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Abstract

Web sites that incorporate untrusted content may use
browser- or language-based methods to keep such content
from maliciously altering pages, stealing sensitive informa-
tion, or causing other harm. We study language-based meth-
ods for filtering and rewriting JavaScript code, using Yahoo!
ADSafe and Facebook FBJS as motivating examples. We
explain the core problems by describing previously unknown
vulnerabilities and subtleties, and develop a foundation for
improved solutions based on an operational semantics of
the full ECMA-262 language. We also discuss how to apply
our analysis to address the JavaScript isolation problems we
discovered.

1. Introduction

Many contemporary Web sites incorporate untrusted con-
tent. For example, many sites serve third-party advertise-
ments, allow users to post comments that are then served
to others, or allow users to add their own applications to
the site. Although advertising content can be placed in an
isolating iframe [3], this is not always done because it
limits the ad to a specific section of the page and prevents
higher-revenue ads such as those that float over other parts
of the hosting page. Similarly, social networking sites may
serve untrusted content, such as applications developed by
users, without isolating this content in an iframe. An
alternative approach, explored and used by prominent Web
companies, is to pre-process untrusted content, applying
filters or source-to-source rewriting before the content is
served. While some “JavaScript sandboxing” methods make
intuitive sense, JavaScript provides many subtle ways for
malicious code to subvert language-based isolation methods.
These are instances of the general problem of regulating the
interaction between trusted and untrusted code running in
the same execution environment.

In order to provide a practically useful solution, in this
paper we focus on filtering and rewriting methods for
managing untrusted JavaScript [8], [10], drawing inspiration
from two illustrative examples: Yahoo! ADsafe and Face-
book FBIJS. Facebook [22] is a leading social networking
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site that makes substantial use of JavaScript, allowing user-
originated code to interact with trusted libraries. Yahoo!
ADsafe [5] proposes a particularly flexible advertising model
that supports rich interaction between advertising JavaScript
code and the hosting Web page. ADsafe isolation is based
on JavaScript filtering, allowing any JavaScript code that
passes a static code analysis test. Facebook uses JavaScript
rewriting to run applications in what is intended to be a
“separate namespace” and insert certain run-time checks.
While Google Caja [4] and other approaches offer alter-
natives, our two primary examples illustrate many core
issues and provide a natural context for exploring the basic
requirements for code filtering and rewriting.

We develop a formal foundation for proving isolation
properties of JavaScript programs, based on our operational
semantics of the full ECMA-262 Standard language (3rd
Edition) [7], available on the Web [14] and described pre-
viously in [15]. We initially used this framework to prove
isolation properties of ADsafe and FBJS, but in trying to do
so, we discovered problems in both systems. As explained
in Section 2, the version of ADsafe that was current when
we started investigating it did not properly account for
definitions that might occur on a hosting page, and an FBJS
wrapper function could be disabled by untrusted code; both
problems have since been addressed by the vendors. We
also subsequently discovered that the Facebook variable-
renaming process is not semantics-preserving, due to some
corner cases involving properties of inherited (prototype)
objects, and property names that serve as variable names
when it is possible to construct a pointer to a scope object.
Based on the subtlety of these errors, and others that
might occur in similar systems, we believe that our detailed
analysis method has significant promise as a systematic way
of investigating isolation properties.

We provide a semantic basis for JavaScript filtering and
rewriting by identifying sublanguages of the ECMA-262
Standard language that have certain desirable properties. Our
syntactically defined subsets provide a foundation for code
filtering — any JavaScript filter that only allows programs
in a meaningful sublanguage will guarantee any semantic
properties associated with it. We also consider subsets
of JavaScript with semantic restrictions, which model the



effect of rewriting JavaScript source code with “wrapper”
functions. Our main technical results are proofs that certain
subsets of the ECMA-262 Standard language make it possi-
ble to syntactically identify the object properties that may be
accessed, make it possible to safely rename variables used
in the code, and/or make it possible to prevent access to
scope objects (including the global object). Because of the
size of the operational semantics for the full ECMA-262
language [7], approximately 60 pages of ascii text, each of
these proofs reflects significant effort. Although we have not
completed a detailed study of the ways that specific browsers
may depart from the ECMA-262 Standard, the properties of
our subsets appears to be robust with respect to browser
variations we have uncovered [16].

Related work on language-based methods for isolating the
effects of potentially malicious Web content include [20],
which examines ways to inspect and cleanse dynamic HTML
content, and [28], which modifies questionable JavaScript,
for a more restricted fragment of JavaScript than we consider
here. A short workshop paper [27] also gives an archi-
tecture for server-side code analysis and instrumentation,
without exploring details or specific methods for constrain-
ing JavaScript. Additional related work on rewriting based
methods for controlling the execution of JavaScript include
[12]. Foundational studies of limited subsets of JavaScript
and dynamic languages in general are reported in [2], [25],
[28], [11], [21], [1], [26]; see [16].

Plan of the paper. In Section 2, we describe FBJS, ADsafe,
the vulnerabilities we discovered, and our approach for
addressing the problems they raise. In Section 3, we briefly
review our previous work [16] on JavaScript operational
semantics. In Section 4 we use the operational semantics to
identify safe subsets of JavaScript, and state their properties.
The formal proofs are available in the associated technical
report [17]. In Section 5, we discuss how our results can be
used to address the problems found in FBJS and ADsafe,
and what the vendors adopted. Concluding remarks are in
Section 6.

2. JavaScript Isolation Problems

In this Section, we summarize the Facebook and ADsafe
isolation mechanisms and explain some of the problems
we observed with them. The Facebook vulnerabilities we
describe were reported to Facebook and have been repaired.
Similarly, the deficiency we observed in ADsafe was com-
municated to Douglas Crockford and was addressed by
extending the ADsafe approach to consider properties of the
hosting page.

2.1. Facebook JavaScript

Facebook [22] is a Web-based social networking appli-
cation. Registered and authenticated users store private and

public information on the Facebook server in their Facebook
profile, which may include personal data, list of friends
(other Facebook users), photos, and other information. Users
can share information by sending messages, directly writing
on a public portion of a user profile (called the wall), or
interacting with Facebook applications.

Facebook applications can be written by any user and
can be deployed in various ways: as desktop applications,
as external Web pages displayed inside a frame within a
Facebook page, or as integrated components of a user profile.
Integrated applications are by far the most common, as they
affect the way a user profile is displayed.

Facebook applications are written in FBML [24], a variant
of HTML designed to make it easy to write applications and
also to restrict their possible behavior. A Facebook applica-
tion is retrieved from the application publisher’s server and
embedded as a subtree of the Facebook page document. For
example, in the left image in Figure 1, the area in the box
labelled “Alpha” is owned by the Alpha application and the
“Test A” link code is written by the application publisher.
Since Facebook applications are intended to interact with
the rest of the user’s profile, they are not isolated inside
an iframe. However, the actions of a Facebook application
must be restricted so that it cannot maliciously manipulate
the rest of the Facebook display, access sensitive information
or take unauthorized actions on behalf of the user. As part
of the Facebook isolation mechanism, the scripts used by
applications must be written in a subset of JavaScript called
FBJS [23] that restricts them from accessing arbitrary parts
of the DOM tree of the larger Facebook page. The source
application code is checked to make sure it contains valid
FBIJS, and some rewriting is applied to limit the application’s
behavior before it is rendered in the user’s browser.

