
Elevating Defenses: Bridging Adversarial Training and Watermarking for
Model Resilience

Janvi Thakkar1, Giulio Zizzo2, Sergio Maffeis 1

1Department of Computing, Imperial College London
2 IBM Research Europe

janvi.thakkar22@imperial.ac.uk, giulio.zizzo2@ibm.com, sergio.maffeis@imperial.ac.uk

Abstract

Machine learning models are being used in an increasing
number of critical applications; thus, securing their integrity
and ownership is critical. Recent studies observed that ad-
versarial training and watermarking have a conflicting inter-
action. This work introduces a novel framework to integrate
adversarial training with watermarking techniques to fortify
against evasion attacks and provide confident model verifica-
tion in case of intellectual property theft. We use adversarial
training together with adversarial watermarks to train a ro-
bust watermarked model. The key intuition is to use a higher
perturbation budget to generate adversarial watermarks com-
pared to the budget used for adversarial training, thus avoid-
ing conflict. We use the MNIST and Fashion-MNIST datasets
to evaluate our proposed technique on various model stealing
attacks. The results obtained consistently outperform the ex-
isting baseline in terms of robustness performance and further
prove the resilience of this defense against pruning and fine-
tuning removal attacks.

Introduction
Adversarial training is one of the most widely used tech-
niques to defend against model evasion attacks. The pro-
cess requires to train a model on adversarial examples; how-
ever, generating these examples is expensive. For instance,
the projected gradient descent approach (Madry et al. 2017)
uses an iterative optimization technique to generate adver-
sarial examples, requiring high computational resources to
train a robust model. When deployed, the computational
value invested into the models makes them higher-valued
targets, increasing the risk of model theft. Several digital wa-
termarking (model watermarking) techniques were proposed
in the literature to verify the ownership of the stolen ma-
chine learning (ML) model. However, the techniques con-
centrated on devising a watermarking strategy in the gen-
eral setting for copyright protection, without considering
the impact it might have when combined with other pro-
tection mechanisms. A recent study (Szyller and Asokan
2022), which explored the impact of how different protec-
tion mechanisms interact, found that adversarial training and
model watermarking, when combined, have conflicting in-
teractions. While the watermarking accuracy remains high

2nd Workshop on Deployable AI in Conjunction with AAAI 2024
(DAI-AAAI’24)

for the above combination, they observed that it decreases
the robustness of the model toward evasion attacks. They
attributed this to the use of out-of-distribution watermarks,
which use “distinct labels compared to the training dataset,
making it easier for the evasion attack to find a perturbation
that leads to a misclassification” (Szyller and Asokan 2022).

In this work, we propose a novel way of combining exist-
ing defenses to get better robustness against evasion attacks,
while maintaining the same watermarking performance.

In particular, we do not want the watermarks to interfere
with the goals of adversarial training. Our key idea is to
generate the watermarks themselves with adversarial train-
ing, so that they have a similar distribution to the training
set, which already includes adversarial samples. Crucially
though, we use a specific (higher) perturbation budget in the
watermark generation, so that watermarks can still be distin-
guished for the purpose of ownership verification.

We tested our approach on the MNIST and Fashion-
MNIST datasets. We empirically proved the effectiveness of
our design by providing an in-depth analysis of performance
for various model stealing and removal attacks.

The main contributions of our work are:

1. We propose a novel way of embedding adversarial wa-
termarks in an adversarially trained model. We empiri-
cally show that the proposed design is as robust as the
non-watermarked robust model, and as efficient as the
non-robust watermarked model compared to the baseline
(Szyller and Asokan 2022).

2. We provide an in-depth analysis of the effectiveness of
our approach for various model stealing scenarios, i.e.,
black-box, grey-box, and white-box model stealing at-
tacks. Furthermore, we demonstrate the robustness of our
approach under two types of removal attacks: fine-tuning
and pruning attacks.

Related Work
The notion of adversarial examples was introduced in
(Szegedy et al. 2013), where the researchers observed that
applying a small imperceptible perturbation to the input im-
age can alter the model predictions. In particular, the study
(Goodfellow, Shlens, and Szegedy 2014) proposed the Fast
Gradient Sign Method (FGSM), which uses a single-step
gradient method to generate adversarial samples. The sam-

ar
X

iv
:2

31
2.

