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Abstract. In authorization, there is often a wish to shift the burden of proof to those
making requests, since they may have more resources and more specific knowledge
to construct the required proofs. We introduce an extreme instance of this approach,
which we call Code-Carrying Authorization (CCA). With CCA, access-control deci-
sions can partly be delegated to untrusted code obtained at run-time. The dynamic
verification of this code ensures the safety of authorization decisions. We define and
study this approach in the setting of a higher-order spi calculus. The type system of
this calculus provides the needed support for static and dynamic verification.

1 Introduction

The generation, transmission, and checking of evidence plays a central role in authorization.
The evidence may include, for instance, certificates of memberships in groups, delegation
assertions, and bindings of keys to principals. Typically, the checking is done dynamically,
that is, at run-time, in reference monitors. When a reference monitor considers a request
from a principal, it evaluates the evidence supplied by the principal in the context of a local
policy and other information. It is also possible—and indeed attractive—to perform some
of the checking statically, at the time of definition of a system. This static checking may rely
on logical reasoning or on type systems, and may guarantee that enforcement of a policy is
done thoroughly and correctly.

A growing body of research explores the idea that the evidence may include or may
be organized as a logical proof [16,4,15,9,19]. For instance, in the special case of proof-
carrying code (PCC), the proofs guarantee code safety, and the requests are typically for
running a piece of code [16]. In another example, the clients of a web server may present
proofs that their requests should be granted [5]. This idea provides a principled approach
to authorization. It also provides an approach to auditing in which the proofs that moti-
vate access-control decisions can be logged and analyzed [19]. While the burden of proof
generation shifts to the principal that makes a request, the proof need not be trusted, so
the reference monitor still needs to verify the proof. Dynamic proof verification may fail;
accordingly, any static checking needs to accommodate this possibility.

Thus arises the question of how to reconcile static checking with proof-carrying and
dynamic verification. As an interesting specific instance of this question, one may wonder
how to incorporate dynamic verification in the existing typed spi calculus for authorization
of Fournet et al. [12]. In that calculus, a static type system guarantees the safe enforcement
of an authorization policy. It does not include proofs as first-class objects, nor the possi-
bility of dynamic verification. One might think about adding proofs and proof-checking as
primitives to this calculus, in order to support dynamic verification and authorization. While
that idea may seem “natural”, to our surprise we discovered that a more general idea is both



technically cleaner and more powerful in supporting interesting authorization scenarios.
With “Proof-Carrying Authorization” (PCA) [4] in mind, we call this idea “Code-Carrying
Authorization” (CCA).

CCA consists in passing not proofs but pieces of code that perform run-time verification.
These pieces of code are essentially fragments of a reference monitor. They are themselves
checked dynamically, since in general they are not trusted. Analogously, the Open Verifier
project [8] has started to explore a generalization of PCC in which mobile code is accom-
panied by untrusted verifiers.

Following the Curry-Howard isomorphism, one may view proofs as programs. Still,
with PCA [4], those programs are only checked, not executed. With CCA, programs are
executed as well, though in a controlled way. No additional language for proofs is needed;
we can use arbitrary code, subject to dynamic typing. Thus, in comparison with PCA, CCA
allows a more open-ended, flexible notion of evidence without requiring the introduction of
special syntax.

In the present paper, we explore dynamic verification and authorization in the context
of a typed spi calculus. Technically, this calculus is a higher-order spi calculus [3] with
dynamic typing. Both the higher-order features and the dynamic typing rely on fairly stan-
dard constructs [18,2], though with some new technical complications and new applications.
In particular, the dynamic typing can require theorem proving. The calculus includes only
shared-key cryptography; further cryptographic primitives might be added as in later work
by Fournet et al. [13]. Optionally, the calculus also includes first-class proof hints, which can
alleviate or eliminate the theorem-proving task at the reference monitor. We prove results
that establish the safety of authorization decisions with respect to policies. (Appendix C
contains detailed proofs.)

We exploit this calculus in a range of small but challenging examples. These examples
illustrate some of the advantages of dynamic verification and of CCA in particular. For
instance, in some of the examples, a server can enforce a rich authorization policy while
having only simple, generic code; clients provide more detailed code for run-time access
control. Such examples are beyond the scope of previous systems.

Sections 2 and 3 describe our calculus and its type system, respectively. Section 4 con-
tains examples. Section 5 extends the calculus with proof hints. Section 6 concludes.

In addition to the research on PCA and on types for authorization cited above, our work
is related to a broad range of applications of process calculi to security. These include, for
instance, distributed pi calculi with trust relations and mobile code [17,14]. Interestingly,
some of these calculi support remote attestation and dynamic subtyping checks (however,
with rather different goals and type structures, and no typecase) [10].

2 A Spi Calculus with Dynamic Verification

In this section we review the calculus for authorization on which we build [12], and discuss
our extensions for dynamic verification.

2.1 Authorization Logics

Our approach is parametric in the choice of an authorization logic used as a policy language.
The only constraint on the logic is that it be monotonic and closed under substitution (see
Appendix A). For example, Datalog [7], Binder [11], and CDD [1] are valid authorization
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logics. In the rest of the paper, we use Datalog as an authorization logic, and write S |= C
when policy S entails the clause C. Informally, entailment means that access requests that
depend on C should be granted according to S.

Our running example is based on an electronic conference reviewing system. The con-
ference server contains a policy that controls the access to the database of paper reviews.
This policy expresses authorization facts such as PCMember(alice), which means “Alice has
been appointed as a member of the program committee of the conference”, or authorization
rules such as

Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)

which means “if a committee member holds a certain opinion on any paper, she can sub-
mit a review for that paper”. Capitalized variables such as U , ID, and R are bound logical
variables. Lower-case identifiers (such as alice above), together with any other values of the
process language, are uninterpreted logical atoms.

2.2 Process Syntax and Semantics

The core language consists of an asynchronous spi calculus where parallel processes can
send messages to each other on named channels. For example, we may write:

out a(M) | in a(x);P→ P{M/x}

The symbol→ represents a computation step. On the left of→, we have a parallel compo-
sition of a process that sends a message (actually M) on the channel a and a process that
receives a message (represented by the formal parameter x) on a and then executes P; on
the right is the result, in which the formal parameter is replaced with the actual message.

Messages include channel names, cryptographic keys, pairs, and encryptions. We as-
sume that encryption preserves the integrity of the payload. There are operations for de-
composing and matching pairs and for decrypting messages. For example,

decrypt {M}k as {y}k;Q→ Q{M/y}

represents the only way to “open” the encryption {M}k to retrieve M.
Two special constructs have no effects on the semantics of programs, but are annotations

that connect the authorization policy to the protocol code: statements and expectations. A
statement, such as SentOn(a,b), should be manually inserted in the code in order to record
that, at a particular execution point, the clause SentOn(a,b) is regarded as true. An ex-
pectation, such as expect GoodParam(x), should label program points where the clause
GoodParam(x) must hold for the run-time value of x. For example, the following code is
safe with respect to the policy GoodParam(X) :−SentOn(a,X):

(out a(b) | SentOn(a,b)) | in a(x);(expect GoodParam(x) | out c(x))

To this core language, we add a new kind of message (x:T )P that represents the process
P parametrized by x of type T , and operations to spawn such processes and to check the
type of messages dynamically. The formal syntax of messages and processes is as follows:

Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message
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x name
{M}N authenticated encryption of M with key N
(M,N) message pair
(x:T )P code P parametric in x
ok token conveying logical effects (see Section 3)

P,Q,R ::= process
out M(N) asynchronous output of N to channel M
in M(x:T );P input of x from channel M (x has scope P)
!in M(x:T );P replicated input
new x:T ;P fresh generation of name x (x has scope P)
P | Q parallel composition of P and Q
0 null process
decrypt M as {y:T}N;P bind y to decryption of M with key N (y has scope P)
split M as (x:T,y:U);P solve (x,y) = M (x has scope U and P; y has scope P)
match M as (N,y:U);P solve (N,y) = M (y has scope P)
spawn M with N spawn M instantiated with N
typecase M of x:T ;P typecheck M at type T (x has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (x̃:T̃ ) 4= (x1:T1, . . . ,xn:Tn) and new x̃:T̃ ;P 4= new x1:T1; . . .new xn:Tn;P
Let S = {C1, . . . ,Cn}. We write S | P for C1 | . . . |Cn | P.

Type annotations help to understand the type of newly created names and variables, but are
strictly necessary only in the syntax for typecase. For notational convenience, we may omit
type annotations, especially for Un types.