FBJS. The design of FBIJS is intended to allow application
developers as much flexibility as possible, while protecting
user privacy and site integrity. While FBJS has the same
syntax as JavaScript, a preprocessor consistently adds an
application-specific prefix to all top-level identifiers in the
code, isolating the effective namespace of an application
from the namespace of other parts of the Facebook page.
For example, a statement document.domain may be rewritten
to a12345_document.domain, where a12345_ is the application-
specific prefix. Since this renaming will prevent application
code from directly accessing most of the host and native
JavaScript objects, such as the document object, Facebook
provides libraries that are accessible within the application
namespace. For example, the libraries include the object
a12345_document, which mediates interaction between the
application code and the true document object.

Additional steps are used to restrict the use of the special
identifier this in FBJS code. In fact the expression this,
executed in the global scope, evaluates to the window ob-
ject, which is the global scope itself. An application could
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Figure 1.

simply use an expression such as this.document to break
the namespace isolation and access the document object.
Since renaming this would drastically change the meaning
of JavaScript code, occurrences of this are replaced with the
expression ref(this), which calls the function ref to check what
object this refers to when it is used. If this refers to window,
it is rewritten to null (see Section 5 for further discussion of
ref and the revised version $FBJS.ref now used).

Other, indirect ways to get hold of the window object
involve accessing certain standard or browser-specific pre-
defined object properties such as __parent__ and constructor.
Therefore, FBJS blacklists such properties and rewrites
any explicit access to them in the code into an access to
the useless property __unknown__. Since the notation o[e]
denotes the access to the property of object o whose name
is the result of evaluating expression e to a string, FBJS
rewrites that term to a12345_o[idx(e)], where idx reiterates
the rewriting of blacklisted properties on the result of e.
This technique is impervious to obfuscation, because idx is
run on the string obtained as the final result of evaluating e.

Finally, FBJS code runs in an environment where proper-
ties such as valueOf, which may be used to access (indirectly)
the window object, are redefined to something harmless, and
is barred from using dangerous constructs such as with.

Facebook Vulnerabilities Found. We initially attempted
to use our operational semantics of JavaScript [14] to prove
that the subset of JavaScript used in FBJS has certain se-
mantic properties that provide meaningful isolation between
an FBJS application and the enclosing Facebook page, in
particular restricting access to the window object. In the
process, we uncovered certain problem cases that led to
discovery of vulnerabilities in the then-current version of
FBIS (see Figure 1). When we contacted Facebook, these
vulnerabilities were repaired within 24 hours. For simplicity,
we refer to the Facebook isolation mechanisms that were
current in late 2008 as FBJS pg.

Library Leaks. A necessary condition for the safety
of FBJS is that no predefined library function that is
exposed to the untrusted code should return anything
dangerous, in particular the window object. Analyzing the
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Demonstrating the FBJS ys vulnerabilities in Firefox.

FBJS yg libraries, we found two methods that returned
their this: setSendSuccessHandler of LiveMessage.prototype and
htmlEncode of String.prototype. If we extract one of these
methods from its respective objects, and call it as a stand-
alone function, we obtain the window object, as specified by
the operational semantics of JavaScript.

Altering the Scope. A more interesting and significant
discovery was that the run-time monitoring functions ref
and idx could be switched off, due to a semantic subtlety
of JavaScript. The nature of these vulnerabilities can be
understood by assuming that F'B.JS yg programs can contain
an expression get_scope() which returns the current scope
object; two ways of achieving this are explained below. Once
a program has a handle to its own scope object, the F'BJS g
run-time checks could be disabled by replacing the ref or the
idx functions, such as by running

get_scope().ref=function(x){ return x}

With the run-time-checking function out of the way, ref(this)
returns the current value of this, even when it is the window
object.

One way to define get_scope() so that it returns the current
scope object is by the code

try {throw ( function(){return this} );}
catch (get_scope){...}

In FBJS s, this code is rewritten to

try {throw ( function(){return ref(this)} );}
catch (a12345_get_scope){...}

When the code is executed, the function thrown as an
exception in the try block is bound to the identifier
a12345_get_scope in a new scope object that becomes the
scope for the catch block. If we execute within the catch
block the function call a12345_get_scope(), the this identifier
of the function is bound to the enclosing scope object. But
the Facebook run-time monitor ref lets the scope object
(which is different from the window object) be returned by
the a12345_get_scope function, enabling the attack described
above. In fact, the scope object looks exactly like any other
innocuous object to the ref function.



<a href="#" onclick="a()”>Test A (Firefox and Safari)</a>
<script>var get_win = function get_scope(x){
it (x==0) {return this}
else {get_scope(0).ref=function(x){return x};
return get_win(0)} };
function a(){get_win(1).alert("Hacked!”) } </script>

<a href="#" onclick="b() >
Test B (Safari, Opera and Chrome)</a>
<script>function b(){
try {throw (function(){return this});}
catch (get_scope){get_scope().ref=function(x){return x};
this.alert("Hacked!”) } } </script>

Figure 2. FBJS yg exploit code.

There is another, even more subtle way to access the scope
object, by the recursive code

var get_window =
function get_scope(x){
it (x==0) {return this}
else {...get_scope(0)...}

}

Here we save a named function in a global variable. As this
function executes, the static scope of the recursive function
is a fresh scope object o where the identifier get scope is
bound to the function itself, making recursion possible. If we
invoke get_window(1) and in the else branch we recursively
call get_scope(0), then this latter function call gets the this
bound to the scope object o mentioned above. Such object
escapes the ref check, and can be returned by the recursive
call get_scope(0), and used to disable refand escape from the
sandbox as described above (the full code is reported in
Figure 2).

Demonstrating the Vulnerabilities. Access to the window
object gives a FBJS pg-application-based attacker control
over the whole Facebook page. The privileges obtained by
the attacker include reading the page cookie, altering the
user profile, interfering with other Facebook applications,
suppressing advertisement and exploiting potential browser
vulnerabilities. See Felt er al. [9] for discussion of further
ramifications of the exploit. In Figure 2 we give JavaScript
for the FBJS yg attacks involving the scope described above.
It simply opens an unauthorized pop-up dialog (screen shots
are in Figure 1).

The two vulnerabilities due two library leaks could be ex-
ploited in all JavaScript enabled browsers. The effectiveness
of the scope-related attacks instead is browser-dependent
because of deviations from the ECMA-262 specification.
Since Safari follows the specification in handling both the
try-catch construct and recursive functions, it is vulnerable
to both attacks. Opera and Chrome follow the try-catch
specification but depart from it on the recursive function
by binding the window object instead of the scope object to
this. Hence they are vulnerable to attack B only. Firefox does
the opposite, binding window to this in the try-catch case, and
following the specification in the recursive function case.
Hence, it is vulnerable to attack A only. Internet Explorer
7, as tested, departs from the specification binding window
to this in both cases, and is therefore not vulnerable to these

specific attacks.

2.2. Safe Advertising with ADsafe

Many Web pages display advertisements, which typically
are produced by untrusted third parties (online advertising
agencies) unknown to the publisher of the hosting page.
Even an ad as simple as an image banner is often loaded
dynamically from a remote source by running a piece of
JavaScript provided by the advertiser or some (perhaps
untrusted) intermediary. Hence, it is important to isolate
Web pages from advertising content, which may potentially
consist of a malicious script. As mentioned earlier, an ad-
vertisement may be placed inside an HTML i frame, which
is isolated according to the browser same-origin policy [3].