14
26

0v
2

 [
cs

.L
G

]
 7

 J
an

 2
02

4

ples were generated and added to the training dataset before
the normal training process, later known as adversarial train-
ing. Multiple works (Tramèr et al. 2017; Kurakin, Goodfel-
low, and Bengio 2018) enhanced and built upon the FGSM
approach. These improvements led to the introduction of
projected gradient descent (PGD), a widely used technique
for training models using adversarial samples (Madry et al.
2017). Owing to the widespread application of PGD, we use
it as one of the primary algorithms in our research to defend
against the evasion attack.

The work (Uchida et al. 2017) was the first to watermark
the deep neural networks (DNNs), where they proposed in-
serting a unique key vector during the training process. In the
case of intellectual property theft, one can verify the owner-
ship of the model by checking for the inserted key vector
in the matrix of model parameters. However, this approach
required white-box access to verify the model, which is not
always plausible in the real world. Another work (Le Merrer,
Perez, and Trédan 2020) proposes to use adversarial samples
as watermarks in the black-box setting. They claim that the
models with these watermarks can confidently verify their
ownership owing to the high transferability of adversarial
samples (Szegedy et al. 2013). Many other recent works
(Szyller et al. 2021) (Szyller and Asokan 2022) use the back-
door watermarking technique, whose aim is to insert out-
of-distribution (OOD) watermarks during the training pro-
cess. This approach is adopted to ensure that the watermarks
used are distinct from the main learning objective of our
ML model. However, the study (Szyller and Asokan 2022)
observed that combining OOD watermarks with adversarial
training decreases the robustness of the model against eva-
sion attacks. They reason that because the labels in the OOD
dataset are distinct from the actual training set, it is simpler
for an evasion attack to identify a perturbation that causes
inaccurate predictions.

Thus, in this work, we propose to use watermarks with
a similar distribution to our adversarial training dataset to
enhance the robustness. The idea is to use watermarks gen-
erated using adversarial training, similar to the work by
(Le Merrer, Perez, and Trédan 2020). However, the study
(Namba and Sakuma 2019) debates that one cannot effi-
ciently use the adversarial watermarks together with the
model trained using adversarial training; “as this water-
marking method may falsely determine the models without
watermarks as models with watermark (Namba and Sakuma
2019).” Nonetheless, as detailed in the sections below, we
argue that one can still use the watermarks generated using
adversarial training with a specific parameter setting without
having any conflicting interaction.

Approach
Baseline
In this work, we use the study (Szyller and Asokan 2022)
as our baseline to compare with our proposed combination
of model watermarking and adversarial training. The key
idea of the baseline approach was to use PGD-based ad-
versarial training to defend against the model evasion at-
tacks, and combine it with the backdoor watermarking tech-

nique to watermark the trained model for ownership verifi-
cation. They proposed to use out-of-distribution (OOD) wa-
termarks. The intuition was to select the watermarking set
that is unique to the training dataset and does not conflict
with the primary objective of model training.

Implementing the above approach is simple, as described
in the pseudo-code in the Appendix: Algorithm 1. The over-
all procedure can be summarised below:
1. Adapt the standard adversarial training procedure, where

the data points are perturbed (with PGD) based on the
specified perturbation budget (β) at every iteration.

2. The OOD dataset (watermarking set) is provided by the
model owner in advance.

3. During the training phase, the watermarking set can be
added to the training set, or the model can be separately
trained on it at the end of every epoch.

Limitations: Both adversarial training and the watermark-
ing, when applied individually, work effectively for the pur-
pose they were designed for. However, when applied si-
multaneously, they have a conflicting interaction. The study
(Szyller and Asokan 2022) observed that baseline interac-
tion has good performance with respect to the utility of the
model; however, it affects the adversarial performance and
decreases its robustness against evasion attacks. They at-
tribute performance degradation as a result of using OOD
watermarks, which use labels distinct from those in the ac-
tual training dataset, thus altering the model decision bound-
aries. As a result, this makes it easier for an evasion attack
to identify a perturbation that causes incorrect results.

Proposed Technique
We observed on the baseline that using an OOD dataset
for watermarking leads to a decrease in robustness perfor-
mance. We hypothesize that this occurs due to overfitting
the model on the watermarking dataset, which affects the
models generalization ability by shifting its decision bound-
aries. Despite the shift in decision boundaries, the test per-
formance remains unaffected as the watermarking dataset
size is insufficient to significantly alter the overall behavior
of the model. However, this drift in decision boundaries ad-
versely affects the model robustness against adversarial sam-
ples. The adversarial samples are designed to exploit small
vulnerabilities in the decision-making process. Even slight
shifts in decision boundaries can make it easier to find sam-
ples that can compromise the robustness, leading to success-
ful evasion attacks.