Both spawn and typecase are standard constructs. However, in combination they turn
out to be very useful for our purposes. For example, a verifier process can accept untrusted
messages from the network, check that they are well-typed as processes with input of type
T , and then send the code out to the network once again on an untrusted channel, wrapped
in an encryption meant to signify that the contents are now guaranteed to be type-safe:

in unCode(x); typecase x of y:Pr(T );out tsCode({y}k)

A code user can accept such encrypted code packages, and run the code passing it a param-
eter M of the correct type T without further checking:

in tsCode(x);decrypt x as {y}k;spawn y with M

As usual in the pi calculus, we define the formal semantics of the calculus by a set of
structural congruence rules (see Appendix A) that describe what terms should be consid-
ered syntactically equivalent, and a set of reduction rules (displayed below) that describe
how processes evolve. Most of these reduction axioms are standard. Rule (Red Typecase)
requires some typing environment E in which the check E ` M : T can be performed. In
order to define such environments, we parametrize the reduction relation by an initial envi-
ronment (which can also be chosen as ∅ if necessary). Rule (Red Res) dynamically adds
the names defined by restriction contexts to the current typing environment, and rule (Red
Par) adds the new clauses and names (env(Q)x̃) defined by parallel contexts. The technical
reasons for these definitions, which should become apparent in Section 3, are illustrated in
the following small example. Consider the reduction step:

new a:T ;(typecase a of y:T ;P)→∅ new a:T ;P{a/y}
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Rules for Reduction: P→E P′

out a(M) | in a(x:T );P→E P{M/x} (Red Comm)
out a(M) | !in a(x:T );P→E P{M/x} | !in a(x:T );P (Red !Comm)
decrypt {M}k as {y:T}k;P→E P{M/y} (Red Decrypt)
split (M,N) as (x:T,y:U);P→E P{M,N/x,y} (Red Split)
match (M,N) as (M,y:U);P→E P{N/y} (Red Match)

spawn (x)P with M→E P{M/x} (Red Spawn)
E `M : T ⇒ typecase M of y:T ;P→E P{M/y} (Red Typecase)

P→E,env(Q)x̃ P′⇒ P | Q→E P′ | Q (where {x̃}∩ fn(P,Q) = ∅) (Red Par)
P→E,x:T P′⇒ new x:T ;P→E new x:T ;P′ (Red Res)
P≡ Q,Q→E Q′,Q′ ≡ P′⇒ P→E P′ (Red Struct)

Notation: P →∗≡E P′ is P≡ P′ or P→∗E P′.

By (Red Res), this reduction takes place if typecase a of y:T ;P→a:T P{a/y}, and this is a
valid instance of (Red Typecase) since the typing environment is now a:T , and a:T ` a : T
is clearly a valid typing judgment.

These rules allow a typecase process typecase M of y:T ;P to reduce provided the mes-
sage M can be typechecked in an environment E that collects clauses and names defined in
any parallel context. In an implementation, it may be impractical to collect the full environ-
ment, because, for example, E takes the form E ′,E ′′ where the clauses and names of E ′ are
local, while those in E ′′ are distributed across remote machines. Still, it is fine for an im-
plementation to typecheck the message in the local environment E ′, because, by a standard
weakening lemma, if E ′ `M : T then also E ′,E ′′ `M : T . Such an implementation would
not admit reduction steps that depend on implicit knowledge of remote clauses and names.
This is not a problem in our theory, as we are concerned with safety properties; in practice,
we can convey knowledge of remote clauses and names by explicit use of cryptography, as
in the examples in later sections.

For brevity, we use derived notations for tuples and pattern-matching, and omit type an-
notations when they are not necessary(see Appendix A for a formal definition). The tuple
(M1,M2, . . . ,Mn) abbreviates the nested pairs (M1,(M2, . . . ,Mn)). We write tuple M as (N1, . . . ,Nn);P
to pattern-match a tuple, where M is a tuple, and each Ni is an atomic pattern (either a vari-
able pattern x, or a constant pattern =M, where M is a message to be matched). For each
variable, we introduce a split, and for each constant a match. For example, for a fresh z we
have

tuple (a,b,c) as (x,=b,y);P 4=
split (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P

We also allow pattern-matching in conjunction with input and decryption processes.

2.3 Safety

Relying on the operational semantics, we give a formal definition of safety (much as in [12]).
This notion makes precise the intuitive relation between assumptions, expectations, and
program execution. The idea is that a process is safe if whenever during an execution the
statement expect C is reached (i.e., it appears at the top level, possibly inside some nested
name restrictions) the environment has accumulated enough rules and facts to entail C.
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Safety:

A process P is safe for E if and only if whenever P →∗≡E new x̃:T̃ ;(expect C | P′),
we have P′ ≡ new ỹ:Ũ ;(S | P′′) and S∪clauses(E) |= C with ({ỹ}∩ fn(C)) = ∅ = ({x̃, ỹ}∩dom(E)).

The side-condition on the alpha-convertible names ỹ prevents confusing them with names
in C, and the one on x̃, ỹ avoids clashes with names defined in E.

It is also important to know when a process is safe even if it is executed in parallel with a
malicious opponent. Following a common approach, we model the opponent as an arbitrary
untyped process, with no statements or expectations.

Opponents and Robust Safety:
A process O is an opponent if and only if it contains no statement or expectation, and every type
annotation is Un.
A process P is robustly safe for E if and only if for any opponent O, P |O is safe for E, x̃:Ũn, where x̃
are the free names of O not in the domain of E.

For example, the process P = out b(a) | in b(x);expect A(x) is safe for A(a), but not ro-
bustly safe, as an opponent that replaces a with c can lead to an unsatisfied expectation:
in b(x);out b(c) | P→∗A(a) expect A(c).

3 A Type System for Robust Safety

We present a dependent type system that statically guarantees safety and robust safety. We
extend the system of [12] with a type constructor Pr(T ) for process code parametric in T ,
and rules for the spawn and typecase constructs. Most of the rules in this section (including
those for new constructs) are largely standard rules adapted to the present context. We are
pleased by how much advantageous reuse has been possible.

We prove that typability with respect to an environment E entails safety for E and, if all
the types in E are Un (“untrusted”), also robust safety.

3.1 Types and Environments

Type Un is inhabited by any message that may come or go to the opponent, like for example
a ciphertext that can be considered untrusted until it is decrypted. Upon decryption, one may
reason that the contents were created by a principal that knows the encryption key. Types
Ch(T ) and Key(T ) are inhabited by secure channels or secret keys for communicating or
encrypting messages of type T . A dependent type (x:T,U) is inhabited by the pairs (M,N)
where M has type T , and N has type U{M/x}. Type Ok(S) is inhabited only by the token
ok, and is used to attach effects to the payload of channels and keys. When a variable in the
environment has type Ok(S), it is safe to assume that S holds.

Syntax for Types:

T,U ::= type
Un public data
Ch(T ) channel for messages of type T
Key(T ) secret key for plaintexts of type T
(x:T,U) dependent pair (scope of x is U)
Pr(T ) process code parametric in type T
Ok(S) ok to assume the clauses S
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T is generative iff T is of the form Un, Ch(U), or Key(U), for some U .
Notation: (x1:T1, . . . ,xn:Tn,Tn+1)

4= (x1:T1, . . . ,(xn:Tn,Tn+1))

For example, the type declaration

kra : Key(id:Un,r:Un,Ok(Opinion(alice, id,r)))

says that kra is a key for encrypting a tuple like (paper,text,ok) where paper and text
are untrusted values and the ok token indicates that the key conveys the logical effect
Opinion(alice,paper,text).

Typing environments are lists of name bindings and clauses. We write dom(E) for the
set of names defined (i.e., appearing to the left of a binding “:”) in environment E. We write
env(P) for the top-level clauses of process P, with suitable name bindings for any top-level
restrictions, and clauses(E) for the clauses contained at the top level and inside the top-level
Ok types of E.

Syntax for Environments, and Functions: dom(E), env(P), clauses(E)

E ::= environment
∅ empty
E,x:T x has type T
E,C C is a valid clause

Notation: E(x) = T if E = E ′,x:T,E ′′

dom(E,C) = dom(E) dom(E,x:T ) = dom(E)∪{x} dom(∅) = ∅
clauses(∅) = ∅

clauses(E,x:T ) = clauses(E) (if T 6= Ok(S))
clauses(E,C) = clauses(E)∪{C}

clauses(E,x:Ok(S)) = clauses(E)∪S

env(P | Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where {x̃, ỹ}∩ fn(P | Q) = ∅)
env(new x:T ;P)x,x̃ = x:T,env(P)x̃ (where {x̃}∩ fn(P) = ∅)

env(C)∅ = C
env(P)∅ = ∅ (otherwise)

Convention: env(P) 4= env(P)x̃ for some distinct x̃ such that env(P)x̃ is defined.

