodel
all possible scenarios in terms of the ratio of accesses that are
potentially incoherent, the percentage of memory operations
that need to be guarded can also be adjusted.

Fig. 7 shows the overhead in execution time of the proposal
in the microbenchmark. Three lines appear in the figure, one
per each mode of the microbenchmark. The X axis shows the
percentage of references that are potentially incoherent with
respect to the total number of references. The overheadof each
mode is shown in ratio and computed against the baseline
mode of the microbenchmark.

The RD mode line shows no overhead at all. The only
differences in the execution of a guarded load and a non-
guarded load are that the prefix has to be decoded and that a
lookup in the directory is triggered. Both operations fit in the
cycle time so there is no performance overhead for guarded
loads. In theWR and the RD/WRmodes it can be observed a
linear overhead as the percentage of potentially incoherent
accesses grows. The overhead is caused by the extra store
added. When the double store is used at every write access it
adds an overhead of 28%,which is provoked by an increase in
executed instructions of 26%. The double store also adds
pressure to the Load/Store Queue, although not enough to
become a bottleneck. The overhead decreases to less than 10%
when 35%or less of thewrite access are guarded and need the
double store, which provokes an increase of 9% in executed
instructions. Notice that in theWR and RD/WRmodes, if the
compiler could ensure the potentially incoherent write access

TABLE 1
PTLsim Configuration Parameters

Fig. 7. Overhead in all microbenchmark modes.

TABLE 2
Scheme of the Microbenchmark

The microbenchmark is a simple loop that can be configured in four
modes; for each mode it is assumed some memory references are
potentially incoherent so guarded memory instructions are emitted for
them, represented with bold font.

160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

aliases with some data in the LM that will be written back to
the SM, a single guarded store would be generated instead of
the double store, and the overhead would be zero as in the
case of a single guarded load.

In conclusion, the coherence protocol adds noperformance
overhead when the potentially incoherent memory accesses
are for reading data or when they are for writing and the
double store is not needed. Only the double store adds over-
head, reaching a maximum 28% in the microbenchmark. In
real situations it is common that the number of potentially
incoherent write accesses is low with respect to the total
number of memory accesses and the computation is more
complex than the one performed in the microbenchmark, so
the expected overheads are far from this reportedupper bound.

In order to study the overheads in real benchmarks, the
hybridmemory system extendedwith the coherence protocol
is compared against an incoherent hybrid memory system
with an oracle compiler. In this baseline architecture the
potentially incoherent accesses are left unguarded and are
always served by the memory that has the valid copy of the
data.

Fig. 8 shows the overhead introduced by the coherence
protocol in terms of execution time and energy consumption
in real benchmarks. The performance overhead in CG, MG
and SP is zero because the compiler does not find any
potentially incoherent write access that needs to be treated
with a double store. This happens only in FT and IS, which
present overheads of 1.03% and 0.44%, respectively, and in
EP,whichpresents nooverhead. FTuses 34 strided references,
2 potentially incoherent read references and 2 potentially
incoherent write references (treated with a double store) to
do complex operations on floating point data. The cost of the
computation and the small percentage of references that need
to be treated with the double store keep the overhead low. In
IS the computation is very simple and the double store is used
in 2 out of 5 references, so the extra store provokes a non-
negligible increase in the number of executed instructions.
These extra instructions barely affect the performance because
most of the times the out-of-order engine is able to issue the
potentially incoherent store and the irregular store in the same
cycle, effectively hiding the performance penalty caused by
the double store. A similar situation happens in EP, that has 3
strided references, 16 local variables and 1 potentially inco-
herent write reference for which the double store is used. In
this case the issue of the two stores is always done in the same
cycle, that is why the overhead is zero. The resulting average
overhead of the benchmarks is negligible, 0.26%.

