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Abstract

Peer to peer systems, exchanging dynamic documents through Web services, are
a simple and effective platform for data integration on the internet. Dynamic docu-
ments can contain both data and references to external sources in the form of links,
calls to web services, or coordination scripts. XML standards, and industrial plat-
forms for web services, provide the technological basis for building such systems. We
argue that process algebras are a promising tool for studying and understanding their
formal properties.

In this thesis, we define the Xdπ-calculus with the aim of reasoning about dy-
namic Web data. Xdπ terms represent networks of peers, each consisting of an XML
data repository and a working space where processes are allowed to run. Processes,
inspired by the π-calculus, can communicate with each other, query and update the
local repository, or migrate to other peers to continue execution. Data can con-
tain scripted processes, which can be executed by other processes. For example, Xdπ
processes can be used to embed service calls in documents and to model Web services.

We investigate behavioural equivalences for Xdπ, comparing several observable
properties, such as the shape of data trees and the communication actions attempted
by processes. To simplify reasoning on equivalences, we introduce Core Xdπ, a calcu-
lus which is semantically equivalent to Xdπ, but where processes are located explicitly
and are separated from the data repository.

To help proving equivalences, which require a costly property of closure under
contexts, we define a coinductive relation (called domain bisimilarity) which does
not quantify over contexts and which entails process equivalence. Its definition is
non-standard, because scripts are part of the values, and process equivalences are
sensitive to the set of locations constituting the network. We apply bisimilarity to
study some communication patterns used by servers in distributed query systems,
and we propose a new pattern involving mobile code.

Declaration about conjoint work

The composition of the thesis is entirely my own. The Xdπ model and the behav-
ioural equivalences as presented in this thesis, are a revised and extended version of
the ones presented in earlier work done in collaboration with my supervisor Philippa
Gardner. The technical development of the behavioural equivalences is mostly my
own.

The design of Core Xdπ is inspired by previous work on polyadic synchronization
done in collaboration with Marco Carbone.
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Main Notations

We report below some standard notions and syntactic conventions which will be used
in the rest of the thesis.
Tuples. Let t be an arbitrary syntactic term. We denote by ε the empty tuple,
and we abbreviate the tuple t1, ... , tn (where n ≥ 0) with t̃.
Substitutions and binders. For each kind of term, we will define a function fv
returning the set of its free variables. A term t is open if it contains free variables and
it is closed otherwise. We use italic letters for closed terms (e.g. t) and italic bold
letters for arbitrary terms (e.g. t) when it is important to distinguish between them.
A variable is fresh with respect to a term if it does not belong to its free variables.

A substitution is a finite map σ from variables to terms, which we represent in
set-theoretic notation as σ = {t1/x1

, . . . , tn/xn
}, where domain(σ) = {x1, ... , xn} and

σ(xi) = ti. We abbreviate with the substitution {t1/x1
, . . . , tn/xn

} with {et/ex}. We
define the application tσ of a substitution σ to a term t as the simultaneous replace-
ment in t of all the free occurrences of each xi in domain(σ) with the corresponding
ti. We say that σ is a closing substitution for t if tσ is closed. A substitution σ is
well-sorted if for each xi in domain(σ), σ(xi) and xi belong to the same sort.

We enclose binders in small round brackets, and we let their scope extend to
the right: for example, (x)t is a term where the variable x is a binder with scope t.
We identify terms with bound variables up-to α-conversion, and we assume that
substitution always avoids capturing bound variables: for example, (x)t{x/y} =
(z)(t{z/x}){x/y}.
Sets. Let S = {t1, ... , tn} be and arbitrary set. We denote by ∪,∩, \, −1 the
usual operations of set union, intersection, difference and complement, and we use
the abbreviations S + t

def= S ∪ {t} for the union of a set with a singleton, and
S − t

def= S \ {t} for the difference. We denote the powerset of S by ℘(S) and the
cartesian product S × Sn by Sn+1 (where S1 = S).
Lists. Let L an arbitrary list. We denote by ∅ the empty list, by tpL the list with
head t and tail L, by LqL′ the concatenation of L and L′, and by t1 p ... ptn p∅ the list
with elements t1, ... , tn. We often omit a trailing ∅. We will interpret t as a term,
except when by the context we can infer that it is the list tp∅. We denote by S≺ω

the set of finite lists over S.
Relations. A binary relation R over S,S ′ is a subset of S × S ′. We denote the
fact that t and t′ are in R indifferently by (t, t′) ∈ R, or R(t, t′), or R(t) = t′, or
tRt′. If it is not the case that tRt′ we write t 6Rt′, and if there is no t′ such that
tRt′ we write t 6R (and similarly for 6Rt). A relation R ⊆ S × S ′ is total if for any
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t ∈ S there is t′ ∈ S ′ such that tRt′ (and vice versa) and is partial otherwise.
We denote by R◦R′ the composition {(t, t′) : ∃t′′.tRt′′ ∧ t′′R′t′}, when it exists.

Let Id be the identity relation over any set S. We define the iterate Rn inductively
as R0 def= Id and Rn+1 def= R◦Rn. We define the reflexive closure as R= def= Id ∪ R,
the transitive closure as R+ def=

⋃
n≥1 Rn, the reflexive-transitive closure as R∗ def=

Id ∪ R+, and the inverse as R−1 def= {(t′, t) : tRt′}.
A relation is an equivalence if it is reflexive, symmetric and transitive. Given two

relations R,R′, if R ⊂ R′ we say that R is stronger than R′ and R′ is weaker than
R.
Functions. A function f with domain S and codomain S ′ is a binary relation over
S,S ′ such that whenever f(t) = t′ and f(t) = t′′ it is the case that t′ = t′′. We say
that f is total if for any t ∈ S there is t′ ∈ S ′ such that f(t) = t′; that it is injective
if whenever f(t) = t′ and f(t′′) = t′ it is the case that t = t′′; and that it is onto if for
any t′ ∈ S ′ there is t ∈ S such that f(t) = t′. A function is bijective if it is injective
and onto. If f is bijective there exists an inverse function f−1 such that f◦f−1 = Id .
We denote by S → S ′ and S ⇀ S ′ the sets of total and partial functions from S to
S ′.
Monoids. A monoid M = (S, +, 0, =) is a set of terms t, t′, . . . ∈ S with a binary
operation +, a distinguished element 0, and an equivalence relation = such that such
that (i) + is associative: t + (t′ + t′′) = (t + t′) + t′′; (ii) 0 is the neutral element for
+: 0 + t = t + 0 = t. If + is also commutative (t + t′ = t′ + t) then we say that M is
a commutative monoid.
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Chapter 1

Introduction

In this introductory chapter, we set the scene for the whole thesis. In Section 1.1,
we describe what dynamic Web data is, we give examples and we explain our mo-
tivations for studying this topic. In Section 1.2, we describe the process algebraic
approach, by giving an overview of the rest of this document and we summarize our
main contributions. In Section 1.3, we discuss the most relevant related work.

1.1 Dynamic Web data

The World Wide Web is a global network used in daily activities to find information,
communicate ideas, conduct business and carry out distributed computations. In
order to fully exploit the potential of this massive network, there is a need for scalable
mechanisms to organize and manipulate the available information. Peer-to-peer
architectures help to deal with the issue of scalability, and technologies such as XML
and Web services facilitate the development of distributed applications. XML [81] is
a standardized data model which is used to represent uniformly documents containing
tagged information which does not adhere to a fixed structure. Web services [83] are
Web sites which are designed to be used by applications rather than humans. Web
service inter-operability is facilitated by the use of XML for data representation and
of related standards for service invocation, description and discovery (SOAP, WSDL,
UDDI [84, 82, 76]).

Data integration on the Web constitutes a challenging application for these tech-
nologies, because of the extreme heterogeneity of data sources involved, and the
complexity of communication patterns which can arise. For example, translating a
declarative request for networked data into a low-level execution plan may involve
recursively invoking other declarative requests on different Web sites.

Inspired by this problem, in this thesis we study peer-to-peer architectures for
exchanging Web data, schematically represented in Figure 1.1. Each network is
composed by a variable number of interconnected peers, all sharing a similar internal
structure, and each one identified by a unique name (Figure 1.1(a)). Peers share
a common messaging protocol where the name of a peer is assumed to coincide with
its network address: at this level of abstraction there are no restrictions to connec-
tivity due to network domains or firewalls. Networks are open in the sense that it
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Figure 1.1: Reference architecture
external host

network

peer 1 
peer 2 

peer 3 

<xml>
   ....
  <data/>
  <links/>
</xml>

store

processes

network
interface

(a) Network. (b) Peer.

is always possible to add new peers or learn dynamically about their existence, and
external hosts may participate in the data exchange too, typically playing a limited
role. Each peer (schematized in Figure 1.1(b)) acts both as a provider and con-
sumer of information. It contains a data repository, an internal working space where
processes carry out local computations, and a network interface providing remote
communication and services to other peers. Processes can communicate locally
with each other, query and update the local repository and, when the architecture
supports mobility, can migrate to other peers to continue execution. Repositories
offer to the processes a semi-structured view of their data, which contains enough
meta-data to support meaningful queries also in absence of a fixed schema. Data
may contain scripts or references to other data and services in the form of URLs and
queries. A script is some code describing a process which can be interpreted by the
working space to add dynamic content to documents. We refer to data of this kind
as dynamic Web data.

The World Wide Web itself constitutes an extremely general example of archi-
tecture for dynamic Web data. Servers use the HTTP protocol to interact with each
other, either requesting or providing information. HTML pages can contain hyper-
links, forms and client-side scripts, which provide dynamic behaviour. Web clients
running a browser can be considered as the “external hosts” which participate to a
smaller degree in the exchange of information.

A more specific example comes from the database world. The Active XML [72, 6]
system for data integration (AXML for short) is based on networks of peers each
containing a repository of documents and a set of service definitions. AXML
Services typically consist of queries and updates on the local repository, but in general
can be arbitrary Web services, providing an interface to hosts external to the AXML
system. AXML documents are XML documents which can include special tags
representing calls to services on other peers. The parameters to these service calls
can be local queries (path expressions) or AXML data, hence service calls can be
nested. Documents containing service calls are called intensional documents, and
materialization is the process of invoking a service call and pasting its results in
the original document. One interesting source of flexibility in AXML is the choice
of when to materialize service calls. It can be done periodically, or when the data
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containing the call is fetched from the repository, or when it is returned to the client.
Similarly, if a service call appears as a parameter to another service call, it can be
materialized before calling the service or it can be passed on to it as an intensional
parameter.

Besides Web browsers and AXML, a large class of other Web applications (such
as file-sharing programs, personal Web portals, online bibliographic databases, etc.)
can be seen as instances of the reference architecture given above, each with its own
particular features and restrictions. The problems that these architectures have to
address, in order to be practically useful, are varied. First of all, it is well-known
that interaction between concurrent processes is difficult to regulate. In the case of
Web services, this problem is complicated by the difficulty in maintaining state across
different Web service invocations, and requires the study of orchestration techniques1.
Secondly, a major concern for systems dealing with dynamic Web data is security.
Depending on the application domain, it may be crucial to have control for example
over data integrity, confidentiality, or access control. The formal study of security
properties needs to be grounded on a rigourous model of these architectures.

The objective of this thesis is to provide such a formal model of dynamic Web
data, and to understand its behavioural properties. We believe that process algebraic
techniques are particularly suited for the task at hand, as process algebras have
already been successfully used to study concurrent, distributed and mobile systems,
and analyze their formal properties, security in particular.

A process-algebraic model could be used for a variety of purposes, such as: derive
implementations from abstract specifications using refinement; transparently replace
inefficient components with optimized ones; define static analyses (such as types
for schema-preservation properties or for security and access control); find bugs in
existing systems by analyzing their models. For example, the combination of Web
services and scripted processes provides the data engineer with many alternative
patterns for exchanging information, and equational reasoning becomes useful to
show that some complex data-exchange protocol conforms to its specification.

1.2 A process algebraic approach

Process calculi provide a simple and expressive framework in which to reason about
the properties of concurrent, distributed and mobile systems. The π-calculus of
Milner, Parrow and Walker [58] is a terse and powerful language which describes
the behaviour of concurrent systems, and is endowed with a rich body of theoretical
results. It constitutes the basis for many other calculi which target specific aspects
of concurrent and distributed systems. Just to mention some of them, the spi-
calculus [2] and the applied π-calculus [1] have been used to study security protocols;
the distributed π-calculus [43] and Safe Dpi [41] for controlling the access to resources,
the Ambient Calculus [20] and the Seal Calculus [79] to study mobile computations
across administrative domains; the Join-calculus [26] and Nomadic Pict [77] have
been used as a basis for distributed implementations.

1By Web service orchestration, we mean a coordination infrastructure which allows modular
applications to invoke different Web services and combine their results.
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In this thesis, we define the Xdπ-calculus with the aim of reasoning about dynamic
Web data.

Xdπ terms represent networks of peers where each peer consists of an XML data
repository and a working space where π-like processes are allowed to run. We regard
processes as agents with a simple set of functionalities: they communicate with each
other, query and update the local repository, and migrate to other peers to continue
execution. Process descriptions, in the form of scripts, can be included in documents
and can be executed by other processes. The definition of Xdπ is parametric with
respect to the choice of a specific language of query and update expressions. For the
examples, we define a simple such language based on path expressions (Chapter 2).

We tried to keep the definition of Xdπ minimal, including only the basic operations
needed to represent the behaviour we are interested in. Xdπ operations consist of
asynchronous local communication based on pattern matching, execution of a query-
update expression on the local repository, migration, spawning of scripted code and
creation of fresh channels. From these, we can derive conditional statements, non-
deterministic choices, constructs for parsing and iterating on list-like structures and
remote communication in the style of Web services. Using these derived constructs,
we can use Xdπ to give a precise semantics to AXML-like behaviour, and consider
possible extensions (Chapter 3).

We investigate behavioural equivalences for Xdπ. When reasoning about dy-
namic Web data, the important properties of a network concern what data can even-
tually be present at a given location. The communication actions of processes,
which are the basis of observational equivalences for process calculi, are in principle
irrelevant. This shift in perspective is fundamental in our work.

Our network equivalences dictate when two networks can be considered indistin-
guishable with respect to some externally defined criteria for comparison (henceforth
called observable). We explore different choices of observables, and we compare
the resulting notions of equivalence. In particular, we compare the observable which
records the internal structure of documents (which can be easily defined due to the
direct representation of data), with the traditional output observable of the asynchro-
nous π-calculus. Network equivalences are parametric with respect to the language
used for querying and updating documents (so the generic results are not tied to a
particular choice), and can be instantiated to specific cases.

Process equivalence establishes when two processes can replace each other in a
network without affecting network equivalence. Ideally, we would like to reason
about the equivalence of groups of processes, possibly interacting across several loca-
tions, and obtain results which are robust with respect to changes in the data stored
in the local repositories and the behaviour of other parallel processes. For these
reasons, we introduce a calculus called Core Xdπ which serves as an alternative (se-
mantically equivalent) representation for Xdπ where processes are located explicitly
and are separated from the data store. Core Xdπ is suitable for expressing a partial
specification of a network by means of located processes running in parallel, possibly
sharing private names. Located processes are equivalent if the networks obtained
by composing them with arbitrary stores are equivalent. Xdπ networks can be
translated into Core Xdπ networks, and the translation preserves network equiva-
lence. Xdπ processes can be mapped to Core Xdπ ones, so that process equivalences
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for Xdπ can be studied in Core Xdπ (Chapter 4).
Process equivalences, such as the ones defined in Chapter 4, are hard to use

directly because they require a costly property of closure under contexts. Instead,
we define a coinductive equivalence relation (called domain bisimilarity) which does
not quantify over contexts and which entails process equivalence. The definition of
domain bisimilarity is non-standard, due to the fact that scripts (which can appear
in data) are part of the values, and process equivalences are sensitive to the set
of locations constituting the network. We address these two problems by adapting
existing techniques for translating messages containing scripts into ones where each
script is replaced by a first-order value [69, 46], and by generalizing the notion of
bisimulation to families of relations indexed by sets of locations (Chapter 5).

We use bisimilarity to study some communication patterns used by servers in
distributed query systems to answer queries from clients. In Core Xdπ, distributed
queries take the form of processes which retrieve and combine data from different
locations by using remote communication and local requests. We show that some
existing patterns [68] can be combined together obtaining a flexible infrastructure
which is provably equivalent to an intuitive specification of the intended behaviour.
By exploiting process migration, we also propose a new communication pattern, and
we show that it is behaviourally equivalent to a naive, less efficient one (Chapter 6).

As part of ongoing and future work, we identify two main research directions:
the development of a comprehensive type system for Xdπ, and the implementation
of a platform for exchanging dynamic Web data based on Xdπ. A type system,
beside ruling out run-time errors due to mismatch in the sorts of operations and
their operands, would be useful to study security properties, refine the behavioural
equivalences, and guarantee the conformance of data trees to schemas. Prelim-
inary prototype implementations of Xdπ by Imperial College students have given
encouraging results about the practical feasibility of our approach (Chapter 7).
Contributions. The non-standard technical challenges of our approach, which
incorporates locations, storage and higher order processes in the same framework,
can only be fully appreciated by reading through the relevant chapters. Below, we
summarize the main contributions of this thesis.

• We define Xdπ, a model of peer-to-peer dynamic Web data applications. It
extends the asynchronous π-calculus with locations, XML repositories (pos-
sibly containing scripts) and query language primitives. We give it a formal
semantics, which is parametric in the query and update language chosen.

• We give examples of how Xdπ can be used to model dynamic Web data, in
particular comparing our model with AXML.

• We study several definitions of what it means for two Xdπ networks to be
equivalent. We consider different choices of observables, define the correspond-
ing network equivalences, and explore the relationships between them.

• We propose Core Xdπ as an equivalent representation for Xdπ, where actions
are explicitly located and data can be easily separated from processes. We show
that the translation from Xdπ to Core Xdπ preserves a large class of network
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equivalences, and study process equivalences in Core Xdπ. Equivalence of Xdπ
processes corresponds to equivalence of their translations in Core Xdπ.

• We study a notion of bisimilarity for Core Xdπ, by adapting techniques for
higher-order processes and introducing a novel treatment of locations. Our
equivalence, called domain bisimilarity, can be used as a proof method to show
equivalence of Xdπ processes or networks.

• We apply our reasoning techniques to show the equivalence of some distributed
query patterns.

Our work is one of the first attempts to integrate the study of mobile processes
and semi-structured data, and is characterized by its emphasis on dynamic data.
It is the first investigation of equivalence properties for (higher-order) data-centric
applications based on the Web.

1.3 Related work

The work closest to ours is AXML, which we have described in Section 1.1. Although
it has followed an independent development, and is studied by a database (as opposed
to our process algebraic) perspective, AXML has been a source of inspiration and
comparison to us. On the other hand, despite its expressivity, AXML does not
exploit the full potential of dynamic Web data. Service definitions cannot be moved
from one peer to another, and service calls are the only kind of data which can
give active behaviour to documents. Moreover, service calls have a fixed behaviour:
they can only add new results (or replace existing ones) in a specific area of the
enclosing document. Thanks to migration, we can express in Xdπ more flexible
communication patterns where data can flow to several peers before being returned
as a result, possibly to a different peer from the one activating the service call.
For example, consider an auditing process for assessing a university course—it goes
to a government site, selects the assessment criteria appropriate for the particular
course under consideration, then moves this information (a service definition) to the
university site to make the assessment, and returns the final result to the auditor.
In Chapter 3, we show how to represent and extend AXML-like behaviour in Xdπ.

In the remainder of this section, we discuss other related work which does not
address dynamic Web data in general, but focuses on some of its specific features (for
example distributed queries, service orchestration, or XML). In the remainder of the
thesis, we will mention more technical references where appropriate.

1.3.1 Distributed query processing

Distributed query languages extend traditional query languages with facilities for
distribution awareness (see Kossmann [51] for a comprehensive survey of the field).
They are motivated by the desire to avoid transferring large amounts of data from
remote sites in order to answer queries which select only a few results. In general,
distributed query systems differ from systems based on dynamic Web data (such as
AXML) in that often they focus on a particular database architecture, rely on a
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central authority having complete knowledge of the system state, and rarely consider
dynamic data. In contrast, the examples described below are nearer to dynamic
Web data, and provide potential interesting applications for our framework.

Sahuguet and Tannen propose the ubQL distributed query language [66], which
is built by adding process manipulation primitives to any “host” query language.
These primitives, inspired by the π-calculus2, are used in a deployment phase to
set up a network of processes which, in a successive execution phase, will query
local repositories and forward their results to other sites, thus implementing a global
query execution plan. ubQL processes can deal with streaming data, but there is no
support for concurrent execution of query processes on the same site (so in principle
the system may not be able to execute more than one global query at a time). The
design of Xdπ has been influenced by ubQL, in particular the choice of separating the
queries from the process primitives, and maintaining independence from a specific
query language. Also our examples on distributed query patterns of Chapter 6 are
inspired by ubQL. Overall, the two projects have a significantly different focus and are
studied using different methodologies. For example, an important part of the work
on ubQL is the study of algorithms for query installation based on cost estimates,
which we do not address, whereas behavioural equivalences are not studied in ubQL.

ObjectGlobe [14] is a platform for distributed query evaluation based on an
infrastructure of Web servers providing heterogeneous query evaluators and data
sources. The idea is that queries involve operators from different query languages
suitable for different data formats. A client interacts with a centralized query opti-
mization and meta-data maintenance unit to discover which peers provide operators
or data relevant to a specific query, and then dispatches the corresponding sub-
queries. Hence, ObjectGlobe data is dynamic in the sense that it contains queries to
external repositories, which are interpreted on remote sites. The successor project
ServiceGlobe [48] shifts the focus from the execution of distributed query plans to that
of Web service workflows. Jim and Suciu [47] propose the dynamically distributed
Datalog (d3log) query language as an extension of Datalog with atoms representing
links to other locations and with explicitly located literals (which must be true at the
designated location). Such literals are sent as queries to remote sites, and when an
answer is found they are sent back to the original site which can resume its resolution
process. This simple extension models the discovery of data sources and intensional
answers, which are also a distinctive feature of AXML: the answer to a query can
contain other located literals. Papadimos and Maier [62] introduce mutant query
plans, which are XML representations of query plans that can include verbatim XML
data, references to resource locations and resource names. They propose a distributed
framework where a server receives a mutant query plan, executes part of the plan
and then sends what remains to be executed, along with the local results, over to the
next server. Kemper and Wiesner [49] propose a scalable architecture for building
dynamic virtual market places based on HyperQueries, which are query evaluation
sub-plans associated to hyperlinks. When a client asks to retrieve a virtual document
containing an HyperQuery, the query sub-plan is automatically executed in order to
materialize the entire object.

2The influence born by the π-calculus on ubQL can be better appreciated considering the prelim-
inary joint work of Sahuguet and Tannen with Pierce [67].
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All of these systems are studied from a data-management viewpoint, which our
process algebraic techniques could complement nicely. There are many specific issues
which are important in databases, such as the use of meta-data to guide the optimiza-
tion of queries, which we do not study. Instead we have given a formal semantics to
the distributed interaction between query processes, arguing about their equivalence
and providing a framework on which to base the formal study of security properties.

1.3.2 Web scripting languages

Commercial scripting languages for the Web, such as Javascript, Perl, Python, Php,
etc., are widely used to develop Web applications, testifying the feasibility of the
scripting approach.

Scripting languages have attracted much interest also in programming language
research. For example, Cardelli and Davies [18] propose a set of Web combinators
providing high-level constructs to mimic the Web surfing behaviour of a human user,
on which Kistler and Marais [50] base the WebL scripting language for Web document
processing. Graunke et al. [38] study the problem of designing interactive Web
programs and define the WrForm functional programming language based on an
extension of the λ-calculus with Web forms, which are records containing a reference
to a program and some tagged data. A combination of static and dynamic type
safety checks rules out common errors such as trying to access the data field of a form
before having instantiated it to a value. Brabrand et al. [13] implemented in the
<bigwig> project a high-level domain-specific language for programming interactive
Web services, geared towards the dynamic generation of Web pages. The core of the
language consists of a session-centred service model together with a flexible template-
based mechanism for dynamic Web page construction. Static analyses are used to
validate the well-formedness of dynamic documents with respect to HTML, and to
check concurrency properties using a temporal logics.

With Xdπ we propose a theoretical counterpart to the scripting approach, less
domain specific and more focussed on orchestration. An interesting future project
could involve the implementation of a realistic scripting language for Web-based data
integration based on Xdπ (see Section 7.2).