To counter this, we propose to use watermarks generated
via adversarial training, also known as adversarial water-
marks. They are often used in the literature (Le Merrer,
Perez, and Trédan 2020) owing to their high transferability
to stolen ML models. The idea is to use watermarks that are
distinct compared to the training samples, but have a sim-
ilar distribution to our adversarial training dataset. In our
case, the training dataset comprises original data samples
and their respective perturbed adversarial samples. We can-
not use watermarks with the same distribution as the train-
ing set because it would be difficult to differentiate them,
and may provide a false sense of verification. Instead, we

Figure 1: The figure shows the distribution of adversarial
samples and the adversarial watermarks, with different per-
turbation budgets.

hypothesise that watermarks generated using an adversarial
training technique will have a similar distribution, i.e., they
share certain statistical properties as that of adversarial sam-
ples in the training set. As shown in Appendix: Figure 5,
the distribution of the OOD and adversarial dataset differs
significantly in the case of baseline, while in our proposal,
watermarks have a similar distribution as that of the adver-
sarial training set (Figure 1).

However, one may wonder if adversarial samples and ad-
versarial watermarks will be too similar, and conflict at infer-
ence time. In fact, adversarial samples and adversarial water-
marks differ in the way they are crafted (Appendix: Figure
6). We propose to generate the watermarks using adversar-
ial training with a higher perturbation budget than the ad-
versarial samples. We claim that there exists a lower bound
for an epsilon (ϵ-perturbation budget) with which adversar-
ial training can be used effectively, after which the utility
of the model degrades, making it ineffective. We leverage
this knowledge to generate adversarial watermarks with a
higher perturbation budget to differentiate them from the
adversarial samples. In addition, we empirically observed,
as was also reported in (Madry et al. 2017), that when we
apply adversarial training to improve the robustness within
some ϵ-neighbourhood, it exhibits effectiveness for (ϵ+ α)-
neighborhood, where α is a positive constant. Thus, we use
β perturbation budget, where β > ϵ + α, to generate the
adversarial watermarks.

The training process is similar to the baseline approach,
but we substitute the OOD dataset with adversarial water-
marks. These watermarks are derived from samples within
the original training set, aligning with the distribution of ad-
versarial samples, also generated from the training dataset.
The main difference between adversarial samples and wa-
termarks lies in the perturbation budget employed during
their generation. While they exhibit similar statistical prop-

erties, they also remain unique. This uniqueness is crucial to
avoid confusion between watermarked models and those in-
fluenced solely by adversarial samples. Moreover, adversar-
ial watermarks need to be generated before the training pro-
cedure using an existing adversarially trained model. This is
done to ensure that watermarks possess the desired adver-
sarial characteristics already learned by the model, making
them robust and difficult to remove.

Experimental Setting
Dataset, Model and Metric
We used MNIST (Deng 2012), and the Fashion-MNIST
(FMNIST) (Xiao, Rasul, and Vollgraf 2017) datasets to
compare our proposed technique with the baseline approach.
For both the datasets, we use a 4-layer convolutional model
comprising two consecutive convolutional blocks followed
by two linear layers. The hyperparameters used for the ex-
periments are defined in Table 6 in the Appendix. Please
note that we used FMNIST dataset as OOD for MNIST, and
vice-versa, however, there is no direct correlation. Any arbi-
trary data points can be chosen as watermarks provided they
are out-of-distribution with respect to the training dataset.

We measure our model performance through test accuracy
on a standard test dataset, robustness accuracy on adversarial
test samples, and watermarking accuracy on the OOD/adver-
sarial watermarking set.

Model Stealing Techniques
In addition to comparing the effectiveness of the approach
using accuracy, we evaluate the technique by launching dif-
ferent model stealing attacks. The objective is to see how
robust our inserted watermarks are in verifying the owner-
ship of the model in the case of intellectual property theft. In
this experimental setup, we assume that we only have black-
box access to the stolen model, and it can be queried to see
how it performs on our watermarking dataset. If it is above
some threshold, we can successfully verify our ownership.
In this work, we conclude that the watermarking strategy
is successful if we can reliably predict more than 50% of
watermarking samples, i.e., if the transferability rate of wa-
termarks ranges from 50% and above. Furthermore, based
on the information one has about the model they can launch
various model stealing attacks:
1. Black-box setting: In this particular setting, our adver-

sary (A) has no direct access to the trained model or any
other internal working. However, they can query the API
to gain information about its performance of various in-
puts. For each query, we only output the class label of
the input image predicted by our model and do not pro-
vide any information about the class logits. Finally, our
A uses the information about the queried input-output
pairs to train a duplicate model that has a identical test
performance as that of our original model.