Fig. 8 also shows the energy consumption overhead is less
than 2% in all benchmarks except in IS. These benchmarks

have many strided references and do complex computations,
so the directory is very seldomly accessed and, moreover, the
energy it consumes is much lower than the energy consumed
by other components such as the memory subsystem, ALUs
and issue queues, resulting in a very low overhead. In IS the
overhead is 5%. The overhead generated by the directory is
around 1.8%, the remaining 3.2% is caused by the execution of
the double store. The average overhead in energy consump-
tion of all benchmarks is 2.03%.

In conclusion, the coherence protocol adds a very low
overhead in performance and in energy consumption. In 3
of the 6 benchmarks the double store is not needed, so there
are no performance penalties and the utilization of the direc-
tory generates an increase in energy consumption of less than
2%. When the double store is needed the increase in the
number of instructions provokes a very minor performance
degradation and a slightly higher energy consumption.

4.3 Comparison with Cache-Based Architectures
The immediate result of the coherence protocol is that any
computational kernel can now be executed on the hybrid
memory system no matter the restrictions coming from co-
herence problems. In order to show the usefulness of this
achievement, this section evaluates the benefits in perfor-
mance and energy consumption of the coherent hybrid mem-
ory system when compared to a cache-based system.

The coherent hybrid memory system and the cache-based
system studied in this section have the same characteristics
but with one difference. The hybrid memory system has a
32KB LM and the directory of the coherence protocol. For
fairness, the capacity of the L1 of the cache-based system is
increased to 64KB, matching the 32KB of LM plus the 32KB of
L1 in the hybrid memory system. Table 3 summarizes the
statistics of the memory subsystem that are the dominating
factors of the improvements. This table is used throughout
this section to explain the differences between the two archi-
tectures. For each benchmark the table shows the ratio of
references that are potentially incoherent, the average memo-
ry access time (AMAT), the L1 hit ratio and the number of
accesses to all the components of the memory subsystem in
thousands. The accounting of accesses includes hits, misses,
lookups and invalidations provoked bymemory instructions,
prefetchers, placement of cache lines by the MSHRs, write-
through andwrite-back policies and bus requests of the DMA
commands.

The immediate consequence of the coherence protocol is
that any computational loop can be executed on the hybrid
memory system. The benchmarks that take benefit of this
achievement are all but SP. In Table 3 this is reflected in
the column of the number of guarded references. All bench-
marks but SP have potentially incoherent references forwhich
the compiler generates guarded accesses. Without the coher-
ence protocol the usage of the hybrid memory system would
not be possible in these cases, so the performance and energy
consumption benefits it provides would not be exploited.

The reduction in execution time the hybridmemory system
achieves when compared to a cache-based system can be
observed in Fig. 9. For each benchmark two bars are pre-
sented. The leftmost bar is the execution time of the cache-
based systemand the rightmost bar is the execution timeof the
hybrid memory system. Both bars are normalized to theFig. 8. Overhead in real benchmarks.

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 161

cache-based system execution time and show the weight of
each execution phase, considering as work time the whole
execution time of the cache-based system.All benchmarks but
EP present some degree of reduction. The reductions are
mainly due to the reduction of execution time of the work
phase, more than 35% in all cases. This big reduction in the
work phase is caused by the better management of memory
references in the hybrid memory system. First, the irregular
accesses that reuse data along the execution of the bench-
marks have a much higher L1 hit ratio in the hybrid memory
system. This is because the hybrid memory system uses the
LM to serve the regular accesses and the L1 to serve the
irregular ones, so the data placed in the L1 is much less often
evicted than in the cache-based system, where every access is
served by the L1 so the data brought for irregular accesses is
evicted when new data needs to be brought for regular
references, causingmisseswhen irregular accesses reuse data.
The second important observation is that the hybrid memory
system imposes an execution model that does extra work in
the control and synchronization phases, but in thework phase
it is able to execute the strided accesses without cache misses,
since they are served by the LM. In the cache-based system,
when a lot of strided memory references are being used, they
cause collisions in the history tables of the prefetchers and also
the big amount of prefetched data causes conflictmisses in the
whole cache hierarchy. These two situations are reflected in
the AMAT and the L1 hit ratios shown in Table 3. MG and SP
show a very similar behaviour, with respective reductions of
39% and 40% (or speedups of 1.64x and 1.66x). The big
amount of regular references they have provoke conflict
misses and collisions in the prefetchers in the cache-based
system, which cause important penalties compared to the
execution time spent in control phases in the hybrid memory