The ADsafe JavaScript subset proposed by Yahoo! is
designed to allow advertising code to be placed directly
on the host page, limiting interaction by a combination of
static analysis and syntactic restrictions. As explained in the
documentation [5], “ADsafe defines a subset of JavaScript
that is powerful enough to allow guest code to perform
valuable interactions, while at the same time preventing
malicious or accidental damage or intrusion. The ADsafe
subset can be verified mechanically by tools like JSLint so
that no human inspection is necessary to review guest code
for safery.”. The high-level goal of ADsafe is to “block a
script from accessing any global variables or from directly
accessing the DOM or any of its elements”. The advertising
code has instead access to an ADSAFE object, provided as
a library, that mediates access to the DOM and other page
services. For example, the JavaScript code

var location = document.location
that accesses the DOM, should be written by the user as
var location = ADSAFE.get(document, “location”)

Access to user-defined objects does not need to be mediated
by the ADsafe wrappers, as in

var 0={1:0}; 0.I=42

Using our JavaScript operational semantics [14], [15], we
tried to prove that the 2007 version of ADsafe [6] indeed
isolated ADsafe-compliant JavaScript code from the global
variables (that is, the properties of window). In setting up the
proof, however, we found a problem with the ADsafe design:



the page hosting a ADsafe-compliant advertisement may
unwittingly define objects or add properties to accessible
objects in a way that provides access to the global scope. If
the page hosting an advertisement adds a dangerous function
f to Object.prototype, then the ADsafe-compliant code

var o={ };0.f()

is able to call f (because o inherits from Object.prototype),
and potentially violate the intended isolation properties.

In fact, we found that a very common JavaScript library,
prototype. js [19], provides ways for ADsafe-compliant
code to access the global scope. For example, an eval method
is added to String.prototype, allowing arbitrary code computed
by string manipulation to be executed. We notified the
authors of ADsafe about this problem, which has since been
addressed by imposing restrictions on any page hosting an ad
(see Section 5). However, these restrictions are not specified
with the same precision as other ADsafe guidelines, leading
us to believe that further investigation is warranted.

2.3. Formalizing JavaScript Isolation

The FBJS and ADsafe examples above illustrate two
fundamental issues with mashup isolation. (i) Regardless of
the technique adopted to enforce isolation, the ultimate goal
is usually very simple: make sure that a piece of untrusted
code that satisfies a specific syntactic criterium does not
access a certain set of global variables (typically the DOM).
(ii) While enforcing this constraint may seem easy, there
are a number of subtleties related to the expressiveness and
complexity of JavaScript.

Common isolation techniques include blacklisting certain
properties, separating the namespaces corresponding to code
in different trust domains, inserting run-time checks to pre-
vent illegal accesses and wrapping sensitive objects to limit
their accessibility. Since even organizations that have de-
voted significant time and effort to deploying such language-
based mechanisms have overlooked certain problems (as
illustrated by the attacks above), we believe that a funda-
mental study based on traditional programming language
foundations to design provably secure isolation techniques
is needed. As a first step, we set up to define syntactic
subsets of JavaScript that enforce isolation, and prove that
they indeed do so.

3. JavaScript Semantics

In this Section we briefly summarize our formalization of
the operational semantics of JavaScript [14], [15] based on
the ECMA-262 standard [7], and introduce some auxiliary
notation and definitions. In [16], we proved properties of
JavaScript that address the internal consistency of the seman-
tics itself, and memory reachability properties needed for

garbage collection, but did not address the kind of isolation
properties considered in Section 4.

Browser implementations of JavaScript extend the stan-
dard by providing additional reflection mechanisms, and
most notably the DOM libraries to interact with the browser
window. Mostly, these extension can be considered as an
additional set of native JavaScript objects and functions pre-
loaded in memory, and do not affect the overall definition of
the operational semantics. Further discussion of the relation
between this semantics and current browsers implementa-
tions appears in [16].

3.1. Operational Semantics

Our operational semantics consists of a set of rules
written in a conventional meta-notation suitable for rigorous
but (currently) manual proofs. Given the space constraints,
we describe only the main semantic functions and some
representative axioms and rules.

Syntactic Conventions. We abbreviate t1,..., tn with t~ and
t1 ... tn with tx (t+ in the nonempty case). In a grammar, [t]
means that t is optional, t|s means either t or s, and in case
of ambiguity we escape with apices, as in escaping [ by 7"
Internal values, which are used only in the semantics and are
not part of the user syntax, are prefixed with &, as in &NaN.
For conciseness, we use short sequences of letters to denote
metavariables of a specific type. For example, m ranges over
strings, pv over primitive values, etc.. These conventions are
summarized in Figure 3.

Heaps and Values. Heaps map locations to objects, which
are records of pure values va or functions fun(x,...){P},
indexed by strings m or internal identifiers @x (the symbol
@ distinguishes internal from user identifiers). Values are
standard. As a convention, we append w to a syntactic
category to denote that the corresponding term may belong
to that category or be an exception. For example, Iw denotes
an address or an exception. We assume a standard set of
functions to manipulate heaps. alloc(H,0) = H1,l allocates o
in H returning a fresh address | for o in H1. H(l) = o retrieves
o from | in H. o.i = va gets the value of property i of o.
o—i = fun([x"]){P} gets the function stored in property i of
0. o:i = {[a”]} gets the possibly empty set of attributes of
property i of o. H(li=ov)=H1 sets the property i of | in H
to the object value ov. del(H,l,i) = H1 deletes i from | in H.
i !< o holds if o does not have property i. i < o holds if o
has property i.

Semantic Functions and Contexts. Expressions, state-

ments and programs each have a corresponding small-step

. . . P
semantic relation denoted respectively by ——, 5, — .

Each semantic function transforms a heap H, a pointer in
the heap to the current scope [/, and the current term being
evaluated ¢ into a new heap-scope-term triple.



H ::= (I:0)” % heap
| ::= #X % object addresses
x ::= foo | bar | ... % identifiers
o = "{1(:0v)7]"}” % objects
i=m | @X % indexes
ov ::=va[{"a""}"] % object values
| fun”CIX1){"P"}” % function
a ::= ReadOnly| DontEnum | DontDelete % artributes

pv :=m | n| b | null | &undefined % primitive values
m ::= "foo” | "bar” | ... % strings

n:=-—n | &NaN | &lnfinity | 0 | 1 | ... % numbers
b ::= true | false % booleans

va 1= pv | | % pure values

r ::=In"’m % references

In =1 | null % nullable addresses

vV i=va ‘ r % values

w = '<’va”>" % exception

—

=P | S | e % terms: program, statements and expressions

Figure 3. Syntax for Values and Meta-Variables.

The semantics of programs depends on the semantics
of statements which in turn depends on the semantics of
expressions which in turn, for example by evaluating a
function, depends circularly on the semantics of programs.
These dependencies are made explicit by contextual rules,
that specify how a transition derived for a term can be
used to derive a transition for a larger term including the
former as a sub-term. The premises of each semantic rule
are predicates that must hold in order for the rule to be
applied, usually built of very simple mathematical conditions
such as set membership, inequality and semantic function
application.

An atomic transition is described by an axiom. For exam-
ple, the axiom H,l,(v) — H,l,v describes that brackets can
be removed when they surround a value (as opposed to an
expression, where brackets are still meaningful). Contextual
rules propagate such atomic transitions. For example, if pro-
gram H,|,P evaluates to H1,11,P1 then also H,l,@FunExe(I2,P)
(an internal expression used to evaluate the body of a
function) evaluates to H1,11,@FunExe(12,P1). The rule below
shows that: @FunExe(l,—) is one of the contexts eCp for
evaluating programs.

HLP 25 H11,P1
H,L,eCp[P] — H1,I1,eCp[P1]

The full formal semantics [14] contains several other
contextual rules to account for other mutual dependencies
and for all the implicit type conversions. This substantial use
of contextual rules greatly simplifies the semantics and will
be very useful in Section 4 to prove its formal properties.