We assume a standard notion E ` � of well-formedness for environments, defined formally
in Appendix A.

3.2 Typing Rules

For each message constructor there are two typing rules, one to give it an informative type,
and one to give it type Un. Rules of the second kind are useful to show that any opponent
process can be typed.

Rule (Msg Encrypt) shows that an encryption under a trusted key does not need to be
trusted, in the sense that it can be sent to an opponent. Rules (Msg Proc) and (Msg Proc
Un) invoke the typing relation for processes in an environment that assumes respectively
type T or type Un for the process parameter x. Rule (Msg Ok) is typical of this typed
approach to verification: in order for an ok token to convey the effects S, it must be the case
that the clauses contained in the environment (which include the policy and all the facts
consequently accumulated by Ok types) entail each of the clauses in S.
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Rules for Messages: E `M : T

(Msg x)
E ` � x ∈ dom(E)

E ` x : E(x)

(Msg Encrypt)
E `M : T E ` N : Key(T )

E ` {M}N : Un

(Msg Encrypt Un)
E `M : Un E ` N : Un

E ` {M}N : Un

(Msg Pair)
E `M : T E ` N : U{M/x}

E ` (M,N) : (x:T,U)

(Msg Pair Un)
E `M : Un E ` N : Un

E ` (M,N) : Un

(Msg Ok Un)
E ` �

E ` ok : Un

(Msg Proc)
E,x:T ` P

E ` (x:T )P : Pr(T )

(Msg Proc Un)
E,x:Un ` P

E ` (x:Un)P : Un

(Msg Ok)
E,S ` � clauses(E) |= C ∀C ∈ S

E ` ok : Ok(S)

Rule (Proc Res) requires to type P in an environment with the additional binding x:T . Corre-
spondingly, the reduction rule (Red Res) assumes the binding in the run-time environment of
its premise. Rule (Proc Par) collects the effects of process Q to typecheck P, and vice versa.
Similarly, the premise of (Red Par) assumes env(Q) in the environment of its premise. Rule
(Proc Expect) requires an expected clause to be entailed by the environment, much in the
same way as (Msg Ok). Rule (Proc Typecase) is somewhat subtle. It corresponds to an Un
rule if we pick U and T to be Un. Moreover, the type U is not related a priori to the type T .
In typical examples, the rule allows us to check a message M received at type Un and bind a
variable y of some more useful type T to this message if the check succeeds. The remaining
rules come in pairs, with one rule that assumes informative types and one that assumes Un
types. Most of them are straightforward. For example, (Proc Output) says that a message of
type T can be sent on a channel of type Ch(T ), and (Proc Decrypt) says that the variable y
that represents the payload of a ciphertext of type Un decrypted with a key of type Key(T )
can be assumed to have type T in the continuation process. The rules for split and match are
in Appendix A.
Rules for Processes: E ` P

(Proc Nil)
E ` �
E ` 0

(Proc Res)
E,x:T ` P T generative

E ` new x:T ;P

(Proc Fact)
E,C ` �
E `C

(Proc Expect)
E,C ` � clauses(E) |= C

E ` expect C

(Proc Par)
E,env(Q) ` P E,env(P) ` Q fn(P | Q)⊆ dom(E)

E ` P | Q

(Proc Typecase)
E `M : U E,x : T ` P

E ` typecase M of x:T ;P

(Proc Spawn)
E `M : Pr(T ) E ` N : T

E ` spawn M with N

(Proc Spawn Un)
E `M : Un E ` N : Un

E ` spawn M with N

(Proc Input)
E `M : Ch(T ) E,x:T ` P

E ` [!]in M(x:T );P

(Proc Input Un)
E `M : Un E,x:Un ` P

E ` [!]in M(x:Un);P

(Proc Output)
E `M : Ch(T ) E ` N : T

E ` out M(N)

(Proc Output Un)
E `M : Un E ` N : Un

E ` out M(N)

(Proc Decrypt)
E `M : Un E ` N : Key(T ) E,y:T ` P

E ` decrypt M as {y:T}N;P

(Proc Decrypt Un)
E `M : Un E ` N : Un E,y:Un ` P

E ` decrypt M as {y:Un}N;P

Notation: brackets denote optional constructs.

As a simple example, we can show that for E = Bar :−Foo, b:Ch(Ok(Bar)), the typ-
ing judgment E ` Foo | out b(ok) is valid. The judgment follows by an instance of (Proc
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Par), from E ` Foo and E,Foo ` out b(ok). The latter in turn follows by (Proc Output) and
(Msg Ok), where the second rule uses the logical inference clauses(E,Foo) |= Bar. Sec-
tion 4 includes a longer, detailed example of how the interplay between static and dynamic
typechecking makes this type system expressive.

3.3 Results

We obtain a type preservation result and a safety theorem that guarantees that typability
implies safety.

Lemma 1 (Type Preservation). If E ` P and P →∗≡E P′ then E ` P′.

Theorem 1 (Safety). If E ` P then P is safe for E.

The safety theorem makes explicit the connection between the environment used for typing
(existentially quantified in related work), and the run-time environment.

In order to show that our notion of opponent is not restrictive in a typed setting, we
prove that any opponent can be typed in an environment that does not make trust assump-
tions. Finally, we prove that if a process P is safe for a security policy S and an untrusted
environment, then it is robustly safe.

Lemma 2 (Opponent Typability). For opponent O, x̃:Ũn ` O, where fn(O)⊆ {x̃}.

Theorem 2 (Robust Safety). If x̃:Ũn,S ` P then P is robustly safe for x̃:Ũn,S.

For example, let us consider process Q = out b(a,ok) | in b(x,y);expect A(x). It is easy to
see that given E = a:Un,b:Ch(x:Un,A(x)),A(a) we have E ` Q, so Q is safe for E. On the
other hand it is not possible to derive a:Un,b:Un,A(a) `Q, so we cannot prove robust safety
(which does not hold).

3.4 Dynamic Verification

We define a derived construct and typing rule to verify that a piece of code M, when passed a
parameter N of type T enforces property S. The idea is to typecheck dynamically M, against
the parameter type T and an implicit parameter c that is a channel used to return the result
of verification, namely an ok token carrying the effects S. The continuation process P will
execute only if verification succeeds, that is M sends an ok on channel c.

Derived Syntax and Derived Typing Rule for Verification: verify M〈Ñ:T 〉:S;P

verify M〈[z̃:Un,N:T ]〉:S;P , new c:Ch(Ok(S));
(
typecase M of y:Pr([z̃:Un,T, ]Ch(Ok(S)));

spawn y with ([z̃,N, ]c) | in c(x:Ok(S));P
)

(where {c,y,x}∩ fn(P,M, [N, ]S) = ∅, and {z̃} ⊆ fn(S))

(Proc Verify)
E `M : U [ ˜E ` N : T ] E,S ` P

E ` verify M〈[Ñ:T ]〉:S;P

With this derived typing rule, it is easy to see that if E ` verify M〈Ñ:T 〉:S;P then E `
verify M〈Ñ:T 〉:S;(expect S | P). Hence, it is not necessary to annotate code with an expec-
tation after a verification step.

One may wonder whether it is prudent to run the code of an untrusted verifier that is
guaranteed to enforce a certain policy. Although additional precautions may be appropriate,
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this guarantee is substantial. By lexical scoping, the code of the verifier cannot contain
capabilities that are not already known by its generator; other capabilities can only be passed
explicitly as parameters. Moreover, the verifier must be well-typed in the run-time typing
environment, which can be restricted conveniently to further limit potential side effects. On
the other hand, this guarantee does not cover other kinds of attacks (such as information
leaks or denial-of-service attacks), which may be addressed independently.

4 Examples: a Conference Program Committee

As a benchmark for the effectiveness of CCA, we revisit the conference program committee
example of [12]. We first review the idealized electronic conference system, then present
examples that illustrate the benefits of CCA.

4.1 Review: an Electronic Conference Reviewing System

There are three kinds of principals: the program committee chair (pc-chair), identified with
the server, the program committee members (pc-members), and potential reviewers. The last
two are clients of the server. We model only the portion of the conference reviewing system
for delegating and filing reviews. The authorization policy S, from the subjective viewpoint
of the pc-chair, is:

S = Review(U,ID,R) :− Reviewer(U,ID),Opinion(U,ID,R)
Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)
Reviewer(V,ID) :− Reviewer(U,ID),Delegate(U,V,ID)
Delegate(U,W,ID) :− Delegate(U,V,ID),Delegate(V,W,ID)
Delegate(U,U,ID) :− Opinion(U,ID,R)

The predicate Opinion(u,id,r) states that principal u holds opinion r on paper id, and
is under the control of u itself (that is, the code identified with u can freely assert that
predicate). The predicate Delegate(u,v,id) states that principal u delegates its capability to
review paper id to principal v, and is also under the control of u. All the other predicates are
controlled by the pc-chair, and should be asserted only within server code.