system. CG, FT and IS show reductions of 26%, 24% and 36%
(or speedups of 1.34x, 1.30x and 1.55x), respectively. These
loops have fewer strided references but their critical path
contains a potentially incoherent access with a high degree of
reuse. These memory references almost always miss in the L1
in the cache-based system, while they are served very effi-
ciently in the hybridmemory system. EP presents no speedup
at all. In both architectures all accesses are served very
efficiently, with similar AMATs and L1 hit ratios of 99.9%
and 98.9%. An irregular store causes this difference in the hit
ratio but this access is not in the critical path, so the difference
in performance is 1%. On average, the speedup in all bench-
marks is 1.38x, or a reduction in execution time of 28%.

Fig. 10 shows, for each benchmark, the energy consump-
tion of the cache-based system in the leftmost bar and of the
hybrid memory system in the rightmost bar. Both bars are
normalized to the cache-based system energy consumption
and show the weight of each component of the processor on
the total consumption. The energy components comprise the
wholemicroarchiture of the core (CPU), the three levels of the
cache hierarchy (Caches), the LM (LM) and the prefetchers,
the DMA controller and the buses that connect all these
components (Others). All benchmarks show reductions in
energy consumption of 41% to 12%. In IS, MG and SP
important savings come from the CPU. This is provoked by
the reduction of cachemisses, which cause energy penalties in
the pipeline in the formof re-executed instructions. All bench-
marks present energy reductions in the cache hierarchy, being
CG and FT the ones that achieve the highest benefits. The
energy consumed in the cache hierarchy decreases in all cases
because, first, the hybridmemory system does fewer accesses
to all the levels of the hierarchy because it uses the LM instead
and, second, cache misses and data prefetches are more

Fig. 9. Reduction in execution time. Fig. 10. Reduction in energy consumption.

TABLE 3
Activity in the Memory Subsystem for the Hybrid Memory and the Cache-Based Systems

162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

frequent in the cache-based system, provoking energy con-
sumption due to cache line lookups and placements. This
number of saved accesses is much larger than the activity that
the hybrid memory systems provokes in the caches in the
form of cache line lookups and invalidations due to the DMA
transfers. All together, the resulting number of accesses to any
level of the cachehierarchydecreaseswith thehybridmemory
system, as canbeobserved inTable 3. Furthermore, the energy
savings in the cache hierarchy are much bigger than the
energy consumed by the LM in the hybrid memory system,
which has a weight of less than 5%, and by the DMA engine,
which also has a weight of less than 5%. The average savings
in energy consumption in the benchmarks is 27%.

In conclusion, the hybrid memory system outperforms
cache-based systems because it serves data very efficiently:
the strided accesses are served by the LM so the cache
hierarchy is less frequently accessed and it can be devoted
to the data accessed by irregular and potentially incoherent
accesses, avoiding evictions of data that is going to be reused.
Moreover, fewer collisions in the history tables of the pre-
fetchers happen due to the lower activity in the caches. This
lower activity directly translates to less energy consumption,
that is complemented with energy savings in the CPU due to
the reduction of re-executed instructions caused by cache
misses.

5 RELATED WORK

The idea of adding a LM alongside the cache hierarchy is not
novel. This organization is found in commercial products like
the NVIDIA Fermi [6]. In this platform the global memory
(that is cached) and the LM are incoherent, and the architec-
ture does not provide any mechanism to solve the coherence
problem between the two storages. Instead, it relies on the
programmer to explicitly manage the two memories. CUDA
[34] provides keywords for the declaration of the variables to
specify which memory will store them, so data replication
does not happen. If two copies of data exist it is the program-
mer who has to explicitly declare and manage them, since
neither the hardware nor the compiler give any support for
coherence management between both memories.