1.3.3 Process algebras for service orchestration and XML

We conclude our overview of related work by looking at some contributions given
by research in process algebras to Web service orchestration and to XML-enabled
communication.

Microsoft’s BizTalk [23] is a system for orchestrating message-based applications
on the Internet which models processes as flowcharts, features short, long, and timed
transactions, and provides basic actions for sending or receiving data and controlling
the workflow. Bruni et al. [16] formalize an operational model of distributed trans-
actions, extending Microsoft BizTalk’s short transactions, which can be encoded in
the Join calculus. Laneve et al. [52] study webπ, an extension of the timed
asynchronous π-calculus of Berger and Honda [8, 9] with loosely coupled transac-
tions, which are of interest for Web programming languages. Ferrara [24] gives
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a bidirectional translation between the BPEL orchestration language for Web ser-
vices and the Lotos process algebra. The aim is twofold: to carry out verification
at the process algebra level and translate potential counterexamples to BPEL, and
also to derive BPEL code directly from algebraic specifications. The representation
of compensation handlers (the exception mechanism of BPEL) is simplified by the
presence of an explicit disabling operator in Lotos, and is not straightforward in the
π-calculus. On the other hand, the encoding of [24] does not include, for example,
the dynamic execution of processes, which could be represented quite naturally in
the π-calculus thanks to the ability to represent higher-order computations by send-
ing channel names over channels. It is worth noting that the design of XLANG, a
precursor of BPEL, was inspired directly by the π-calculus. The cited references
show that a process algebraic approach to service orchestration is viable. Although
we do not directly study transactions or encodings of orchestration languages in Xdπ,
many of our examples use directly the expressiveness and flexibility of the π-calculus
as a coordination language.

The only work relating the π-calculus with XML which pre-dates ours is the Iota
concurrent XML scripting language of Bierman and Sewell [11], used to program
Home Area Networks. Iota is a strongly typed functional language with concurrency
primitives inspired by the π-calculus. Although the language has a formal semantics,
its behavioural theory has not been studied. The authors present a type system
which guarantees that XML documents resulting from computations are well-formed
(opening and closing tags match, and elements are properly nested), but does not
deal with the conformance of a document to an externally defined structure such as
a DTD, a Schema or another XML specification. The programs for Home Area
devices written in Iota are all supposed to run on the same Home Area server, and
the communication with physical devices is modelled through input and output on
special channels: distribution is not represented explicitly. Moreover, as opposed to
Xdπ, the application domain of Home Area Network programming is more control-
oriented than data-oriented: there is no explicit representation of stores, which are
central to our approach.

Brown et al. [15] have recently defined an (untyped) extension of the π-calculus
with native XML datatypes called πDuce. They compare its expressivity to that
of the functional language XDuce [45], and also consider a higher-order extension
which enables dynamic content in documents. An interesting idea underlying the
design of πDuce is that processes and data share a similar tree-like structure, and
can inhabit the same semantic universe. The authors show a very simple encoding
of an evaluator for the subset of the language without new name generation, into the
language itself: the execution of processes represented as nested document elements
can be simulated in the language. We believe that a similar approach could be
taken in Xdπ to represent scripts as semi-structured data, but we prefer hiding the
internal structure of processes from the queries, because otherwise it would not be
possible to replace a process by an equivalent one whilst preserving the observable
behaviour of the system as a whole.

In order to extend XDuce with higher-order functions and a richer algebra of
data-types, Benzanken, Castagna et al. [7] introduce a non-trivial domain theoretic
construction to define the language CDuce. Castagna et al. [21] apply the same
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approach to define Cπ, a π-calculus extended with pattern matching and tuples of
values (XML values can be represented through an encoding). The language comes
with a type system featuring intersection and input-output types, achieving a degree
of expressivity similar to that of CDuce.

Finally, Acciai and Boreale [4] propose XPi, an extension of the asynchronous
π-calculus with code mobility and ML-like pattern matching of structured values. A
combination of static and dynamic typing ensures that each channel always exchanges
values of the same types. Types can describe the partial structure of a document
(hence are more expressive than those in Iota), but do not feature intersection types
(hence are less expressive than those in Cπ). Xdπ pattern matching could be easily
extended to the more expressive form adopted in Cπ or XPi. Since in our language
query expressions, which are separate entities from processes, are the primary means
to extract information from XML trees, we prefer to stick to a simpler definition of
pattern matching.
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Chapter 2

The Xdπ-calculus

In this chapter, we present the Xdπ calculus. In Section 2.1, we introduce Xdπ
and explain our design choices through simple examples. In Section 2.2, we define
formally the syntax and semantics of Xdπ. In Section 2.3, we define a simple query
and update language to be used in concrete examples.

2.1 Xdπ informally

Let us have another look at the diagram of our reference architecture for dynamic
Web data given in Chapter 1, reported for convenience in Figure 2.1.

We model each peer as a location with a unique name corresponding to the peer
identity (for example its IP address). A whole peer-to-peer system is modelled by
the parallel composition of the locations corresponding to its peers, which we call
a network. The XML data stored at each peer is represented by a labelled tree,
abstracting away from low-level details. Both the network interface, the services
and the working space of each peer are represented by a parallel composition of
processes in the corresponding locations. The interface between the working space
and the data store is modelled by an operation which the processes of a peer can
use for updating or querying the local tree. It is important to clarify that, from now
on, we use the word “queries” to mean expressions used to query or update a tree.
Communication between locations is modelled through process migration, providing
a flexible abstraction to model complex coordination protocols.

We discuss below the most relevant design choices underlying our models of trees,
processes and locations.

2.1.1 The data model

The building blocks of our data model are an abstraction of XML documents (trees),
references to data in other documents (pointers) and active components (scripts).
Trees. We use ordered edge-labelled trees to describe XML data. Semi-structured
data models are often unordered [3], in contrast with the ordered trees of XML
documents. In previous work [34], we considered unordered trees. Here we prefer an
ordered model because it is nearer to XML, and has a straightforward correspondence
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Figure 2.1: Reference architecture
external host

network

peer 1 
peer 2 

peer 3 

<xml>
   ....
  <data/>
  <links/>
</xml>

store

processes

network
interface

(a) Network. (b) Peer.

to the textual syntax. The choice of using edge-labelled rather than node-labelled
trees is merely a matter of style.

Following a common practice, we do not represent attributes explicitly, but we
model them as edges labelled with the attribute name followed by a leaf containing
the attribute value. We also embed pointers and scripts as leaves, which in a concrete
document are likely to be represented by attributes. The ideas in this thesis do not
depend on these particular representation choices. To keep the model simple, we
do not represent data values and XML-specific details such as namespaces, ids and
idrefs. The tree structure, along with scripts and pointers, provides a sufficiently
accurate model for our purposes.

The example in Figure 2.2 (a) shows a fragment of an XML document, and (b)

shows its representation in Xdπ (the translation of the hyperlink and the service call
are explained below).
Pointers. Hyperlinks have been one of the main features responsible for the
success of the Web. We abstract the concept of hyperlink into that of pointer, a pair
consisting of a location name and a query to identify some data in the tree of the
named location. For example, in Figure 2.2 we have translated the hyperlink into a
pointer of the form query@location using the host name “xdpi.net” as the location
name, and the path relative to the host “papers/xdpi.pdf” as the query.

Pointers are declarative references which can be interpreted uniformly across loca-
tions. A pointer does not specify what to do with the data denoted by the associated
query (or update), but typically a process will read the location name and the query
from a pointer in order to retrieve some data necessary to continue its execution.
Clicking on an HTML hyperlink is a simple example, where the browser process
reads the contents of the href attribute, retrieves the referenced data, and displays
it in the browser window. We can expect that the same query makes sense on
different locations, possibly giving different results, because we are assuming that all
the peers export their data in the same semi-structured format.
Scripts. Current Web technology is familiar with the use of scripts to provide Web
pages with dynamic behaviour. Similarly, we propose to use scripts as a generalization
of embedded service calls in the context of Web data integration. Since our scripts
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Figure 2.2: Representing XML in Xdπ
. . .
〈data〉
〈a href = “http://xdpi.net/papers/xdpi.pdf”〉 Download 〈/a〉
〈call〉 xdpi.net/getRefs(bibtex) 〈/call〉
〈/data〉
. . .

(a) A hyperlink and a service call in XHTML.

. . .
data

[
a[ href[ papers/xdpi.pdf@xdpi.net ]pDownload ]

call[ 〈go xdpi.net . getRefs〈bibtex 〉〉 ]]
. . .

(b) The translation in Xdπ.

are used also for coordination, they are written in the same process language used to
describe processes in the working space.

A script is a static piece of code, with some clearly marked parameters and with
no reference to the global state except for names of locations and services, which are
constants with a uniform meaning across the network. For example, the service call
embedded in (a) in Figure 2.2 could be (naively) translated to the script shown in (b),
which specifies that a process should go to the host “xdpi.net” and invoke the service
“getRefs” with parameter “bibtex”. We shall see a more realistic representation of
service calls in Xdπ in Chapter 3.

We assume that the representation of scripts as pieces of data is opaque (for
example, by consisting of a string of bytes which will be interpreted by the system at
the time of executing the script) and cannot be parsed or tampered with at run-time,
by other processes.1

2.1.2 Processes and networks

Xdπ processes are based on the asynchronous π-calculus. To these core processes, we
add a migration operation, an update operation for interacting with local data, and
a simple form of pattern matching. Values are complex: they can be trees, pointers
and scripts.

1Some languages such as MetaOCaml [74] and TemplateHaskell [73] provide constructs for multi-
stage programming, where pieces of code (possibly containing free variables) can be combined to-
gether at run time to form bigger programs, and can be executed. If desired, it is possible to support
multi-stage programming in Xdπ, defining an XML-like meta-syntax for scripts and interpreting it
explicitly using parsing processes in the working space.

20



Asynchronous communication. The output of a message v on channel a is
represented by the asynchronous process a〈v〉. Since the process has no continuation,
the sender cannot be aware of whether a message has been received unless the receiver
sends an explicit acknowledgment back.

Asynchronous communication is easy to implement, is natural in a context where
failures may occur, and supports many interesting optimizations. For example, in an
asynchronous setting, the behaviour of a process cannot be affected by the presence of
a communication buffer, a property which in a distributed setting helps to implement
location independence.
Migration. Communication across locations is modelled by process migration,
which we represent explicitly: the process go l.P represents a (higher-order) message
addressed to l containing a request to run the (closed) code P . Due to the peer-to-
peer nature of our domain, each location is ready to receive and run any incoming
code, so we do not need to provide an explicit operation to run a received process. In
some cases, it may also be desirable to give control to each location regarding which
code to accept and which to refuse. We leave that task to an eventual superimposed
security infrastructure. Using an asynchronous form of communication offers a
simple way to model failures within the system. The success of a migration step
just depends on the existence of location l. In contrast, the migration rules for other
mobile calculi (for example dπ [42]) assume that migration is always possible. Our
choice has an important effect on the behavioural equivalences studied in Section 4.4.

Migration is sometimes criticized for not being efficient enough for practical pur-
poses, as opposed to more basic forms of remote communication. We do not suggest
to interpret migration as a recommendation on how to implement communication
across locations, but rather as a conceptual device to distinguish clearly local from
non-local interaction, useful to express advanced protocols involving code mobility.
Interaction with local data. Xdπ processes access the local tree by using a
request operation reqp〈c〉 parametric in a query-update expression p and a channel c.
The effect of evaluating expression p is to modify the local tree and to return a list
of query results on the specified channel.

Research on query and update languages for XML is still very active [61], and
an in-depth study goes beyond the scope of this thesis. Therefore, rather than com-
mitting to any particular choice, we parameterize our definitions with respect to an
arbitrary query language. Our request operation is defined for any query which given
a tree returns an updated tree and a list of results. In Chapter 4, whilst studying
equivalences, we will identify some natural conditions on query languages under which
equational reasoning becomes more feasible. In Section 2.3, we define explicitly a
sample query language, which is just expressive enough to be used in the concrete
examples in the rest of the thesis, and which satisfies those simple conditions.

The semantics of the request command specifies that all the results of a query are
returned together as siblings in a tree, using a single communication step. We will
see in Section 3.1 how this choice is general enough to encode other ways of returning
results, such as one result at a time.
Complex values. Xdπ values can be channel names, location names, queries,
scripts and trees.
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Channel names are partitioned into private and service channel names. The
private channels denote “usual” π-calculus channels, which are typically used for co-
ordination, and which can be kept secret in order to protect a protocol from external
interferences2. The service channels denote those channels which are used to imple-
ment the services which a peer offers to other peers, and which therefore are not
meant to be restricted and can be referenced inside scripts.

Both trees and pointers are structured values, which processes need to parse.
To this end, we add to π-calculus communication a very simple form of pattern
matching. Patterns are terms containing distinct variables which are instantiated,
if pattern matching succeeds, with the values found in the corresponding position
in the term to be matched. Our patterns do not include regular or recursive
expressions, and we will avoid algorithmic issues by simply requiring the guessing
of an appropriate substitution in order for pattern matching to take place. Pattern
matching for XML-like data is an active research topic, which is orthogonal to our
concerns. We believe that the specialized techniques studied elsewhere can be adapted
to our setting. Our processes use patterns to parse data, and queries to query trees.
This conceptual separation does not exclude the possibility for the query language
to be based on pattern matching itself.

Communication in Xdπ is higher-order, in the sense that processes may send
scripts over channels, possibly as leaves inside trees. Using a standard “application”
command we can pass parameters to a script and run it in the working space.
Locations. An Xdπ network represents a peer-to-peer system, where each location
corresponds to a peer. Each peer can communicate with any other peer, and has a
unique name. Similarly, our locations are uniquely named and are arranged in a flat
domain. The creation of new peers is not an operation which can be performed
from within a system, and therefore we do not provide an operation to create new
locations. Nevertheless, we will be able to carry on compositional reasoning, hence
analyze networks with respect to arbitrary additions of peers. We use the process
orchestration techniques associated with the π-calculus to coordinate the movement
of data and processes between locations.

2.2 Syntax and semantics

2.2.1 Trees, data and queries

We represent semi-structured data using ordered labelled trees3. The formal defini-
tion is given in Figure 2.3. We use italic bold letters for arbitrary terms (e.g. t) and
plain italic letters for closed terms (e.g. t).
Trees and data. We represent a tree as a∅-terminated list of branches E1 p . . . pEn p∅
which start from the root. Each branch Ei has the form a[ V ] and denotes an edge
labelled a leading to a node containing the data V . A data item can be a subtree T ,

2We assume that names created using the restriction operator are internal references to the state
of a protocol which cannot be guessed from an outsider (say a sufficiently long random bit string).

3Our representation of trees is explicit and does not go through a hypothetical encoding into
processes, which could be interesting in itself, but would introduce unnecessary complexity, making
it hard to reason directly on trees in the equivalences of Chapter 4.
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Figure 2.3: Syntax: trees and data

T , S ::= tree terms
E pT branch E composed with tree T

∅ empty tree
x tree variable

E, F ::= a[ V ] | x branch with edge label a and data V , or variable

U , V ::= data terms
T tree T

p@l pointer to location l with query p

〈A〉 script A

l ::= l | x location name or variable
p ::= p | x query or variable
A ::= A | x script (see Figure 2.4) or variable

a, b, c ∈ E (Edge Labels)

l, m ∈ L (countably infinite) (Locations Names)

p, q ∈ Q (Queries)

x, y, z ∈ V (Variables)

E, F ∈ B def=
{
E : fv(E) = ∅} (Branches)

U, V ∈ D def=
{
V : fv(V ) = ∅} (Data)

T, S ∈ T def=
{
T : fv(T ) = ∅} (Trees)

Function fv is defined in Figure A.4.
Notation: a

def= a[∅ ] E1 p . . . pEn
def= E1 p . . . pEn p∅ .

a pointer p@l referencing the data selected at location l by query p (described below),
or a script 〈A〉 (described in Section 2.2.2) which can be executed to collect data or
perform coordination tasks. We show an example of a tree containing a script and
a pointer:

a[ b[ c[ 〈A〉 ]pd[ p@l ] ]pe ]

We use the same identifiers x, y, z, . . . to range over all variables. When necessary,
the sort of each variable can be understood by the place where the variable occurs.
A well sorted substitution is one that for example substitutes a tree term for a tree
variable.
Queries. Xdπ is parametric on the choice of a particular query-update language, as
long as it is a language of expression which can be evaluated against a tree to obtain
some data (the result of querying the tree) and a new tree (the result of updating
the tree). The only conditions that we need to impose on such a language are that
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the application of a substitution to a query must be well-defined and yield a query4.
In Chapter 4 we will impose additional conditions required to ensure that a query
language is also compatible with our definitions of semantic equivalences.

Definition 2.2.1 (Query Language) A query language (Q, fv ,E) is a set of queries
p, q, . . . ∈ Q closed under well-sorted substitutions, together with a function fv : Q →
℘(V) giving the free variables of each query, and an evaluation function E : (Q×T ) ⇀
T × D≺ω, which, given a query and a tree, returns an updated tree and a finite list
of results.

Note that in the definition above the evaluation of queries is a partial function.
This generality accounts for both the cases of ill-formed queries, which may not have a
precise semantics, and Turing-equivalent query languages, which may not terminate.
The list of results returned by a query will be reformatted as a tree term when it is
passed on to an Xdπ process (see rule (Red Request) in Figure 2.8).

In Section 2.3, we give a concrete query language which will be used in the
examples.

2.2.2 Processes and networks

Processes. Xdπ processes extend the processes of the asynchronous π-calculus.
The formal definition is given in Figure 2.4. Channel names are partitioned in two
disjoint sets: Cp, containing names of usual π-calculus channels which can appear in
the restriction operator (ν c)P ; and Cs, containing names of service channels which
are intended to be known at each location (for example finger), and therefore cannot
be restricted. The values that can be exchanged over both kind of channels are tuples
of channel names, location names, queries, scripts, branches and trees. We assume
a simple sorting discipline on variables and channels, to ensure uniformity on the sort
and number of values sent along a given channel, and we only consider well-sorted
substitutions.

A pattern π is an arbitrary variable x or a data term V which can contain variables
(in this case, they must be distinct, by condition distinct(V )) but cannot contain
complex values such as scripts and queries (condition cval (V ) = ∅)5. Since we are
not concerned with algorithmic issues, we define the operation of pattern matching
a value v against a pattern π as the guessing of a closing substitution σ such that
v = πσ. Since patterns are ordered, if such a substitution exist, it is unique. For
notational convenience we will sometimes represent values by their factorization into
a pattern and a closing substitution.

An input process a(π̃).P or !a(π̃).P is parameterized by a tuple of patterns π̃.
All the variables appearing in π̃ are binders with scope P , and must be distinct.

4The reasons why we need to define substitutions on queries will be clear after describing the
semantics of processes in Section 2.2.2.

5This condition guarantees that a definition of pattern matching based on syntactic equality will
not prevent optimizations based on the semantic equivalences for scripts and queries (which equate
more terms). An alternative approach, used for example in Applied-π [1], consists of allowing match-
ing on arbitrary terms, by parameterizing the semantics of pattern matching on an independently
defined equivalence relation, which does not have to be syntactic equality. Since our terms include
scripts, and the equivalence for scripts is bound to be undecidable, we do not follow this approach.
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Figure 2.4: Syntax: Xdπ processes

P , Q,R ::= process terms
0 nil process
P |P composition of processes
(ν c)P private channel c with scope P

c〈ṽ〉 output on service or private channel c of values ṽ

c(π̃).P input on c of π̃ with continuation P (distinct(π̃))
!c(π̃).P lazy replication of an input process (distinct(π̃))
go l.P migration of P to location l

A ◦ 〈ṽ〉 run script A with parameters v

reqp〈c〉 request for query p with return channel c

a, b, c ::= c | c | x private (or service) channel name, or variable
v ::= c | l | p | A | E | T value terms

a, b, c ∈ Cp (countably infinite) (Private Channel Names)

a, b, c ∈ Cs (Service Channel Names)

v, u ∈ U def=
{
v : fv(v) = ∅} (Values)

P, Q,R ∈ P def=
{
P : fv(P ) = ∅} (Processes)

π ∈ H def= V ∪ {V : cval (V ) = ∅ and distinct(V )} (Patterns)

A ∈ A def=
{

(π̃)P : fn(P ) = ∅, fv(P ) ⊆ fv(π̃) and distinct(π̃)
}

(Scripts)

CP [−] ::= − | P |CP [−] | CP [−] |P | (ν c)CP [−] (Process Contexts)

The functions fv , fn , cval and the predicate distinct are defined in Figure A.4 and
Figure 2.5.
Notation: (ν c̃)P

def= (ν c1) . . . (ν cn)P ; c
def= c〈∅〉; c.P

def= c(∅).P .
Convention: we generally omit a trailing 0, for example we write a(x) for a(x).0.
Sequential composition has syntactic precedence over parallel composition.

For example, process a(x, a[ z@y ]).P is waiting for a pair of values: the first can be
arbitrary, the second must be a node labelled a containing a pointer. The intuitive
semantics is that, reacting with a matching output such as a〈b, a[ p@l ]〉, the process
will evolve to P {b/x, l/y, p/z}.
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Figure 2.5: Function cval and predicate distinct

t ∈ A ∪Q
cval (t) = {t} cval (E pT ) = cval (E) ∪ cval (T )

cval (a[ V ]) = cval (V ) cval (〈A〉) = cval (A)
cval (p@l) = cval (p) cval (∅) = cval (l) = cval (x) = ∅

distinct(π) distinct(π̃) fv(π) ∩ fv(π̃) = ∅
distinct(π, π̃)

distinct(〈A〉)
distinct(A)

distinct(E) distinct(T ) fv(E) ∩ fv(T ) = ∅
distinct(E pT )

distinct(a[ V ])
distinct(V )

distinct(∅) distinct(x)
fv(l) ∩ fv(p) = ∅

distinct(p@l)

Figure 2.6: Syntax: Xdπ networks

N,M ::= networks

l [T ‖P ] location l containing tree T and process P

0 empty network
N |N parallel composition of networks (with disjoint domains)
(ν c)N private channel c with scope N

N,M ∈ N (Networks)

CN [−] ::= − | N |CN [−] | CN [−] |N | (ν c)CN [−] (Network Contexts)

The migration primitive go l.P enables a process to go to l and become P .
A script (π̃)P is a process parametric on the patterns π̃ binding in P . Scripts

can contain service channel names, but cannot contain free occurrences of private
channel names (condition fn(P ) = ∅) or free variables (condition fv(P ) ⊆ fv(π̃)).
The application process A ◦ 〈ṽ〉 starts the execution of the script A passing it the
parameters ṽ (which will be concrete values at run-time).

The request command reqp〈c〉 asks the system to perform the update specified by
query p on the local tree, and to return the results on channel c.
Networks. We model networks as a composition of distinct locations, each con-
taining a tree and a process. The formal definition is given in Figure 2.6.

A location l [T ‖P ] has a unique name l, and contains a tree T and a process
P . The empty network is denoted by 0. Function dom(N), defined in Figure A.1
returns the domain of N (the names of the locations constituting N). Network
composition N |M is partial : the domain of N must be disjoint from that of M .
Private channel names can extend their scope across networks, using (ν c)N , when a
process containing a fresh name migrates to another location. Note that networks
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Figure 2.7: Semantics: structural congruence for Xdπ

(ν c)0 ≡ 0 (Struct Res PNil)

c 6∈ fn(P ) =⇒ P | (ν c)Q ≡ (ν c)(P |Q) (Struct Res PPar)

(ν c)(ν d)P ≡ (ν d)(ν c)P (Struct Res PRes)

(ν c)0 ≡ 0 (Struct Res NNil)

c 6∈ fn(N) =⇒ N | (ν c)M ≡ (ν c)(N |M) (Struct Res NPar)

(ν c)(ν d)N ≡ (ν d)(ν c)N (Struct Res NRes)

l [T ‖ (ν c)P ] ≡ (ν c)l [T ‖P ] (Struct Res NLoc)

Structural congruence ≡ is a subset of (P ×P )∪ (N ×N ). It is the least equivalence
relation satisfying α-conversion and the axioms given above, closed under all the
syntactic operators, and such that (P , | ,0,≡) and (N, | ,0,≡) are commutative
monoids. A complete definition of ≡ can be found in Figure A.3.

do not contain free variables by construction.