Cryptographic keys can be associated with each of these predicates to convey autho-
rization facts through untrusted messages. Thus, the pc-chair may appoint alice as a pc-
member by sending her a token {alice}kp encrypted under a key that carries the effect
PCMember(alice), and similarly for the other predicates. We define the type of the keys
that correspond to each effect, and the type of a channel that implements a database where
the pc-chair stores the keys of all potential users:

KA = Key(u:Un,id:Un,Ok(Reviewer(u,id)))
KP = Key(u:Un,Ok(PCMember(u)))
KD = Key(z:Un,id:Un,Ok(Delegate(v,z,id)))
KR = Key(id:Un,r:Un,Ok(Opinion(v,id,r)))

T = Ch(v:Un,(KD,KR))

Keys of type KA or KP are used by the pc-chair only, to assign a paper to a reviewer
or to appoint a pc-member respectively. Keys of type KD or KR (parametric in v) can be
used by principal v to convey either an opinion or a delegation effect. Type T is the type of
a channel used to retrieve the keys of each registered user. Note that it is a dependent type
that binds the free parameter v of types KD and KR.
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4.2 Off-line Delegation

Our first example presents a system that lets reviewers appoint sub-reviewers without in-
volving the pc-chair in the process. A typical solution that does not use CCA is to have a
reviewer present to the server a request that contains her opinion, together with some evi-
dence that represents a chain of delegation. The server then runs an algorithm to traverse the
chain and check corresponding permissions, and grants access if the evidence is satisfac-
tory. This solution commits the server to a specific verification algorithm (or a fixed number
thereof). Using CCA instead, the server code can be simpler and parametric. For example,
the server is defined by the same code whether or not the delegation chain is ordered, has
limited length, or delegation is permitted at all. Along with each request to file a review, the
server receives the code of a verifier and some evidence. It verifies that the code enforces
the desired authorization policy, and grants access without further checks.

The relevant portion of the server code is:

Server(pwdb:T,ka:KA,kp:KP) =
S | !in filereview(v,id,r,p,e);

verify p〈(v,r,e,(pwdb,ka,kp)):(v:Un,r:Un,Un,(T,KA,KP))〉:Review(v,id,r); [...]

It contains the assertion of policy S, and a process always ready to accept messages
on the public channel filereview. Parameters v, id, and r are interpreted as a request from
principal v to file review r on paper id. Parameter p is the code of a verifier that must be run
to grant authorization (i.e., prove Review(v,id,r)) on data including the evidence received as
the last parameter e, and local credentials provided by the server. The parameters passed
by the server to the verifier p are the name v of the principal issuing the request, the report
r, the evidence e, and a triple (pwdb,ka,kp). Channel pwdb can be used to retrieve user
credentials. Keys ka and kp are the secret keys used by the pc-chair to appoint reviewers
and pc-members. If verification succeeds, authorization is granted, and r is a valid review
for id.

A delegate v receives from a reviewer a request to review paper id, with additional
parameters p (the verifier code to be passed on to the server), and dc (the evidence that
represents a chain of delegation). The delegate may appoint another sub-reviewer, adding
a delegation step to the chain (v,{u, id,ok}kdv,dc), or file a review, adding evidence of its
opinion to the top of the chain:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,p,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,p,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,p,(v,{u,id,ok}kdv,dc)))

The pc-member can embed its logical effects directly in the verification code. For that
reason, it transmits as evidence ok tokens with empty logical effects. The verifier fver, used
to file a review ignores the principal name and the evidence, states that v holds opinion r
on id, parses the server credentials to get the key to appoint pc-members, proves that v is
a pc-member, by decrypting the appointment token (passed by the server earlier on), and
finally signals success.

The (commented) verifier code dver involves a loop to gather and verify all the elements
of the delegation chain:

PCMember(v:Un,pctoken:Un) =
!in paperassign(=v,id,idtoken);
(in review(r); out filereview(v,id,r,fver,ok) |
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(in delegate(u); out reviewrequest(u,id,dver,ok))

fver = ( , ,keys,return) (Opinion(v,id,r) | tuple keys as ( , ,kp);
decrypt pctoken as {=v, }kp; out return(ok))

dver = (z,r,evid,keys,return) (Delegate(v,u,id) | // implicit effect
tuple evid as (op,dc); // parse the evidence
tuple keys as (pwdb,ka, ); // parse server keys
in pwdb(=z,kdz,krz); // retrieve the credentials for z
decrypt op as {=id,=r, }krz; // check that z has opinion r on id
new link:Ch(u:Un,dc:Un,Ok(Delegate(u,z,id)));
out link(z,dc,ok) | !in link(w,dc, ); // start the delegation chain loop

( tuple dc as (t,del,dc); in pwdb(=t,kdt, );
decrypt del as {=w,=id, }kdt; out link(t,dc,ok)) |

// loop repetition: check delegation step
( tuple dc as =ok; decrypt idtoken as {=v,=id, }ka; out return(ok))
// end of the loop: check reviewer token

This code, and a few additional code fragments not shown here, can be assembled into
a program that represents the entire conference reviewing system. This program typechecks
in an environment of the form x̃:Ũn (according to the rules of Section 3). Therefore, The-
orem 2 applies, and guarantees robust safety. In this particular case, this theorem implies
that expectations in the server code, such as Review(v,id,r), are always satisfied at run-time
when they occur, even in an untrusted environment.

4.3 Server-Side Proxy

Our second example illustrates the use of verifiers as server-side proxies installed by clients.
It illustrates the flexibility of using typecase and spawn independently from the derived
verify construct.

We modify our previous example so that the pc-member sends the delegation verifier
dver directly to the server, which can use it to authorize requests from delegated reviewers.
We show the code for dealing with delegated reviews, which is the most interesting. The
server registers proxies for each pc-member, and accepts requests on each proxy. A message
on the public channel newproxy causes the server to typecheck the code dver and install it
as a handler and verifier for requests coming from reviewers delegated by pc-member u:

Server(pwdb:T,ka:KA,kp:KP) =
S | new protectedfilereview:V;

(!in newproxy(dver); typecase dver is y:Pr(U);
spawn y with ((pwdb,ka,kp),protectedfilereview)

|!in protectedfilereview(v,id,r, ); expect Review(v,id,r); [...])
U = ((T,KA,KP),V)
V = Ch(v:Un,id:Un,r:Un,Ok(Review(v,id,r)))

Once appointed, a pc-member installs its delegation proxy on the server. The proxy
receives requests from delegates on a dedicated channel and authorizes them. Upon delega-
tion, the pc-member needs to send to the delegate a request that contains the name of the
dedicated channel and evidence of delegation. The evidence consists of a delegation chain
that contains a delegation step {u,id,ok}kdv (the name of the delegate and the paper id en-
crypted under the delegation key of the pc-member, and an ok token) and the list terminator
(another ok token):
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PCMember(v:Un,pctoken:Un) =
!in paperassign(=v,id,idtoken);
new filesubreview:Un;

out newproxy(dver) |
(in delegate(u); out reviewrequest(u,id,filesubreview,({u,id,ok}kdv,ok)))

The verifier dver now installs a process ready to listen to delegate requests on channel
filesubreview, and then verifies requests similarly to the code shown above for off-line del-
egation. The main differences are that, in this case, the result returned by the verification
process needs to contain the parameters v, id,r of the effect Review(v,id,r) to be enforced,
and the code does not contain the implicit delegation effect Delegate(v,u,id):

dver = (keys,return) !filereview(z,id,r,evid);
tuple evid as (op,dc); // parse the evidence
tuple keys as (pwdb,ka, ); // parse server keys
in pwdb(=z,kdz,krz); // retrieve the credentials for z
decrypt op as {=id,=r, }krz; // check that z has opinion r on id
new link:Ch(u:Un,dc:Un,Ok(Delegate(u,z,id)));
out link(z,dc,ok) | !in link(w,dc, ); // start the delegation chain loop

( tuple dc as (t,del,dc); in pwdb(=t,kdt, );
decrypt del as {=w,=id, }kdt; out link(t,dc,ok)) |

// loop repetition: check delegation step
( tuple dc as =ok; decrypt idtoken as {=v,=id, }ka; out return(z,id,r,ok))
// end of the loop: check reviewer token

The code for the delegate is little changed. It files reviews on the dedicated channels, or
delegates further:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,filereview,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,filereview,(v,{u,id,ok}kdv,dc)))

4.4 Best-Effort Evidence

Our third example presents a system that supports the possibility for reviewers to appoint
sub-reviewers, without needing immediate access to their delegation credentials. In a com-
pletely static type system, a typical delegation protocol such as the one presented in the
previous section needs to record in a delegation chain the causal relation between delega-
tion steps. Hence, a reviewer that momentarily does not have access to its delegation key
cannot appoint a sub-reviewer.