Bertran et al. [12] propose to add a LM alongside the cache
hierarchy in general purpose cores, but they do not solve the
coherence problem between the two storages. Instead, they
give the compiler the responsibility to discard loop transfor-
mations in caseof coherenceproblems, restricting the effective
utilization of the hybrid memory system.

Some works [35], [13] propose memory organizations that
can be configured as caches, LMs or a combination of both.
With such approaches, when the memory is logically config-
ured as a hybrid memory system, the resulting system en-
counters the same coherence problem that this paper solves.
The authors of Virtual LocalMemories [13] allow to configure
a part of the cache as a LM. When they do so they reserve for
the LM a portion of the virtual address space that is direct-
mapped to the physical address space and they offer the
programmer a high-level API to move data between the LM
and the SM with a DMA engine, ending up with an scheme
that is identical to the one proposed in this paper. The authors
of that work bypass the coherence problem by leaving the
responsibility of managing the copies of data to the

programmer. The coherence protocol for the hybrid memory
system could be directly applied to their proposal to allow the
compiler to generate code that manages the Virtual Local
Memory. The memory hierarchy of the Smart Memories
Architecture [35] also has the possibility to be configured as
a combination of LM and caches. The authors focus on the
hardware details that allow the configurability, but do not
mention how the resulting configurationwould be exposed to
the upper layers of the system. If the Smart Memories Archi-
tecture adopted the same scheme that the hybrid memory
system and the Virtual LocalMemories assume, the proposed
coherence protocol could also bedirectly applied to thatwork.

Cohesion [36] allows the software to dynamically select
which cache lines are cache coherent by enabling and dis-
abling the cache coherence protocol for specific lines. This
approach faces the same problem as the hybrid memory
system because it opens the door to incoherent copies of data,
relying on the programmer to explicitly manage them.

This paper relies on previous works on DMA coherence
[15]. The IBM Cell architecture [5], [14] ensures DMA coher-
ence by doing lookups in the cache hierarchy when DMA
transfers are performed. In the Cell architecture only DMA
transfers can generate data replication and there are no
coherence problems because, with regular memory instruc-
tions, the accelerator cores can only access their LMs and the
general purpose core can only access the cache hierarchy.
Whenever a modification has to be visible to other cores
DMAs are used so the coherence is ensured. In the hybrid
memory system this approach is extended to support coher-
ence at thememory instruction level because a core can access
both memories.

Tang et al. [37] introduce on-chip storage to separate IO
data fromCPUdata.Althoughwithdifferentmotivations, this
work faces similar coherence problems as the ones the pro-
posed coherence protocol addresses. The introduction of the
DMA-cache createspotential incoherences that are solvedbya
refinement of the MOESI and ESI cache coherence protocols.
In the coherent hybridmemory system data invalidation only
happens along a dma-put and never a memory access to the
cache hierarchy can modify the contents of the LM.

6 CONCLUSIONS

The hybrid memory system, which consists of adding a local
memory alongside the cache hierarchy, is a promising solu-
tion to the lack of scalability and the power consumption
problems of future cache coherent multicore and manycore
architectures. One of the main problems of the hybrid memo-
ry system is the incoherence between the two storages, for
which this paper proposes a novel hardware/software coher-
ence protocol.

The protocol admits data replication in the two storages
and avoids keeping them coherent. Instead, it ensures that the
valid copy of the data is always accessed. The design consists
of a hardware directory that keeps track of the contents of the
local memory and guarded memory instructions that the
compiler selectively emits for potentially incoherent memory
accesses. Guarded instructions access the directory and then
are diverted to the storage where the correct copy of the data
is. The main achievement of the coherence protocol is that the
compiler algorithm to generate code for the hybrid memory

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 163

system is straightforward and always safe because it is not
limited by memory aliasing problems.

The proposed coherence protocol introduces average over-
heads of 0.26% in execution time and of 2.03% in energy
consumption to enable the usage of the hybrid memory
system. This system, compared to a cache-based system,
provides an average speedup of 38% and an energy reduction
of 27%.