2. Grey-box setting: In this setting, our A has partial in-
formation about the way our model was trained. Specifi-
cally, for our setup, we assume thatA knows the detailed
architecture of the model and the fact that it was trained
using an adversarial training process. We use a similar

Dataset No def. ADVTR WM (OOD) WM (Adversarial)
Test Acc Test Acc Adv Acc Test Acc Water Acc Test Acc Water Acc

MNIST 99.57 99.2 92.82 99.36 100 99.45 100
FMNIST 93.64 86.91 70.95 90.96 100 92.29 99

Table 1: Performance of the model with different strategies, with and without defense mechanisms for MNIST and Fashion-
MNIST dataset.

ADVTR + WM (OOD) ADVTR + WM (Adversarial)Dataset Test Acc Adv Acc Water Acc Test Acc Adv Acc Water Acc
MNIST 99.02 88.39 100 99.03 92.01 100

FMNIST 85.42 57.75 100 86.49 65.84 93

Table 2: Performance of the model with simultaneous deployment of adversarial training and model watermarking technique
while using OOD and adversarial watermarks.

setting, as described in the black-box setting, to steal the
model by querying the API to gain information and con-
sequently train the duplicate model.

3. White-box setting: In this setting, our A has direct
access to the model. For instance, the cloud provider
where our model was deployed, is malicious, and it re-
distributed the model to some 3rd party, thus giving full
access to our original model and its workings.

To verify the stolen model, one only needs black-box ac-
cess. Let us say the stolen model is deployed on some cloud
platform, and we suspect it to be our model; then, we can
simply query the stolen model to see how it performs on our
watermarking dataset. The performance can be a good first
indicator before taking any legal action against the malicious
adversary. Thus, it becomes crucial that our watermarking
technique has a high transferability property in case of vari-
ous model stealing attacks.

Removal Attack: Pruning and Fine-tuning
Even after stealing a model using the above setting, an ad-
versary can also try to remove the watermarks by applying
various removal attacks. In this work, we investigate the ro-
bustness of our watermarks on two removal attacks: fine-
tuning and pruning attacks. For fine-tuning the attack, we
further train the stolen model on the main classification task
with additional training data for 40 epochs. During fine-
tuning, all layers are fine-tuned, and their weights are up-
dated. For a pruning attack, we prune our stolen model with
a range of pruning rates, starting from 10% to 90% of the
parameters. To accomplish this, we employ the L1 unstruc-
tured pruning (Zhu and Gupta 2017) technique to prune our
model parameters.

Results and Analysis
This section provides a detailed analysis of the two ap-
proaches. However, before diving into the performance, we
want our readers to know the rationale behind selecting the
specific perturbation budget used to generate adversarial wa-
termarks. As proposed, there exists a perturbation budget β,

which can be successfully used to generate the adversarial
watermarks without them being in conflict with the adver-
sarial samples. Thus, we initially trained models for both
datasets, using adversarial training with a pre-defined per-
turbation budget (MNIST - (ϵ = 0.25, num. steps = 25) and
FMNIST - (ϵ = 0.15, num. steps = 15)). The pre-defined
budgets were selected based on their utility at the inference
time. We observed that adversarial samples generated using
a higher perturbation budget have perceptible noise and thus
lose their utility to be used in evasion attacks. We further
observed (from Appendix Table 5) that when this adversari-
ally trained model is used to detect adversarial samples gen-
erated with higher perturbation budget, they are marginally
robust to some larger budget (ϵ + α), but have a poor per-
formance with any increase in epsilon above that. Thus, we
leverage these higher perturbation budget values to generate
the adversarial watermarks that have a similar distribution
and have no conflict with adversarial samples generated dur-
ing the training process. We use a perturbation budget of 0.4
and 40 attack steps for the MNIST dataset and a 0.3 pertur-
bation budget and 40 attack steps for the FMNIST dataset.