Scope and Prototype Lookup. The scope and prototype

chains are two distinctive features of JavaScript. The stack is
represented by a chain of objects whose properties represent
the binding of local variables in the scope. Since we are not
concerned with performance, our semantics needs to know
only a pointer to the head of the chain (the current scope
object). Each scope object stores a pointer to its enclosing
scope object in an internal @Scope property. This helps in
dealing with constructs that modify the scope chain, such as
function calls and the with expression.

JavaScript follows a prototype-based approach to inheri-
tance. Each object stores in an internal property @Prototype
a pointer to its prototype object, and inherits its properties.
At the root of the prototype tree there is @Object.prototype,
that has a null prototype. The rules below illustrate prototype
chain lookup.

Prototype(H,null,m)=null
m!< H(l) H(l).@Prototype=In
Prototype(H,l,m)=Prototype(H,In,m)

m < H(l)
Prototype(H,l,m)=I

Function Scope(H,l,m) returns the address of the scope
object in H that first defines property m, starting from the
current scope I. It is used to look up identifiers in the
semantics of expressions. Its definition is similar to the one
for prototype, except that the condition (H,l.@HasProperty(m))
(which navigates the prototype chain to check if | has
property m) is used instead of the direct check m < H(l).

Types. JavaScript values are dynamically typed. Types
Te {Undefined,Null,Boolean,String,Number,Object,Reference} are
used to determine conditions under which certain semantic
rules can be evaluated. The semantics defines simple predi-
cates and functions which perform useful checks on the type
of values.

Expressions. We distinguish two classes of expressions:
internal expressions, which correspond to specification arti-
facts needed to model the intended behavior of user expres-
sions, and user expressions, which are part of the user syntax
of JavaScript. Internal expressions include addresses, refer-
ences, exceptions and functions such as @GetValue,@PutValue
used to get or set object properties, and @Call,@Construct
used to call functions or to construct new objects using
constructor functions. The syntax for user expressions is
reported in Figure 4, where we use &PO,&UN,&BIN to range
respectively over primitive, unary and binary operators.

The semantics of most user expressions is similar to usual
programming languages such as Java, but some expressions
are particularly subtle in JavaScript. While an in-depth
description of all corner cases goes beyond the scope of
this paper, we can highlight a few of them to illustrate the
difficulty of dealing with JavaScript, and address the reader
to [15], [10] for additional details.

For example, the expressions 1 == ”1” evaluates to true,
because the == operator converts its arguments to have
the same type before testing for equality between basic



e =
this % the “this” object
X % identifier
pv % primitive value
I’ 1€7] 17 % array literal
1(pn:e)"1"}” % object literal
"("'e”)” % parenthesis expression
e.X % property accessor
e’[e’]” % member selector
new e[”(1€7]")’] % constructor invocation
e’('1e71")” % function invocation
function [x] “CIX"1){"1P1"}” % [named] function expression
e &PO % postfix operator
&UN e % unary operators
e &BIN e % binary operators
"('e”?e”’e”)” % conditional expression

(e,e) % sequential expression

pn i=n | m | X % property name

Figure 4. Syntax for Expressions

values (of course, 1 == "2”evaluates to false). A more cryptic
example is the expression below, that evaluates to 42:

(f = function(){ },

f.prototype = {a:12},

0 = new f,

o.toString = function(){return 30},
o[a”] + o)

The code creates an empty function f, creates a prototype
property on f and assigns to it an object where a contains 12.
The next line generates an object o (using f as a constructor)
which has the prototype as described above, and the last line
accesses the property a inherited by o through the prototype
chain, and calls implicitly o.toString, yielding the result of
12430. As a last example, the expression f.constructor yields
the original content of the global variable Function, which
is a predefined constructor for functions. The expression
f = function(){} is equivalent to f = new Function, but only if
Function has not been redefined to something else by some
user code. Hopefully, these examples give a taste of the
subtlety of the highly reflective JavaScript semantics.

Statements. Similarly to the case for expressions, the
semantics of statements contains a certain number of internal
statements, used to represent unobservable execution steps,
and user statements that are part of the user syntax of
JavaScript. A completion is the final result of evaluating
a statement.

co::="(tt,vae,xe”)”  vae::=&empty|va xe::=&empty|x
ct ::= Normal | Break | Continue | Return | Throw

s =
"{"s%"}” % block
var [(x["="e])"] % assignment
5 % skip
e % expression not starting with ””,” function”
it "("e”)” s [else s] % conditional
while "(’e”)” s % while
do s while "("e”)” % do-while
for "("e in €”)”s % for-in
for “(var x["="e] in €”)” s % for-var-in
continue [x]; % continue
break [x]; % break
return [e]; % return
with “(’e”)” s % with
id:s % label
throw e; % throw
try "{"sx”"}” [catch "(*x"){"s1x"}7] [finally "{"s2%"}"] % try

P :=1d [P] | s [P]

fd ::= function x “("[x"1){1P]"}"

Figure 5. Syntax for Statements and Programs

The completion type indicates whether the execution flow
should continue normally, or be disrupted. The value of a
completion is relevant when the completion type is Return
(denoting the value to be returned), Throw (denoting the
exception thrown), or Normal (propagating the value to
be return during the execution of a function body). The
identifier of a completion is relevant when the completion
type is either Break or Continue, denoting the program point
where the execution flow should be diverted to.

The user statements are reported in Figure 5. Their
semantics is mostly standard, and we address the reader
once again to [15], [10] for additional details. In Section 2
we discussed some subtle aspects of the semantics of the
try—catch statement.

Programs. Programs are sequences of statements and
function declarations (Figure 5. As usual, the execution of
statements is taken care of by a contextual rule. Evaluating a
statement to a break or continue outside of a control construct
raises an exception:

ct < {Break,Continue}
0 = new_SyntaxError() H1,l1 = alloc(H,0)

P
H,l,(ct,vae,xe) [P] —— H1,I,(Throw,1,&empty)
The run-time semantics of a function declaration instead is
equivalent to a no-op:
- P
H,lfunction x ([xX"D{[P]} [P1] —
H,l,(Normal,&empty,&empty) [P1]



Function (and variable) declarations should in fact be parsed
once and for all, before starting to execute the program text.
In the case of the main body of a JavaScript program, the
parsing is triggered by rule

VD(NativeEnv,#Global,{ DontDelete } ,P) = H1
FD(H1,#Global,{ DontDelete },P) = H2

P L, Ho #Global,P

which adds to the initial heap NativeEnv first the variable and
then the function declarations (functions VD,FD).

Native Objects. NativeEnv is the initial heap of core
JavaScript. It contains native objects for representing prede-
fined functions, constructors and prototypes, and the global
object @Gilobal that constitutes the initial scope, and is always
the root of the scope chain. In Web browsers, the global
object is called window. For example, the global object
defines properties to store special values such as &NaN and
&undefined, functions such as eval and constructors to build
generic objects, functions, numbers, booleans and arrays.
Since it is the root of the scope chain, its @Scope property
points to null. Its @this property points to itself. None of
the non-internal properties are read-only or enumerable, and
most of them can be deleted.

Eval. The eval function takes a string and tries to parse
it as a legal program text. If it fails, it throws a SyntaxError
exception (rule omitted). If it succeeds, it parses the code
for variable and function declarations (respectively VD,FD)
and spawns the internal statement @cEval (rule omitted).