2.2.3 Semantics

The semantics of Xdπ is given in terms of structural congruence and a reduction
relation, in the style of the Chemical Abstract Machine of Berry and Boudol [10].
The structural congruence for processes and networks is standard, and is defined
in Figure 2.7. The reduction relation −→ describes the movement of processes
across locations, the interaction between processes and processes, and the interaction
between processes and data. The formal definition is given in Figure 2.8.

Rules (Red Par), (Red Res) and (Red Struct) are standard contextual rules which
allow reduction under parallel composition, restriction and structural congruence.

There are two rules for process movement between locations: rule (Red Stay) de-
scribes the case where the process is already at the target location, and rule (Red Go)

allows a process go l.P to move from m to l.
Rule (Red Com) states that if an output a〈ṽ〉 and an input a(π̃).P on the same

channel a are in the same location, and the values ṽ match the input patterns π̃
(there is a substitution a σ such that ṽ = π̃σ), then communication takes place and
execution proceeds with Pσ. Rule (Red Com!) is similar, but leaves the replicated
input process !a(π̃).P in place for further use. We show an example of the com-
munication of a private channel over a service channel below. The reduction step
involves the use of structural congruence to extend the scope of the restricted name
before communication:

l [T ‖ (ν c)(a〈c, b 〉) | a(x, b[ y ]).(x〈y〉 |P ) ] −→ l [T ‖ (ν c)(c〈∅〉 |P {c/x,∅/y}) ]

Rule (Red Run) runs a script after having pattern matched its parameters. Rule
(Red Request) applies the query denoted by p on the local tree T , obtaining an updated
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Figure 2.8: Semantics: reduction relation for Xdπ

l [T ‖Q | go l.P ] −→ l [T ‖Q |P ] (Red Stay)

l [T ‖Q | gom.P ] | m [S ‖R ] −→ l [T ‖Q ] | m [S ‖R |P ] (Red Go)

l [T ‖ c〈π̃σ〉 | c(π̃).P |Q ] −→ l [T ‖Pσ |Q ] (Red Com)

l [T ‖ c〈π̃σ〉 | !c(π̃).P |Q ] −→ l [T ‖ !c(π̃).P |Pσ |Q ] (Red Com!)

l [T ‖ (π̃)P ◦ 〈π̃σ〉 |Q ] −→ l [T ‖Pσ |Q ] (Red Run)

E(p, T ) = (T ′, U1 p...pUn p∅)
l [T ‖ reqp〈c〉 |Q ] −→ l [T ′ ‖ c〈r[ U1 ]p . . . pr[ Un ]p∅〉 |Q ]

(Red Request)

(Red Par)

N −→ N ′

N |M −→ N ′ |M

(Red Res)

N −→ N ′

(ν c)N −→ (ν c)N ′

(Red Struct)

N ≡ M −→ M ′ ≡ N ′

N −→ N ′

Reduction −→ is a partial relation, subset of N ×N .
Convention: in this table c ranges over Cp ∪ Cs.

tree T ′ which replaces T , and a list of results U1 p...pUn p∅ which is turned into a tree
of results (with branches labelled with a standard tag r) sent on channel c. We show
a simple example of update, supposing that p is a query which deletes and returns
from a tree the data found by following the path a/b:

l [ a[ b[ V ]pa[ U ] ] ‖ reqp〈c〉 |P ] −→ l [ a[ b pa[ U ] ] ‖ c〈r[ V ]〉 |P ]

Note that the subtree V removed from the store is returned as a result by the output
on c.

2.3 A sample query and update language

In this section, we define a particular query and update language inspired by XPath [80]
which will be used in the examples later on. The result of evaluating a query against
a piece of data (when defined) is a pair consisting of a new piece of data, intended to
replace the original one, and a list of results, intended to be used by the continuation
of the process that executed the query.

The syntax for queries is given in Figure 2.9. Queries are formed by path ex-
pressions followed by update expressions. An update expression (π)V is a binding
pattern followed by a data term. When (π)V is applied to a data item U such that
U = πσ for a closing substitution σ, the expression returns the new data item V σ
and the result U . If there is no such substitution, the expression returns the original
data U and the empty result ∅. A path expression A/p applied to a tree a[ V ]pT
evaluates p on V if a is in the set A, and evaluates itself on the rest of the tree T . A
recursive expression 2p applied to a tree a[ V ]pT evaluates p on any node in the tree
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Figure 2.9: Syntax: Sam queries

p̂, q̂ ::= path expressions
ε empty path
A/p̂ follow an edge with label in set A, then p̂

2p̂ follow occurrences of p̂ anywhere

p, q ::= p̂(π)V queries

A, B ∈ ℘(E) (Label Sets)

p, q ∈ Q (Queries)

Notation: copybp(π)
def= p̂(π)π; cutbp(π)

def= p̂(π)∅; pastebp〈E〉
def= p̂(x)E px;

∗/p̂
def= E/p̂; a/p̂

def= {a} /p̂.
Convention: we omit a trailing ε from a path, for example we write A for A/ε.

in a bottom up fashion6. First it evaluates 2p on V and T , obtaining the updated
items V ′ and T ′, then it evaluates p on a[ V ′ ]pT ′, combining the results together. The
formal definition of query evaluation is given in Figure 2.10.

Definition 2.3.1 (Sample Query Language) The sample query language Sam is
the triple (Q, fv , E) where Q is defined in Figure 2.9, E is defined in Figure 2.10 and
fv is defined as fv(p̂(π)V ) = fv(V ) \ fv(π).

Sam is capable of expressing some intuitive tree manipulations. The query q =
copyb/(y@x) reads the query and the location of any pointer contained in branches
labelled b at the top level. For example,

E(q, b[ T ]pb[ p@l ]pb[ q@m ]) = (b[ T ]pb[ p@l ]pb[ q@m ], p@lpp′@l′)

The query q = cuta/2b/(x) removes the contents of any branch labelled b found after
an initial branch a, and returns the removed data as results. For example,

E(q, b[ V ]pa[ c[ b[ U ] ] ]) = (b[ V ]pa[ c[ b ] ], U)

The query q = pastea/∗/〈e 〉 adds a branch e to any child of a. For example,

E(q, a[ b pc[ d ] ]) = (a[ b[ e ]pc[ e pd ] ],∅p(d ))

where the results are the list ∅p(d ) where the first element is the empty tree (the
contents of b) and the second element is tree d (the contents of c). Note that the

6Suppose we chose a top-down strategy instead. A simple query like “add a subtree a inside any
branch labelled a” on the tree a should be ruled out, because its evaluation diverges: each time a
new subtree is added there is a new branch to update. Inconsistencies of this kind are well-known
in languages for updating trees, and there is no general agreement on which strategy should be
preferred. Our results do not depend on the strategy chosen for Sam.
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Figure 2.10: Semantics: query evaluation for Sam

E((π)V , πσ) = (V σ, πσp∅) (Eval Match)

E((π)V , U) = (U,∅) where U 6= πσ (Eval Mismatch)

a ∈ A E(p, V ) = (V ′, L) E(A/p, T ) = (T ′, L′)
E(A/p, a[ V ]pT ) = (a[ V ′ ]pT ′, LqL′)

(Eval Edge Follow)

a 6∈ A E(A/p, T ) = (T ′, L′)
E(A/p, a[ V ]pT ) = (a[ V ]pT ′, L′)

(Eval Edge Discard)

E(A/p, U) = (U,∅) where U 6= a[ V ]pT (Eval Not Edge)

E(2p, V ) = (V ′, L)
E(2p, T ) = (T ′, L′)

E(p, a[ V ′ ]pT ′) = (T ′′, L′′)
E(2p, a[ V ]pT ) = (T ′′, LqL′qL′′)

(Eval Anywhere Tree)

E(2p, U) = E(p, U) where U 6= a[ V ]pT (Eval Anywhere Else)

Query evaluation E is a partial function from Q×D to D ×D≺ω.

query for pasting data is defined only if each selected node (each child of a) contains
a tree7, since otherwise the resulting tree would be ill-formed. The query q =
2(b[ 〈x〉 ]py)c[ 〈x〉 ]py relabels each branch b containing a script to c:

E(q, a[ b[ 〈A〉 ]pb[ T ]pb[ 〈A′〉 ] ]) = (a[ c[ 〈A〉 ]pb[ T ]pc[ 〈A′〉 ] ], L)

where the results L = (b[ 〈A〉 ]pb[ T ]pc[ 〈A′〉 ])p(b[ 〈A′〉 ]) correspond to the two trees to
which the pattern was applied successfully. Note that in the first result, which is the
last computed, the last branch has already been relabelled.

On the other hand, our sample query language is not sophisticated enough to
express (atomically) a query like “delete each branch labelled a which contains a
branch labelled b”, because if we do not know in advance where a branch labelled
b occurs in the contents of a, we cannot write a pattern to select only the nodes
containing b. This limitation can be easily overcome by adopting a richer pattern
language or by enriching the path expressions with conditions on the contents of
nodes (see for example Section 3.3.1).

7A type system regulating the contents of trees could prevent processes from getting stuck because
of undefined queries.
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Chapter 3

Examples

In this chapter, we discuss detailed examples of Xdπ. In Section 3.1, we define some
derived constructs which serve as building blocks to express more complex examples.
In Section 3.2, we describe our representation of (Web) service calls and service
definitions. In Section 3.3, we show how to model the dynamic behaviour of Web
data in Xdπ, exploiting links, service calls and scripts in documents.

3.1 Derived constructs

In this section, we define high level commands for conditional expressions, nondeter-
ministic choice, parsing of values, and data manipulation. We give their semantics
in terms of a translation into Xdπ primitives. Some of the constructs will be used
in the examples later on, some are just for illustrative purposes. We do not claim
any particular originality for these definitions, as several ideas are already part of the
π-calculus literature or folklore.

To begin with, we introduce a notion of contextual reduction ◦−→, which describes
how a process can evolve independently from the surrounding context. It is a strong
property: if a process can evolve into another by a step of ◦−→, then it has the
possibility to do so in any possible context, and it does not need any external resource
to do so.

Definition 3.1.1 (Contextual reduction) Contextual reduction is the smallest
relation ◦−→ over processes such that P

◦−→ P ′ if and only if, for all CN , l, T, CP
such that l 6∈ dom(CN ), CN [l [T ‖CP [P ] ]] −→ CN [l [T ‖CP [P ′] ]].

Conversely, we denote by P
◦−→6 the fact that a process cannot reduce, regardless

of the surrounding context (deadlock). In the examples below, we denote any such
process by the constant δ, with the intuitive meaning that it is deadlocked code ready
to be garbage-collected.

Definition 3.1.2 (Deadlock) A process P is deadlocked if and only if, for all
CN , l, T, CP such that l 6∈ dom(CN ),

CN [l [T ‖CP [P ] ]] −→ N ⇐⇒ CN [l [T ‖CP [0] ]] −→ N ′

for arbitrary N,N ′. We abbreviate with δ a process P such that P
◦−→6 .
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Figure 3.1: Notation and conventions for the derived constructs

Notation:
∏

0≤i≤n

Pi
def= P1 | ... |Pn;

⊕

0≤i≤n

Pi
def= P1⊕ ... ⊕Pn;

∑

0≤i≤n

Pi
def= P1+ ... +Pn.

Convention: optional syntactic constructs are enclosed in square brackets [−].

In Figure 3.1, we define some extra notation and conventions used to improve
readability. In particular, in the examples below we will use square brackets [−] for
optional syntactic constructs.

3.1.1 Control

We begin with some constructs for controlling the execution flow of processes.
If-then-else. The encoding of the if-then-else is the same as in the π-calculus:

(True) True(c) def= c(x, y).x

(False) False(c) def= c(x, y).y

(If Then Else) if c then P [ else Q] def= (ν t, f )(c〈t, f 〉 | t.P [ | f.Q]) t, f 6∈ fn(P , Q)

The typical usage consists in initializing a boolean value on a private channel c shared
among several processes, and having the processes testing for the value of c, restoring
the value (or its negation) after each test. For example, let process Not(c) be the
boolean “not” operator on channel c:

Not(c) def= if c then False(c) else True(c)

Let us apply the double negation to the value true on channel c:

(ν c)(True(c) |Not(c) |Not(c)) ◦−→ ◦−→
(ν c)(False(c) | (ν f )(f.True(c)) |Not(c)) ◦−→ ◦−→

(ν c)(True(c) | (ν f )(f.True(c)) | (ν t)(t.False(c))) ◦−→6
After the first two reduction steps, channel c carries the boolean value false, and the
first negation has become the deadlocked process (ν f )(f.True(c)). After two further
reduction steps, the second negation restores the boolean value to true and becomes
the deadlocked process (ν t)(t.False(c)).
Internal choice. The intuitive meaning of the internal choice construct ⊕ is that
process P ⊕Q can only make a ◦−→ step and become nondeterministically either P
or Q. The encoding is straightforward:

(Internal Choice)

⊕

i

P i
def= (ν c)(c |

∏

i

c.P i) c 6∈ fn(P i)

This mechanism can be easily generalized. For example, to select nondeterministically
k processes out of n it is sufficient to use k copies of the output c. Internal choice
can be used for example to represent message loss, both in the case of migration and
of local communication:
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(Weak Migration) go l.P
def= go l.P ⊕ 0

(Weak Output) a〈ṽ〉 def= a〈ṽ〉⊕ 0

Indeed, we might replace the normal migration and output constructs with their weak
variants to model local or remote links which can be subject to failure.
External choice. We consider now the encoding of external choice, for summations
of (possibly replicated) input processes. The intended semantics of external choice is
that process a(x).P + b(y).Q can either communicate with an output a〈v〉 to become
P{v/x}, or with an output b〈u〉 to become Q{u/x}, in both cases losing the other input
guarded summand. A simple summand can represent an exception handler, which
has the power of disabling the other summands when an exception (the corresponding
output) occurs. A replicated summand can be a part of a process which is meant
to be interruptible. We give the encoding below, assuming the side condition
a, b 6∈ fn(P ) ∪ {c}:

(Summand) branch(a, c(π̃).P ) def=

{
c(π̃). if a then (P |False(a))

else (c〈π̃〉 |False(a))

(!Summand) branch(a, !c(π̃).P ) def=

{
(ν b)(b | !b.c(π̃). if a then (P |True(a) | b)

else (c〈π̃〉 |False(a))

(External Choice)

∑

i

[!]ci(ω̃i).P i
def= (ν a)

(
True(a) |

∏

i

branch(a, [!]ci(ω̃i).P i)
)

The (Summand) branch first tries to communicate on channel c, then tests the value
of the flag a to check whether or not the choice construct is still active. If a is true,
execution can proceed and the flag is set to false (deactivating all the other branches).
If a is false, then the output on c is restored and the branch is deadlocked. The case
for (!Summand) is similar, but the execution requires the presence of a token b which
is restored every time communication is successful. Note that this branch leaves the
flag to true, so that the choice construct is still active after communication.

As an example, suppose we have an external choice between an input on channel
c and one on channel b. When the corresponding outputs become available, commu-
nication on one branch can take place, disabling the other branch. We give sample
reductions below:

c(x).P + b(y).Q | c〈v〉 | b〈u〉 ◦−→

(ν a)
(
True(a) |

{
if a then (P{v/x} |False(a))
else (c〈v〉 |False(a))

}
| branch(a, b(y).Q)

) | b〈u〉 ◦−→ ◦−→

P{v/x} | (ν a)(False(a) | δ | branch(a, b(y).Q)) | b〈u〉

Communication on channel c has happened, and the fact that flag a is false shows
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that the other branch of the choice is disabled. In fact,

P{v/x} | (ν a)(False(a) | δ | branch(a, b(y).Q)) | b〈u〉 ◦−→

P{v/x} | (ν a)
(
False(a) | δ |

{
if a then (Q{u/y} |False(a))
else (b〈u〉 |False(a))

} ) ◦−→ ◦−→

P{v/x} | δ | b〈u〉
The second branch communicates on c, finds that the choice is disabled, restores the
output message b〈u〉 and becomes deadlocked.

3.1.2 Data

We give now some derived constructs which help with data manipulation.
Parsing. Communication in Xdπ is based on pattern matching. By sending a
value on a restricted channel, composed in parallel with several inputs with different
patterns, we define a nondeterministic pattern matching construct for parsing tuples
of values:

(Pattern Matching) match ṽ with
∏

i

π̃i do P i

def= (ν c)(c〈ṽ〉 |
∏

i

c( ˜̃πi).P i) c 6∈ fn(ṽ, P i)

In order to parse all the branches composing the top level of a tree, we can iterate the
pattern matching process using replicated inputs, and define an optional base case
for the empty tree. Assuming c 6∈ fn(P i, Q), x 6∈ fv(πi,P i), the code is

(Foreach Tree) in T foreach
∏

i

ai[ πi ] do P i [ ifempty Q]

def= (ν c)(c〈T 〉 |
∏

i

!c(ai[ πi ]px).(c〈x〉 |P i)[ | c(∅).Q])

Below we show an example of parsing a tree value:

in a[ S ]pb[ p@l ] foreach
(
(a[ w ] do a〈w〉) | (b[ y@z ] do b〈z〉)

)
ifempty c

◦−→
in b[ p@l ] foreach

(
(a[ w ] do a〈w〉) | (b[ y@z ] do b〈y〉)

)
ifempty c | a〈S〉 ◦−→

in ∅ foreach
(
(a[ w ] do a〈w〉) | (b[ y@z ] do b〈y〉)

)
ifempty c | a〈S〉 | b〈l〉 ◦−→

δ | a〈S〉 | b〈l〉 | c
The code of the for-each loops becomes the deadlocked process

δ = (ν c)(!c(a[ w ]px).(c〈x〉 | a〈w〉) | !c(b[ y@z ]px).(c〈x〉 | b〈y〉)) ◦−→6
which cannot interact anymore with the environment (and in an implementation
would ideally be garbage-collected).
Requests. Private channels and pattern matching are also helpful to manipulate
the results of requests to the store. A useful construct is the synchronous requests,
which binds the result of a request in a continuation process. It can also be combined
with an exception handler construct, to model timeouts or other errors which may
occur when accessing the store (outputs on the channels ei). The code is:
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(Synchronous Request)reqp(π).P [ catch
∏

i

ei(π̃i) do Qi]

def= (ν c)(reqp〈c〉 | c(π).P [+
∑

i

ei(π̃i).Qi]) c 6∈ fn(P )

Similarly, when the purpose of request is to update the store and not to read data,
we can define a synchronous update operation:

(Synchronous Update) upp.P [ catch
∏

i

ei(π̃i) do Qi]

def= reqp(x).P [ catch
∏

i

ei(π̃i) do Qi] c 6∈ fn(P ), x 6∈ fv(P )

The synchronous request can be extended along the lines of (Foreach Tree) to parse
each result, one by one. Assuming the conditions c 6∈ fn(P i, Q), x 6∈ fv(πi,P i), the
code is given by:

(Foreach Request) in p foreach
∏

i

πi do P i [ ifempty Q] [ catch . . .]

def= reqp(x).(in x foreach
∏

i

r[ πi ] do P i [ ifempty Q])[ catch . . .]

For example, we can use (Foreach Request) to codify a run operation which executes
all the scripts returned by a request p with some arbitrary parameters ṽ:

(Run) runp〈ṽ〉
def= in p foreach 〈y〉 do y ◦ 〈ṽ〉

As an example of the run operation, using the Sam query language, we have

T = proc[ 〈(x, y)x〈y〉〉 ]pb[ proc[ 〈(x, y)y〈x〉〉 ] ]p∅

l [T ‖ run
copy2(〈z〉)〈a, b〉 ] −→−→−→−→ l [T ‖ δ | a〈b〉 | b〈a〉 ]

where δ are the deadlocked remains of the for-each loop. In the reductions above,
notice that we cannot use the contextual reduction because we have to be explicit
about all the network, as the result depends on the actual data in the tree at l.

3.2 Web services

In this section, we describe a simple implementation of macros for defining and calling
services in Xdπ.
Service definition and service call. A service definition is characterized by
the name of the service a, its input pattern π̃, its body (x)P and its output pattern
ω̃. The service receives on channel a the input parameters π̃, a location name y and
a channel name z (the latter parameters are used to return the result). The body
(x)P takes a fresh channel name c (bound to x) in input, performs some arbitrary
computation, and outputs the result on channel c. Note that the variables in π̃ may
bind in P . A forwarding process inputs the result from channel c according to the
output pattern ω̃, and forwards it to location y on channel z. The pattern ω̃ can be
interpreted in the macro below as specifying the output type of the service.
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(Service Definition) Define a(π̃) as (x)P output 〈ω̃〉
def= !a(π̃, y, z).(ν c)((x)P ◦ 〈c〉 | c(ω̃).go y.z〈ω̃〉)

The service call is dual. It specifies the location l from which the service is invoked
(and to which it is returned), the location m and the name a of the service, its
parameters ṽ, and a continuation process Q with patterns π̃ for parsing the results.

(Service Call) l·Call m·a〈ṽ〉 return (π̃)Q
def= (ν c)(go m.a〈ṽ, l, c〉 | c(π̃).Q)

The parameters l and c sent on a are used by the forwarding process in the service
definition to return the result to the continuation process Q. For example, a service
providing querying capabilities on its local store, and the corresponding service call,
could be defined respectively as

Define query(x1) as (x)reqx1
〈x〉 output 〈x2〉

l·Call m·query〈p〉 return (x)Q

The service takes as input a query x1 and executes the corresponding request on the
local store. The forwarding part of the service definition will intercept the request
result and send it on c at l, where it is passed on to Q on variable x.
Subscriptions. We can easily generalize service definitions to cover the case of
push services, which send a stream of results to a client in reply to a single service call.
The only difference between the code below and (Service Definition) is the presence of
a replicated input in the forwarding process

(Push Service) Push a(π̃) as (x)P output 〈ω̃〉
def= !a(π̃, y, z).(ν c)((x)P ◦ 〈c〉 | !c(ω̃).go y.z〈ω̃〉)

The corresponding service subscription waits for multiple results on channel c:

(Subscription) l·Subscribe m·a〈ṽ〉 return (π̃)Q
def= (ν c)(go m.a〈ṽ, l, c〉 | !c(π̃).Q)

If desired, the streamed results received by the client can be combined together using
a loop similar to the one for (Foreach Tree).
Result forwarding. In order to have complete control on the return parameters,
in certain cases we will bypass the service call code, and use only a migration step
followed by a service invocation. For example, let

Service = Define query(x1) as (x)reqx1
〈x〉 output 〈x2〉

and consider the network

N = (ν c)




l [T0 ‖ gom.query〈(w)w, n, c〉 ]
| m [S ‖Service ]
| n [∅‖ c(x).req(w)x〈c〉 ]



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The service invocation migrates to l and triggers the service, passing as return
parameters n and c. The local request at m copies the whole tree S and forwards it
to c on n:

N −→∗ l [T0 ‖0 ] | (ν c)(m [S ‖Service | go n.c〈S〉 ] |n [∅‖ c(x).req(w)x〈c〉 ])

−→∗ l [T0 ‖0 ] |m [S ‖Service ] |n [S ‖ (ν c)(c〈∅〉) ]

At n the code listening on c receives the result and replaces the local tree. We
will follow this strategy in several examples, redirecting the results of a service to a
location different from the one that issued the service call.

3.3 Dynamic data

In this section, we give examples specific to dynamic Web data which exploit the
presence of pointers and scripts in trees. For illustrative purposes, we allow strings
as leaves in the data trees.

3.3.1 Bibliographic database

Our first example illustrates a possible usage of pointers as references to data missing
from a stored document. Consider a peer l containing a computer science biblio-
graphic database, and a peer m containing a database of Imperial College employees.
To start with, the two databases contain mutual references. In the data tree at l,
each branch represents a bibliographical item, containing some minimal information
about a publication

item[ . . .]p
item

[
book[ Data on The Web ]p
authors[ name[ Serge Abiteboul ]pname[ Peter Buneman ]pname[ Dan Suciu ] ]

]
p

item
[
journal[ Theoretical Computer Science ]p
article[ Modelling Dynamic Web Data ]p
authors[ link[ id[ j ]ppointer[ p@m ] ] ]

]
p

. . .

The authors of the article “Modelling Dynamic Web Data” are not represented ex-
plicitly, but via an intensional reference: the pointer p@m, which we will discuss
below. The data tree at location m consists of two subtrees, one for academics and
one for students, each containing personal data and the publication record for each
individual:

academics
[
professor[ . . . ]p
lecturer[ name[ Philippa Gardner ]ppublications[ T1 ]p . . . ]p
. . .