ACKNOWLEDGMENTS

The authors acknowledge the support of the the Spanish
Ministry of Education (TIN2007-60625 and CSD2007-
00050), the Generalitat de Catalunya (2009-SGR-980), the
HiPEAC Network of Excellence (contracts EU FP7/ICT
217068 and 287759), and the BSC-IBM collaboration
agreement.

REFERENCES

[1] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing memory systems for
chip multiprocessors,” SIGARCH Comput. Archit. News, vol. 35, no.
2, pp. 358–368, 2007.

[2] R. Murphy, “On the effects of memory latency and bandwidth on
supercomputer application performance,” in Proc. 10th Int. Symp.
Workload Characterization (IISWC’07), 2007, pp. 35–43.

[3] A. Ros, M. E. Acacio, and J. M. Garíca, “Cache coherence protocols
for many-core CMPs,” in Parallel and Distributing Computing.
Vukovar, Croatia: In-tech, 2010.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: A design alternative for cache on-chip mem-
ory in embedded systems,” in Proc. 10th Int. Symp. Hardware/Softw.
Codesign, 2002, pp. 73–78.

[5] J. Kahle, “The cell processor architecture,” in Proc. 38th Int. Symp.
Microarchitecture, 2005, pp. 3–4.

[6] P. N. Glaskowsky, “NVIDIA’s Fermi: The first complete GPU
computing architecture,” White paper, 2009.

[7] M.Gonzàlez,N. Vujic, X.Martorell, E. Ayguadé,A. E. Eichenberger,
T. Chen, Z. Sura, T. Zhang, K. O’Brien, and K. O’Brien, “Hybrid
access-specific software cache techniques for the cell BE architec-
ture,” in Proc. 17th Int. Conf. Parallel Architectures Compilation Tech.
(PACT’08), 2008, pp. 292–302.

[8] W. Landi, and B. G. Ryder, “A safe approximate algorithm for
interprocedural aliasing,” in Proc. ACM SIGPLAN Conf. Program.
Language Des. Implementation (PLDI’92), 1992, pp. 473–489.

[9] A. Deutsch, “Interprocedural may-alias analysis for pointers:
Beyond k-limiting,” inProc. ACMSIGPLANConf. Program. Language
Des. Implementation (PLDI’94), 1994, pp. 230–241.

[10] R. P. Wilson, and M. S. Lam, “Efficient context-sensitive pointer
analysis for C programs,” in Proc. ACM SIGPLAN Conf. Program.
Language Des. Implementation (PLDI’95), 1995, pp. 1–12.

[11] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A
Quantitative Approach (The Morgan Kaufmann Series in Computer
Architecture and Design). San Mateo, CA, USA: Morgan Kaufmann,
2002.

[12] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro, and E. Ayguadé,
“Local memory design space exploration for high-performance
computing,” Comput. J., vol. 54, no. 5, pp. 786–799, 2010.

[13] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual local stores:
Enabling software-managed memory hierarchies in mainstream
computing environments,” Elect. Eng. Comput. Sci. Dept.,
Univ. California at Berkeley, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2009–131, 2009.

[14] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor commu-
nication network: Built for speed,” IEEE Micro, vol. 26, no. 3,
pp. 10–23, May/Jun. 2006.

[15] T. B. Berg, “Maintaining I/Odata coherence in embeddedmulticore
systems,” IEEE Micro, vol. 29, no. 3, pp. 10–19, May/Jun. 2009.

[16] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Version 3.0, Tech. Rep., 2012 [online]. Available: http://
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[17] Open MP Architecture Review Board, OpenMP Application Program
Interface, Version 3.0., Tech. Rep., 2008 [online]. Available: http://
www.openmp.org/mp-documents/spec30.pdf.

[18] S. Seo, J. Lee, and Z. Sura, “Design and implementation of
software-managed caches for multicores with local memory,” in
Proc. 15th Int. Conf. High-Perform. Comput. Architecture (HPCA’09),
2009, pp. 55–66.