Object. The @Object constructor is used for creating new
user objects and internally by constructs such as object
literals. Its prototype @ObjectProt becomes the prototype of
any object constructed in this way, so its properties are
inherited by most JavaScript objects. @ObjectProt is the root
of the scope prototype chain and, its internal prototype is null.
Apart from “constructor’, which stores a pointer to @Object,
the other public properties are native meta-functions such as
toString or valueOf (which, like user functions, always receive
a value for @this as the first parameter).

3.2. Preliminaries

We now define some notation and state some properties of
the semantics that support the formal analysis of JavaScript
subsets of Section 4.

A state S is a triple (H,1,t). We use the notation H(S),
S(S) and 7(S) to denote each component of the state.
We denote by H\ the “empty” heap, that contains only the
native objects, and no user code. We use [ to denote the
heap address of the global object #Global. If a heap, a scope
pointer and a term are well-formed then the corresponding
state is also well-formed (see Appendix A for a formal
definition). In [15], we show that the evaluation of well-
formed terms, if it terminates, yields either a value or an

exception (for expressions), or a completion (for statements
and programs). A state S is initial if it is well-formed,
H(S) = Hy, S(S) = lg and 7(S) is a user term. A
reduction trace T is the (possibly infinite) maximal sequence
of states S1,...,Sp,... such that S — ...
Given a state S, we denote by 7(S) the (unique) trace
originating from S and, if 7(S) is finite, we denote by
Final(S) the final state of 7(S).

To ease our analysis, we add a separate sort mp to
distinguish property names from strings and identifiers in
the semantics. We make all the implicit conversions between
these sorts explicit, by adding the identity functions Id2Prop:
x — mp, Prop2ld: mp — x; Str2Prop: m — mp, Prop2Str: mp
— m. The semantics already contained explicit conversion
of strings to programs: ParseProg, ParseFunction, ParseParams.
In order to keep track of all the names appearing in a state .5,
we define functions that collect respectively the identifiers
and the property names of the term and the heap of S.

— S, = ...

NE(S) ={mp | mp € T(9)}
H(S)={x|xzec P, PcH(S)}
NE(S) = {mp | 3L : mp € H(S)(1)}

Ni(S) = NT (S) UNT(S)
Np(8) = Np(S)UNE (S)
N(S) = N;(S) U Prop2ld(Np(9))

From these definitions, follows that for any initial state Sy,
N(So) = NT(So) U NH(S). NE(S) is the set of property
names present in the initial heap Hy. This is a fixed set, and
will henceforth be denoted by N3.

We define meta-call a pair (f,(args)) where f is a
semantic function or predicate appearing in the premise
of a reduction rule, and (args) is the list of its actual
arguments as instantiated by a reduction step using that rule.
For every state S, we denote by C;(5) the set of the meta-
calls triggered directly by a one step transition from state
S. Since each meta-call may in turn trigger other meta-
calls during its evaluation, we denote by C(S) the set of
all the meta-calls involved in a reduction step. We denote
by Fg the set of functions that can read or write to the
heap: Fy = {Dot(H, I, mp), Get(H, I, mp), Update(H, I,mp),
Scope(H, I, mp), Prototype(H, I, mp)}, (using a prefix notation
for the functions defined in Section 3.1).

Definition 1: (Property access) For any state S, we define
the set of all property names accessed during a single tran-
sition by A(S) £ {mp | 3f € Fy IH,1: (f,(H,l,mp)) €
C(S)}. In the case of a trace 7, A(7) £ g, ., A(S:).

In section 4, we will consider syntactic subsets of
JavaScript. Unless we specify otherwise, a syntactic subset
J will always denote a subset of JavaScript user terms. For
a given subset J, we denote by Initial(J), the set of all



well-formed initial states for J.

4. Secure JavaScript Subsets

In this Section, we propose secure subsets of JavaScript
and prove their formal properties. As described in Section 2,
the ultimate goal is to make sure that a piece of code
written in the safe subset does not access certain global vari-
ables. Those variables may contain libraries with privileged
functions, or may simply belong to the name space of a
different piece of code coming from another application.
One approach to achieve this is to enforce exclusively
syntactic restrictions, so that the user code that belongs to a
safe subset is directly executed in the browser. An alternative
approach is to complement syntactic restrictions with the
insertion of run-time checks to monitor user code at run
time (such as ref and idx in FBIJS). The first approach is
more efficient, more robust with respect to JavaScript code
introspection and guarantees that the semantics of the user
code is unaltered. The second approach is more flexible,
resulting in larger subsets of JavaScript, but introduces run-
time overhead and may give raise to unexpected run-time
errors. In this paper, we focus on the first, purely syntactic
approach. A formal analysis of run-time checking requires
different analysis techniques, and we leave it to future work.

Three JavaScript Subsets In order to isolate global
variables, we need to solve a crucial problem: determine
the set of properties that a piece of code can access.

Our first subset, Jt, is designed to solve this problem
without restricting the use of this. In Section 2, we have
seen how a JavaScript program can get hold of the scope
by way of this. Manipulating the scope leads to a confusion
of the boundary between variables (which are properties of
scope objects) and properties of regular object. For example,
the expression

var x; this.x=42

effectively assigns 42 to variable x. Hence, J¢ code cannot
use as property name any of the global variable names to
be protected. In theory, this does not constitute a significant
limitation of expressiveness. In fact, Jt is a good subset for
isolating the code of a single untrusted application from a
library of functions whose names may be all prefixed by a
designated string such as $. On the other hand, J¢ is not
suited to run several applications with separate namespaces,
since the sets of property names used by each one needs to
be disjoint.

To better support multiple applications, the next prob-
lem we have to solve is to prevent code from explicitly
manipulating the scope, so that variables are effectively
separated from regular object properties. To this end, we
propose a refinement of Jt, which we call Js, that forbids
the use of this. Hence, only the global variable names of
each application, and of the page libraries need to be distinct

from one another. Moreover, Js enjoys the property that
the semantics of its terms does not change after a safe
renaming of variables. Hence, isolation can be enforced by
an automatic rewriting pass (with suitable side-conditions).
For several practical purposes, forbidding the usage of
this is too restrictive. In fact, this is important for object-
oriented behaviour in JavaScript. To reinstate this, we need
to solve the problem of isolating the window object, hence
the global scope. Our last subset, called Jg, is defined for
a hypothetical JavaScript semantics that forbids this to be
bound to window. Since the local scope of try-catch blocks
and recursive functions can still be directly manipulated, in
general variables can still be confused with property names,
and therefore variable renaming does not preserve the mean-
ing of programs. Yet, this difference can be observed only
in unusual corner cases. On the other hand, since variables
defined in the global scope are effectively separated from
property names, this subset can still be used to isolate the
namespaces of different applications just like in Js.

4.1. Isolating property names: Jt

The first technical problem we consider is to determine
the set of property names that may be accessed by a
piece of code. This problem is intractable for JavaScript
in general, because property names can be computed using
string operations, as in

var o = {prop:42}; var m = “pr’; var n = “op* o[m + n]

which returns 42. However, we can determine a finite set
containing all accessed properties if we eliminate operations
that can convert strings to property names, such as eval and
ele]. In doing so, we must also consider implicit access to
native properties that may not be mentioned explicitly in the
code. For example, the code fragment

varo=1{};’an."+ o

causes an implicit type conversion of object o to a string, by
an implicit call to the toString property of object o, evaluating
to the string “an_[object.Object]”. (If o does not have the toString
property, then it is inherited from its prototype). Fortunately,
the property names that can be accessed implicitly are only
the natural numbers used to index arrays and a finite set of
native property names [15].