We present a protocol that is well-typed, hence guarantees that, each time authorization
to file a review is granted, the requesting principal is provably a reviewer. Yet, the protocol
is “best-effort”, in that authorization can be denied at run-time if the server has not yet
received all the delegation messages necessary to reconstruct a valid delegation chain.

To simplify the presentation, and to illustrate another advantage of CCA, we present
code that does not use cryptography. Suppose that the machine of the reviewer is down, so
she picks up the phone and asks a sub-reviewer to review a paper and to send his opinion
(in the form of a simple verifier) to the server, trusting that the review will be accepted.
The sub-reviewer can do so, or delegate further by issuing another informal request and by
separately contacting the server to communicate his delegation decision:
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Delegate(v:Un) =
!in phonereviewrequest(=v,id);
(in accept(r); out filereview(v,id,r,fver))

|(in delegate(u); out phonereviewrequest(u,id) | out latedelegation(v,u,id,dver))
fver = (return)(Opinion(v,id,r)|out return(ok))
dver = (return)(Delegate(v,u,id)|out return(ok))

The server independently accepts requests for filing reviews and messages that state
delegation decisions. In the first case, the server simply verifies that the review can be filed;
in the second case it verifies that it is safe to assert a delegation step. At run-time the server
authorizes the request to file a review from a delegate only if it has already verified enough
delegation evidence to form a chain that originates from an appointed reviewer:

Server() =
S | PCMember(alice) | Reviewer(bob,42)

| (!in filedreview(v,id,r,fver); verify fver〈〉:Review(v,id,r); [...])
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Delegate(v,u,id);Delegate(v,u,id))

In previous static systems, this sort of best-effort code was not possible. The code had
to be written so that the expectation Review(v,id,r) could occur only after code that would
check the necessary delegation facts.

5 From Theorem Proving to Proof Checking

We have shown how to pass and dynamically check the code of a verifier process. The
dynamic check may involve invoking a theorem prover, potentially a costly operation. On
the other hand, passing proofs only requires the receiving side to have a proof checker,
reducing both the trusted computing base and the performance cost of verification. For this
reason, we extend our framework with the capability to pass also hints, that can help the
receiver of a reference monitor with the logical proofs involved in dynamic typechecking.
Hints could be proofs, in the formal sense of the word, or any other kind of information
which may (or may not) be helpful. In particular, hints could be incomplete proofs, that
simplify rather than eliminate theorem proving.

5.1 From oks to Hints

The ok token can already be interpreted as an empty hint, that leaves to the typechecker
the burden of finding a proof. We parametrize ok tokens by a generic language of (possibly
empty) proof hints H. Hints may contain variables, so that they can be combined at run-
time to form larger hints. Expectations now mention a term that can be used as a hint to
prove C.

Syntax for Hints

M,N ::= okH | . . . proof hint H replaces ok
P,Q,R ::= expect C by M | . . . expectation that clause C is derivable by M replaces expect C

The notion of type-safety does not change (just replace expect C by expect C by M),
since the final result that we desire is still that any expectation is justified by logical en-
tailment. It is the verification process that can be made simpler by adopting a verification
relation, which naturally should imply entailment.

14



Verification Relation: V (M,C,S)

Given an authorization logic (C , fn, |=), we assume an abstract verification predicate V that holds
only if a message M is a proof of clause C starting from policy S, and such that V (M,C,S)⇒ S |= C.

We use hints and the verification relation in the typing rules that involve logical effects.
In particular, we only need to replace (Msg Ok), (Msg Ok Un), and (Proc Expect) by the
corresponding typing rules given below.

Typing Rules for Hints

(Msg Hint)
E,S ` � fn(H)⊆ dom(E) V (H,C,clauses(E)) ∀C ∈ S

E ` okH : Ok(S)

(Msg Hint Un)
E ` � fn(H)⊆ dom(E)

E ` okH : Un

(Proc Expect Hint)
E,C ` � E `M : Ok(S) C ∈ S

E ` expect C by M

The rules for hints are the obvious adaptations of the corresponding rules for ok . Note that
verification can assume as lemmas the effects of hints that are just variables, because they
are included by clauses(E) in the premise of (Msg Hint). Rule (Proc Expect Hint) no longer
involves verification directly. It is the premise needed to give M the Ok(S) type that may
involve proof-checking.

This type system conservatively extends the one without hints. In fact, the type system
presented in Section 3 correspond exactly to the instance of the current type system where
H is empty, each expectation is of the form expect C by ok , and V (M,C,S) is defined as
S |= C.

Theorem 3 (Safety with Hints). (i) If E ` P then P is safe for E. (ii) If x̃:Ũn,S ` P then P
is robustly safe for x̃:Ũn,S.

The theorem holds for any choice of the verification function V , as long as it implies logical
entailment |=. In particular, if V is not monotonic or not closed under substitutions, the type
system is safe but may not enjoy type preservation.

The syntactic sugar from Section 4 can be adapted easily to hints by making explicit the
variable x that is bound to the hint that results from the verification process, so that it can be
used in subsequent expectations, or to build more complex hints.

Derived Typing Rule for Verification with Hints: verify M〈N:T 〉:x:S;P

(Proc Verify Hint)
E `M : U [ ˜E ` N : T ] E,x:S ` P

E ` verify M〈[Ñ:T ]〉:x:S;P

5.2 Verification in Datalog

For the examples, we use the simple hint language and logical verification relation for Data-
log defined below, where S |=1 C is the single-step entailment relation.

For example, considering S = D :−C,C :−B,B :−A,A and S1 = D :−C,C :−B,B and
S2 =C,D :−C, we have that V (ok(S1,S2),D,S) follows by an instance of (Verify Pair) with
premises V (okS1,C,S), V (okS1,D :−C,S), and V (okS2,D,S1).
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Hints and Verification

H ::= S |M proof hint: clauses S or message M

(Verify S)
S |=1 C′ ∀C′ ∈ S′ S′ |=1 C

V (okS′,C,S)

(Verify Pair)
V (okM1,C′,S) ∀C′ ∈M2 V (okM2,C,M1)

V (ok(M1,M2),C,S)

okS = S (M1,M2) = M1∪M2 M = ∅ otherwise

5.3 Example: Best-Effort Evidence Revisited

We revisit the example of Section 4. In the system without automatic theorem prover, it is
not enough to perform the operational checks that grant authorization. It is also necessary
to provide the logical engine with hints on how to derive the right authorization facts.

For example, a reviewer v for paper id that decides to appoint a sub-reviewer u, needs to
tell the server how to derive from the policy the authorization fact Reviewer(u,id), based on
the facts that may be available by the time the request is submitted. In particular, the hint H
in the verifier code dver contains the facts Delegate(v,u,id), stated by v itself, Reviewer(v,id)
which v cannot state, but that it can assume to be asserted by the time the delegation request
is filed, and the rule needed to conclude Reviewer(u,id). The (simpler) case for filing reviews
is given in Appendix B.

H = Reviewer(U,ID) :− Reviewer(V,ID),Delegate(V,U,ID); Reviewer(v,id);Delegate(v,u,id)
dver = (return)(Delegate(v,u,id) | out return(ok(H))

The server code needs to change the effects obtained by verifying a delegation request,
essentially stating a lemma useful to prove further authorization.

S | PCMember(alice) | Reviewer(bob,id) | ...
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Reviewer(u,id);Reviewer(u,id))

6 Conclusions

In this paper, we introduce “Code-Carrying Authorization” as a discipline for passing frag-
ments of a reference monitor rather than proofs in order to perform run-time authorization.
These fragments are themselves checked dynamically, since in general they are not trusted.
We present a typing discipline that statically enforces safety with respect to authorization
logics, and explore the notion of passing (proof) hints as a way to alleviate the dynamic veri-
fication process. The recent literature contains other type systems for authorization policies.
While we base our work on that of Fournet et al. [12], because of its simplicity, the ideas
that we explore should carry over to more elaborate languages. In particular, these variants
would address the problem of partial trust [13]. They may also enable us to instantiate CCA
in a general-purpose programming language such as F# [6] (a dialect of ML). Going be-
yond the present exploration (in which we emphasize concepts and theory over practice),
such extensions are important for the further study of CCA and its applications.
Acknowledgments. We thank Gordon Plotkin for useful comments and suggestions. Sergio
Maffeis is supported by EPSRC grant EP/E044956/1. This work was done while Maffeis
was visiting Microsoft Research, Silicon Valley, whose hospitality is gratefully acknowl-
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Authorization Logic: (C , fn, |=)
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An authorization logic (C , fn, |=) is a set of clauses C ∈ C closed by substitutions σ of messages for
names, with finite sets of free names fn(C) such that Cσ = C if dom(σ)∩ fn(C) = ∅ and fn(Cσ) ⊆
(fn(C)\dom(σ))∪ fn(σ); and with an entailment relation S |= C, between sets of clauses S ⊆ C and
clauses C,C′ ∈ C , such that (Mon) S |= C⇒ S∪{C′} |= C and (Subst) S |= C⇒ Sσ |= Cσ .