]
p

students
[
phd[ . . . ]p
phd[ publications[ T2 ]pname[ Sergio Maffeis ]p . . . ]p
. . .

]
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We assume that both T1 and T2 contain a record of the form

article
[
link[ id[ . . . ]ppointer[ q@l ] ]p
title[ Modelling Dynamic Web Data ]p
. . .

]

where the link q@l points to the list of authors for the specific article on location l.
We now describe the two query expressions p and q. For this example, we consider

a query language slightly more expressive than Sam which, similarly to XPath, can
select edges based on a condition on their contents1. For example, path a[b/c] selects
the contents of an edge a, if it includes an edge b followed by another edge c. Query
p, used at location l to retrieve the authors of an article from the tree of m, is

p = copy2[publications/article/title/Modelling Dynamic Web Data]/name(x)

where the path expression 2[. . .]/name extracts the name field from any node which
includes a list of publications containing an article with title “Modelling Dynamic
Web Data”. Query q, used at location m to retrieve author data from the tree of
l, is

q = copy2[article/Modelling Dynamic Web Data]/authors(x)

where the path expression 2[. . .]/authors extracts the list of authors from the article
subtree with the correct title.

In order to read all the links in the repository of a location l, and replace each
of them with the corresponding data, we define a process Materialize(l, edge), where
label edge is used to create the edges in which to store each result:

Materialize(l, edge) = in copy2link/(x) foreach π1 do

gox3.reqx2
(y).go l.in y foreach r[ z ] do upp1

ifempty upp2

π1 = id[ x1 ]ppointer[ x2@x3 ]

p1 = 2[link/id/x1](z1 pz2)z1 pedge[ z ]pz2

p2 = 2[link/id/x1](z1 pz2)z2

The process reads all the link nodes using query copy2link/(x), and parses each one
using pattern π1 to extract the id x1, the query x2 and the location x3. The process
then goes to x3, executes x2 binding the results to y, returns to l, and writes each
result in the tree. The update p1 identifies the node containing the link with the right
id and inserts a new branch edge[ z ] for each result as a sibling to the link node z1.
The update p2, which applies when all the results have been pasted, removes the first
branch z1, which contains the link. Suppose that at location l there is the process
Materialize(l, name), and at location m there is Materialize(m, authors). We can start

1Although logically simple, we have not included this extension in Sam because it would compli-
cate unduly the definition of the evaluation function.
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executing Materialize(l, name), obtaining at location l the tree

item[ . . .]p
item

[
book[ Data on The Web ]p
authors[ name[ Serge Abiteboul ]pname[ Peter Buneman ]pname[ Dan Suciu ] ]p
. . .

]
p

item
[
journal[ Theoretical Computer Science ]p
article[ Modelling Dynamic Web Data ]p
authors[ name[ Philippa Gardner ]pname[ Sergio Maffeis ] ]p
. . .

]
p

. . .

where the names of the authors have replaced the link. We can now execute process
Materialize(m, authors), transforming the article subtrees of T1 and T2 at m into

article
[
authors[ author[ Philippa Gardner ]pauthor[ Sergio Maffeis ] ]p
title[ Modelling Dynamic Web Data ]p
. . .

]

Intensional results. If we change the order in which we execute the two processes,
we face a more complex situation. We start executing Materialize(m, authors) on the
original tree at location m, and the article subtrees of T1 and T2 become

article
[
authors[ link[ id[ j ]ppointer[ p@m ] ] ]p
title[ Modelling Dynamic Web Data ]p
. . .

]

The result returned by materializing q@l is again intensional, in the form of an author

edge followed by another link (now local) pointing to the author names contained
somewhere else in the same tree. The tree obtained at l by executing Materialize(l, name)
instead is the same as in the previous example. In order to completely materialize
the tree at m, we need to execute also a process Materialize(m, name) which copies the
author names from the local tree to the list of authors, reaching the same final state
as the previous example.

The process of obtaining a completely materialized document starting from an
intensional one is inherently iterative, and in principle may not terminate or be deter-
ministic (see for example [59] for an analysis of intensionality for AXML). Devising
static analyses to guarantee convergence in specific cases is an interesting research
topic which goes well beyond the scope of this thesis.

3.3.2 Active XML and beyond

In this section, we present an example of dynamic data inspired by AXML, and we
generalize it to express a richer data integration scenario.

We have mentioned in Chapter 1 that AXML is based on peers containing a
repository of documents and a set of service definitions. AXML services typically
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consist of queries and updates on the local repository, but in general can be arbitrary
Web services. AXML documents are semi-structured documents which can contain
calls to services on other peers. Service calls are essentially remote procedure calls
to the specified service on another peer. When the results are returned to the peer
which contained the service call, they are added to the original document, possibly
replacing the results from previous invocations, or the original service call.
Service calls in Xdπ. A straightforward representation of an AXML service call
in Xdπis

call[ id[ j ]pcode[ 〈SCall(j, l, s)〉 ]pPars ]

where call is an edge label denoting the service call, id is the representation of an id
attribute with unique value j, code contains the actual script implementing the call
to service s on location l, and Pars is a tree containing the parameters to the service.
Script SCall(j, l, s) below takes as input the name of the current location x and the
service parameter y, calls service s on l using the macro (Service Call) of Section 3.2,
and adds the service results as siblings of the service call node, identified by j:

SCall(j, l, s) = (x, y)x·Call l·s〈y〉 return (z)
in z foreach r[ w1 ] do up2(π1)π2

π1 = call[ id[ j ]px1 ]px2

π2 = call[ id[ j ]px1 ]pr[ w1 ]px2

Pattern π1 is used to identify and break in two parts the service call node, and pattern
π2 is used for pasting each result in between the service call and the other results.
The corresponding service definition can be any instance of (Service Definition) which
takes in input a single tree and which returns results of the form r[ V1 ]p . . . r[ Vn ]p∅.
If the service is supposed to return a stream of results instead of a single list, then we
can use the macro (Subscription) instead of (Service Call) in the definition above (and
correspondingly the macro (Push Service) instead of (Service Definition) for the service
definition).
Intensional parameters. A peer can activate a service call in its repository
either when a specific timeout expires2, or when the data containing the service call
is being accessed. Before executing the service call, there can be an optional pre-
processing phase in which any parameter containing links or other service calls can be
materialized or left intensional, depending on the presence of default evaluation rules
or explicit overriding annotations. For example, an immediate branch in a service call
might override a lazy evaluation policy of the parameters. The same considerations
in Section 3.3.1 regarding intensional results also apply to the results of service calls.

3.3.3 Stock quoting service

We now give an example of AXML-like service calls in the context of market data
retrieval. Suppose that at location l there is a service gainers which takes as input
the name of a stock exchange and returns the current time and the names of the ten

2As we do not model time explicitly in Xdπ, a timeout can be represented as an asynchronous
interruption in the style of the examples of Section 3.1.
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stocks which have gained most points (in percentage) in the last hour, plus a service
call to obtain the next ten results. Each day, a dealer at location m invokes the
service hourly, and accumulates all the results. The client repository contains the
tree

historical
[
daily[ date[ 7/7/05 ]p . . . ]p
daily[ date[ 6/7/05 ]p . . . ]p
. . .

]
p

today
[
bulls[ CNY pNn p . . . pN1 ]p
bulls[ CLpLn p . . . L1 ]p
. . .

]

where historical contains the ten best gainers for each hour of the previous days,
and today contains the current data up to the last service invocation, grouped by
stock exchange. CNY and CL are the service calls for the New York and London
exchanges:

CNY = call[ id[ i ]pcode[ 〈SCall(i, l, gainers)〉 ]pexchange[ nyse ] ]

CL = call[ id[ j ]pcode[ 〈SCall(j, l, gainers)〉 ]pexchange[ lse ] ]

Each Ni (respectively Li) contains the results for a specific hour at New York (or
London). For example

N1 = r[ time[ 9:30am ]psymbol[ HZO ]psymbol[ OO ]p . . . pMoreN1 ]

where HZO ,OO , . . . are the acronyms of the top gainer stocks, and subtree MoreN1

contains a service call which can be used to retrieve the next ten best performing
stocks for that market at that hour.

A process Monitor , in the working space, is responsible for running the scripts
every time a specific timeout, represented by a communication on channel t, occurs3.
At the end of the trading day, a special timeout e causes the process to remove all
the service calls from the results of the day, archive them recording the current date,
and terminate. The code for process Monitor is

Monitor = !t.Update + e(x).Archive
Update = reqcopy2bulls(x)(call[ xpcode[ 〈y〉 ]pz ]pw).y ◦ 〈m, z〉
Archive = up2(call[ y ]pz)z.req2today(y)∅(z).up(y)historical[ date[x ]pz ]py

When a message t becomes available, process Update substitutes in the variable y,
and executes, the main service call from each bulls element, passing the corresponding
stock exchange parameter z. The results Nn+1, Ln+1, . . . obtained for the various
exchanges are added to the data for the current day, which becomes

today
[
bulls[ CNY pNn+1 pNn p . . . pN1 ]p
bulls[ CLpLn+1 pLn p . . . L1 ]p
. . .

]

3Since the execution model of Xdπ is not synchronous, our representation of a timeout event as
an output message is a drastic simplification, which is useful for this example.
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When the message of end of day e〈date[ 8/7/05 ]〉 becomes available, process Archive
removes all the service calls from the repository (both the ones used by Monitor
and the ones returned by service bulls, of the form More−) with the first update
operation, then cuts the data gathered today from the tree with the request, and
finally archives it (along with the current date) as historical data using the last
update. The resulting tree at m becomes

historical
[
daily[ date[ 8/7/05 ]pbulls[ N ′

n+1 p . . . pN ′
1 ]pbulls[ L′n+1 p . . . pL′1 ]p . . . ]p

daily[ date[ 7/7/05 ]p . . . ]p
daily[ date[ 6/7/05 ]p . . . ]p
. . .

]
p

today

where each N ′
i is Ni without the service call for additional results, and similarly for

L′i.

3.3.4 Market indexes

In the previous example, we have used AXML calls as a standard way to add dynamic
behaviour to trees. They are more flexible than pointers, as used in Section 3.3.1,
in that the service being called can perform arbitrary operations to produce the re-
sults, whereas pointers are tied up to a specific query-update. A further step of
generalization consists of including arbitrary scripts in data trees. The behaviour
that unconstrained scripts can provide is more flexible than just invoking a remote
service and handling its results locally: they allow for directly accessing remote data,
gathering results from different locations, forwarding them to other agents and in-
voking other services. Moreover, thanks to the ability to store arbitrary scripts, we
can represent documents organized as code libraries, from which scripts can be read
and then transferred for execution on other locations.

We now extend the example of Section 3.3.3 by adding a market analysis location
n containing a database of market indexing functions which interact directly with
raw market data, and are assumed to compute a specific index value by averaging
the price of a determined set of stocks. Clients can read these functions from the
tree, and migrate to some location providing market data to apply the functions and
obtain the index values.

The indexing functions are stored in the tree at n in the branch

indexes
[
S&P500[ script[ 〈(x)P 1〉 ] ]p
DowJonesIA[ script[ 〈(x)P 2〉 ] ]p
NASDAQC[ script[ 〈(x)P 3〉 ] ]p
. . .

]

where each P i is a functional process which takes a private channel name (bound
to x) as input, and computes a specific index outputting the result on channel x (at
the location where it is executed). We can add to the today branch in the tree at
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location m (see Section 3.3.3) a script for obtaining the value of the main market
indexes. The new tree becomes

today
[
indexes[ call[ id[ h ]pcode[ 〈Ind〉 ] ] ]p
bulls[ CNY pNn p . . . pN1 ]p
bulls[ CLpLn p . . . L1 ]p
. . .

]

where the code of script Ind , given below, is based on the code for SCall(−,−,−):

Ind = (x, y)go n.in copy2indexes/∗/code(z) foreach 〈w〉.
go l.(ν c)(w ◦ 〈c〉 | c(z).go x.up2(ω1)ω2

)
ω1 = call[ id[ h ]px1 ]px2

ω2 = call[ id[ h ]px1 ]pindex[ z ]px2

The new script has a more sophisticated behaviour than a service call. It takes in
input the current location x and the call parameter y (the latter only for uniformity),
goes to location n, and reads off the tree all the index functions. For each one of
them, a subprocess goes to location l (containing the actual market data), creates
a fresh channel c, runs the function, waits for the result on c and goes back to the
original location x to paste the result as a sibling of the service call. The result of
executing the script is

today
[
indexes[ call[ . . . ]pindex[ In ]p . . . pindex[ I1 ] ]p
bulls[ CNY pNn p . . . pN1 ]p
bulls[ CLpLn p . . . L1 ]p
. . .

]

where each Ii is the data concerning a particular index.
Along these lines, it is possible to devise more complex scripts which combine

service invocations, local queries, and coordination processes to facilitate data in-
tegration. For example, in Chapter 6 we will discuss sophisticated communication
patterns which can be adapted to Xdπ and combined with the examples given above.
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Chapter 4

Behavioural Equivalences

In this chapter, we study behavioural equivalences for Xdπ networks and processes.
In Section 4.1, we define a notion of reduction congruence induced by a set of ob-
servables which constitutes the basis for our behavioural equivalences. In Section 4.2,
we study particular instances of reduction congruences targeted at specific properties
of Xdπ networks. Process equivalence establishes when two processes can replace each
other in a network without affecting network equivalence. In order to define process
equivalence, we need to separate reasoning about processes from reasoning about data.
To do so, in Section 4.3, we define an alternative notation for Xdπ networks called
Core Xdπ, and we show that under some mild assumptions the behavioural equiva-
lences are the same in the two formalisms. Finally, in Section 4.4, we define what it
means for Core Xdπ processes to be equivalent, in such a way that when equivalent
processes are replaced in the same network, the observable behaviour of the network
does not change.

4.1 Equivalences and observables

In this section, we propose a notion of behavioural equivalence for a reduction system
(a set of terms along with a reduction relation) such that two terms are equivalent if
they enjoy the same (independently defined) properties, and if they remain equivalent
after performing reduction steps or being embedded in larger contexts. We call
such an equivalence an induced reduction congruence, since its discriminating power
depends on the particular properties chosen to compare terms. At the opposite
extremes, if the property considered is “being a term” then the equivalence relation
is trivial (equating all terms), whereas if the property is “having an infinite reduction
sequence” then the equivalence is likely to be undecidable.

4.1.1 Induced reduction congruence

We base our definition of induced reduction congruence on similar definitions widely
used in the literature, but we consider a more abstract notion of observation predicate.
In fact, we identify a property with the set of terms enjoying it, and we call such set
an observable. We define an observation predicate as the characteristic function of
the corresponding observable.
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Definition 4.1.1 (Induced Reduction Congruence) Let (S,−→) be a reduction
system, K ⊆ S → S be a set of contexts, and O ⊆ ℘(S) be a set of observables.

Given an observable α ∈ O we define the observation predicate ↓α as t ↓α ⇐⇒
t ∈ α and the weak observation predicate ⇓α as t ⇓α ⇐⇒ ∃t′.t ∗−→ t′ and t′ ↓α.

The reduction congruence induced by (S,−→,K,O), and denoted by 'O , is the
largest symmetric relation on S × S which is

• observation preserving: t'O s =⇒ ∀α ∈ O.t ⇓α=⇒ s ⇓α

• reduction closed: t'O s =⇒ ∀t′ ∈ S.t
∗−→ t′ =⇒ ∃s′.s ∗−→ s′ and t′'O s′

• contextual: t'O s =⇒ ∀C[−] ∈ K.C[t]'O C[s] .

When the observables are not important, or implied by the context, we denote 'O
simply by ' .

In order to use equational reasoning, it is important to remark that reduction
congruence is an equivalence relation.

Observation 4.1.2 (Equivalence) Any induced reduction congruence ' is an equiv-
alence relation.

Proof. By definition ' is symmetric. We show by contradiction that it is
also reflexive and transitive. Suppose that (t, t) 6∈ ' and let '̇ be defined as
' ∪ {(C[t], C[t]) : C[−] ∈ K}. It is easy to see that '̇ respects the requirements
of Definition 4.1.1, and since it is larger than ' we have reached a contradiction.
The case for transitivity is analogous. 2

In order to compare reduction congruences based on the same reduction system,
but induced by different observables, it is sufficient to study whether the observation
preserving property of one entails the analogous property on the other. The technical
lemma below, which formalizes this property, will be used several times in the rest
of this chapter.

Lemma 4.1.3 (Inclusion) Consider a reduction system (S,−→) with contexts K
and two sets of observables O and O′. If, for any α ∈ O and (t, s) ∈ 'O′

t ↓α=⇒ ∃C[−] ∈ K, β ∈ O′. C[t] ⇓β and (C[s] ⇓β=⇒ s ⇓α)

then 'O′ is included in 'O .

Proof. By definition, 'O′ is symmetric, reduction closed and contextual. All we
need to show is that it preserves O, because by definition 'O is the largest such
relation.

Consider an arbitrary pair (t, s) ∈ 'O′ . Suppose t ⇓α for α ∈ O. By definition,
there is a t′ such that t

∗−→ t′ and t′ ↓α. By reduction closure, there is an s′ such that
s

∗−→ s′ and t′'O′ s′. By hypothesis, there are C[−] and β ∈ O′ such that C[t′] ⇓β.
By contextuality, C[t′]'O′ C[s′]. Since β ∈ O′ and 'O′ preserves O′, then C[s′] ⇓β.
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By hypothesis, C[s′] ⇓β=⇒ s′ ⇓α. By s
∗−→ s′ and s′ ⇓α, we conclude with s ⇓α. 2

The choice of which observables are to be preserved largely determines whether
two terms are equivalent or not. In general, the larger the set of observables taken
into consideration, the stronger the discriminating power of the resulting reduction
congruence. On the other hand, also considering smaller observables (that is, more
specific properties) has a similar strengthening effect.

Lemma 4.1.4 (Observation Power) Consider a fixed reduction system (S,−→)
with two sets of observables α, . . . ∈ O and β, . . . ∈ O′:

1. if O ⊆ O′ then 'O′ ⊆ 'O ;

2. if whenever t ∈ α there is β ⊆ α such that t ∈ β, then 'O′ ⊆ 'O .

Proof. Both cases follow from Lemma 4.1.3 noticing that 'O′ preserves O. Point
1 uses the fact that any observable α in O is also in O′. Point 2 uses the fact that
by definition t ↓β=⇒ t ↓α. 2

If a reduction congruence is based on contexts which do not inhibit reduction,
then a simple criterium for equivalence (independent from the choice of observables)
consists in checking if two terms can reduce to each other.

Definition 4.1.5 (Reduction Contexts) Given a reduction system (S,−→), we
say that K ⊆ S → S is a set of reduction contexts if for any t ∈ S, C[−] ∈ K,
whenever t

∗−→ t′ then C[t] ∗−→ C[t′].

Lemma 4.1.6 (Mutual Reduction) Let ' be the reduction congruence induced
by some arbitrary (S,−→,K,O), where K is a set of reduction contexts, O is an
arbitrary set of observables, and t, s ∈ S. If t

∗−→ s and s
∗−→ t then t' s.

Proof. We show that the relation

'̇ =
{

(t, s) : t
∗−→ s, s

∗−→ t
}

is contained in ' . By Definition 4.1.1, we need to show that '̇ is symmetric, ob-
servation preserving, reduction closed and contextual. The definition of '̇ is clearly
symmetric. We show that '̇ preserves observations. Consider an arbitrary pair
(t, s) ∈ '̇. Suppose t ⇓α forα ∈ O. It must be the case that t

∗−→ t′ ↓α. By hypoth-
esis s

∗−→ t, hence s ⇓α. We show that '̇ is reduction closed. Suppose t
∗−→ t′. By

hypothesis s
∗−→ t, hence s

∗−→ t′ and trivially t′'̇t′. We show that '̇ is contextual.
We need to show that, for an arbitrary C[−], C[t]'̇C[s]. Since C[−] is a reduction
context, t

∗−→ s =⇒ C[t] ∗−→ C[s] and s
∗−→ t =⇒ C[s] ∗−→ C[t]. By definition,

C[t]'̇C[s]. 2
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4.1.2 Limit observables

We conclude this section by considering some extreme sets of observables: that is,
those for which the induced reduction congruence is the largest or the smallest. In
Section 4.2.1, we will consider sets of observables which are of specific interest for
Xdπ.

Definition 4.1.7 (Limit Observables) Let (S,−→) be an arbitrary reduction sys-
tem with contexts K. The top observables are the singleton O> def= {S}. The bot-
tom observables are the singleton O⊥ def= {∅}. The identity observables are the set
O=

def= {{t} : t ∈ S}. We denote by '> the reduction congruence induced by
(S,−→,K,O>), and similarly for the other observables.

Besides the sets of observables defined above, we know that by definition the smallest
set of observables is ∅, and the largest is ℘(S).

Proposition 4.1.8 (Limit Congruences) The largest induced reduction congru-
ence S × S coincides with '∅ , '> and '⊥ . The smallest induced reduction con-
gruence coincides with '℘(S) and '= .

Proof. The subsets of ℘(S) ordered by inclusion form a complete lattice with great-
est element ℘(S) and smallest element ∅. By point 1 of Lemma 4.1.4, '∅ is the
largest induced reduction congruence, and '℘(S) is the smallest. Both '> and '⊥
denote the same total relation as '∅ , since they trivially respect the observables:
t ⇓> for all t, and there is no t such that t ⇓⊥. Let O′ = ℘(S) \ O⊥. By point 2 of
Lemma 4.1.4, '= ⊆ 'O′ . Since there is no t such that t ⇓⊥, 'O′ = '℘(S) . Since
'℘(S) is the smallest induced reduction congruence, '= = '℘(S) . 2

4.2 Network equivalences

In this section, we define reduction congruences where the reduction system is (N ,−→
) and the contexts KN are the reduction contexts for networks defined in Figure 2.6.
We consider different choices of observables, and we study the formal relationship
between the reduction congruences induced by the ones which we consider most
interesting.

4.2.1 Xdπ observables

Quite interestingly, in Xdπ and in other calculi with a semantics based on reduction
and structural congruence, the minimal induced reduction congruence '= does not
coincide with syntactic equality, nor with structural congruence.

Observation 4.2.1 (Minimal Reduction Congruence for Xdπ) In the Xdπ cal-
culus, =( '= (≡.
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Proof. The first strict inclusion follows from Observation 4.1.2 and the counterex-
ample

l [∅‖ (ν c)(c | !c.c) ]'= l [∅‖ (ν c)(!c.c | c) ]
where the two networks can reduce to each other using (Red Struct) with premise (Red

Com!), and are therefore equivalent by Lemma 4.1.6. The second strict inclusion fol-
lows from Proposition 4.1.8, noticing that ≡ coincides with the reduction congruence
induced by observing networks up to structural congruence, and the counterexample

l [∅‖0 ] |0 6'= 0 | l [∅‖0 ]

where the two networks have different observables and cannot reduce. 2

In view of Observation 4.2.1, we find it useful to define the class of observables
for which structural congruence is the smallest induced reduction congruence.

Definition 4.2.2 (Observables up-to ≡) A set of observables α, . . . ∈ O is de-
fined up-to structural congruence if whenever N ↓α and N ≡ N ′ then N ′ ↓α.

From now on, we consider only sets of observables defined up-to structural con-
gruence. In particular, we focus on Xdπ-specific observables based respectively on
properties of locations, trees and processes.
Location observables. We start with the location observables, which characterize
the domain of a network: two networks are equivalent if and only if they have the
same domain.

Definition 4.2.3 (Location Observables) Let a location observable l[ ] denote
the set l[ ] def= {N : l ∈ dom(N)}. The location observables are the set Od

def=
{l[ ] : l ∈ L}.
Since the domain of a network is invariant under reduction, the reduction congruence
induced by location observables (denoted by 'd ) can be decided by a simple syntactic
inspection, and is much coarser than the other reduction congruences we are going
to consider.
Tree observables. In the setting of dynamic Web data, a natural criterion to
decide when two networks are equivalent is to compare the structure of the data
tree at each location. We may think of processes as working in the background and
not being directly observable. However, an observable which takes into account
the exact structure of trees would be overly restrictive for our purposes, because
scripts (and queries) can be semantically equivalent without being syntactically (or
structurally) equivalent. For this reason we introduce in Figure 4.1 an equivalence
relation l on trees which abstracts away from scripts and queries. The reduction
congruence induced by the resulting observables will be our reference equivalence.