Definition 2: The set P, of all the property names that
can be accesses implicitly is {0,1,2,...} U

toString, toNumber, valueOf, length, prototype,
constructor, message, arguments, Object, Array, RegExp

This list is exhaustive for an ECMA-262-compliant imple-
mentation. Other properties may be added to P, to account
for browser-specific JavaScript extensions.

We now formalize the property that if the execution of a
program P accesses the property p of some object, then



either p € P4 or p appears textually in P, expressed
here using I1d2Prop(N7 (S)) to convert to property names
the identifiers appearing in the term of state S.

Definition 3: (Pt) Given a state S, Pt(.S) holds iff
A(7(S)) C 1d2Prop(N7(S)) U Prar.

To violate this condition, a program must access a prop-
erty name generated by the conversion of a string to a
piece of code. Thus, to identify all terms which lead to the
execution of reduction rules for converting string to code or
property names, and we remove them from Jt.

Definition 4: Jt is defined as JavaScript minus: all
terms containing the identifiers eval, Function, hasOwnProperty,
propertylsEnumerable and constructor; the expressions e[e],
e in e; the statement for (e in e) s.

Our definition of property access includes checking for the
existence of a property. Therefore, in order to guarantee this
property we exclude from Jt also the e in e and for (e in e) s
statements, even though they cannot be used to read the
contents of the corresponding property.

From the usability point of view, the only serious restric-
tions of Jt¢ are the lack of eval, and e[e]. In most cases
eval is used to simplify the parsing of JSON messages or
to obfuscate code. Its use is not strictly necessary for the
majority of web applications, except the malicious ones,
which rely heavily on obfuscation. In fact, eval is commonly
considered evil, and is excluded from most practical sub-
sets. The member access notation constitutes the natural
way to access array elements. Arrays, and iteration over
their elements can still be used in J¢, by replacing the
assignment expression a[n]=e, where a is an array and n a
number, by a.splice(n,1,e), and the reference expression a[n]
by a.slice(n,n+1).pop(). For example, var x = a[n] becomes
var x = a.slice(n,n+1).pop(). While this translation introduces
a performance overhead and may annoy a programmer, it
shows that the expressiveness of our subset, and therefore
its usefulness, is not seriously hampered. As mentioned in
Section 2, an alternative to removing e[e] (that we plan to
investigate in future work) is to insert a run-time check on
the argument e[idx(e)].

Theorem 1: For all well-formed states So in Initial(Jt),
Pt(Sp) holds.

Theorem 1 implies that Jt fully supports blacklisting of
properties and variables. A Jt¢ piece of code cannot read or
write any variable or property, except for those in P, 4, that
does not appear explicitly in its code or in a function stored
in the heap. A simple static analysis can be used to screen
the actual code for blacklisted properties. Since the initial
JavaScript heap is defined by the specification, blacklisting
can be effectively enforced as long as the code of any user-
defined function pre-loaded in the heap is known a priori

(such is the case for Facebook).

4.2. Protecting the Scope: Js

We now consider a subset that keeps variables distinct
from property names by preventing manipulation of explicit
scope objects. In order to do so, we must prevent any
user expression to evaluate to a scope object. Scope objects
of course can still be accessed implicitly by the internal
semantics steps corresponding to the resolution of identifiers
and the creation of functions, otherwise the language would
be useless.

Let V be a function that returns the value of a final state,
and null otherwise. That is, V(S) = vae if 7(S) = vae
or (ct, vae, xe), and V(S) = null otherwise. We define a
property Ps which implies that no user-defined expression
can evaluate to a scope objects.

Definition 5: (Ps) Given a state S, let S’ = Final(S).
Ps(S) holds iff @Scope is not in H(S")(V(S")).

Note that this definition is not restrictive, in the sense that
any state such that V(S) #null in necessarily a final state.

Combining Ps with the property Pt, described in Sec-
tion 4.1, we obtain the subset Js which isolates scope
objects.

Definition 6: The subset Js is defined as Jt minus all
terms containing this, with(e){s} and the identifiers valueOf,
sort, concat and reverse.

First, the subset forbids any use of this, which can be used
to access the scope as detailed in Section 2. Just like in
FBJS, we need to remove the with construct because it gives
another (direct) way to manipulate the scope. For example,
the code

var o = {x:null}; with(o){x=42}

assigns 42 to the property o.x. Since we eliminate this
and with, scope objects are only accessible via the internal
properties @Scope, @FScope and @this, which in turn can
only be accessed as a side effect of the execution of other
instructions. For example, the @Scope property is accessed
during identifier resolution, in order to search along the
scope chain. However, the contents of the @Scope property
are never returned as the result of a reduction step. The
same is true for @FScope, which denotes the scope pointer
of a function closure. The @this property is returned only
by the reduction rule for this, which cannot be triggered
in Js, and by the native functions concat, sort or reverse of
Array.prototype, and valueOf of Object.prototype. For example,
the expression valueOf() evaluates to window (which is also
the initial scope). By defining Js as a subset of Jt, we can
blacklist these dangerous properties.

Theorem 2: For all well-formed states Sy in Initial(Js),
Ps(Sp) holds.



Theorem 2 gives a strong safety guarantee on Js. As we
shall see in Section 4.4, Js is the only JavaScript subset
(among the ones considered in this paper) where renaming
can be completely transparent.

4.3. Isolating the Global Object: Jg

In Js, we exclude this because it can be used to obtain
a scope object. However, there are common object-oriented
programming patterns when the @this property of the current
scope object does not contain a scope object and therefore
can be used safely. For example, in the code below, this is
bound to object o during the execution of o.getval().

var o = {val:10, getval:function(){return this.val}};
o.getval()

Disallowing this altogether would break many existing
JavaScript libraries, and entail extensive rewriting. We con-
sider instead a weaker property, saying that no user expres-
sion can evaluate to the global scope. Of course the global
object is still accessed implicitly during a computation, for
example when resolving a global identifier.

Definition 7: (Pg) Given a state S, Pyiopei(S) holds iff

V(Final(S)) # lg.
As a counterpart to the run-time checking technique used
by FBJS to monitor the actual value of this, we define an
alternative semantics for JavaScript where the window object
is never returned by a this expression.

Scope(H,|,@this)=I1 H,l1.@Get(@this)=va

IF va = |_global THEN In = null ELSE In = va

H,l,this — H,L,In

Assuming that our alternative semantics can be correctly
implemented by run-time checks, we define a subset that
allows this yet keeps global variables separate from generic
property names, and therefore support flexible isolation
policies, just like Js.

Definition 8: The subset Jg is defined as J¢ minus all
terms containing identifiers valueOf, sort, concat and reverse.

Jg includes both this and with. It includes with because the
expression with(e){s}, that alters the scope of s by adding e
on top of the scope chain, does not provide a new way to
obtain the window object.

On the other hand, Jg still excludes the native functions
valueOf, sort, concat and reverse because they return window, if
called in the appropriate context. An alternative would be to
allow such functions, and define an alternative semantics for
them that returns null instead of window. We do not follow
this approach because such a semantics would be hard, if
not impossible, to enforce in practice.

Theorem 3: For all well-formed states Sy in Initial(Jg),
Pg(Sp) holds.

4.4. Closure under renaming

The final technical problem we consider is the ability to
rename variables in JavaScript code. Variable renaming is
difficult for full JavaScript, because property names (and
therefore variable names, which are properties of a scope
object) may be computed by string operations, and scope
objects can be explicitly manipulated. However, we are
going to show that the subset .Js, which prevents both cases,
fully supports variable renaming.