[19] A. E. Eichenberger, J. K.O’Brien, K.M.O’Brien, P.Wu, T.Chen, P.H.
Oden,D.A. Prener, J. C. Shepherd,B. So,Z. Sura,A.Wang,T.Zhang,
P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo,
“Using advanced compiler technology to exploit the performance of
the cell broadband engine™ architecture,” IBM Syst. J., vol. 45, no. 1,
pp. 59–84, 2006.

[20] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H.
Oden,D.A. Prener, J. C. Shepherd,B. So,Z. Sura,A.Wang,T.Zhang,
P. Zhao, and M. Gschwind, “Optimizing compiler for the CELL
processor,” in Proc. 14th Int. Conf. Parallel Architectures Compilation
Tech. (PACT’05), 2005 pp. 161–172.

[21] Y. Paek, J. Hoeflinger, and D. Padua, “Efficient and precise array
access analysis,” ACM Trans. Program. Lang. Syst., vol. 24, no.1,
pp. 65–109, 2002.

[22] T. Chen, T. Zhang, Z. Sura, andM.G. Tallada, “Prefetching irregular
references for software cache on cell,” in Proc. 6th Int. Symp. Code
Generation Optimization (CGO’08), 2008, pp. 155–164.

[23] IBM, Power ISA. Version 2.06, Revision B. IBM, Jul. 2010 [online].
Available: https://www.power.org/wp.../07/PowerISA_V2.06B_
V2_PUBLIC.pdf.

[24] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,
Order Number 253668-039US, Intel Corporation Jan. 2011 [online].
Available: http://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-software-developer-
manual-325462.pdf.

[25] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, CACTI
6.0: A Tool to Understand Large Caches, Tech. Rep. HPL-2009-85,
HP Laboratories, 2009 [online]. Available: www.hpl.hp.com/
techreports/2009/HPL-2009-85.html.

[26] R. C. Murphy, and P. M. Kogge, “On the memory access patterns
of supercomputer applications: Benchmark selection and its
implications,” IEEE Trans. Comput., vol. 56, no. 7, pp. 937–945,
Jul. 2007.

[27] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely,
“Quantifying locality in the memory access patterns of HPC appli-
cations,” in Proc. ACM/IEEE Conf. Supercomput. (SC’05), 2005,
pp. 50–62.

[28] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 micro-
architectural simulator,” in Proc. 7th Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS’07), 2007, pp. 23–34.

[29] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework
for architectural-level power analysis and optimizations,”
in Proc. 27th Int. Symp. Comput. Architecture (ISCA’00), 2000,
pp. 83–94.

[30] T.-F. Chen and J.-L. Baer, “Effective hardware-based data prefetch-
ing for high-performance processors,” IEEE Trans. Comput., vol. 44,
no. 5, pp. 609–623, May 1995.

[31] J. Doweck, “Inside intel core microarchitecture and smart memory
access. An in-depth look at intel innovations for accelerating execu-
tion of memory-related instructions,” White paper, Intel Corpora-
tion, 2006.

[32] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“TheNASparallel benchmarks,” inProc. Conf. Supercomput. (SC’91),
1991, pp. 158–165.

[33] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automati-
cally characterizing large scale program behavior,” in Proc. 10th
Int. Conf. Architectural Support Program. Languages Oper. Syst.
(ASPLOS’02), 2002, pp. 45–57.

[34] NVIDA,NVIDIACUDACProgrammingGuide, Version 4.2, NVIDIA,
2012 [online]. Available: http://www.cs.unc.edu/~prins/Classes/
633/Readings/CUDA_C_Programming_Guide_4.2.pdf.

[35] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz, “Smart memories: A modular reconfigurable archi-
tecture,” inProc. 27th Int. Symp.Comput.Architecture (ISCA’00), 2000,
pp. 161–171.

[36] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: An adaptive hybrid memory model for accelerators,”
IEEE Micro, vol. 31, no. 1, pp. 42–55, Jan./Feb. 2011.

164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

[37] D. Tang, Y. Bao, W. Hu, and M. Chen, “DMA cache: Using on-chip
storage to architecturally separate I/O data from CPU data for
improving I/O performance,” in Proc. 16th Int. Conf. High-Perform.
Comput. Architecture (HPCA’10), 2010, pp. 1–12.