Definition 4.2.4 (Tree Observables) Let a tree observable l·T denote the set

l·T def=
{
N : ∃C[−], T ′, P . N ≡ C[l [T ′ ‖P ]], T l T ′

}

The tree observables are the set Ot
def= {l·T : l ∈ L, T ∈ T }.
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Figure 4.1: Shape equivalence

T1 l T ′1, T2 l T ′2 =⇒ a[ T1 ]pT2 l a[ T ′1 ]pT ′2 (Shape Tree)

T l T ′ =⇒ a[ p@l ]pT l a[ p′@l ]pT ′ (Shape Pointer)

T l T ′ =⇒ a[ 〈A〉 ]pT l a[ 〈A′〉 ]pT ′ (Shape Script)

Shape equivalence l is a subset of T × T . It is the least equivalence relation
satisfying the rules given above.

The induced reduction congruence 't depends on the query language. For example,
if the queries are read-only (processes cannot modify trees), 't can be decided
statically, like 'd . Note that, by point 2 of Lemma 4.1.4, it is always the case
that 't ⊆ 'd , even for a choice of the equivalence relation l diffrent from the one
given in Figure 4.1.

If the query language is at least as expressive as Sam then 't becomes non-
trivial. In particular, thanks to context closure, 't has the power to discriminate
scripts up-to semantic equivalence. For example

l [ a[ 〈c〉 ] ‖0 ] 6't l [ a[ 〈b〉 ] ‖0 ]

because the context m [∅‖ go l.(runa〈〉 | c.reqcut(x)〈d〉) ] | − can tell the two networks
apart. The context sends to l a process which executes the script and then waits on
channel c for a message to trigger the removal of the current tree at l. This message
is provided by the script on the left hand side, but not by the one on the right hand
side.
Process observables. Our processes are inspired by the asynchronous π-calculus.
In that language, the natural observables are the output barbs, which distinguish
processes based on their ability to perform an output action on a free channel. Asyn-
chronous π-calculus processes can only interact via communication, hence the equiv-
alence based on output barbs characterizes the ability of a context to tell apart two
processes. Matters are more complex in Xdπ where processes can also interact with
the store: we study both an equivalence based on output barbs and one based on
requests to the store.

Definition 4.2.5 (Channel Observables) Let a channel observable l·a denote the
set

l·a def=
{
N : ∃C[−], T, ṽ, P . N ≡ C[l [T ‖ a〈ṽ〉 |P ]], a ∈ fn(N)

}

The channel observables are the set Oc
def= {l·a : l ∈ L, a ∈ Cp ∪ Cs}.

Definition 4.2.6 (Request Observables) Let a request observable l·p denote the
set

l·p def=
{
N : ∃C[−], T, c, P . N ≡ C[l [T ‖ reqp〈c〉 |P ]]

}

The request observables are the set Or
def= {l·p : l ∈ L, p ∈ Q}.
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Both 'c and 'r depend on the query language chosen. For example, if we
considered an instance of Xdπ where the store is write only (query evaluation can
modify the store but always returns the empty result), then the two networks below
would be equivalent:

l [ a[ T ] ‖ reqp〈c〉 ]'c l [∅‖ c〈∅〉 ].

This is not very intuitive, as the stores can be arbitrarily different. If the query
language is at least as powerful as Sam, then examples such as the one above are
ruled out and, quite remarkably, 'c and 't coincide.

The situation is different when we look at 'r . Consider the inequality given
below

l [T ‖ (ν c)reqcopy(x)〈c〉 ] 6'r l [T ‖0 ]

where copy(x) does not modify the store. Both 't and 'c regard these networks as
equivalent, because after reduction the store remains unchanged and the results of
the request are returned on a restricted channel which cannot be used by any other
process. This suggests that 'r may be more discriminating than 't and 'c , as
long as the query language contains a query similar to copy(x). In the next section,
we formalize the relationship between these equivalence relations.
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4.2.2 Comparing the equivalences

Xdπ processes can use pattern matching to discriminate between different tree values.
In order to compare formally the expressivity of 't , 'c and 'r , the first step is
to understand the relation between shape equivalence l and pattern matching. In
order to do so, we introduce the notion of defining pattern for a given tree, which
intuitively represents its shape.

Definition 4.2.7 (Defining Pattern) Given a tree T , the pattern π is a defining
pattern for T if the judgment D(T ) = π can be derived using the following rules

D(∅) = ∅
D(a[ T1 ]pT2) = a[D(T1) ]pD(T2) where fv(D(T1)) ∩ fv(D(T2)) = ∅
D(a[ p@l ]pT ) = a[ x@l ]pD(T ) where x 6∈ fv(D(T )) = ∅
D(a[ 〈A〉 ]pT ) = a[ 〈x〉 ]pD(T ) where x 6∈ fv(D(T )) = ∅.

It turns out that two trees are shape-equivalent if and only if they pattern match
against the same defining pattern.

Proposition 4.2.8 (Shape Equivalence) For all trees T and S,

1. if T l S, then for any defining pattern π = D(T ) there are two substitutions
σ, ρ such that T = πσ and S = πρ, where dom(σ) = dom(ρ) = fv(π);

2. if there are a defining pattern π = D(T ) and two substitutions σ, ρ such that
T = πσ and S = πρ, where dom(σ) = dom(ρ) = fv(π), then T l S.

Proof.

1. The proof is by induction on the structure of T .

• (T = ∅) If T l S, it must be the case that S = ∅. By definition, ∅ is the
only defining pattern for T . Any σ, ρ are such that T = πσ and S = πρ.

• (T = a[ T1 ]pT2) If T l S, it must be the case that rule (Shape Tree) was
applied, hence S = a[ S1 ]pS2, T1 l S1 and T2 l S2. By definition, any
π = D(T ) has the from a[ π1 ]pπ2 where π1 = D(T1), π2 = D(T2) and
fv(π1) ∩ fv(π2) = ∅. By inductive hypothesis, since T1 l S1, we have
that for all π = D(T1), hence in particular for π1, there are σ1, ρ1 such
that T1 = π1σ1 and S1 = π1ρ1. The same reasoning applies to T2, S2. By
construction, the substitutions σ = σ1 ∪ σ2 and ρ = ρ1 ∪ ρ2 are such that
T = πσ and S = πρ.

• (T = a[ p@l ]pT1) If T l S, it must be the case that rule (Shape Pointer) was
applied, hence S = a[ q@l ]pS1 and T1 l S1. By definition, any π = D(T )
has the from a[ x@l ]pπ1 where π1 = D(T1) and x 6∈ fv(π1). By inductive
hypothesis, since T1 l S1, we have that for any defining pattern for T1,
and in particular for π1, there are σ1, ρ1 such that T1 = π1σ1 and S1 =
π1ρ1. By construction, the substitutions σ = {p/x}∪σ1 and ρ = {q/x}∪ρ1

are such that T = πσ and S = πρ.
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• (T = a[ 〈A〉 ]pT1) Similar to the previous case.

2. The proof is by induction on the structure of T , similar to the one given above.
We show only the most interesting case. Suppose T = a[ T1 ]pT2. We assume
that there is a π = D(T ) such that, for all S, there are σ, ρ with T = πσ
and S = πρ. By construction, it must be the case that π = a[ π1 ]pπ2 where
fv(π1)∩ fv(π2) = ∅, π1 = D(T1) and π2 = D(T2). Since T = πσ, it must be the
case that Ti = πiσi and σ = σ1 ∪ σ2. Since S = πρ, it must be the case that
S = a[ S1 ]pS2 where Si = πiρi and ρ = ρ1 ∪ ρ2. By inductive hypothesis, since
πi = D(Ti), Ti = πiσi and Si = πiρi, then Ti l Si. By (Shape Tree), T l S.

2

We want to compare the expressive power of the different network equivalences,
but we have noted above that both 'c and 'r depend on the query language chosen.
Rather than restricting our results to a particular choice of query language, we define
below some generic properties on which to base the comparison.

Definition 4.2.9 A query language (Q, fv , E), respecting Definition 2.2.1:

• admits trivial updates if there are queries which leave some input tree un-
changed:

∃p, T . E(p, T ) = (T, L).

• is shape-preserving if it never changes the shape of the input tree:

∀p, T . E(p, T ) = (T ′, L) =⇒ T l T ′

• is shape-aware if for any tree T there is a query p which characterizes its shape,
in the sense that the query-result of p on an arbitrary tree T ′ is shape equivalent
to the query-result of p on T if and only if T ′ is shape equivalent to T :

∀T.∃p.∀T ′. T l T ′ ⇐⇒




E(p, T ) = (T1, U1 p...pUn p∅),
T ′1 = r[ U1 ]p . . . pr[ Un ]p∅,
E(p, T ′) = (T2, V1 p...pVm p∅),
T ′2 = r[ V1 ]p . . . pr[ Vm ]p∅





and T ′1 l T ′2




Pure query languages as intended in databases are shape-preserving, as they do
not modify the input tables, but just return a new table of results. Query languages
with update operations instead can modify the input data. Shape-awareness basi-
cally requires some agreement between the query language and the data model. If a
query language is not shape-aware, then there are documents which have a different
structure but which cannot be distinguished by looking at the results of a query. This
may indicate that the data model, at least for the sake of querying, contains more
information than strictly necessary.

In general, we expect a useful query and update language to be shape-aware but
not shape-preserving, and most likely to admit trivial updates.
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Proposition 4.2.10 Sam (i) is not shape-preserving, (ii) is shape-aware and (iii)
admits trivial updates.

Proof. For (i) we have E(cut(x), a p∅) = (∅, (a p∅)p∅) and a p∅ 6l ∅. For (ii),
consider arbitrary T, T ′. The query copy(x) gives respectively the results (T )p∅ and
(T ′)p∅. Suppose T l T ′. By (Shape Tree), r[ T ]p∅ l r[ T ′ ]p∅. Suppose T 6l T ′ and
r[ T ]p∅ l r[ T ′ ]p∅. Then we must have applied (Shape Tree) with premise T l T ′,
reaching a contradiction. For (iii) we have that E(copy(x), T ) = (T, T p∅).

2

We can now present the main result of this section, which establishes the rela-
tive expressivity of the reduction congruences induced by tree, channel and request
observables.

Theorem 4.2.11 (Hierarchy) Depending on the expressive power of the query lan-
guage, we obtain different inclusions:

1. for any query language, 'r ⊆ 'c ;

2. if the query language admits trivial updates then 'r ( 'c ;

3. if the query language is not shape-preserving then 't ⊆ 'c ;

4. if the query language is shape-aware, then 'c ⊆ 't .

Proof.

1. Suppose N 'r M . By Lemma 4.1.3, it is enough to show that if N ↓l·a we can
define a context C[−] such that C[N ] ⇓m·p and C[M ] ⇓m·p=⇒ M ⇓l·a. By
definition of 'c , N ≡ (ν c̃)(N1 | l [T ‖ a〈v1, ... , vn〉 |P ]) where a 6∈ {

c̃
}
. For

some fresh m, let

C[−] = m [∅‖ go l.a(x1, ... , xn).gom.reqp〈c〉 ] | −

By definition of −→,

C[N ] −→−→−→ m [∅‖ reqp〈c〉 ] | (ν c̃)(N1 | l [T ‖P ])

By definition of 'r , C[N ] ⇓m·p.
Suppose now C[M ] ⇓m·p. Since m is fresh, the only possibility to get C[M ] ∗−→
M ′ ↓m·p is by consuming the prefix go l.a(x1, ... , xn).go m reducing C[M ] to
M ′ ≡ m [∅‖ reqp〈c〉 ] |M ′′ . In order to consume the prefix go l.a(x1, ... , xn),
we must have

M
∗−→ M ′′′ ≡ (ν b̃)(M1 | l [T ′ ‖ a〈u1, ... , un〉 |Q1 ])

where a 6∈ {
b̃
}
. By definition of 'c , M ′′′ ↓l·a. By definition of ⇓, M ⇓l·a.

2. Follows from point 1 and the counterexample l [T ‖ (ν c)reqp〈c〉 ] 6'r l [T ‖0 ]
where p, T are such that E(p, T ) = (T,L) for some list of results L.

53



3. Suppose N 't M . Since the query language is not shape-preserving, there exist
p, T such that E(p, T ) = (T ′, L) and T 6l T ′. By Lemma 4.1.3, we need to
show that if N ↓l·a we can define a context C[−] such that C[N ] ⇓m·T ′ and
C[M ] ⇓m·T ′=⇒ M ⇓l·a. By definition of 'c ,

N ≡ (ν c̃)(N1 | l [T ‖ a〈v1, ... , vn〉 |P ])

where a 6∈ {
c̃
}
. For some fresh m, let

C[−] = m [T ‖ go l.a(x1, ... , xn).gom.reqp〈c〉 ] | −

By definition of −→,

C[N ] −→−→−→−→ m [T ′ ‖0 ] | (ν c̃)(N1 | l [T ‖P ])

By definition of 'r , C[N ] ⇓m·T ′ .
Suppose now C[M ] ⇓m·T ′ . Since m is fresh, the only possibility to get C[M ] ∗−→
M ′ ↓m·T ′ is by consuming the process go l.a(x1, ... , xn).go m.reqp〈c〉 reducing
C[M ] to M ′ ≡ m [T ′ ‖0 ] |M ′′ . In order to consume the prefix go l.a(x1, ... , xn),
we must have

M
∗−→ M ′′′ ≡ (ν b̃)(M1 | l [T1 ‖ a〈u1, ... , un〉 |Q1 ])

where a 6∈ {
b̃
}
. By definition of 'c , M ′′′ ↓l·a. By definition of ⇓, M ⇓l·a.

4. Suppose N 'c M . By Lemma 4.1.3, we need to show that if N ↓l·T we can find a
context C[−] and a barb ⇓m·b such that C[N ] ⇓m·b and C[M ] ⇓m·b=⇒ M ⇓l·T .
By definition of ↓l·T , N ≡ (ν c̃)(N1 | l [T ′ ‖P ]) where T ′ l T . Since the query
language is shape-aware, there is p such that, for all T ′′, T ′ l T ′′ if and only if

E(p, T ′) = (T1, U1 p...pUn p∅), T ′1 = r[ U1 ]p . . . pr[ Un ]p∅

E(p, T ′′) = (T2, V1 p...pVm p∅), T ′2 = r[ V1 ]p . . . pr[ Vm ]p∅

and T ′1 l T ′2. Let p be as described above, let π = D(T ′1) and, for some fresh
m, let

C[−] = m [∅‖ go l.(ν a)(reqp〈a〉 | a(π).gom.b) ] | −
Since π is a defining pattern for T ′1, we know that there is a σ such that T ′1 = πσ.
Hence, by definition of −→,

C[N ] ∗≡−→ m [∅‖ b ] | (ν c̃)(N1 | l [T1 ‖P ])

By definition of 'c , C[N ] ⇓m·b.
Suppose now C[M ] ⇓m·b. We need to show that M ⇓l·T . Since m is fresh,
the only possibility to obtain C[M ] ∗−→ M ′ ↓m·b is by consuming the prefix
go l.(ν a)(reqp〈a〉 | a(π).gom.−) reducing C[M ] to

M ′ ≡ m [∅‖ b ] | (ν c̃′)(M1 | l [T3 ‖Q1 ])
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In order to reach this network, we must have that

M
∗−→ M ′′ ≡ (ν c̃′)(M1 | l [T ′′′ ‖Q1 ])

By the shape awareness condition reported above, reqp〈a〉 returns on channel
a a result T ′3 l T ′1 if and only if T ′′′ l T ′. Moreover, by Proposition 4.2.8,
T ′3 = πρ for some ρ (and pattern matching can succeed) if and only if T ′1 l T ′3.
Hence, we have

C[M ] ∗−→ C[M ′′] −→
m [∅‖0 ] | (ν c̃′)(M1 | l [T ′′′ ‖ (ν a)(reqp〈a〉 | a(π).go m.b) |Q1 ]) −→

m [∅‖0 ] | (ν c̃′)(M1 | l [T3 ‖ (ν a)(a〈T ′3〉 | a(π).go m.b) |Q1 ]) −→−→ M ′

By transitivity of l , T l T ′′′. By definition of 'c , M ′′ ↓l·T . By definition of
⇓, M ⇓l·T .

2

Once again, we instantiate the general result to Sam.

Corollary 4.2.12 For Sam, we have 'r ( 'c = 't .

Proof. Follows from Proposition 4.2.10 and Theorem 4.2.11. 2

Both 't , 'c and 'r are based on very large sets of observables. We conclude
this section with two remarks on some equivalent definitions for tree and channel
observables involving less universal quantifications.

Remark 4.2.13 (Less Observables) We know from point 1 of Lemma 4.1.4 that
starting from a given induced congruence, if we consider more specific properties
(smaller sets of observables), the resulting induced congruence distinguishes more
terms than the original one. For example, we can look only at located empty trees: if
O∅ def= {l·∅ : l ∈ L} then O∅ ⊆ Ot, hence 't ⊆ '∅ . Moreover, if we consider a
query language (such as Sam) which is shape aware, and contains a query p such that,
for some T 6l ∅, E(p, T ) = (∅, L), then we can show that '∅ ⊆ 't (and hence
't = '∅ ) by adapting the argument of Theorem 4.3.15 for showing that 'c ⊆ 't .
The case for observing a single channel name is even simpler. Given an arbitrary
private channel name a, consider Oa

def= {l·a : l ∈ L}. It is always the case that
'a = 'c , because the argument for 't ⊆ 'c can be adapted independently from
the query language chosen.

Remark 4.2.14 (Existential Observables) Let us consider the existential closure
of tree observables. If O∃T def=

{⋃
T∈T l·T : l ∈ L}

then we know from point 2 of
Lemma 4.1.4 that 't ⊆ '∃T . It is easy to see that independently from the query
language, '∃T = 'd , hence typically 't ( '∃T . Due to the restriction operator,
the situation is different for channel observables. If O∃c def=

{⋃
a∈Cp l·a : l ∈ L

}

then from Lemma 4.1.4, 'c ⊆ '∃c , and (following a similar proof appearing in [27])
we can use restriction to build a context such that from Lemma 4.1.3 we get '∃c ⊆
'a , hence by Remark 4.2.13, '∃c = 'c .
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4.3 Core Xdπ

Network equivalences dictate when two networks can be considered indistinguishable
with respect to the properties represented by a specific set of observables. The
next step is to define equivalence relations on processes such that, when we place
equivalent processes in the same context, we obtain equivalent networks. Since
we use the equivalences for example to optimize the interaction between different
locations, we would like to be able to compare several located processes, possibly
sharing some private channel names, at the same time. Moreover, we want to make
sure that the behaviour of the processes is robust with respect to changes in the data
stored in each location and to the behaviour of other processes running in parallel.

It is not straightforward to carry on the kind of reasoning mentioned above di-
rectly on Xdπ terms, because locations, processes and data are closely integrated.
Instead, we introduce a calculus, called Core Xdπ, which serves as an alternative rep-
resentation of Xdπ, where we locate processes explicitly and we separate data from
processes. Core Xdπ is tailored to be semantically equivalent to Xdπ, and is suitable
for expressing a partial specification of a network by means of located processes run-
ning in parallel, possibly sharing private names. After defining Core Xdπ, we give a
translation from Xdπ to Core Xdπ and show that it preserves network equivalences.
In the next section, we will define process equivalence on Core Xdπ processes.

4.3.1 Syntax and semantics

To guide the intuition, we anticipate that a Xdπ location l [T ‖P ] corresponds to a
Core Xdπ term ({l 7→ T ′}, P ′) where {l 7→ T ′} says that at location l there is a tree
T ′ (the Core Xdπ equivalent of T ), and P ′ is like P except that it contains explicit
location information.

Trees, queries, values, all the other basic sorts of Core Xdπ, and the notions of
Definition 2.2.1 (including function E) are the obvious adaptations of the ones for
Xdπ, and their sorts are differentiated by subscript −C. For example, Core Xdπ trees
have the same structure as Xdπ trees but contain Core Xdπ scripts, and are denoted
by TC.
Located processes. Core Xdπ processes are based on asynchronous eπ-processes
[17], extended with the Xdπ specific operations of migration, application and request.
The formal definition is given in Figure 4.2.

The communication constructs correspond to those found in the eπ-calculus: the
output process l·b〈ṽ〉 denotes a vector of values ṽ waiting to be sent via channel b at
location l, the input process l·b(z̃).P waits to receive values from an output process
via channel b at l, and the replicated input is standard. Scripts must always have a
variable as the first pattern, and application is defined only when the first parameter
passed to the script is a location (representing the place where the script will be
running). The req and go commands are the located version of the same commands
for Xdπ. Note that in the case of input and replicated input the continuation process
must be located at the same location where the input is defined, and in the case of
migration the continuation must be located at the destination location1.

1We have represented these conditions as restrictions on the grammar of processes. Alternatively,
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Figure 4.2: Syntax: Core Xdπ processes

P , Q, R ::= process terms
0 nil process
P |P composition of processes
(ν c)P private channel c with scope P

l·c〈ṽ〉 at l, output on c of values ṽ

l·c(π̃).l·P at l, input on c of π̃ with continuation P

(distinct(π̃), fv(π̃) ∩ fv(l) = ∅)
!l·c(π̃).l·P lazy replication of an input process

(distinct(π̃), fv(π̃) ∩ fv(l) = ∅)
l·go m.m·P at l, go to m, continue with P

A ◦ 〈l, ṽ〉 at l, run script A with parameters ṽ

l·reqp〈c〉 at l, request query p with return channel c

Convention: we write l·P for P when dom(P ) = {l}.

P, Q,R ∈ PC
def=

{
P : fv(P ) = ∅} (Core Xdπ Processes)

A ∈ AC
def=

{
(x, π̃)P :

fn(P ) = ∅, fv(P ) ⊆ fv(x, π̃),
distinct(x, π̃), dom(P ) = {x}

}
(Scripts)

KP def= CP [−] ::= − | P |CP [−] | CP [−] |P | (ν c)CP [−] (Process Contexts)

The functions fv , fn , dom are defined in Figure A.6 and Figure A.2.
Trees, queries, values, all the other basic sorts and the predicate distinct are defined
as for Xdπ (trees contain Core Xdπ scripts).
Notation: l·m·c〈ṽ〉 def= l·gom.m·c〈ṽ〉.

Networks and stores. A network is represented by a pair (D,P ) where the
first component (the store) is a finite partial function from location names to trees,
and the second component is a process. The formal definition is given in Figure 4.3.
Interaction between processes and data is always local, as we shall see later from
rule (CRed Request) in Figure 4.5. In Figure A.2, we define the function dom giving
the domain of both networks, stores and processes. By definition, the domain of a
network is the domain of the store, and a network is well-formed if the domain of the
process is contained in the domain of the store.

Network contexts are pairs of process and store contexts. For example, if CN =
(− ] B, (ν c)−) then CN [(D,P )] = (D ] B, (ν c)P ). We omit the subscripts from
contexts when no ambiguity can arise. Note that, in order to better reflect the Xdπ
network composition, the domain of the process context must be included in the

we could have introduced a well-formedness judgment for the continuation processes.
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Figure 4.3: Syntax: Core Xdπ networks

D, B ∈ S def= L ⇀ TC (Stores)

N,M ∈ NC
def= {(D, P ) : D ∈ S, P ∈ PC, dom(P ) ⊆ dom(D)} (Networks)

CS− ::= − | CS [−] ]D (Store Contexts)

KN def= {(CS , CP) : CS ∈ KS , CP ∈ KP , dom(CP) ⊆ dom(CS)} (Networks Contexts)

(CS [−], CP [−])[(D, P )] def= (CS [D], CP [P ]) (Context Application)

Notation: {l 7→ T}(l) def= T ; (D ]B)(l) def=
{

D(l) if l ∈ dom(D)
B(l) if l ∈ dom(B)

.

Convention: D ]B is defined if and only if dom(D) ∩ dom(B) = ∅.
Function dom is defined in Figure A.2.