The goal of variable renaming is to isolate the names-
paces of different applications without requesting all of the
property names to be distinct. Therefore, we want o.p to
be renamed to a12345_o.p, and not to a12345_o0.a12345_p.
Due to implicity property access, and the fact that variables
are effectively undistinguishable from properties of scope
objects, the definition of variable renaming in JavaScript
is very subtle. In particular, we should not rename all
variables corresponding to native properties of any scope
object, including the ones inherited via the prototype chain.
Those properties in fact have a predefined semantics that
cannot be preserved by renaming. The most obvious example
is the expression toString(), that evaluates to “Jobject.Window]",
whereas raises a reference error exception when it is evalu-
ated as a12345_toString() in the renamed version.

Since Js does not contain with, the only things that can be
scope objects are the global object, internal activation objects
or freshly allocated objects (in the case of try-catch and
named functions). Therefore the only (non-internal) inher-
ited native properties are the ones present in Object.prototype,
and the pre-defined properties of the global object. The
complete set of properties that should not be renamed,
denoted by P,oRen i:

NaN, Infinity,undefined,eval,parselnt,parseFloat,IsNaN,
IsFinite,Object,Function,Array,String,Number,Boolean,
Date,RegExp,Error,RangeError,ReferenceError, TypeError,
SyntaxError,EvalError,constructor,toString,toLocaleString,
valueOf,hasOwnProperty,propertylsEnumerable,
isPrototypeOf

A browser implementation will contain additional properties
such as document,setTimeout,etc..

Recall from Section 3.2 that given a state S, N(S)
denotes the set of all possible names appearing in S.

Definition 9: Given a state S, a partial injective function
« from identifiers to identifiers is a safe renaming for S iff
dom(a) N Progren = 0, and Va: € dom(a) : a(x) € N(S).

The last condition means that « introduces only names fresh
with respect to state S. A safe renaming is applied to a state
S by: renaming the formal parameters and the body of all the
user functions stored in H(S); renaming all the properties
of scope objects in H(S); renaming all identifiers in 7 (S);
renaming all the property names occurring in 7 (S) inside



a particular set of contexts for internal terms. The formal
definition is in Appendix B. (The definition extends to traces
in the obvious way). Note that if H(Sp) is the initial heap
with no user code then a(H(So)) = H(Sp), and the names
of the initial state N'(Sp) = N7 (Sp) U NP, which can be
determined by a simple syntactic inspection of the code.

Assuming this definition of variable renaming, we have
that the intended meaning of a Js program does not change
under renaming.

Theorem 4: For all well-formed states Sy in Initial(Js),
if a is a safe renaming function with respect to Sy, then
a(7(Sp)) equals 7((Sp)).

On the other hand, Jt and Jg do not support the semantics
preserving renaming of variables. The counterexample

try {throw (function(){return this});}
catch(y){y().x=42; x;}

is valid Jt and Jg code that, according to the JavaScript
semantics, evaluates to 42. If we rename x to $x, in the catch
clause is rewritten to catch(y){y().x=42; $x} which raises an
exception because $x is undefined.

5. Applications: FBJS and ADsafe

In this Section, we explain how the results about subsets
of ECMA-262 Standard JavaScript proved in Section 4 can
be used to address the ADsafe and FBJS isolation problems
explained in Section 2. We also compare our semantics-
supported suggestions to the repairs that FBJS and ADsafe
adopted in response to our disclosures to them.

As noted earlier, specific browsers may implement ver-
sions of JavaScript that extend the ECMA-262 Standard or
differ from it in certain ways. The most striking differences
lie in support for user-defined “getters” and “setters”, which
allow user code to redefine the way a property p of object
o is read or written when the “dot” notation o.p is used. In
addition, browsers provide DOM objects and may support
syntactic extensions. (Examples appear in [16].) In principle,
for browsers that support a variant of the ECMA-262 Stan-
dard, our results on subsets of JavaScript may be applied
by further restricting the subset to eliminate places where
the browser implementation is at variance with the standard.
In practice, FBJS and ADsafe forbid all property names
beginning with “__”, which prohibits extensions such as
getters and setters, and provide wrapper functions to limit the
usage of DOM objects. However, we leave detailed analysis
of (i) browser variants of the ECMA-262 Standard and (ii)
semantic proofs of the effectiveness of wrapper functions
and other dynamic checks to future work.

2

5.1. Fixing FBJS

Within hours of our disclosure to them, the Facebook team
addressed the problems discussed in Section 2. The team

fixed the library leaks associated with setSendSuccessHandler
and htmlEncode by adding a check that this is different
from window. To fix the scope problem, they separated
the namespace of the run-time checks ref and idx from
the namespace available to FBJS applications, by adding
the two functions as properties of a private object $FBJS,
and preventing user code from using $FBJS as a property
name. This thwarts the attacks reported in Figure 2 be-
cause an expression like get_scope().$FBJS is rewritten to
a12345_get_scope().__unknown__.

The FBIJS isolation problem is to prevent the code of
untrusted applications to access certain blacklisted global
variables, and to interfere directly with each another. If
two separate sections of JavaScript code use an undeclared
variable x, this will be treated as the same global variable
in both of them. To keep code in one Facebook application
from interfering with code in another through such a vari-
able, the Facebook site renames variables in each application
by adding an application-specific prefix, as discussed in
Section 2.

A purely syntactic solution to the FBJS isolation problem,
justified by our analysis, is to restrict Facebook applications
to our subset Js. This could be an attractive solution for
isolating user-supplied applications in contexts where code
is written from scratch, so that it can avoid to use the
this. By Theorem 4, we can separate the namespaces of
different applications, and of the FBIJS libraries, without
altering their semantics. By Theorem 1, a simple syntactic
check on application code guarantees that it cannot escape
its namespace or access blacklisted properties.

An alternative solution, closer in spirit to FBIS, is to use
the subset .Jg, and blacklist the $FBJS global variable so that
it cannot appear in user code (Theorem 1). Informally, we
can argue that the alternative semantics of this assumed in
the definition of Jg is implemented by the $FBJS.ref(this)
check. (In future work, when we study run-time checks
for JavaScript, we plan to justify this statement formally.)
By Theorem 3, the global object cannot be accessed, yet
application code can freely use this. By Theorem 1, a
simple syntactic check on application code guarantees that it
cannot access blacklisted properties. However, as discussed
in Section 4.4, there are some subtleties involving renaming,
because this lets user code manipulate scope objects directly.

Besides proposing constructive solutions to the FBJS
isolation problem, our semantic analysis let us discover
real problems in the deployed Facebook platform. The
vulnerabilities of Section 2 are a direct consequence of the
fact that F'BJS yg did not implement correctly the alternative
semantics of this. In particular, besides omitting to sanitize
certain library functions, F'BJS;s did not blacklist ref.
Moreover, we discovered two ways in which the renaming
discipline adopted by the current version of FBJS, does not
preserve the semantics of user programs. FBJS programs
can manipulate their scope (at least in some browsers) and



the FBJS renaming is not a safe renaming in the sense of
Section 4.4 because it renames properties in P, oRren, such
as Object, which are hard-wired in the JavaScript semantics.
Therefore, to achieve semantics-preserving renaming, FBJS
should be further restricted to prohibit these names (or
provide a faithful emulation for each of them), and $FBJS.ref
should not return scope objects.

5.2. Enforcing ADsafe

Shortly after we notified Yahoo! of the problems described
in Section 2, the ADsafe [5] documentation was amended
with an additional constraint that “None of the prototypes
of the built-in types may be augmented with methods that
can breach ADsafe’s containment”. This is only a partial
solution in that it requires the editor of the hosting page to
make sure that a fairly complicated requirement is satisfied,
without providing specific guidance on how to do so.