Free Names: fn(M), fn(T )

fn(x) = {x} fn({M}N) = fn((M,N)) = fn(M)∪ fn(N) fn(okH) = fn(H)
fn((x:T )P) = fn(T )∪ (fn(P)\{x})
fn(Un) = ∅ fn(Key(T )) = fn(Ch(T )) = fn(T ) fn(Pr(T )) = fn(T )

fn((x:T,U) = fn(T )∪ (fn(U)\{x}) fn(Ok(S)) = fn(S)

Rules for Structural Equivalence: P≡ Q

P≡ P (Struct Refl)
Q≡ P⇒ P≡ Q (Struct Symm)
P≡ Q,Q≡ R⇒ P≡ R (Struct Trans)

P≡ P′⇒ new x:T ;P≡ new x:T ;P′ (Struct Res)
P≡ P′⇒ P | R≡ P′ | R (Struct Par)
P | 0≡ P (Struct Par Zero)
P | Q≡ Q | P (Struct Par Comm)
(P | Q) | R≡ P | (Q | R) (Struct Par Assoc)

new x:T ;(P | Q)≡ P | new x:T ;Q (Struct Res Par) (for x /∈ fn(P))
new x1:T1;new x2:T2;P≡ (Struct Res Res)

new x2:T2;new x1:T1;P (for x1 6= x2,x1 /∈ fn(T2),x2 /∈ fn(T1))

Syntactic Sugar: Input, Decryption and Pattern-Matching

in M(M̃);P = in M(y:TyC(M));tuple y as (M̃);P (S Input)
(where y 6∈ fn(M̃)∪ fn(P))

decrypt M as {Ñ}N;P = decrypt M as {y:TyK(N)}N;tuple y as (Ñ);P (S Decrypt)
(where y 6∈ fn(M̃)∪ fn(P))

tuple M as (z,M̃);P = split M as (z:TyL(M),y:TyR(M));tuple y as (M̃);P (S Split)
(where y 6∈ fn(M̃)∪ fn(P)∪{z})
tuple M as (z);P = split (M,M) as (z:Ty(M),y:Ty(M));P (S Split 0)
(where y 6∈ fn(P)∪{z})
tuple M as (=N, Ñ);P = match M as (N,y:TyR(M));tuple y as (Ñ);P (S Match)
(where y 6∈ fn(M̃)∪ fn(P))

tuple M as (=N);P = match (M,M) as (N,y:Ty(M));P (S Match 0)
(where y 6∈ fn(P))

When an environment E is fixed, the macro Ty[C/K/L/R](M) can be translated to T

if E `M : T ′ where T ′ is respectively T,Ch(T ),Key(T ),(x : T,U) or (x : U,T ).

Substitution for Types:

Unσ = Un Key(T )σ = Key(T σ) (x:T,U){M/x}= (x:T{M/x},U)

(x:T,U){M/y}= (x:T{M/y},U{M/y}) (if x 6= y)

Ch(T )σ = Ch(T σ) Ok(S)σ = Ok(Sσ) Pr(T )σ = Pr(T σ)

18



Rules for Environments: E ` �

(Env ∅)

∅ ` �

(Env x)
E ` � fn(T )⊆ dom(E) x /∈ dom(E)

E,x:T ` �

(Env C)
E ` � fn(C)⊆ dom(E)

E,C ` �

Additional Typing Rules for Processes: E ` P

(Proc Match)
E `M : (x:T,U) E ` N : T E,y:U{N/x} ` P

E `match M as (N,y:U{N/x});P

(Proc Match Un)
E `M : Un E ` N : Un E,y:Un ` P

E `match M as (N,y:Un);P

(Proc Split)
E `M : (x:T,U) E,x:T,y:U ` P

E ` split M as (x:T,y:U);P

(Proc Split Un)
E `M : Un E,x:Un,y:Un ` P

E ` split M as (x:Un,y:Un);P

Derived Syntax and Derived Typing Rule for Verification: verify M〈Ñ:T 〉:x:S;P

verify M〈[z̃:Un,N:T ]〉:x:S;P , new c:Ch(Ok(S));
(
typecase M of y:Pr([z̃:Un,T, ]Ch(Ok(S)));

spawn y with ([z̃,N, ]c) | in c(x:Ok(S));P
)

({c,y,x}∩ fn(P,M, [N, ]S) = ∅, {z̃} ⊆ fn(S), x /∈ fn(M[,N]))

(Proc Verify)
E `M : U [ ˜E ` N : T ] E,x:Ok(S) ` P

E ` verify M〈[Ñ:T ]〉:x:S;P

B Code from Examples

The complete code for the best-effort-evidence example, with hints, is reported below.

Delegate(v:Un) =
!in phonereviewrequest(=v,id);
(in accept(r); out filereview(v,id,r,fver))

|(in delegate(u); out phonereviewrequest(u,id)
| out latedelegation(v,u,id,dver))

fver = (return)(Opinion(v,id,r)|out return(ok(HF)))
dver = (return)(Delegate(v,u,id)|out return(ok(HD))

HD = (Reviewer(U,ID) :− Reviewer(V,ID),Delegate(V,U,ID)),
Reviewer(v,id),
Delegate(v,u,id)

HF = (Review(U,ID,R) :− Reviewer(U,ID),Opinion(U,ID,R)),
Reviewer(v,id),
Opinion(v,id,r)

S | PCMember(alice) | Reviewer(bob,id)
| (!in filedreview(v,id,r,fver); verify fver〈〉:Review(v,id,r); [...])
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Reviewer(u,id);Reviewer(u,id))
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C Proofs

In order to prove the main theorems in Section 3 and Section 5, we first prove subject
reduction, safety and robust safety for a reference type system obtained by replacing rule
(Msg Hint) with the rule below.

Typing Rule for the Reference Type System

(Msg Hint Gen)
E,S ` � fn(H)⊆ dom(E) clauses(E) |= C ∀C ∈ S

E ` okH : Ok(S)

We then show that the type system of Section 3 coincides with the reference type system for
the sub-language where each hint is the empty set of clauses, and each expectation has the
token ok as a parameter. Finally, we show that for each sound verification predicate, rule
(Proc Expect Hint) is derivable in the reference type system, hence safety and robust safety
(but not necessarily subject reduction) follow for the type system of Section 5.

C.1 Results for the Reference Typing System

We proceed to show the main properties of the type system, in particular subject congruence
and subject reduction, which together give type preservation (Lemma 1).

Before proving subject congruence and subject reduction in detail, we state without
proof a series of fairly standard technical properties of the type system. In the rest of this
section, let J ∈ {�,M : T,P}.

Lemma 3 (Well-formedness). If E `J then E ` � and fv(J )⊆ dom(E).

Proof By induction on the derivation of E `J . �

Lemma 4 (Exchange). If E1,E2,E3,E4 `J and dom(E2)∩ fv(E3) = ∅ then
E1,E3,E2,E4 `J .

Proof By induction on the derivation of E1,E2,E3,E4 `J . �

Lemma 5 (Weakening). If E1,E2 `J , E ` � and fv(E)⊆ dom(E1) and
dom(E)∩dom(E1,E2) = ∅, then E1,E,E2 `J .

Proof By induction on the derivation of E1,E2 `J , using property (Mon) of the autho-
rization logic.

�

Lemma 6 (Strengthening). (i) If E,x:T,E ′ `J and T is generative and x 6∈ fn(J )∪
fn(E ′) then E,E ′ `J . (ii) If E,C,E ′ ` � then E,E ′ ` �.

Proof By induction on the derivations of E,x:T,E ′ `J and E,C,E ′ ` �. �

Lemma 7 (Substitution). If E1,x:T,E2 `J and E1 `M : T then
E1,E2{M/x} `J {M/x}.

Proof By induction on the derivation of E1,x:T,E2 `J , using property (Subst) of the
authorization logic. �
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Lemma 8 (Environment Change). If E1,E,E2 `J and fv(J )∩dom(E) = ∅ and
E1,E ′,E2 ` � and dom(E)⊆ dom(E ′) and clauses(E)⊆ clauses(E ′) then E1,E ′,E2 `J .