Figure 4.4: Semantics: structural congruence for Core Xdπ

(ν c)0 ≡ 0 (CStruct Res PNil)

c 6∈ fn(P ) =⇒ P | (ν c)Q ≡ (ν c)(P |Q) (CStruct Res PPar)

(ν c)(ν d)P ≡ (ν d)(ν c)P (CStruct Res PRes)

P ≡ Q =⇒ (D, P ) ≡ (D, Q) (CStruct Proc)

Structural congruence ≡ is a subset of (P × P ) ∪ (NC × NC). It is the least
equivalence relation satisfying α-conversion and the axioms given above, closed
under all the syntactic operators, and such that (P , | ,0,≡) is a commutative
monoid. A complete definition of ≡ can be found in Figure A.5.

domain of the store context.
Reduction semantics. The reduction relation −→ for Core Xdπ describes
process interaction, the interaction between processes and data, and the movement
of processes across locations. The formal definition is given in Table 4.5. It relies on
a standard notion of structural congruence for processes and networks (analogous to
the one for Xdπ) defined in Figure 4.4.

Rules (CRed Stay) and (CRed Go) are analogous to the ones for Xdπ. Rules (CRed

Com) and (CRed Com!) are similar to the standard communication rules for the π-
calculus, except that processes only communicate if they are at the same location
l, and l is present in the store. Rule (CRed Run) runs a script, passing as the first
parameter the name of the location where it is going to run. Rule (CRed Request)

provides interaction between processes and data, and is analogous to the one for
Xdπ.
Network equivalences. The network equivalences for Core Xdπ are the reduction
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Figure 4.5: Semantics: reduction relation for Core Xdπ

({l 7→ T}, l·go l.P |Q) −→ ({l 7→ T}, P |Q) (CRed Stay)

({l 7→ T} ] {m 7→ S}, l·go m.P |Q) −→ ({l 7→ T} ] {m 7→ S}, P |Q) (CRed Go)

({l 7→ T}, l·c〈π̃σ〉 | l·c(π̃).P |Q) −→ ({l 7→ T},Pσ |Q) (CRed Com)

({l 7→ T}, l·c〈π̃σ〉 | !l·c(π̃).P |Q) −→ ({l 7→ T}, !l·c(π̃).P |Pσ |Q) (CRed Com!)

({l 7→ T}, (x, π̃)P ◦ 〈l, π̃σ〉 |Q) −→ ({l 7→ T},P {l/x}σ |Q) (CRed Run)

E(p, T ) = (T ′, U1 p...pUn p∅)
({l 7→ T}, l·reqp〈c〉 |Q) −→ ({l 7→ T ′}, l·c〈r[ U1 ]p . . . pr[ Un ]p∅〉 |Q)

(CRed Request)

(CRed Context)

N −→ N ′

CN [N ] −→ CN [N ′]

(CRed Struct)

N ≡ M −→ M ′ ≡ N ′

N −→ N ′

Reduction −→ is a partial relation, subset of NC ×NC.
Convention: in this table c ranges over Cp ∪ Cs.

congruences induced by the observables defined below, based on the reduction system
(NC,−→) and the reduction contexts KN of Figure 4.3.

Definition 4.3.1 (Core Xdπ Observables) Let a tree observable l·T denote the
set

l·T def=
{
(D, P ) : D(l) = T ′, T l T ′

}

The tree observables are the set OtC
def= {l·T : l ∈ L, T ∈ TC}. Let a channel

observable l·a denote the set

l·a def=
{
(D, P ) : ∃C[−], ṽ, Q. P ≡ C[l·a〈ṽ〉 |Q], a ∈ fn(P )

}

The channel observables are the set OcC
def= {l·a : l ∈ L, a ∈ Cp ∪ Cs}. Let a re-

quest observable l·p denote the set

l·p def=
{
(D,P ) : ∃C[−], c, Q. P ≡ C[reqp〈c〉 |Q]

}

The request observables are the set OrC
def= {l·p : l ∈ L, p ∈ QC}.

The notation for Core Xdπ observables is the same as the one given in Section 4.2
for Xdπ. It will be clear from the context which observables we are referring to.
Similarly, we use 't , 'c and 'r to denote also the reduction congruences for
Core Xdπ induced by tree, channel and request observables.

4.3.2 From Xdπ to Core Xdπ

We now formally define how to translate Xdπ terms into Core Xdπ terms. First we
give encodings for networks, values and processes, which are independent from the
query language, then we discuss the encoding of the queries.
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Figure 4.6: Encodings from Xdπ to Core Xdπ

Network translation:
([0]) = (∅,0)
([N |M ]) = (D ]B,P |Q) where ([N ]) = (D, P ) and ([M ]) = (B,Q)
([(ν c)N ]) = (D, (ν c)P ) where ([N ]) = (D, P )
([l [T ‖P ]]) = ({l 7→ []T []}, 〈[P ]〉l)

Value translation:
[]E pT [] = []E[]p[]T []
[]∅[] = ∅
[]a[ V ][] = a[ []V [] ]

[]p@l[] = []p[]@l
[]〈A〉[] = 〈[]A[]〉
[]c[] = c, []l[] = l, []p[] = {[p]}
[]x[] = x, [](π̃)P [] = (x, π̃)〈[P ]〉x, distinct(x, π̃)
[]v′, ṽ[] = []v′[], []ṽ[]

Substitutions:
[]{ev/ex}[] = {[]ev[]/ex}

Process translation:
〈[0]〉l = 0
〈[P |Q]〉l = 〈[P ]〉l | 〈[Q]〉l
〈[(ν c)P ]〉l = (ν c)〈[P ]〉l
〈[go m.P ]〉l = l·gom.〈[P ]〉m
〈[a〈ṽ〉]〉l = l·a〈[]ṽ[]〉
〈[a(π̃).P ]〉l = l·a(π̃).〈[P ]〉l
〈[!a(π̃).P ]〉l =!l·a(π̃).〈[P ]〉l
〈[A ◦ 〈ṽ〉]〉l = []A[] ◦ 〈l, []ṽ[]〉
〈[reqp〈c〉]〉l = l·req[]p[]〈c〉

Lists:
[]L1 p...pLn[] = []L1[]p . . . p[]Ln[].

Networks, values and processes. The encoding of Xdπ into Core Xdπ is
defined in Figure 4.6. The encoding of networks is straightforward, the only point
worth noting is that the translation of a process depends on the location where it
is found. For example, ([l [∅‖ a ]]) = ({l 7→ ∅}, l·a). The encoding of values is a
homomorphism, where the only interesting cases are the translation of queries, which
invokes a query encoding {[−]} (dependent on the query language at hand), and the
translation of scripts, which adds a fresh variable x as the first parameter of the script
in order to record the location at which the body of the script is translated.

The encoding of processes is parametric in the location placeholder l where the
process is going to run. It is mostly homomorphic, but it should be noted that in order
to record where an action takes place, inputs, outputs, migrations and requests are
prefixed by the location placeholder l. Note that the translation of application adds l
as the first parameter passed to a script (which matches with the variable introduced
in the translation of scripts) so that the body of the script becomes located at l. For
example,

([l [T ‖ (y, z)y〈z〉 ◦ 〈a, b〉 ]]) = ({l 7→ []T []}, (x, y, z)x·y〈z〉 ◦ 〈l, a, b〉).

Notice that the reductions of the two terms are in close correspondence

l [T ‖ (y, z)y〈z〉 ◦ 〈a, b〉 ] −→ l [T ‖ a〈b〉 ]

({l 7→ []T []}, (x, y, z)x·y〈z〉 ◦ 〈l, a, b〉) −→ ({l 7→ []T []}, l·a〈b〉).
Queries. We cannot fix once and for all the encoding {[−]} of queries as we are not
committed to a specific query language. We just require any encoding for queries to
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be a total function. On the other hand, we can define properties which are useful to
guarantee that an encoding preserves at least 'r (and therefore, any less restrictive
equivalence).

Definition 4.3.2 (Properties of Query Encoding) Let []− [] be the encoding de-
fined in Figure 4.6. An encoding {[−]} ∈ Q → QC is

• observation-injective if whenever l·{[p]} = l·{[q]} then l·p = l·q;
• homomorphic if

1. if E(p, T ) = (T ′, L) then E({[p]}, []T []) = ([]T ′[], []L[]);

2. if E({[p]}, []T []) = (T ′′, L) then there exist T ′, L′ such that E(p, T ) = (T ′, L′),
where []T ′[] = T ′′ and []L′[] = L.

Note that in the definition above, since l·p and l·q are sets, equality means double
inclusion. Moreover, given the definition of request observables, the condition of
observable-injectivity coincides with injectivity in the classical sense, being equiva-
lent to p 6= q =⇒ {[p]} 6= {[q]}. Below we define an encoding for Sam which is
both observation-injective and homomorphic. The semantics of query evaluation in
Core Xdπ is the same as the one defined in Figure 2.10 for Xdπ, with the difference
that scripts are now Core Xdπ scripts.

Definition 4.3.3 (Query Language Encoding) The encoding for Sam is given
by {[p̂(π)V ]} = p̂(π)[]V [].

The definitions of []− [] and {[−]} are mutually recursive, but it is easy to see that the
recursion is well-founded because it is guarded by the binding pattern (π). Before
showing that the encoding of queries is injective and homomorphic in the sense of
Definition 4.3.2, we need to show that the encodings of values and processes respect
substitutions.

Lemma 4.3.4 (Encoding Substitutions) The encodings of values and processes
respect substitutions:

• []V σ[] = []V [][]σ[];

• 〈[Pσ]〉l = 〈[P ]〉l[]σ[].

Proof. Follows by structural induction on V and P . 2

Proposition 4.3.5 (Injective and Homomorphic Query Encoding) The encod-
ing given in Definition 4.3.3 is observation-injective and homomorphic.

Proof. Observation injectivity follows easily by definition of request observables and
by structural induction on the value V contained in a query. We show that {[−]} is
homomorphic.
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1. Suppose E(p̂(π)V , T ) = (T ′, L). We show that E(p̂(π)[]V [], []T []) = ([]T ′[], []L[]) by
induction on the derivations of E.

(Eval Match) Suppose E((π)[]V [], []T []) = (T ′′, L′). By hypothesis T = πσ, T ′ =
V σ and L = πσp∅ for some σ. By Lemma 4.3.4 and definition of the encod-
ing, []πσ[] = π[]σ[], hence T ′′ = []V [][]σ[] and L′ = π[]σ[]p∅. By Lemma 4.3.4
and definition of the encoding, T ′′ = []T ′[] and L′ = []L[].

(Eval Anywhere Tree) Suppose the last instance of rule used is

E(2p̂(π)[]V [], []V []) = (V ′, L)
E(2p̂(π)[]V [], []T []) = (T ′, L′) E(p̂(π)[]V [], a[ V ′ ]pT ′) = (T ′′, L′′)

E(2p̂(π)[]V [], a[ []V [] ]p[]T []) = (T ′′, LqL′qL′′)

where we have used []a[ V ]pT [] = a[ []V [] ]p[]T []. By hypothesis,

E(2p̂(π)V , V ) = (V ′
1 , L1)

E(2p̂(π)V , T ) = (T ′1, L
′
1)

E(p̂(π)V , a[ V ′
1 ]pT ′1) = (T ′′1 , L′′1)

E(2p̂(π)V , a[ V ]pT ) = (T ′′1 , L1qL′1qL′′1)

By inductive hypothesis, []V ′
1 [] = V ′ and []L1[] = L, and []T ′1[] = T ′ and

[]L′1[] = L′. Since []a[ V ′
1 ]pL′1[] = a[ V ′ ]pL′, we can apply the inductive hy-

pothesis also on the third premise, obtaining []T ′′1 [] = T ′′, []L′′1[] = L′′. By
definition of the encoding, we get []L1qL′1qL′′1[] = L1qL′1qL′′1 and we con-
clude.

The other cases are similar.

2. Suppose E({[p]}, []T []) = (T ′′, L). By induction on the derivations of E, reasoning
like in the previous case, we get E(p, T ) = (T ′, L′) where []T ′[] = T ′′ and []L′[] =
L.

2

4.3.3 Properties of the encoding

We now proceed to show that the encoding preserves the reduction congruences
induced by a large class of observables. Structural congruence and shape equivalence
do not depend on the query language, and are always preserved by ([−]).

Lemma 4.3.6 (Structural Congruence Preservation) For any N, M ∈ N , N ≡
M if and only if ([N ]) ≡ ([M ]).

Proof. By a simple induction on the derivations of N ≡ M and ([N ]) ≡ ([M ]). 2

Lemma 4.3.7 (Shape Equivalence Preservation) For any Xdπ tree T , T l
[]T []. For any Core Xdπ tree T ′, there is an Xdπ tree T such that []T [] l T ′.
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Proof. By a simple induction on the structure of T and T ′. 2

We break down the problem of comparing reduction congruences for Xdπ and
Core Xdπ into comparing the contexts, the reduction steps and the observations.
Contexts. First of all, we note that the encodings of trees, processes and networks
are surjective: each Core Xdπ term is at least structurally equivalent to the encoding
of an Xdπ term.

Lemma 4.3.8 (Surjective Encodings) The encodings defined in Figure 4.6 are
surjective:

1. for any Core Xdπ tree T there is an Xdπ tree T ′ such that []T ′[] = T ;

2. for any Core Xdπ process P with domain l there is an Xdπ process P ′ such that
〈[P ′]〉l = P ;

3. for any Core Xdπ network (D, P ) there is an Xdπ network N such that (D, P ) ≡
([N ]).

Proof. The first two points follow by a simple structural induction and by definition
of the encodings. The proof for (3) is by induction on the structure of D. If D = ∅
then since dom(P ) ⊆ dom(D) we have P = (ν c̃)0 and N = (ν c̃)0, which gives (D,P ) ≡
([N ]). Suppose now D = D′ ] {l 7→ T}. First note that we can always use structural
congruence to rearrange (D, P ) in the form (D, (ν c̃)(l1·P1 | . . . ln·Pn |0)), where the
li are distinct and {l1, ... , ln} ⊆ dom(D). Suppose l 6∈ {l1, ... , ln}. By point (1) of
this lemma, there is T ′ such that []T ′[] = T . Let Nl = l [T ′ ‖0 ]. Since {l1, ... , ln} ⊆
dom(D), by inductive hypothesis there is N ′ such that (D′, (ν c̃)(l1·P1 | . . . ln·Pn |0)) ≡
([N ′]). By definition of the encoding, (D, P ) ≡ ([Nl |N ′]). Suppose instead that there
is an i such that l = li. Since {l1, ... , ln} \ {l} ⊆ dom(D′), by inductive hypothesis
there is N ′ such that (D′,

∏

j 6=i

lj ·Pj |0) ≡ ([N ′]). By points (1) and (2) of this lemma,

there exist T ′ and P ′ such that []T ′[] = T and 〈[P ′]〉l = Pi. By definition of the encod-
ing, ([(ν c̃)(l [T ′ ‖P ′ ] |N ′)]) ≡ (D,P ). 2

Now we can show that every time we break down an Xdπ network into a context
and a smaller network, we can do the same in Core Xdπ, and vice versa.

Lemma 4.3.9 (Contextual Correspondence) Let C and K respectively range
over network contexts for Xdπ and Core Xdπ.

1. For any C there is a K such that, for all N ∈ N , ([C[N ]]) = K[([N ])].

2. For any K there is a C such that, for all N ∈ NC, K[N ] ≡ ([C[N ′]]), where
N ′ ∈ N is such that N ≡ ([N ′]).

Proof.

1. By a simple induction on the structure of C[−].
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2. Let N = (D, P ). Without loss of generality, we can assume that K[−] has the
form (B ] −, (ν c̃)(Q | −). In order for N , K[−] and K[N ] to be well formed,
it must be the case that dom(P ) ⊆ dom(D), dom(Q) ⊆ dom(B) and dom(B) ∩
dom(D) = ∅. By Lemma 4.3.8, there are N ′ and N ′′ such that ([N ′]) ≡ N and
([N ′′]) ≡ (B, Q). By definition of the encoding, C[−] = (ν c̃)(N ′′ | −) is such
that ([C[N ′]]) ≡ K[N ].

2

Reductions. We can now show that if the encoding of queries is homomorphic,
then the encoding preserves every single reduction step. We will use this property to
show that weak reductions are preserved.

Lemma 4.3.10 (Strong Operational Correspondence) For any Xdπ network
N , if {[−]} is homomorphic then

1. if N −→ M then ([N ]) −→ ([M ]);

2. if ([N ]) ≡ N ′ and N ′ −→ M ′ then there exists M such that N −→ M and
([M ]) ≡ M ′.

Proof.

1. By induction on the derivation of N −→ M . We show the most interesting
cases.

(Red Go) Suppose

l [T ‖Q | go m.P ] | m [S ‖R ] −→ l [T ‖Q ] | m [S ‖R |P ]

By definition of the encoding, ([N ]) = N ′ where

N ′ = ({l 7→ []T []} ] {m 7→ []S[]}, 〈[Q]〉l | l·gom.〈[P ]〉m | 〈[R]〉m)

By (CRed Struct) and (CRed Go), N ′ −→ M ′ where

M ′ = ({l 7→ []T []} ] {m 7→ []S[]}, 〈[Q]〉l | 〈[P ]〉m | 〈[R]〉m)

By definition of the encoding, ([M ]) ≡ M ′.

(Red Com) Suppose

l [T ‖ c〈π̃σ〉 | c(π̃).P |Q ] −→ l [T ‖Pσ |Q ]

By definition of the encoding, ([N ]) = N ′ where

N ′ = ({l 7→ []T []}, l·c〈π̃[]σ[]〉 | l·c(π̃).〈[P ]〉l | 〈[Q]〉l)
By (CRed Com), N ′ −→ M ′ where

M ′ = ({l 7→ []T []}, 〈[P ]〉l[]σ[] | 〈[Q]〉l)
By definition of the encoding and Lemma 4.3.4, ([M ]) ≡ M ′.
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(Red Run) Suppose

l [T ‖ (π̃)P ◦ 〈π̃σ〉 |Q ] −→ l [T ‖Pσ |Q ]

By definition of the encoding, ([N ]) = N ′ where

N ′ = ({l 7→ []T []}, (x, π̃)〈[P ]〉x ◦ 〈l, π̃[]σ[]〉 | 〈[Q]〉l)
By (CRed Com), N ′ −→ M ′ where

M ′ = ({l 7→ []T []}, 〈[P ]〉x{l/x}[]σ[] | 〈[Q]〉l)
By applying the first substitution and by definition of the encoding,

M ′ = ({l 7→ []T []}, 〈[P ]〉l[]σ[] | 〈[Q]〉l)
By definition of the encoding and Lemma 4.3.4, ([M ]) ≡ M ′.

(Red Request) Suppose E(p, T ) = (T ′, U1 p...pUn p∅) and

l [T ‖ reqp〈c〉 |Q ] −→ l [T ′ ‖ c〈r[ U1 ]p . . . pr[ Un ]p∅〉 |Q ]

By definition of the encoding, ([N ]) = N ′ where

N ′ = ({l 7→ []T []}, l·req{[p]}〈c〉 | 〈[Q]〉l)
Since {[−]} is homomorphic, E({[p]}, []T []) = ([]T ′[], []U1 p...pUn p∅[]). By (CRed

Request), N ′ −→ M ′ where

M ′ = ({l 7→ []T ′[]}, l·c〈[]r[ U1 ]p . . . pr[ Un ]p∅[]〉 | 〈[Q]〉l)
By definition of the encoding, ([M ]) ≡ M ′.

(Red Par) Suppose N = N1 |M1 −→ N ′
1 |M1 = M because N1 −→ N ′

1. Let
C[−] = − |M1. By Lemma 4.3.9, ([N ]) = K[([N1])] for some K[−] chosen
independently from N1. By inductive hypothesis, ([N1]) −→ ([N ′

1]). By
(CRed Context), K[([N1])] −→ K[([N ′

1])] where K[−] is such that ([C[N ′
1]]) =

K[([N ′
1])].

2. By induction on the derivation of N ′ −→ M ′, reasoning similarly to the previous
point. We show the most representative cases.

(CRed Request) Suppose E(p, T ) = (T ′, U1 p...pUn p∅) and

N ′ = ({l 7→ T}, l·reqp〈c〉 |Q) −→ l [T ′ ‖ l·c〈r[ U1 ]p . . . pr[ Un ]p∅〉 |Q ] = M ′

Since N ′ must be well formed, dom(Q) ⊆ {l}. By syntactical reasoning on
the definition of the encoding, since N ′ ≡ ([N ]), it must be the case that
N = l [T1 ‖ reqp1

〈c〉 |Q1 ] where []T1[] = T , {[p1]} = p and 〈[Q1]〉l = Q. Since
{[−]} is homomorphic, E(p1, T1) = (T ′1, U

′
1 p...pU ′

n p∅) where []T ′1[] = T ′ and
[]U ′

1 p...pU ′
n p∅[] = U1 p...pUn p∅. By (Red Request), N −→ M where

M = l [T ′1 ‖ c〈r[ U ′
1 ]p . . . pr[ U ′

n ]p∅〉 |Q ]

By definition of the encoding, ([M ]) = M ′.
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(CRed Context) Suppose N ′ = K[N ′′] −→ K[M ′′] = M ′ because N ′′ −→ M ′′.
By Lemma 4.3.9, there exist C and N1 such that K[N ′′] ≡ ([C[N1]]) and
([N1]) ≡ N ′′. By inductive hypothesis, N1 −→ M1 for some M1 such that
([M1]) ≡ M ′′. By a simple induction on the structure of C, using rules (Red

Par), (Red Res) and the premise N1 −→ M1, we get C[N1] −→ C[M1]. By
Lemma 4.3.9, ([C[M1]]) ≡ K[M ′′].

2

The property below is crucial to compare the reduction congruences in the two
languages.

Lemma 4.3.11 (Weak Operational Correspondence) Given any Xdπ network
N , (i) if N

∗−→ M then ([N ]) ∗−→ ([M ]); (ii) if ([N ]) ≡ N ′ and N ′ ∗−→ M ′ then there
exist an M such that N

∗−→ M and ([M ]) ≡ M ′.

Proof. Both cases follow by induction on the number of reduction steps and
Lemma 4.3.10. The second case uses also Lemma 4.3.8. 2

Observations. The last remaining step, before comparing the equivalences, con-
sists of showing that the encoding preserves the observables. To do this, we find it
convenient to define when an encoding maps precisely each observable from a source
set into one in a target set.

Definition 4.3.12 (Observation Mapping) Let O and O′ be arbitrary sets of ob-
servables for Xdπ and Core Xdπ respectively. We say that the encoding ([−]) maps
O to O′ if

1. for all α ∈ O there is β ∈ O′ such that given any N ∈ N , N ↓α ⇐⇒ ([N ]) ↓β;

2. for all β ∈ O′ there is α ∈ O such that given any N ∈ N , ([N ]) ↓β ⇐⇒ N ↓α.

Independently from the choice of a query language, ([−]) maps both tree and
channel observables from Xdπ to Core Xdπ. Moreover, if the encoding of queries is
observation-injective, then ([−]) maps also the request observables.

Proposition 4.3.13 (Observation Mapping) The encoding ([−])

1. maps Ot to OtC;

2. maps Oc to OcC;

3. if {[−]} is observation-injective, maps Or to OrC.

Proof.

1. We show point 1 of Definition 4.3.12. Suppose N ↓l·T . By definition of Ot,
N ≡ C[l [T ′ ‖P ]] and T l T ′. By Lemma 4.3.6 and definition of the encoding,
([N ]) ≡ ({l 7→ []T ′[]} ] D, 〈[P ]〉l |Q) where []T ′[] l []T []. By Lemma 4.3.7, T l
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[]T []. By definition of OtC , ([N ]) ↓l·[]T []. Suppose now ([N ]) ↓l·[]T []. By definition
of OtC , Lemma 4.3.6 and definition of the encoding, ([N ]) ≡ ({l 7→ []T ′[]} ]
D, 〈[P ]〉l |Q) where []T ′[] l []T [] and N ≡ C[l [T ′ ‖P ]]. By Lemma 4.3.7, T ′ l
[]T ′[]. By definition of Ot, N ↓l·T . The case for point 2 follows a similar
structure.

2. Suppose N ↓l·a. By definition of Oc, N ≡ C[l [T ‖ a〈ṽ〉 |P ]] where a ∈
fn(N). By Lemma 4.3.6 and definition of the encoding, ([N ]) ≡ ({l 7→ []T []} ]
D, l·a〈[]ṽ[]〉 | 〈[P ]〉l |Q). By definition of OcC , ([N ]) ↓l·a. Suppose now ([N ]) ↓l·a.
By definition of OcC , Lemma 4.3.6 and definition of the encoding, ([N ]) ≡ ({l 7→
[]T []} ] D, l·a〈[]ṽ[]〉 | 〈[P ]〉l |Q) where a ∈ fn(N) and N ≡ C[l [T ‖ a〈ṽ〉 |P ]]. By
definition of Oc, N ↓l·a. The other direction follows a similar structure.