Performance
The performance of our model with different defense strate-
gies is presented in Table 1. We can observe that all the
strategies perform well on the task they were designed for.
Furthermore, Table 2 illustrates the performance of the com-
bined effect of deploying adversarial training and water-
marking techniques. We can observe that for both the ap-
proaches, the baseline (OOD watermarks), and our proposed
strategy (adversarial watermarks) perform strongly in terms
of the model utility and watermark verification. However,
the adversarial accuracy when trained using OOD water-
marks witnesses a drop of around 4% (from 92.82% →
88.39%) for the MNIST dataset and around 13% drop (from
70.95% → 57.75%) for the FMNIST dataset. In our pro-
posed strategy, where we use adversarial watermarks, we
can see that it outperforms the baseline with respect to its
robustness against evasion attacks. In terms of its adversarial

Black-box Transferability
AdvTraining + WM (OOD) AdvTraining + WM (Adversarial)Dataset Test Acc Adv Acc Water Acc Test Acc Adv Acc Water Acc

MNIST 89.24 1.29 6 88.36 0.33 54
FMNIST 72.47 3.96 8 73.86 10.09 56

Table 3: Transferability of performance for various metric when the models undergo black-box model stealing attack.

accuracy, it has less than 1% drop (from 92.82%→ 92.01%)
for the MNIST dataset and around 4% drop (from 70.95%→
65.84%) for the FMNIST dataset. We attribute this slight de-
crease in robustness performance to an unintentional conflict
that might arise concerning the interplay between the pertur-
bation budget used to craft the adversarial samples and wa-
termarks. However, the overall results obtained empirically
support our hypothesis of using the watermarks with a simi-
lar distribution as that of adversarial samples to enhance the
robustness of the model, while also maintaining comparable
performance in terms of test and watermarking accuracy.

Robustness in Black-box Setting
In this section, we examine the transferability of our water-
marks to the model stolen using the black-box model steal-
ing attack. As we can observe in Table 3, test accuracy is
high for both datasets for both approaches1. Moreover, one
can notice that transferability for adversarial samples for
both approaches is very low. We claim this is because, while
launching a black-box attack, we had no information that the
model was trained using adversarial training. Our adversary
only queried the pure input-output pairs, thus limiting our
model performance on the adversarial samples. However,
we can notice a high transferability of our watermarks for
the model which was trained using adversarial watermarks.

Furthermore, one can observe that even if the model was
trained simultaneously using adversarial training, the adver-
sarial watermarks did not conflict with the adversarial sam-
ples and were independently verified with high confidence.
The results confirms our understanding regarding the con-
flict between adversarial watermarks and adversarial sam-
ples, and demonstrates the efficacy of our suggested inter-
play of the two techniques in a black-box setting.

With respect to Pruning Figure 2a, plots the effect of
pruning the stolen model with different pruning rates for two
datasets. From Table 3, we know that the transferability of
the OOD dataset is quite low, and thus, applying further re-
moval attacks does not significantly affect its behavior. Fur-
ther, one can observe that, with increasing pruning rate, our
approach can still verify the ownership of the model with
high confidence, i.e., for both the datasets, the models can
be confidently verified with more than 50% transferability
rate, with as high as 80% pruned neurons. This implies that

1The test accuracy is quite close to the non-stolen original
model in a real-world setting, as evident in the literature (Papernot
et al. 2017). However, due to the resource limitation, it is challeng-
ing to launch strong model stealing attacks for our research, thus
resulting in a noticeable further decline in performance.

0.0 0.2 0.4 0.6 0.8
Pruning Rate

10

20

30

40

50

Ac
cu

ra
cy

Pruning on models stolen using black-box attack

Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(a) Pruning Attack

0 5 10 15 20 25 30 35 40
Fine-tuning epoch

10

20

30

40

50

60

Ac
cu

ra
cy

Fine-tuning on models stolen using black-box attack

Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(b) Fine-tuning Attack

Figure 2: Impact of removal attack on the model stolen using
black-box setting

the embedded watermarks significantly contribute to the im-
portant neurons of our model. Thus, they cannot be easily
removed without degrading the model performance.