Proof By induction on the derivation of E1,E,E2 `J . �

Lemma 9 (Normal Form). If E ` P and clauses(env(P)x̃) = S then E,env(P)x̃ ` � and
there exists T̃ ,P′ such that P≡ new x̃:T̃ ;(S | P′).

Proof By induction on the derivation of E ` P. �

Lemma 10 (Opponent Typability). Let J ∈ {M:Un,P}. If fn(J ) = {x̃} and J does
not contain expectations, then x̃:Un `J .

Proof By induction on the derivation of x̃:Un `J . �

Proof of Lemma 2. For any opponent O, x̃:Ũn ` O, where fn(O)⊆ {x̃}.

Proof Follows directly from Lemma 10. �

Lemma 11 (Subject Congruence). If E ` P and P≡ P′ then E ` P′ and clauses(env(P)) =
clauses(env(P′)).

Proof Let ρ(ã) be a permutation of ã.
By induction on the derivation of P≡ P′ we show:

(1) if E ` P then E ` P′ and clauses(env(P)ã) = clauses(env(P′)ρ(ã));
(2) if E ` P′ then E ` P and clauses(env(P′)ρ(ã)) = clauses(env(P)ã).

(Struct Refl) Suppose P≡ P.
Both (1) and (2) are immediate.

(Struct Symm) Suppose P≡ Q.
By hypothesis, Q≡ P.
Both (1) and (2) follow immediately applying the inductive hypotheses (2) and (1).

(Struct Trans) Suppose P≡ R.
By hypothesis, P≡ Q,Q≡ R.
Both cases follow easily from transitivity of implication and the inductive hypotheses.

(Struct Res) Suppose new a:T ;P≡ new a:T ;P′.
By hypothesis, P≡ P′.
By hypothesis of (1), E ` new a:T ;P and
clauses(env(new a:T ;P)a,ã) = clauses(env(P)ã).
By (Proc Res), E,a:T ` P.
By inductive hypothesis, E,a:T ` P′ and clauses(env(P)ã) = clauses(env(P′)ρ(ã)).
By (Proc Res), E ` new a:T ;P′.
By definition, clauses(env(new a:T ;P′)a,ρ(ã)) = clauses(env(P′)ρ(ã)) and
clauses(env(P)ã) = clauses(env(new a:T ;P)a,ã).
The proof for (2) is symmetric.
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(Struct Par) Suppose P | Q≡ P′ | Q.
By hypothesis, P≡ P′.
By hypothesis of (1), E ` P | Q.
By (Proc Par), E,env(Q)c̃ ` P and E,env(P)ã ` Q and fv(P | Q)⊆ dom(E).
By inductive hypothesis, E,env(Q)c̃ ` P′ and
clauses(env(P)ã) = clauses(env(P′)ρ(ã)).
By Lemma 9, E,env(P′)ρ(ã) ` �.
By definition of env, dom(env(P)ã) = dom(env(P′)ρ(ã)) = {ã}.
By Lemma 8, E,env(P′)ρ(ã) ` Q.
By (Proc Par), E ` P′ | Q.
By definition of env, clauses(env(P | Q)ã,c̃) = clauses(env(P′ | Q)ρ(ã),c̃).
The proof for (2) is symmetric.

(Struct Par Zero) Suppose P | 0≡ P.
By hypothesis of (1), E ` P | 0.
By (Proc Par), E,env(0) ` P and E,env(P) ` 0 and fv(P | 0)⊆ dom(E).
By definition of env, env(0) = ∅, hence E ` P.
By definition of clauses, clauses(env(0)) = ∅, hence
clauses(env(P | 0)) = clauses(env(P)).
The proof for (2) is similar.

(Struct Par Comm) Suppose P | Q≡ Q | P.
By hypothesis of (1), E ` P | Q.
By (Proc Par), E,env(Q)c̃ ` P and E,env(P)ã ` Q and fv(P | Q)⊆ dom(E).
By (Proc Par), E ` Q | P.
By definition of clauses and env, clauses(env(P | Q)ã,c̃) = clauses(env(Q | P)c̃,ã).
The proof for (2) is symmetric.

(Struct Par Assoc) Suppose (P | Q) | R≡ P | (Q | R).
By hypothesis of (1), E ` (P | Q) | R.
By (Proc Par), E,env(R)c̃ ` P | Q, E,env(P | Q)ã,b̃ ` R and fv((P | Q) | R)⊆ dom(E).
By (Proc Par), E,env(R)c̃,env(Q)b̃ ` P, E,env(R)c̃,env(P)ã ` Q and
fv(P | Q)⊆ dom(E,env(R)).
By Lemma 4, E,env(Q)b̃,env(R)c̃ ` P and E,env(P)ã,env(R)c̃ ` Q.
By (Proc Par), E,env(P)ã ` Q | R.
By (Proc Par), E ` P | (Q | R).
By definition of clauses and env, clauses(env((P | Q) | R)ã,b̃,c̃) = clauses(env(P | (Q |
R))ã,b̃,c̃).
The proof for (2) is similar.

(Struct Res Par) Suppose new a:T ;(P | Q)≡ P | new a:T ;Q.
By hypothesis, a /∈ fn(P).
By hypothesis of (1), E ` new a:T ;(P | Q) and
env(new a:T ;(P | Q)) = a:T,env(P)ã,env(Q)c̃.
By (Proc Res), E,x:T ` P | Q.
By (Proc Par), E,a:T,env(Q)c̃ ` P and E,a:T,env(P)ã ` Q.
By (Proc Res), E,env(P)ã ` new a:T ;Q.
Since a /∈ fn(P), by Lemma 6, E,env(Q)c̃ ` P.
By (Proc Par), E ` P | new a:T ;Q.
By definition of env, env(P | new a:T ;Q)ã,a,c̃ = env(P)ã,a:T,env(Q)c̃.
By definition of clauses,
clauses(env(new a:T ;(P | Q))a,ã,c̃) = clauses(env(P | new a:T ;Q)ã,a,c̃).
The proof for (2) is similar, using Lemma 5 instead of Lemma 6.
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(Struct Res Res) Suppose new a1:T1;new a2:T2;P≡ new a2:T2;new a1:T1;P.
By hypothesis, a1 6= a2,x1 /∈ fn(T2),a2 /∈ fn(T1).
By (Proc Res), E,a1:T1 ` new a2:T2;P.
By (Proc Res), E,a1:T1,a2:T2 ` P.
Since a1 6= a2,a1 /∈ fn(T2),a2 /∈ fn(T1), by Lemma 4, E,a2:T2,a1:T1 ` P.
By two applications of (Proc Res), E ` new a2:T2; ,new a1:T1;P.
By definition of clauses, clauses(env(new a1:T1;new a2:T2;P)a1,a2,ã) =
clauses(env(new a2:T2;new a1:T1;P)a2,a1,ã) = clauses(env(P)ã).
The proof for (2) is symmetric. �

Lemma 12 (Subject Reduction). If E ` P and P→E P′ then E ` P′ and
clauses(env(P)ã)⊆ clauses(env(P′)c̃) and {ã} ⊆ {c̃}.

Proof The proof is by induction on the derivation of P→E P′.

(Red Par) Suppose P | Q→E P′ | Q.
By hypothesis, P→E,env(Q) P′.
By hypothesis of the lemma, E ` P | Q.
This must follow from applying (Proc Par), with the premises
E,env(Q)c̃ ` P, E,env(P)ã ` Q and fn(P | Q)⊆ dom(E).
By inductive hypothesis, E,env(Q)c̃ `P′ and clauses(env(P)ã)⊆ clauses(env(P′)b̃) and
{ã} ⊆ {b̃}.
By Lemma 9, E,env(P′)b̃ ` �.
By definition of env, dom(env(P)ã) = {ã} and dom(env(P′)b̃) = {b̃}.
By Lemma 8, E,env(P′)b̃ ` Q.
By (Proc Par), E ` P′ | Q.
By definition, clauses(env(P | Q)ã,c̃)⊆ clauses(env(P′ | Q)b̃,c̃) and {ã, c̃} ⊆ {b̃, c̃}.

(Red Res) Suppose new a:T ;P→E new a:T ;P′.
By hypothesis, P→a:T P′.
By hypothesis of the lemma, E ` new a:T ;P.
This must follow from applying (Proc Res), with the premise E,a:T ` P.
By inductive hypothesis, E,a:T ` P′ and clauses(env(P)ã) ⊆ clauses(env(P′)c̃) and
{ã} ⊆ {c̃}.
By (Proc Res), E ` new a:T ;P′.
By definition, clauses(env(new a:T ;P)a,ã)⊆ clauses(env(new a:T ;P′)a,c̃) and {a, ã} ⊆
{a, c̃}.