3. Suppose N ↓l·p. By definition ofOr, N ≡ C[l [T ‖ reqp〈c〉 |P ]]. By Lemma 4.3.6
and definition of the encoding, ([N ]) ≡ ({l 7→ []T []} ] D, l·req{[p]}〈c〉 | 〈[P ]〉l |Q).
By definition of OrC , ([N ]) ↓l·{[p]}. Suppose now ([N ]) ↓l·{[p]}. By definition
of OrC , Lemma 4.3.6 and definition of the encoding, ([N ]) ≡ ({l 7→ []T []} ]
D, l·req{[p]}〈c〉 | 〈[P ]〉l |Q) and N ≡ C[l [T ‖ reqq〈c〉 |P ]] for some q such that
{[q]} = {[p]}. By definition of Or, N ↓l·q. By observation-injectivity of {[−]},
since l·{[p]} = l·{[q]}, we have that l·q = l·p, hence N ↓l·p. The other direction
follows a similar structure.

2

In general, if an encoding is observation-mapping and it preserves weak reduction,
then it preserves the observables up-to structural congruence.

Lemma 4.3.14 (Observational Correspondence) Let O and O′ be arbitrary sets
of observables such that ([−]) maps O to O′, and O′ is defined up-to structural con-
gruence (Definition 4.2.2).

1. For all α ∈ O there is β ∈ O′ such that given any N ∈ N , N ⇓α ⇐⇒ ([N ]) ⇓β.

2. For all β ∈ O′ there is α ∈ O such that given any N ∈ N , ([N ]) ⇓β ⇐⇒ N ⇓α.

Proof. Follows by Definition 4.3.12 and by using the fact that O′ is defined up-to
structural congruence together with Lemma 4.3.11. 2

Full abstraction. We can now show the main result of this section: if ([−])
preserves the set of observables and {[−]} is homomorphic, then ([−]) preserves the
corresponding induced reduction congruence.

Theorem 4.3.15 (Generalized Full Abstraction) Let O and O′ be arbitrary sets
of observables up-to ≡ for Xdπ and Core Xdπ respectively, such that ([−]) maps
O to O′ and {[−]} is homomorphic. For any N,M ∈ N , N 'O M if and only if
([N ])'O′ ([M ]).
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Proof. Follows from Lemma 4.3.9, Lemma 4.3.11 and Lemma 4.3.14. 2

Theorem 4.3.15 applies straightforwardly to the reduction congruences defined in
Section 4.2, justifying the use of Core Xdπ as an alternative setting in which to study
equivalences for Xdπ.

Corollary 4.3.16 (Full Abstraction) Let {[−]} be the encoding for Sam queries
given in Definition 4.3.3. For any N, M ∈ N ,

• N 't M if and only if ([N ])'tC ([M ]);

• N 'c M if and only if ([N ])'cC ([M ]);

• N 'r M if and only if ([N ])'rC ([M ]).

Proof. Both three cases follow from Proposition 4.3.5, Proposition 4.3.13 and The-
orem 4.3.15. 2

4.4 Process equivalences

We now define process equivalences for Core Xdπ. These equivalences depend on the
locations present in the network. Consider replacing the definition of a service at
location l, which uses only local data, with an equivalent one depending on data from
another location m. If location m is connected, then the behaviour of the services is
the same. On the other hand, if location m is not connected, the behaviour of the
services is different. With network equivalences, the connected locations are those
in the domain of the store. With process equivalences, we must state explicitly the
locations which we assume to be part of the network. As a consequence, process
equivalence is indexed by a domain (a set of locations) Λ.

A Core Xdπ process can be seen as a partial specification of a network, describing
only some of the processes running in some of the locations. This point of view is
useful for reasoning about replacing components which are part of some distributed
data-exchange protocol. Accordingly, we say that two processes P and Q are
equivalent with respect to a domain Λ if all the networks containing at least the
locations in Λ and either P or Q, are equivalent.

Besides comparing partial network specifications, process equivalences can be
useful for example to replace optimized pieces of code inside a specific process. For
that purpose, we need a more general class of process contexts.

Definition 4.4.1 (Full Contexts) Full process contexts Kf are the terms generated
by

C ::= − | C |P | P |C | (ν c)C | l·a(π̃).C | !l·a(π̃).C | l·gom.C

Unless we specify otherwise, from now on we use C[−] to denote full contexts.

68



Figure 4.7: Notation for asynchronous processes

(Forwarder) l·FW(a, b, π̃) def= l·a(π̃).l·b〈π̃〉
(Equator) l·EQ(a, b, π̃) def= !l·FW(a, b, π̃) | !l·FW(b, a, π̃)
(Distributed Forwarder) l·dFW(a, m, b, π̃) def= l·a(π̃).l·m·b〈π̃〉
(Distributed Equator) dEQ(l, a, m, b, π̃) def= !l·dFW(a, m, b, π̃) | !m·dFW(b, l, a, π̃)

Definition 4.4.2 (Induced Domain Congruence) Given a set of location names
Λ and an induced reduction congruence 'O , we define the induced domain congru-
ence ∼Λ

O on processes by

∼Λ
O = {(P ,Q) : ∀D, C[−]. Λ ⊆ dom(D) =⇒ (D, C[P ])'O (D,C[Q])}

where each C[−] is closing for both P and Q.

In the rest of the thesis, we will give a prominent role to the domain congruence
induced by request observables (request congruence for short), as in general it implies
the ones induced by channel and tree observables.

Domain congruences are monotonic: the larger the set of locations which we
assume to be part of the network, the larger the number of processes which we can
equate using a domain congruence.

Observation 4.4.3 (Monotonicity) Given any induced reduction congruence 'O ,
if Λ ⊆ Λ′ then ∼Λ

O ⊆ ∼Λ′
O .

Proof. Follows easily by Definition 4.4.2. 2

Remark 4.4.4 (Asynchronous Laws) Core Xdπ is an extension of the asynchro-
nous π-calculus, so we consider some equational laws inspired by the latter. Consider
the process definitions given in Figure 4.7. The asynchrony law, stating that the
presence of a communication buffer cannot be observed, holds also in Core Xdπ(see
Section 5.2 for a proof):

!l·FW(a, a, π̃)∼Λ
r 0

The law stating that two channels a and b cannot be distinguished if they are part of
the same equator does not hold. Fore example,

l·EQ(a, b, π̃) | l·c〈a〉 6∼Λ
r l·EQ(a, b, π̃) | l·c〈b〉

because a context could intercept the channel name a and use it in some fresh location
m where a and b are not equated. We have instead a new law about equating located
channels across different locations:

dEQ(l,a, m, b, π̃) | l·a〈π̃σ〉∼{l,m}r dEQ(l, a,m, b, π̃) |m·b〈π̃σ〉

This law could be useful to show that we can replicate Web services (improving effi-
ciency) without the clients needing to be aware of the change.
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Due to the several explicit (and implicit) universal quantifications involved in
Definition 4.4.2, it is very difficult to show directly that two processes are domain
congruent. For this reason, in Chapter 5 we will introduce a proof method which
does not require closure under contexts and which entails domain congruence.
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Chapter 5

Bisimilarity

Domain congruence is hard to use in practice, because it requires closure under both
store and process contexts. In this chapter, we define a coinductive equivalence rela-
tion (bisimilarity), which does not quantify over contexts and which entails domain
congruence. In Section 5.1, we define a labelled transition system for Core Xdπ in-
spired by the work of Sangiorgi [69], and Jeffrey and Rathke [46]. In Section 5.2, we
define domain bisimilarity, our coinductive equivalence, and discuss its main proper-
ties. Section 5.3 contains all the formal results with proofs.

5.1 Labelled transition system

A typical proof that processes are bisimilar involves a universal quantification over la-
belled transitions. Since Core Xdπ values include scripts, and labels typically include
values, we risk falling back to quantifying over processes. Following the approach
of [69, 46], we avoid this problem by translating messages containing scripts into ones
where each script is replaced by a trigger name (a first-order value), and by placing
in parallel to the process being analyzed some definitions associating to each trigger
name the code of the corresponding script. By including these definitions in the code,
we are able to analyze also the interaction between scripts and their contexts.
Configurations. We introduce configurations, which are processes extended with
the trigger names and definitions mentioned above. The formal syntax is given in
Figure 5.1. Note that A denotes now a script, a variable or a trigger name, hence
processes can syntactically contain triggers. Nonetheless, scripts and queries are
not allowed to contain triggers. In fact, trigger names and definitions are merely
intermediate terms arising during the analysis of the transition of a process, and are
not meant to be part of the user syntax. For a configuration K to be well-formed,
no two definitions in K can have the same trigger name (predicate unique(K)). As
a convention, we let Θ, Ω and Φ range on groups of definitions. Note also that
two groups of definitions Θek and Θej identified by the same name but by different
vectors of triggers can in principle be arbitrarily different: it is an important syntactic
convention which helps to simplify the notation, and is often used in the rest of the
chapter. In Figure A.5 and Figure A.6, we extend ≡, fv and fn to configurations. In
Figure 5.3 we extend the function dom of Figure A.2 to configurations, and we define
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Figure 5.1: Syntax: configurations

K ::= configuration terms
P process terms (built as for Core Xdπ)
K |K parallel composition
(ν c)K restriction
〈k ⇐ A〉 definition for trigger name k with script A

A ::= A | x | k script or variable or trigger name

h, i, j, k ∈ Y (Y ∩ Cp = ∅, Y countably infinite) (Trigger Names)

K, L ∈ W def=
{
K : fv(K) = ∅, unique(K)

}
(Configurations)

A ∈ AW def=
{
A : A ∈ AC, triggers(A) = ∅} (Scripts)

CW [−] ::= − | CW [−] |K | K |CW [−] | (ν c)CW [−] (Configuration Contexts)

The function triggers and the predicate unique are defined in Figure 5.2.
Apart from the redefinition of A, A and p (see below), the grammars for trees,
processes and values are the same as for Core Xdπ.

For trigger definitions, we adopt the following notation:

Θek def= 〈k1 ⇐ A1〉 | . . . | 〈kn ⇐ An〉, where all ki are distinct, n ≥ 0;
Θekxej def= Θek{ej/ek}, when {ej/ek} is defined;

Θ def= Θek, when k̃ is not important.

t〈k⇐A〉 def= t{A/k}, for any term t, and similarly for tΘ
ek
.

Figure 5.2: Function triggers and predicate unique.

triggers(t) = fn(t) ∩ Y

unique(K) unique(K ′)
dfs(K) ∩ dfs(K ′) = ∅

unique(K |K ′)
unique(K)

unique((ν c)K)
unique(〈k ⇐ A〉)

The function dfs, returning the triggers defined by a configuration, is given by

dfs(K |K ′) = dfs(K) ∪ dfs(K ′) dfs((ν c)K) = dfs(K) dfs(〈k ⇐ A〉) = {k}

a function scripts returning the scripts present in a piece of data.
Queries. Queries used for updating can mention constant data, which may
contain scripts. We assume two functions, scripts and triggers, which given a query
return respectively the set of scripts and triggers it contains. The only condition
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Figure 5.3: Functions dom and scripts for configurations

dom(K |K ′) = dom(K) ∪ dom(K ′) dom((ν c)K) = dom(K) dom(〈k ⇐ A〉) = ∅

scripts(v, ṽ) = scripts(v) ∪ scripts(ṽ) scripts({v/x}) = scripts(v)
scripts(E pT ) = scripts(E) ∪ scripts(T ) scripts(∅) = ∅

scripts(a[ V ]) = scripts(V ) scripts(〈A〉) = {A}
scripts(A) = {A} scripts(c) = scripts(c) = ∅

scripts(p@l) = scripts(p) scripts(l) = ∅

Assumption: scripts on queries is given as part of the query language definition.

that we need to impose on query evaluation consists of it not being dependent on the
particular structure of scripts. In other words, if we replace a script in a query with
a trigger name, then the result of the query should be equivalent up to substitution
of the script for the trigger. Moreover, any script returned by the query must occur
in the input tree or in the query itself. The condition is formalized below.

Definition 5.1.1 (Script Independence) Let L = (Q, fv ,E) be an arbitrary query
language, let p, T be such that E(p, T ) = (S, L), and let p0, T0 be their first-order
versions, such that scripts(p0) = scripts(T0) = ∅ and p = pΘ

ej
0 , T = TΩ

ek
0 for some

Θej , Ωek.
The query language L is script independent if for all Θej ,Ωek there exist Θeh and

Ωei such that

• query evaluation does not depend on the structure of scripts: there are S0, L0

with scripts(S0) = scripts(L0) = ∅ such that E(pΘ
ej

0 , TΩ
ek

0 ) = (SΘ
eh

0 , LΩ
ei

0 )

• no new scripts are introduced: for any definition 〈k ⇐ A〉 occurring in Θeh or
Ωei there must be a definition 〈k′ ⇐ A〉 occurring in Θej or Ωek.

Extracting scripts from values. Our strategy consists of translating values
containing scripts into values containing trigger names only, extracting at the same
time the corresponding definitions. For that purpose, we define in Figure 5.4 an
extraction relation X which applies to Core Xdπ data and stores, and returns the
corresponding first-order terms and the definitions extracted.

The definition of X is straightforward. The only points worth noting are that the
premises of the rules for tuples, tree and store composition make sure that the trigger
names remain disjoint, and that the rule for scripts replaces a script with a trigger
and records the corresponding definition. The rule for queries invokes a specialized
extraction relation XQ which depends on the query language. XQ can behave similarly
to X, relating each query with its first-order version and the corresponding definitions,
or can behave differently (for example being the identity function on queries and the
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Figure 5.4: Extraction relation

X(l) = (l;0)
X(p) = (p′; Θ)

X(p@l) = (p′@l; Θ)
X(p) = XQ(p) X(∅) = (∅;0)

X(A) = (k; 〈k ⇐ A〉) X(x) = (x;0)
X(c) = (c;0) X(k) = (k;0)

X(E) = (E′; Θek) X(T ) = (T ′; Ωeh)
(
{
k̃, h̃

} ∩ fn(E pT )) ∪ (
{
k̃
} ∩ {

h̃
}
) = ∅

X(E pT ) = (E′ pT ′; Θek |Ωeh)

X(A) = (v; Θ)
X(〈A〉) = (〈v〉; Θ)

X(v) = (v′; Θek) X(ṽ) = (ṽ′; Ωeh)
(
{
k̃, h̃

} ∩ fn(v, ṽ)) ∪ (
{
k̃
} ∩ {

h̃
}
) = ∅

X(v, ṽ) = (v′, ṽ′; Θek |Ωeh)

X(V ) = (V ′; Θ)
X(a[ V ]) = (a[ V ′ ]; Θ)

X(T ) = (T ′; Θek) X(D) = (D′; Ωeh)
(
{
k̃, h̃

} ∩ fn(T,D)) ∪ (
{
k̃
} ∩ {

h̃
}
) = ∅

X({l 7→ T} ]D) = ({l 7→ T ′} ]D′; Θek |Ωeh)
X(∅) = (∅;0)

Notation: in this table c ranges over Cp ∪ Cs.
The relation XQ is specified in Definition 5.1.2.

constant 0 on configurations), as long as it satisfies the basic properties requested by
the definition given below.

Definition 5.1.2 (Query Extraction) The relation XQ can be any subset of QC×
QC ×W satisfying the condition that if XQ(p) = (p′;K) then

1. K are well-formed definitions: K = Θek;

2. trigger names can be extended as long as there are no clashes: triggers(p′) =
triggers(p) ∪ {

k̃
}

and triggers(p) ∩ {
k̃
}

= ∅;

3. the new trigger names are defined up-to renaming: for all j̃ distinct from
triggers(p), XQ(p) = (p′{ej/ek}; Θekxej);

4. substitution is the inverse of extraction: if XQ(p) = (p′; Θ) then p = p′Θ.

Under the assumption (that we adopt henceforth) that XQ respects Definition 5.1.2,
the effects of relation X can be reversed by replacing, in the extracted first-order term,
the new trigger names by the corresponding definitions.

Observation 5.1.3 (Extraction) For any given term t, if X(t) = (t′; Θ) then
t = t′Θ.
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Figure 5.5: Labels for the transition system

αl ::= transition labels

(ã, k̃)l·c〈ṽ〉 output of ṽ on c at l, extruding ã, k̃

l·c(ṽ) input of ṽ on c at l

l·τ internal reduction at l

(k̃)l·req〈p〉(T ) request p at l extruding k̃, obtaining result T

l·k(ṽ) run the script defined by trigger k with parameters l, ṽ

(ã, k̃)l·j〈ṽ〉 assume running the script defined by trigger j

with parameters l, ṽ, extruding ã, k̃

Convention: in this figure, c ranges over Cp ∪ Cs, and t ranges over Cp ∪ Cs ∪ Y.

labels αl names n bound names bn

(ã, k̃)l·t〈ṽ〉 {
ã
} ∪ {

k̃
} ∪ {t} ∪ fn(ṽ)

{
ã
} ∪ {

k̃
}

l·t(ṽ) {t} ∪ fn(ṽ) ∅
l·τ ∅ ∅

(k̃)l·req〈p〉(T )
{
k̃
} ∪ triggers(p) ∪ fn(T )

{
k̃
}

fn(αl) = n(αl) \ bn(αl)

Proof. By induction on the derivation of X(t) = (t′; Θ). 2

Labelled transition system. The labels of the transition system record what
kind of interaction with the external environment is necessary for a configuration to
evolve into another. Labels, along with the notions of their names, free names and
bound names, are defined in Figure 5.5. Each label, including the one for inter-
nal reduction, shows explicitly the location where interaction takes place. By using
appropriate conditions on the function scripts in the rules of the labelled transition
system (lts for short), we will guarantee that labels are first-order, as planned. The
formal definition of the lts is given in Figure 5.6. We discuss the more interesting
transition rules. Rules (Lts Com), (Lts !Com) and (Lts Run) closely mimic the correspond-
ing reduction rules. These transitions do not require interaction with the external
environment, so the label l·τ requires only the existence of location l. Rule (Lts In)

provides a first-order output message from the environment which can be used to an-
alyze the continuation of an input process by deriving a further transition using the
communication rules1. Rule (Lts Out) states that a potentially higher-order output

1Considering first order messages is enough because, since bisimilarity will be close with respect
to parallel composition, the effect of higher order messages will be simulated by trigger definitions.
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Figure 5.6: Labelled transition system

(Lts Com)

l·c〈π̃σ〉 | l·c(π̃).P
l·τ−→ Pσ

(Lts !Com)

l·c〈π̃σ〉 | !l·c(π̃).P
l·τ−→ Pσ | !l·c(π̃).P

(Lts Run)

(x, π̃)P ◦ 〈l, π̃σ〉 l·τ−→ P {l/x}σ

(Lts In)

scripts(ṽ) = ∅
0

l·c(ṽ)−−−→ l·c〈ṽ〉
(Lts Out)

X(ṽ) = (ṽ′; Θek)

l·c〈ṽ〉 (ek)l·c〈ṽ′〉−−−−−−→ Θek

(Lts Trigger)

X(ṽ) = (ṽ′; Θek) j 6∈ {
k̃
}

j ◦ 〈l, ṽ〉 (ek)l·j〈ṽ′〉−−−−−−→ Θek

(Lts Open)

K
(ã, k̃)l·t〈ṽ〉−−−−−−−→ K ′ a ∈ fn(ṽ) \ {ã, t}

(ν a)K
(a, ã, k̃)l·t〈ṽ〉−−−−−−−−−→ K ′

(Lts Req)

XQ(p) = (p′, Θek)
scripts(T ) = ∅ T = r[ U1 ]p . . . r[ Un ]p∅

l·reqp〈c〉
(k̃)l·req〈p′〉(T )−−−−−−−−−−→ l·c〈T 〉 |Θek

(Lts Def)

scripts(σ) = ∅
〈k ⇐ (x, π̃)P 〉 l·k(π̃σ)−−−−−→ 〈k ⇐ (x, π̃)P 〉 |P {l/x}σ

(Lts Go)

l·go m.P
m·τ−−→ P

(Lts Res)

K
αl−→ K ′ a 6∈ n(αl)

(ν a)K
αl−→ (ν a)K ′

(Lts Par)

K
αl−→ K ′ rel (αl, L)
K |L αl−→ K ′ |L

(Lts Struct)

K ≡ L
αl−→ L′ ≡ K ′

K
αl−→ K ′

Notation: rel (αl,K) def= bn(αl) ∩ fn(K) = ∅.
Convention: in this table c ranges over Cp ∪ Cs, and t ranges over Cp ∪ Cs ∪ Y.

l·c〈ṽ〉 evolves to the definitions that are extracted from ṽ to obtain ṽ′, and carries
in the label the first-order version of the process. The intuition is that a bisimilar
process will be required to perform the same first-order transition, and a potential
incompatibility between the original higher-order messages will be detected by ana-
lyzing the resulting definitions Θek. Rule (Lts Trigger) states that the application of a
trigger name to the potentially higher-order parameters ṽ evolves to the definitions
that are extracted from ṽ to obtain ṽ′, and carries in the label the first-order version
of the process, similarly to the case for output. Rule (Lts Open) is standard. Not
that it applies to transitions originated using (Lts Out) or (Lts Trigger). Rule (Lts Req)

can be interpreted as the combination of an output of p and an input of T on a
special name req. Rule (Lts Def) analyzes the script of a definition for all its possible
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(first-order) input parameters2.
The sample query and update language. We conclude this section by extend-
ing Sam (Definition 2.3.1) to deal with trigger names, and showing that it respects
our assumptions (Observation 5.1.5).

Definition 5.1.4 (Sam#) The query language Sam# is defined as Sam, with the
exception that trees can contain also trigger names in the same position as scripts
(i.e. within 〈−〉). The extraction relation XQ, and the functions scripts and triggers
are defined on Sam# by

X(V ) = (U ; Θ)
XQ(p̂(π)V ) = (p̂(π)U ; Θ)

scripts(p̂(π)V ) = scripts(V ) triggers(p̂(π)V ) = triggers(V )

Observation 5.1.5 (Properties of Sam#) (i) Sam# is script independent, and (ii)
XQ for Sam# respects Definition 5.1.2.

Proof. Point (i) follows by induction on the derivation of E. The idea is that query
evaluation does not depend on the structure of scripts, and by rule (Eval Match) only
scripts coming from the query and the input tree can occur in the result and the
output tree. Point (ii) follows by induction on the derivation of XQ. 2

5.2 Domain bisimilarity

We introduce our bisimulation equivalence. The intuition is that, when two bisimilar
processes are running in a location domain Λ, if a process makes an action αl with
l ∈ Λ then the other one must be able to mimic it, possibly relying on the existence
of other locations in Λ.

Since the location domain can be extended to Λ∪Λ′ by composing networks, we
need to make sure that also the actions mentioning locations in Λ′ are matched, this
time within a larger relation parameterized by Λ ∪ Λ′. 3

The definition of bisimilarity relies on the following derived transition relations.

Definition 5.2.1 (Derived Transition Relations) Consider the lts defined in Fig-
ure 5.6. Given l ∈ Λ, we use the notation

τ−→Λ
def= l·τ−→; l·τ−→→Λ

def= τ ∗−→Λ; αl−→→Λ
def= τ ∗−→Λ ◦ αl−→ ◦ τ ∗−→Λ when αl 6= l·τ.

2Both in (Lts Def) and (Lts In) we do not need to consider higher-order values. This is due to the
fact that the bisimilarity relation that we will consider turns out to be closed with respect to parallel
composition with definitions (Theorem 5.3.15), and hence already takes into account the effects of
scripts received from the environment.

3Our domain bisimilarity should not be confused with the notion of translocating equivalence of
the Nomadic Pict language [77]. In Nomadic Pict, the set of agent names considered in a bisimulation
proof can grow dynamically, and bisimulation must be explicitly closed under functions assigning
agents to locations (drawn from a fixed set). This is needed in order to ensure the closure of bisimi-
larity under parallel contexts. In Xdπ instead, it is the set of locations considered in a bisimulation
proof that can grow dynamically, and this feature is used to reason about which locations can be
relied upon, and which may be prone to failures (see Section 4.4).
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Definition 5.2.2 (Domain Bisimilarity) A family of symmetric relations on con-
figurations (indexed with sets of locations) ≈̇ = {≈̇Λ : Λ ⊆ L} is a domain bisim-
ulation if K≈̇ΛL and K

αl−→ K ′ implies:

1. if l ∈ Λ with rel(αl, L) then L
αl³Λ L′ and K ′≈̇ΛL′;

2. if l 6∈ Λ then K≈̇Λ∪{l}L.