We propose a different approach. The page that agrees to
safely host an ADsafe advertisement must provide two list
of “dangerous” property names P,,w and P,,rw, such
that all illicit accesses to blacklisted properties (or this) arise
from either writing to a property in the set P,y or reading
or writing to a property in P,,gw. For example, the set
Prow may include the native properties toString, toSource
and those in P,4. The set P,,rw includes by default
security-critical properties such as eval, window, cookie, and
the other properties and methods that can be invoked to reach
these. We have not developed an analysis method to make
the generation of these black list automatic, but it may be
possible to do so using call-graph analysis.

The admissible ADsafe code for a hosting page is taken
as a subset of Js, after filtering out all adds mentioning the
blacklisted properties in P, or Pporw . The soundness of
this approach follows from Theorem 1 and Theorem 3. The
severity of syntactically restricting advertisements depends
on the nature of the sets P,,w and P,,rw. Obviously, if
the hosting page uses a JavaScript library that defines many
dangerous functions, the untrusted guest code would have to
be restricted to prevent access to these functions. It appears
natural to treat the ADsafe problem more conservatively
than FBJS, since FBIJS code is executed in a browser first
augmented with the defenses provided by Facebook, whereas
ADsafe code is executed in a hosting page (provided by
an arbitrary publisher) that may contain other scripts that
inadvertently circumvent the sandboxing provided by the
ADsafe libraries.

6. Conclusions

We have studied methods for filtering and rewriting un-
trusted code, using Yahoo! ADsafe and Facebook FBIS as
illustrative and motivating examples. Using sublanguages
Jt and Js, we show how to filter untrusted JavaScript

to prevent access to any property names not manifest in
the code, or to prevent access to scope objects, including
the global scope object. Further, provable properties of
sublanguage Jg show that access to the global object can
be achieved by the kind of semantic restrictions imposed
by wrapper functions such as $FBJS.ref. We also prove that
subset Jt supports variable renaming, which is not semantic-
preserving for JavaScript code outside J¢. A corollary is that
renaming of global properties of Jt code isolates Facebook
applications from each other, effectively providing separate
namespaces. We also prove that renaming can be used to
prevent interaction between untrusted code and blacklisted
objects and properties, such as might be defined by a page
hosting untrusted content.

Applications for Secure JavaScript Subsets. The subsets
we have defined are very close to our two main reference
real-world subsets FBJS and ADsafe, as described in Sec-
tion 5. Another real-world field of application for our subsets
is that of safe JavaScript widgets. A recent study by Livshits
and Guarnieri [13] analyzes 8379 real-world widgets used
on the Microsoft Vista Sidebar, Microsoft Windows Live
and iGoogle and shows that the percentage of widgets that
use the features forbidden in our subsets are very small. For
example, eval is used only in 0.4 percent of Live gadgets,
and 4.7 percent of Google gadgets. Member access is used
only in 6.5 percent of Live gadgets, and 16.4 percent of
Google gadgets. These figures do not take into account the
cases where a widget could be re-written to avoid using
the offending construct. The main concern of a widget
host is once again to isolate widgets from the surrounding
environment, and can be addressed by the properties of our
subsets.

Future Work. An alternative to code rewriting that we
have not examined in detail is to simply delete or redefine
potentially harmful properties, such as property valueOf of
Object.prototype and properties sort, reverse and concat of
Array.prototype. This could allow additional code to be exe-
cuted harmlessly. However, the effectiveness of this method
requires further investigation because different browsers treat
deletion of native objects differently. For example, deleting
properties works in Safari, because deletion is permanent,
but does not work in Firefox, for example, because executing
delete Array; reinstates Array, Array.prototype and its original
property sort, and similarly for the other cases.

In this paper we focussed on identifying appropriate
syntactic restrictions to define secure subsets of JavaScript.
In ongoing work [18] we are developing techniques to ana-
lyze new and existing run-time checks that can be inserted
automatically in the code in order to design larger subsets. In
particular, we would like to analyze the security properties of
wrapper functions, and restricted forms of eval and member
access ele].

Proving formal properties for a practical programming



language as extensive as JavaScript, without the help of
an automatic tool, has been possible, but taxing. In future
work, we plan to improve the usability of our framework by
extending the coverage of our semantics to browser-specific
cases and developing a tool to partially-automate the proofs.
Indeed, many other scenarios involving the cooperation
of trusted and untrusted JavaScript code lend themselves
naturally to be studied following our approach.
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Appendix
1. Well-formedness

We give here precise definitions for the informal notions
of well-formedness mentioned in Section 3 and Section 4.

Definition 10: A state S = (H,l,t) is well-formed, de-
noted by Wf(S), if and only if its heap, scope and term are
well-formed, denoted respectively by Wf,, (H), Wf (1) and
Wiz (t).

o A term t is well-formed iff it can be derived using
the grammar rules consisting of both the language
constructs and the internal constructs, and all heap
addresses contained in ¢ are allocated ie | € t = [ €
dom(H).

o A scope address [ € dom(H) is well-formed iff the
scope chain starting from [ does not contain cycles, and
(@Scope € prop(H(1))) A (H(l).@Scope # null =
Wf s(H(l).@Scope).

e A heap H is well-formed iff the following conditions
are true

— Every object in the heap must have @Class and
@Prototype in its set of properties.

— Every function object in the heap must have @Call,
@Scope, length, @Body and @Prototype in its set of
properties.

— Every arguments object in the heap must have
callee and length in its set of properties.

— Every array object in the heap must have the length
property. The length property must always contain
a number.

— Every native function object must have the
@Actuals property.

— Every String, Number and Boolean object must
have the @Value property.

— All native error objects must have the message
property.

— #Global (that is, l;) must be an allocated address
and must at least have the this property.

— The prototype chain for any object must never
contain a cycle.

— The scope property for any function object must
contain a well-formed scope address and also the
body property must contain a well-formed term.

Given a subset of JavaScript user terms .J, we denote by J*
the set

J*={t'|teJ A 3IH,l: Hy,lg,t — H,I,t'}

of all terms that are reachable by reducing terms in J. We
denote by Wf ;(S) the well-formedness predicate for a state
in the subset J, defined exactly like Wf(S) except that
Wf (T (S)) instead of checking if a term is derivable by
the grammar, checks if the term is in J*.

2. Renaming of States

We give here the complete definition of renaming for
states.

Definition 11: Let S = (H,l,t) be a state and « be a safe
renaming for S. We define a(S) as the state (a(H), [, a(t))
where:

o «(H) is defined as H where

— all functions of the form fun([x"]){P} stored
in some object in H are renamed to
fun(f[a(:)D{a(P)} (o is applied to z only if
x € dom(a));

— for all addresses [ such that @Scope € H (1), every
property name mp € H (I) such that Prop2ld(mp) €
dom(c) is renamed to Id2Prop(Prop2ld(cv(mp)))
(without changing the property attributes);

e «(t) is defined as ¢t where:

— every identifier x in ¢ such that z € dom(a) is
renamed to a(x);

— every property name mp in ¢t such that
Prop2ld(mp) €  dom(a) 1is renamed to
Id2Prop(Prop2ld(a(mp))) (without changing the
property attributes) iff it appears in one of the
following contexts:

1) 1x— where @Scope € H(I) is true OR [ =null

2) L.@Put(—,va) where @Scope € H(l) is true OR
I =null

3) function —(x){P}

4) try (Throw,va,xe) catch (—) {s1} [finally {s2}].
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