(Red Struct) Suppose P→E P′.
By hypothesis, P≡ Q,Q→E Q′,Q′ ≡ P′.
By Lemma 11 on E ` P, E ` Q and clauses(env(P)ã) = clauses(env(Q)ρ1(ã)).
By inductive hypothesis on E ` Q, E ` Q′ and
clauses(env(Q)ρ1(ã))⊆ clauses(env(Q′)b̃) and {ρ(ã)} ⊆ {b̃}, hence {ã} ⊆ {b̃}.
By Lemma 11 on E ` Q′, E ` P′ and clauses(env(Q′)b̃) = clauses(env(P′)ρ2(b̃)).
By transitivity, clauses(env(P)ã)⊆ clauses(env(P′)ρ2(b̃)) and {ã} ⊆ {ρ2(b̃)}.

(Red Comm) Suppose out a(M) | in a(x:T );P→E P{M/x}.
By hypothesis of the lemma, E ` out a(M) | in a(x:T );P.
This must follow from applying (Proc Par), with the premises E ` out a(M), E `
in a(x:T );P and fn(out a(M) | in a(x:T );P) ⊆ dom(E), where we used the fact that
env(out a(M)) = env(in a(x:T );P) = ∅).
We split the proof in two cases, depending on the hypothesis used to derive
E ` in a(x:T );P.
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– Suppose E ` in a(x:T );P follows from applying (Proc Input) with the premises
E ` a : Ch(T ) and E,x:T ` P.
It must be the cases that E ` out a(M) follows from applying (Proc Output) with
the premises E ` a : Ch(T ) and E `M : T .
By Lemma 7, E ` P{M/x}.
By definition, clauses(env(out a(M);Q | in a(x);P)) = ∅, and
∅⊆ clauses(env(Q | P{M/x})).

– Suppose E ` in a(x:T );P follows from applying (Proc Input Un) with the premises
E ` a : Un and E,x:T ` P, where T = Un.
It must be the cases that E ` out a(M) follows from applying (Proc Output Un)
with the premises E ` a : Un and E `M : Un.
By Lemma 7, E ` P{M/x}.
By definition, clauses(env(out a(M);Q | in a(x);P)) = ∅, and
∅⊆ clauses(env(Q | P{M/x})).

(Red !Comm) Similar to the previous case.
(Red Decrypt) Suppose decrypt {M}k as {y:T}k;P→ P{M/y}.

If E ` decrypt {M}k as {y:T}k;P is derived by (Proc Decrypt) then E `M : T , E ` k :
Key(T ), and E,y:T ` P.
By Lemma 7, E ` P{M/y}.
Note that env(decrypt {M}k as {y:T}k;P) = ∅.
The case for rule (Proc Decrypt Un) is similar.

(Red Split) Suppose split (M,N) as (x:T,y:U);P→ P{M/x}{N/y}.
If E ` split (M,N) as (x:T,y:U);P is derived by (Proc Split) then E ` (M,N) : (x:T,U)
and E,x:T,y:U ` P.
By (Msg Pair), E `M : T and E ` N : U{M/x}.
By Lemma 7, E,y:U{M/x} ` P{M/x}.
By Lemma 7, E ` P{M/x}{N/y}.
Note that env(split (M,N) as (x:T,y:U);P) = ∅.
The case for rule (Proc Split Un) is similar.

(Red Match) Suppose match (M,N) as (M,y:U);P→ P{N/y}.
If E ` match (M,N) as (M,y:U);P is derived by (Proc Match) then E ` (M,N) :
(x:T,U), E `M : T and E,y:U{M/x} ` P.
By (Msg Pair), E ` N : U{M/x}.
By Lemma 7, E ` P{N/y}.
Note that env(match (M,N) as (M,y:U);P) = ∅.
The case for rule (Proc Match Un) is similar.

(Red Spawn) Suppose spawn (x:T )P with M→E P{M/x}.
We split the proof in two cases, depending on the hypothesis used to derive
E ` spawn (x:T )P with M.

(Proc Spawn) The judgment must follow from the premises E ` (x:T )P : Pr(T ) and
E `M : T .
It must be the case that E ` (x:T )P : Pr(T ) follows by (Msg Proc), from the premise
E,x:T ` P.

(Proc Spawn Un) The judgment must follow from the premises E ` (x:Un)P : Un and
E `M : Un.
It must be the case that E ` (x:Un)P : Un follows by (Msg Proc Un), from the
premise E,x:Un ` P.
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By Lemma 7, E ` P{M/x}.
By definition, spawn (x:T )P with M = ∅.

(Red Typecase) Suppose typecase M of y:T ;P→E P{M/y} because E `M : T .
It must be the case that E ` typecase M of y:T ;P is derived by (Proc Typecase) from
the premises E `M : U and E,y:T ` P.
By Lemma 7, E ` P{M/y}.
Note that env(typecase M of y:T ;P) = ∅.

�

Lemma 13 (Safety). If E ` P and then P is safe for E.

Proof We need to show that whenever P →∗≡E new x̃:T̃ ;(expect C by M | P′), we can
refactor P′ so that P′ ≡ new ỹ:Ũ ;(S | P′′), and S∪ clauses(E) |= C, with {ỹ}∩ fn(C) = ∅.
By hypothesis, E ` P.
By Lemma 12 and Lemma 11, if P →∗≡E new x̃:T̃ ;(expect C by M | P′) then
E ` new x̃:T̃ ;(expect C by M | P′).
This must follow from repeatedly applying (Proc Res) from the premise
E, x̃:T̃ ` expect C by M | P′.
This must follow from (Proc Par), from the premises E, x̃:T̃ ` P′ and E, x̃:T̃ ,env(P′)ỹ `
expect C by M, where fn(expect C by M)⊆ (dom(E)∪{x̃}).
By well-formedness of the environment, {ỹ}∩ fn(C) = ∅. This must follow by (Proc Expect
Hint), from the premise E, x̃:T̃ ,env(P′)ỹ `M : Ok(S), where C ∈ S.
This must follow by (Msg Hint Gen) from the premise clauses(E, x̃:T̃ ,env(P′)ỹ) |= C′, for
all C′ ∈ S, hence clauses(E, x̃:T̃ ,env(P′)ỹ) |= C.
Remember that since all the x̃ come from nested restrictions, all the T̃ are generative, hence
clauses(x̃:T̃ ) = ∅.
Assume, without loss of generality, that clauses(env(P′)ỹ) = S.
By definition, S∪ clauses(E) |= C.
By Lemma 9 on (ii), P′ ≡ new ỹ:Ũ ;(S | P′′). �

Lemma 14 (Robust Safety). If x̃:Ũn,S ` P then P is robustly safe for x̃:Ũn,S.

Proof Consider an arbitrary opponent O, and let {z̃}= fn(O)∪{x̃}.
Let E = z̃:Ũn,S.
By Lemma 10, and Lemma 5, E,env(P) ` O.
By hypothesis x̃:Ũn,S ` P.
By Lemma 5 and Lemma 4, E,env(O) ` P.
By (Proc Par), E ` P | O.
By Theorem 1, P | O is safe for E. �

C.2 Main Results

In this Section, we let E ` P range over typing judgments holding for the rules (and corre-
sponding processes) of the reference type system, or of the type systems of Section 3 and
Section 5. The menaing will be clear form the context.

Lemma 15 (Derived Typing Rules).

(1) If H is defined as the empty set of clauses, and for each expect C by M we have M =
ok∅, then (Msg Hint Gen), (Msg Hint Un) and (Proc Expect Hint) are equivalent to
(Msg Ok), (Msg Ok Un) and (Proc Expect).
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(2) If V is a sound verification predicate, (Msg Hint) is a sound rule in the reference type
system.

Proof

(1) By inspection of the rules.
(2) By (Msg Hint Gen) and by soundness of the verification predicate with respect to logical

entailment, which follows by definition of V . �

Proof of Lemma 1 (Type Preservation). If E ` P and P →∗≡E P′ then E ` P′.

Proof By Lemmas 11 and 12 noting that the reduction rules trivially preserve the condi-
tions on hints and expectations as of point (1) of Lemma 15.

�

Proof of Theorem 1. If E ` P and then P is safe for E.

Proof By point (1) of Lemma 15 and Lemma 13. �

Proof of Theorem 2. If x̃:Ũn,S ` P then P is robustly safe for x̃:Ũn,S.

Proof By point (1) of Lemma 15 and Lemma 14. �

Proof of Theorem 3. (i) If E ` P and then P is safe for E. (ii) If x̃:Ũn,S ` P then P is
robustly safe for x̃:Ũn,S.

Proof By point (2) of Lemma 15, Lemma 13 and Lemma 14. �
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