With respect to Fine-tuning Figure 2b plots the effect of
fine-tuning the stolen model with 40 epochs. The OOD wa-
termarking accuracy by default is low due to its low transfer-
ability (Table 3). Thus fine-tuning it further does not give us

Grey-box Transferability
AdvTraining + WM (OOD) AdvTraining + WM (Adversarial)Dataset Test Acc Adv Acc Water Acc Test Acc Adv Acc Water Acc

MNIST 91.23 46.3 9 91.03 45.29 68
FMNIST 55.61 41.58 5 75.33 42.85 60

Table 4: Transferability of performance for various metric when the models undergo grey-box model stealing attack.

any useful information. However, we can see that when we
fine-tune the models trained using adversarial watermarks,
the watermarking accuracy decreases to a certain point and
then nearly stays constant throughout the remaining process.
Although we observe a decrease in watermarking accuracy,
it is still high enough (more than 45% for both datasets) to
confidently verify the ownership of the models. The findings
empirically show the effectiveness of our approach to prun-
ing and fine-tuning attacks in the black-box setting.

Robustness in Grey-box Setting
In this section we investigate the transferability of our wa-
termarks to the model stolen using the grey-box model steal-
ing attack. In comparison to the black-box scenario, in this
setting, we have information about the architecture of the
model and the fact that it was trained using adversarial train-
ing. As shown in Table 4, test accuracy is high for both ap-
proaches. The use of additional information regarding ad-
versarial training helped to launch a more powerful attack,
thus making the stolen model perform well on adversarial
samples. However, with additional information comes a risk,
as one can notice that the confidence with which the water-
marks can be detected has increased in the grey-box setting
(compared to the black-box) for our proposed strategy. So,
even if an adversary launches a powerful model stealing at-
tack with more information, it increases the transferability
of our adversarial watermarks, thus putting the adversaries
at high risk of getting caught.

With respect to Pruning Figure 3a, plots the effect of
pruning the stolen model using a grey-box attack for two
datasets. Similar to the case of black-box setting, the wa-
termarking accuracy for the model with the OOD dataset
is quite low (Table 4). Thus, applying a pruning attack on
it does not provide any further insights. However, our pro-
posed strategy performs much better compared to the base-
line and can confidently verify the ownership of the model.
One can further notice that the detection rate for both the
datasets is still high when 80% of the neurons are pruned,
i.e., the models can be confidently verified with more than
55% detection rate.

With respect to Fine-tuning Figure 3b, plots the effect of
fine-tuning the stolen model with a total of 40 epochs. Sim-
ilar to our observation in case of black-box setting, we can
see that when we fine-tune the models trained using adver-
sarial watermarks, the watermarking accuracy drops up to a
particular point and then remains nearly constant through-
out the tuning process. The findings above empirically show

0.0 0.2 0.4 0.6 0.8
Pruning Rate

10

20

30

40

50

60

70

Ac
cu

ra
cy

Pruning on models stolen using grey-box attack

Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(a) Pruning Attack

0 5 10 15 20 25 30 35 40
Fine-tuning epoch

10

20

30

40

50

60

70

Ac
cu

ra
cy

Fine-tuning on models stolen using grey-box attack

Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(b) Fine-tuning Attack

Figure 3: Impact of removal attack on the model stolen using
grey-box setting

the effectiveness of our approach to pruning and fine-tuning
attacks in the grey-box setting.

Robustness in White-box Setting
In this section, we observe the transferability of our water-
marks to the model stolen using a white-box model steal-
ing attack. This particular scenario is specific to having full
access to the model. So, for this experiment, we directly

0.0 0.2 0.4 0.6 0.8
Pruning Rate

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Pruning on models stolen using white-box attack

Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(a) Pruning Attack

0 5 10 15 20 25 30 35 40
Fine-tuning epoch

20

40

60

80

100

Ac
cu

ra
cy

Fine-tuning on models stolen using white-box attack

Watermarking Accuracy - Adversarial - MNIST
Watermarking Accuracy - OOD - MNIST
Watermarking Accuracy - Adversarial - FMNIST
Watermarking Accuracy - OOD - FMNIST

(b) Fine-tuning Attack

Figure 4: Impact of removal attack on the model stolen using
white-box setting

took the original model to carry out the analysis. The perfor-
mance of the model stolen using a white-box scenario would
be exactly the same as the non-stolen model (Table 2). For
the white-box setting, we are more interested in watermarks’
resistance to removal attacks.