Lluc Alvarez received the bachelor’s degree in
computer systems from the Universitat de les Illes
Balears,Spain, in 2006and themaster’sdegree in
computer architecture from the Universitat Poli-
tècnica de Catalunya (UPC), Barcelona, Spain, in
2009. Since 2010, he has been a PhD student in
the Computer Architecture Department at UPC
and a resident student at Barcelona Supercom-
puting Center, Spain. His main research interests
include computer microarchitecture and memory
hierarchies of multicore architectures for high-

performance computing.

Lluís Vilanova received the bachelor’s degree in
computer science and the master’s degree in
computer architecture from the Universitat
Politècnica de Catalunya, Barcelona, Spain, in
2006 and 2008, respectively. He is currently work-
ing toward the PhD degree at the Barcelona
Supercomputing Center and the Computer Archi-
tecture Department at the Universitat Politècnica
deCatalunya. His research interests include com-
puter architecture and operating systems.

Marc Gonzàlez received the engineering degree
in computer science in 1996 and the PhD degree
in computer science in 2003.He currently holdsan
associate professor position with the Computer
Architecture Department from the Technical
University of Catalonia, Barcelona, Spain. His
research activity is linked to the Barcelona Super-
computing Center (BSC) as a collaborator. His
main interests include both parallel programming
and computer architecture, specifically for hybrid
multi-core systems. Besides, he has worked on

power and energy modeling techniques for multi-core processors and on
parallel programming models, with special interest in the OpenMP and
OpenCL paradigms. To date, he has published more than 40 refereed
papers in journals and conferences.

Xavier Martorell received the MS and PhD de-
grees in computer science from the Technical
University of Catalunya (UPC), Barcelona, Spain,
in 1991 and 1999, respectively. He has been
working as an associate professor with the Com-
puter Architecture Department at UPC since
2001, teaching on operating systems. His re-
search interests include the areas of parallelism,
runtime systems, compilers, and applications for
high-performance multiprocessor systems. Since
2005, he has been the manager of the team

working on parallel programming models at the Barcelona Supercomput-
ing Center. He has participated in several European projects dealing with
parallel environments (Nanos, Intone, POP, SARC, and ACOTES). He is
currently participating in the European HiPEAC2 Network of Excellence
and the ENCORE European project.

NachoNavarro received the PhD degree in com-
puter science from the Universitat Politecnica de
Catalunya (UPC), Barcelona, Spain. He is an
associate professor at the UPC since 1994 and
senior researcher at the Barcelona Supercomput-
ing Center (BSC), Spain, serving as manager of
theAccelerators forHighPerformanceComputing
Group. His current interests includeGPGPUcom-
puting, multi-core computer architectures, hard-
ware accelerators, dynamic reconfigurable logic
support, memory management, and runtime opti-

mizations. He is also doing research on massively parallel computing at
theUniversity of Illinois (IMPACTResearchGroup). He is amember of the
IEEE Computer Society, the ACM, and the HiPEAC NOE.

Eduard Ayguadé received the engineering
degree in telecommunications in 1986 and the
PhD degree in computer science in 1989, both
from the Universitat Politècnica de Catalunya
(UPC), Barcelona, Spain. Since 1987, he has
been lecturing on computer organization and ar-
chitecture and parallel programmingmodels. Cur-
rently, and since 1997, he is a full professor with
the Computer Architecture Department at UPC.
His research interests include the areas of pro-
cessormicroarchitecture, multicore architectures,

and programming models and their architectural support. He has pub-
lished more than 100 papers in these topics and participated in several
research projects in the framework of the European Union and research
collaborationswith companies. He is an associate director for research on
computer sciences at the Barcelona Supercomputing Center (BSCCNS).

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ALVAREZ ET AL.: HARDWARE–SOFTWARE COHERENCE PROTOCOL FOR THE COEXISTENCE OF CACHES AND LOCAL MEMORIES 165