With respect to Pruning Figure 4a plots the effect of
pruning the stolen model using a white-box attack. The
transferability for the watermarks is quite high for both
OOD and adversarial watermarks. However, with an in-
crease in pruning rate, when more than 70% of the neurons
are pruned, there is a significant drop in the watermarking
accuracy. For the case of the MNIST dataset (for both ap-
proaches), it drops to 65% when the pruning rate is 0.9.
However, we can still confidently verify its ownership with
high confidence. In the case of the FMNIST dataset, we can
see that for the model trained using adversarial watermarks,
the accuracy drops to almost 30% when the pruning rate is

0.9, while the approach with OOD watermarks outperforms
our proposed technique in this particular scenario. We at-
tribute this to the complexity of the FMNIST dataset, which
hinders the model from fully overfitting, resulting into a drop
in accuracy when pruned heavily. This observation is only
specific to white-box attacks on FMNIST; we believe that
in white-box attacks, the information learned is distributed
among the neurons, and the model might not entirely focus
on overfitting to watermarks. Conversely, in black-box and
grey-box settings, we query the cloud API to generate the
input-output pairs, which forces the transfer of the water-
marks with their performance.

With respect to Fine-tuning Figure 4b illustrates the ef-
fect of fine-tuning the stolen model with 40 epochs. The ini-
tial transferability rate for both baseline and proposed strat-
egy is quite high. However, for both datasets, we observe
that when the fine-tuning epoch increases, it starts to lose its
resilience towards watermarks. In particular, the OOD wa-
termark accuracy observes a high drop in the case of the
MNIST dataset, which we believe is due to the use of the
FMNIST dataset as OOD watermarks, which is complex and
thus makes it challenging to overfit the models on these wa-
termarks. In contrast, the OOD watermarking accuracy for
the FMNIST dataset, which uses the MNIST dataset as OOD
watermarks, remains quite high. Moreover, the drop in accu-
racy for the models trained using adversarial watermarks is
higher than the baseline approach for the FMNIST dataset.
This is similar to the trend we observed in the pruning at-
tacks. We believe this is due to the complexity of the FM-
NIST dataset and the difference between how the model is
stolen using various model stealing attacks.

After thoroughly evaluating the performance of our pro-
posed strategy and baseline approach on various model
stealing and removal attacks, we observed that our proposed
technique of using adversarial watermarks combined with
adversarial training consistently outperforms the baseline in
nearly all scenarios, with the exception of the white-box at-
tack on the FMNIST dataset. Although we acknowledge this
limitation, it is important to highlight that our approach ex-
hibits remarkable superiority in grey-box and black-box set-
tings. The key benefit of our proposed approach is its high
transferability in grey-box and black-box scenarios, which
are more practical and commonly occurring attacks in real
world compared to rare white-box attacks. Thus, the effi-
cacy of our technique against such attacks further validates
its utility in the real world.

Conclusions
In conclusion, this study introduced a novel way of combin-
ing adversarial watermarks and adversarial training without
undermining its primary objectives. We observed that there
exists a lower bound perturbation budget above which the
utility of the model worsens, making it ineffective. We lever-
age this information to generate the adversarial watermarks
that differ from the adversarial samples used in the training.
We benchmark the performance of our strategy on various
model stealing and removal attacks. Our proposed technique
consistently outperforms the baseline in nearly all scenarios.

Acknowledgement
This work was supported in part by the European Union’s
Horizon 2020 research and innovation programme under
grant number 951911 – AI4Media.

References
Deng, L. 2012. The mnist database of handwritten digit im-
ages for machine learning research [best of the web]. IEEE
signal processing magazine, 29(6): 141–142.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2018. Adver-
sarial examples in the physical world. In Artificial intelli-
gence safety and security, 99–112. Chapman and Hall/CRC.
Le Merrer, E.; Perez, P.; and Trédan, G. 2020. Adversarial
frontier stitching for remote neural network watermarking.
Neural Computing and Applications, 32: 9233–9244.
Li, B.; Fan, L.; Gu, H.; Li, J.; and Yang, Q. 2022. FedIPR:
Ownership verification for federated deep neural network
models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Namba, R.; and Sakuma, J. 2019. Robust watermarking of
neural network with exponential weighting. In Proceedings
of the 2019 ACM Asia Conference on Computer and Com-
munications Security, 228–240.
Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2017. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications secu-
rity, 506–519.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Szyller, S.; and Asokan, N. 2022. Conflicting Interac-
tions Among Protections Mechanisms for Machine Learning
Models. arXiv preprint arXiv:2207.01991.
Szyller, S.; Atli, B. G.; Marchal, S.; and Asokan, N. 2021.
Dawn: Dynamic adversarial watermarking of neural net-
works. In Proceedings of the 29th ACM International Con-
ference on Multimedia, 4417–4425.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204.
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017.
Embedding watermarks into deep neural networks. In Pro-
ceedings of the 2017 ACM on international conference on
multimedia retrieval, 269–277.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878.

Appendix

Algorithm 1: Adversarial Training and Model Watermarking
Input:
Xtraining ← datapoints{(x1, y1), (x2, y2),, (xN , yN)}
Xwatermarks ← datapoints{(xw1, yw1), (xw2, yw2),, (xwN , ywN)} (OOD or Adversarial)
Loss function: L(θ)← 1

N

∑N
i=1 L(θ, xi)

Hyperparameters:
Learning rate: α, Adversarial Learning rate: β, Iterations: T , batch size: B, Perturbation budget: ϵ, Attack
steps: attack steps

1 for t ∈ [T] do
2 for each i ∈ Xtraining batch do
3 Generate the Adversarial Samples
4 Badv i ← PGD(Bi, ϵ, attack steps, β)
5 Compute the gradients
6 compute gt(Badv i)← ∇θtL(θt, Badv i)
7 Gradient descent step
8 θt+1 ← θt − αgt(Badv i)

9 for each i ∈ Xwatermarks batch do
10 Compute the gradients
11 compute gt(Bi))← ∇θtL(θt, Bi)
12 Gradient descent step
13 θt+1 ← θt − αgt(Bi)

Output: θT

Figure 5: Above figure plots the distribution of datasets for MNIST dataset, including its training dataset, adversarial training
dataset and watermarking set (OOD - for baseline, and adversarial watermarks for the proposed use case). The OOD dataset
used for the baseline is Fashion-MNIST dataset.

Hyperparameter
We used the hyperparameters defined in the Table: 6 for our experiments. The (ϵ, γ, η) stands for (epsilon budget, attack steps,
step size), respectively, for adversarial training (ADVTR) and adversarial watermarks (ADVWM). In addition, all the models
were trained for a total of 100 epochs, with a learning rate of 0.005 and weight decay of 5e−4. As a standard training setting, we
utilized the SGD optimizer to iteratively update the model parameters. Please note that while selecting the OOD dataset, there

Dataset Adversarial Training Adversarial Accuracy (perturbation budget, attack steps)
Test Acc Adv Acc (0.15,15) (0.25,25) (0.3,40) (0.4,40) (0.5,40)

MNIST 99.2 92.82 96.34 92.82 46.28 0.1 0
FMNIST 86.91 70.95 70.95 5.46 0.43 0 0

Table 5: Adversarial Training and its corresponding robustness to adversarial samples generated using different perturbation
budgets.

Dataset ADVTR ADVWM Watermark
|DW |

OOD dataset
ϵ γ η ϵ γ η

MNIST 0.25 25 0.01 0.4 40 0.01 100 Fashion-MNIST
FMNIST 0.15 15 0.01 0.3 40 0.01 100 MNIST

Table 6: Hyperparameter for MNIST and Fashion-MNIST dataset

is no direct correlation in using watermarks as FMNIST for the MNIST dataset or vice-versa. One can choose any arbitrary
data points as their watermarks as long as they are out-of-distribution with respect to the training dataset.

Algorithm 2: Model Stealing Attack (Papernot et al. 2017)
Input: O ← Oracle model or target model (API access)
epoch← substitute model training epochs
Strain ← initial training set
FBLACK ← architecture for black-box attack
FGREY ← architecture for grey-box attack

1 Define architecture FBLACK or FGREY based on the attack
2 for i ∈ epoch do
3 Query the substitute training set
4 D ← {(x,O(x)) : x ∈ Straini}
5 Train F on D to evaluate parameters θF
6 if black-box attack then
7 θFBLACK

← train(FBLACK ,D)
8 else
9 θFGREY

← train(FGREY ,D) // adversarial training
10 Perform Jacobian-based dataset augmentation
11 Straini+1

← {x+ λ · sgn(JF [O(x)]) : x ∈ Straini
} ∪ Straini

Output: θ

Figure 6: The figure shows an instance of training data point (top left) from MNIST dataset, its corresponding adversarial
sample (top right), and watermarks (bottom left with 0.4 epsilon budget, and bottom right with 0.5 epsilon budget)

Algorithm 3: Removal Attack (Li et al. 2022)
Input:M← stolen model,
p← pruning-rate, Dadd ← additional training data

1 procedure PRUNING:
2 Prune the model N with pruning rate p.
3 end
4 procedure FINETUNING:
5 for epochs in 50 do
6 Train the model N only on the main classification task with additional training data Dadd.
7 end
8 end