Domain bisimilarity ≈= {≈Λ : Λ ⊆ L} is the (point-wise) largest domain bisimu-
lation: if ≈̇ is a domain bisimulation, then ≈̇Λ ⊆≈Λ for all Λ. Two open processes
P ,Q are Λ-bisimilar if and only if for all closing substitutions σ, Pσ ≈Λ Qσ.

Remark 5.2.3 (Initial Elements) To show K ≈Λ L for a specific Λ, we can ex-
hibit a domain bisimulation ≈̇ = {≈̇∆ : ∆ ⊆ L} such that K≈̇ΛL and ≈̇∆ is the
empty set for all ∆ smaller than Λ.

Since our definition of domain bisimulation is non-standard, we need to argue
that the largest domain bisimulation exists. In Section 5.3.4, we shall prove that
it is indeed the case using a fixed-point characterization. Domain bisimilarity
is a coinductive relation, preserved by structural congruence and monotonic in the
domain Λ (Section 5.3.1). Under the mild assumption that the query language does
not depend on scripts (Definition 5.1.1), domain bisimilarity enjoys two important
properties which make it a useful proof method for domain congruence:

• domain bisimilarity is a congruence, that is embedding open processes in full
contexts preserves bisimilarity (Section 5.3.2);

• domain bisimilarity is a sound approximation of the domain congruence induced
by request observables, that is if two processes are bisimilar then they are
request-congruent (Section 5.3.3).

We now give a first example of the proof method. Larger examples are given in
Chapter 6.

Example 5.2.4 (Proof Method) Recall the asynchrony law of Remark 4.4.4. It
states that a communication buffer cannot be distinguished from the empty process. By
definition, !l·FW(a, a, π̃) ≈Λ 0 if for any closing substitution σ, (!l·FW(a, a, π̃))σ ≈Λ

0σ. Given an arbitrary σ we have that (!l·FW(a, a, π̃))σ =!l·FW(a, a, π̃) for some
a, l. To show that !l·FW(a, a, π̃) ≈Λ 0, we need to give a domain bisimulation ≈̇ =
{≈̇∆} such that ≈̇Λ contains the two processes. Since structural congruence preserves
bisimilarity (Proposition 5.3.1), we reason up-to ≡.

For each ∆, we begin with a relation R0
∆ = {(!l·FW(a, a, π̃),0)} containing the

pair that we want to prove bisimilar. By definition of bisimilarity, we must close the
relation under transitions. Due to (Lts In) we must close the relation under parallel
compositions with arbitrary output processes: R1

∆ = {(M | !l·FW(a, a, π̃),M)} where
M =

∏

0≤i≤n

li·ci〈ṽi〉, dom(M) ⊆ ∆ and scripts(ṽi) = ∅ (note that R1
∆ = R0

∆ if n = 0).

The possible tau transitions arising from the interaction of !l·FW(a, a, π̃) and an
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output l·a〈ṽ〉 where ṽ = π̃σ are already covered because by (Lts !Com) and (Lts Struct),
l·a〈ṽ〉 | !l·FW(a, a, π̃) l·τ−→ l·a〈ṽ〉 | !l·FW(a, a, π̃). Again by definition of bisimilarity, we
must make the relation symmetric, hence we conclude with ≈̇∆ = R1

∆ ∪ (R1
∆)−1.

Incompleteness. In general, domain bisimilarity is a more restrictive equiva-
lence than request congruence. The property is intrinsic to our choice of giving a
proof method parametric in the chosen query and update language. In fact, without
specializing the labelled transition system to a particular language, we are forced to
distinguish request transitions as soon as queries are syntactically different. On the
other hand, equivalences dependent on specific knowledge of the semantics of queries
would lead to optimizations which are no longer correct when the query language
changes.

Example 5.2.5 (Incompleteness) Consider the query language Sam# and the pro-
cess definition

X(a, b) def= (ν c)(l·c | !l·c.(ν e)

(
l·req(x)a 〈e〉 |
l·e(x).(ν e′)(l·req(x)b 〈e′〉 | l·e′(x).l·c)

)
)

The process loops, replacing at each iteration whatever tree is at l first with a and
then with b . We have X(a, b)∼{l}r X(b, a), because once the two processes are inserted
in the same store, they can always reduce to each other. On the other hand, we have
that X(a, b)6≈{l}X(b, a) because the request transitions cannot be matched.

5.3 Results and proofs

This section describes the properties of domain bisimilarity and gives the formal
proofs. It is interesting for the reader wishing to see the non-standard technical
details, but it is not necessary for understanding the rest of the thesis.

To follow more easily certain common steps in the proofs, it may be helpful to
keep in mind that: private and service channel names are distinct; a script is well-
formed only if it has no free private channel or trigger names; configurations are
well-formed if for any trigger name there is at most one definition.

5.3.1 Basic properties

We study some basic properties of domain bisimilarity which will be useful to prove
the main results of congruence and soundness. A first property is that structural
congruence preserves bisimilarity. We will use this implicitly in the rest of the chapter.

Proposition 5.3.1 (Bisimilarity Up-To Structural Congruence) If K ≈Λ L,
K ≡ K ′ and L ≡ L′, then K ′ ≈Λ L′.

Proof. The family of relations ≈̇ with generic element

≈̇∆ =
{
(K ′, L′) : K ′ ≡ K ≈∆ L ≡ L′

}
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is a domain bisimulation. Follows by using rule (Lts Struct). 2

By definition of bisimilarity, the smaller the domain Λ, the less likely that two
processes are bisimilar. In fact, we need to check for matching actions first in Λ,
then in any Λ′ containing Λ. The underlying intuition is that if we can rely on a
larger set of locations to be connected to the network, then we can perform more
optimizations.

Proposition 5.3.2 (Monotonicity) Domain bisimilarity is monotonic: for all sets
of locations Λ, Λ′, if Λ ( Λ′ then ≈Λ(≈Λ′.

Proof.

(⊆) Follows by Definition 5.2.2, noticing that using rule (Lts In) it is always possible
to make an input action at location l, for any l not in Λ.

(() If Λ ( Λ′ then there exists an m such that m ∈ Λ′ \ Λ. Consider the two
processes P = l·a and Q = l·gom.m·l·a, where l 6= m. Clearly, P 6≈ΛQ because

P
l·a−→ 0 but there is no Q′ such that Q

l·a³Λ Q′. To show that P ≈Λ′ Q, let R∆

be the set containing the pairs

(M |P, M |Q), (M |P,M |m·l·a), (M, M)

for any M of the form
∏

0≤i≤n

li·ci〈ṽi〉, dom(M) ⊆ ∆

where scripts(ṽi) = ∅ for all i. The family ≈̇, where ≈̇∆ = R∆∪(R∆)−1 for each
∆ containing Λ′ and ≈̇∆ = ∅ otherwise, is a domain bisimulation containing
(P,Q), hence P ≈Λ′ Q.

2

The lemma given below is a standard technical lemma relating the transitions in
the lts with the syntactic structure of configurations, up-to structural congruence. It
is used in many proofs, sometimes implicitly.

Lemma 5.3.3 (Transition Correspondence) The transitions of the lts are in close
correspondence with the structure of configurations.

1. K
(ea,ek)l·c〈ṽ〉−−−−−−→ K ′ if and only if K ≡ (ν ã)(L | l·c〈ṽ′〉) where c 6∈ {

ã
}
,
{
ã
} ⊆ fn(ṽ′)

and K ′ ≡ L |Θek where X(ṽ′) = (ṽ; Θek).

2. K
l·c(ṽ)−−−→ K ′ if and only if K ′ ≡ K | l·c〈ṽ〉, scripts(ṽ) = ∅ and rel (l·c(ṽ),K).

3. K
l·τ−→ K ′ if and only if
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• K ≡ (ν ã)(L | l·c(π̃).P | l·c〈π̃σ〉) and K ′ ≡ (ν ã)(L |Pσ), or

• K ≡ (ν ã)(L | !l·c(π̃).P | l·c〈π̃σ〉) and K ′ ≡ (ν ã)(L | !l·c(π̃).P |Pσ), or

• K ≡ (ν ã)(L | (x, π̃)P ◦ 〈l, π̃σ〉) and K ′ ≡ (ν ã)(L |P {l/x}σ), or

• K ≡ (ν ã)(L |m·go l.P ) and K ′ ≡ (ν ã)(L |P ).

4. K
(k̃)l·req〈p〉(T )−−−−−−−−−→ K ′ if and only if K ≡ (ν a)(L | l·reqp′〈c〉) and K ′ ≡

(ν a)(L | l·c〈T 〉 |Θek) for some p′ such that XQ(p′) = (p,Θek) and some T such
that scripts(T ) = ∅ and T has the form r[ U1 ]p . . . r[ Un ]p∅.

5. K
l·k(π̃σ)−−−−−→ K ′ if and only if K ≡ L | 〈k ⇐ (x, π̃)P 〉 and K ′ ≡ K | 〈k ⇐

(x, π̃)P 〉 |P {l/x}σ and scripts(σ) = ∅.

6. K
(ea,ek)l·j〈ṽ〉−−−−−−→ K ′ if and only if K ≡ (ν ã)(L | j ◦ 〈l, ṽ′〉) where j 6∈ {

k̃
}
,

{
ã
} ⊆

fn(ṽ′) and K ′ ≡ L |Θek where X(ṽ′) = (ṽ; Θek).

Proof.

(⇐=) Follows easily by definition of lts.

(=⇒) By induction on the depth n of the derivation tree in the premise for the
labelled transition. We give the case for bound output as an example (point 1).

(n = 0) Suppose K
(ã, k̃)l·c〈ṽ〉−−−−−−−→ K ′ is derived by directly applying (Lts Out). It

must be the case that K = l·c〈ṽ′〉, where X(ṽ′) = (ṽ; Θek) and K ′ = Θek.

(n = m + 1) A derivation of depth m+1 for K
(ã, k̃)l·c〈ṽ〉−−−−−−−→ K ′ must be obtained

by applying one of the rules (Lts Res), (Lts Par), (Lts Struct) or (Lts Open)

to a derivation of depth m. The case for (Struct) is trivial. If rule (Res)

is applied then we must have that (ν d)K1
(ã, k̃)l·c〈ṽ〉−−−−−−−→ (ν d)K ′

1, where d 6∈

n((ã, k̃)l·c〈ṽ〉), follows from the premise K1
(ã, k̃)l·c〈ṽ〉−−−−−−−→ K ′

1. By inductive
hypothesis, K1 ≡ (ν ã)(L | l·c〈ṽ′〉) where c 6∈ {

ã
}
,
{
ã
} ⊆ fn(ṽ′) and K ′

1 ≡
L |Θek where X(ṽ′) = (ṽ; Θek). Since X does not affect session channels, d 6∈
fn(ṽ′) \ {

ã
}
. By structural congruence, (ν d)K1 ≡ (ν ã)((ν d)(L) | l·c〈ṽ′〉),

and (ν d)K ′
1 ≡ (ν d)(L) |Θek. The cases for (Par) and (Open) are similar.

2

The next step towards the main proofs consists of generalizing the variant lemma
of [44] to bijective substitutions (here called switchings) on channel and trigger
names4. By using switchings rather than generic substitutions we obtain a purely

4Our approach is reminiscent of the permutation-based approach to abstract syntax developed
by Gabbay and Pitts [31]. In particular, it may be interesting in future work to compare our use of
switchings with the work of Gabbay [30] on the π-calculus.
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coinductive proof. Below we let a, b, c range over channel or trigger names, and we
consider only well-sorted substitutions (replacing channels for channels and triggers
for triggers).

Definition 5.3.4 (Switching) Given a term t with a function fn returning its free
names, a switching a_b is a bijective substitution {c/a, a/b}{b/c} such that c 6∈ fn(t)∪
{a, b}. We denote by ea_eb the switching a1_b1 . . .an_bn where both ã and b̃ are vectors
of distinct names.

Observation 5.3.5 (Switching Properties) Switching is self-dual (Ka_b)a_b =
K and symmetric Ka_b = Kb_a.

Proof. Both properties follow from the definition of switching and substitution. 2

We note below that both the extraction and the transition relations do not depend
on specific names, hence they are fully compatible with switching, and α-conversion.

Lemma 5.3.6 (Switching Extraction) Extraction preserves switching: if X(ṽ) =

(ṽ′, Θek) then X(ṽa_b) = (ṽ′
a_b

; (Θek)a_b).

Proof. By a simple induction on the derivation of X(ṽ) = (ṽ′, Θek), where the base
case for queries uses Definition 5.1.2. 2

Lemma 5.3.7 (Switching Transitions) If K
αl−→ K ′ then Ka_b

αa_b
l−−−→ K ′a_b,

provided that bn(αl) ∩ fn(Ka_b) ∩ {a, b} = ∅.
Proof. By case analysis on αl, using Lemma 5.3.3. We show the case for the
bound output when the name of the channel used for output occurs in the switching;
the other cases are simpler. Let ρ =a_b. Without loss of generality, suppose that
K

αl−→ K ′ where αl = (b, b̃)l·a〈ṽ′〉 and b does not occur in b̃. By Lemma 5.3.3,
K ≡ (ν b, b̃)(L | l·a〈ṽ〉) where a 6∈

{
b, b̃

}
,

{
b, b̃

}
⊆ fn(ṽ) and K ′ ≡ L |Θek where

X(ṽ) = (ṽ′; Θek). Let c be a fresh name. By α-conversion and Observation 5.3.5,
we have K ≡ (ν c, b̃)(L{c/b} | l·a〈ṽ{c/b}〉)ρρ. Applying the inner switching, we obtain
K ≡ (ν c, b̃)(L{c/b}ρ | l·b〈ṽ{c/b}ρ〉)ρ. Since {c/b} has replaced b with c,

K ≡ (ν c, b̃)(L{c/b}{b/a} | l·b〈ṽ{c/b}{b/a}〉)ρ
Since a does not appear free anymore, we can alpha-convert c with a in the term
above, obtaining

K ≡ (ν a, b̃)(L{c/b}{b/a}{a/c} | l·b〈ṽ{c/b}{b/a}{a/c}〉)ρ
By definition of switching, K ≡ (ν a, b̃)(Lρ | l·b〈ṽρ〉)ρ. By Observation 5.3.5, Kρ ≡
(ν a, b̃)(Lρ | l·b〈ṽ〉ρ). By Lemma 5.3.6, X(ṽρ) = (ṽ′ρ; Θekρ). By (Lts Out), Kρ

αlρ−−→ K ′ρ.
2

The lemma below shows that bisimilarity is closed with respect to switchings, a
property needed to show that it is transitive.
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Lemma 5.3.8 (Variant) (i) If K ≈Λ L then Ka_b ≈Λ La_b. (ii) If b 6∈ fn(K, L)
then K ≈Λ L =⇒ K{b/a} ≈Λ L{b/a}.

Proof. (i) Let ρ =a_b. We show that the family ≈̇ with generic element ≈̇∆ =
{(Kρ, Lρ) : K ≈∆ L} is a domain bisimulation. Assume K ≈∆ L for some ∆.
Suppose Kρ

αl−→ K ′ and l 6∈ ∆. By K ≈∆ L, K ≈∆∪{l} L, hence (Kρ, Lρ) ∈ ≈̇∆∪{l}.
Suppose instead l ∈ ∆ and rel (αl, Lρ). By Lemma 5.3.7, K

αlρ−−→ K ′ρ with rel (αlρ, L).
By bisimilarity, L

αlρ−−→→∆L′ with K ′ρ ≈∆ L′. By Lemma 5.3.7, Lρ
αl−→→∆L′ρ. By def-

inition, (K ′ρρ, L′ρ) ∈ ≈̇∆. We conclude because, by Observation 5.3.5, K ′ρρ = K ′.
(ii) Follows from (i) by definition of switching. 2

Domain bisimilarity is an equivalence relation. This property is very important,
because in the rest of the proofs in this chapter we will often rely on symmetry and
transitivity.

Proposition 5.3.9 (Equivalence) Domain bisimilarity is an equivalence relation.

Proof. Reflexivity and symmetry are immediate. Transitivity states that if K ≈Λ M
and M ≈Λ L then K ≈Λ L. We show that the family ≈̇ with generic element

≈̇∆ = {(K,L) : K ≈∆ M, M ≈∆ L}

is a domain bisimulation. Let ∆ be arbitrary and suppose K
αl−→ K ′ with l 6∈ ∆. By

Definition 5.2.2, K ≈∆∪{l} M and M ≈∆∪{l} L, hence (K, L) ∈ ≈̇∆∪{l}. If l ∈ ∆
and rel (αl, L) then there are two cases, determined by the relevance of αl to M . If
rel (αl,M), the proof is straightforward. If αl is not relevant to M , the action αl

must necessarily have some bound names c̃ such that
{
c̃
} ⊆ fn(M). By the second

premise of (Lts Par) used to derive the bound transition,
{
c̃
}∩ fn(K) = ∅. Let ã have

the same length as c̃, and be such that
{
ã
} ∩ fn(K, L,M) = ∅. By Lemma 5.3.8,

K = K{ea/ec} ≈∆ M{ea/ec} = M ′. By the same argument, M ′ ≈∆ L. Since now
rel (αl,M

′), the proof is straightforward. 2

5.3.2 Congruence

Our next objective is to show that domain bisimilarity is a congruence. We already
know that it is an equivalence relation (Proposition 5.3.9), and that it preserves
switchings (Lemma 5.3.8). We also know how to relate labelled transitions with
the syntactic structure of configurations (Lemma 5.3.3). Using these tools, it is
pretty easy to show that bisimilarity is closed under the restriction operator and, for
processes, under prefixes. Most of the work in this section is dedicated to show directly
closure under parallel composition. In contrast, Jeffrey and Rathke [46] for example
show the soundness of their bisimilarity with respect to barbed congruence by using
an auxiliary reduction-closed relation, which is closed under parallel composition.
Showing the corresponding completeness result, they derive that also bisimilarity is
closed under parallel composition. We cannot use their approach due to the inherent
incompleteness of domain bisimilarity (see Section 5.2). Instead, we give a direct proof
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Figure 5.7: Merge operator for configurations

〈〈P 〉〉 = P (Merge Proc)

〈〈(ν c)K〉〉 = (νc)〈〈K〉〉 (Merge Res)

〈〈K | 〈k ⇐ A〉〉〉 = 〈〈K〈k⇐A〉〉〉 (Merge Def)

of closure under parallel composition. This is possible in our framework because,
exploiting the fact that scripts do not contain triggers or private names, we can
use ≡ to re-factor each configuration into a process part and a definition part in
Lemma 5.3.14.

Lemma 5.3.10 (Restriction) Bisimilarity is closed under restriction: K ≈Λ L =⇒
(ν c̃)K ≈Λ (ν c̃)L.

Proof. The family ≈̇ with generic element

≈̇∆ = {(K1, L1) : K1 ≡ (ν c̃)K, L1 ≡ (ν c̃)L, K ≈∆ L}

is a domain bisimulation. Suppose K1
αl−→ K ′

1. The proof is by cases on αl us-
ing Lemma 5.3.3. We show the case for αl = l·c(ṽ) which is the most interesting.
If l 6∈ ∆, the proof is easy. Suppose l ∈ ∆. By Lemma 5.3.3, K ′

1 ≡ K1 | l·c〈ṽ〉.
By hypothesis, K1 ≡ (ν c̃)K, K ≈∆ L and L1 ≡ (ν c̃)L. By α-conversion, K1 ≡
(ν c̃′)K{ec′/ec} for a fresh tuple of names c̃′. By (Lts Struct), (Lts Par) and (Lts In),

(ν c̃′)K{ec′/ec}
l·c(ṽ)−−−→ (ν c̃′)(K{ec′/ec}) | l·c〈ṽ〉 and K{ec′/ec}

l·c(ṽ)−−−→ K{ec′/ec} | l·c〈ṽ〉. By

Lemma 5.3.8, K{ec′/ec} ≈∆ L{ec′/ec}, hence L{ec′/ec}
l·c(ṽ)−−−→→∆L′ ≈∆ K{ec′/ec} | l·c〈ṽ〉. By

(Lts Res) and freshness of c̃′, (ν c̃′)(L{ec′/ec})
l·c(ṽ)−−−→→∆(ν c̃′)L′.

By (Lts Struct), (ν c̃)L
l·c(ṽ)−−−→→∆L′1 ≡ (ν c̃′)L′. By α-conversion and freshness of c̃′,

K ′
1 ≡ (ν c′)(K{c′/c} | l·c〈ṽ〉), hence K ′

1≈̇∆L′1. 2

Following Jeffrey and Rathke [46], we define in Figure 5.7 a merge operator 〈〈−〉〉
to reconstruct processes from configurations5. This operator plays a substantial rôle
in showing that ≈Λ is closed under parallel composition.

Before showing the properties of the merge operator, we illustrate three simple
properties of the extraction function: it does not remove trigger names; it associates
a definition to each trigger name it introduces; and we can recover the initial term
by substituting the new definitions in the result term.

Lemma 5.3.11 (Extraction Properties) Suppose X(ṽ) = (ṽ′; Θek). The following
properties hold:

5The merge operator of [46] is partial due to a potential circularity of references between trigger
names and definitions. Since scripted processes in definitions cannot contain triggers, our merge
operator is total.
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1. if k ∈ fn(ṽ) then k ∈ fn(ṽ′);

2. if k ∈ fn(ṽ′) \ {
k̃
}

then k ∈ fn(ṽ);

3. ṽ = ṽ′
Θ
ek
.

Proof. By induction on the structure of ṽ, using Definition 5.1.2. 2

Since definitions can appear only at the top level and scripts cannot contain free
private channel names, we can always use structural equivalence to factor any con-
figuration into the parallel composition of a process and a group of definitions. We
will make substantial use of this property to show closure under parallel composi-
tion of ≈Λ. Merging a configuration corresponds to substituting the script in each
definition for the corresponding trigger names in the process term of the configura-
tion. Hence, the merge operator preserves the transitions that do not involve triggers
names for which there is a corresponding definition. Moreover, if two configurations
are bisimilar, then they must define the same trigger names.

Lemma 5.3.12 (Merge Properties) The merge operator satisfies the following
properties:

1. factorization: for any well-formed K, there exist a process P and a configuration
Θek such that K ≡ P |Θek and 〈〈K〉〉 ≡ PΘ

ek
;

2. transition preservation: for any Θek, Θej, if P
αl−→ P ′ and

{
k̃, j̃

}
∩n(αl) = ∅ then

〈〈P |Θek〉〉 |Θej αl−→ 〈〈P ′ |Θek〉〉 |Θej;

3. If K ≈Λ L then K ≡ P |Θek and L ≡ Q |Ωek, and each pair of corresponding
definitions contains scripts with the same patterns: that is, 〈k ⇐ (π̃)Pk〉 in Θek

implies 〈k ⇐ (π̃)Qk〉 in Ωek, and viceversa.

Proof.

1. By induction on the structure of K.

2. By induction on the derivations of αl−→, using Lemma 5.3.3.

3. Follows from point 1 above noticing that if one configuration contains a defini-
tion involving a trigger not present in the other configuration, or with different
patterns, then it can do a labelled transition which cannot be matched.

2

The lemma below analyzes the relationship between bisimilarity and definitions.
We start noting that if we remove from the two configurations the definitions for the
same set of names, bisimilarity is preserved. Then, we note that the configurations
obtained by duplicating existing definitions, using arbitrary fresh trigger names, re-
main bisimilar. These properties will be useful for showing that bisimilarity is closed
under parallel composition.
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Lemma 5.3.13 (Bisimilarity and Definitions) Let K and L be well-formed con-
figurations.

1. If K |Θek ≈Λ L |Ωek then K ≈Λ L.

2. If K |Θek ≈Λ L |Ωek then K |Θek |Θekxej ≈Λ L |Ωek |Ωekxej.

Proof.

1. The family ≈̇ with generic element

≈̇∆ =
{

(K,L) : K |Θek ≈∆ L |Ωek
}

is a domain bisimulation. Follows by analyzing the transitions of K, using
Lemma 5.3.8. The intuition is every transition by K |Θek originating from K

must be matched by L |Ωek using a (weak) transition originating from L alone,
since Θek and Ωek can perform only (Lts Def) transitions.

2. The family ≈̇ with generic element

≈̇∆ =
{

(K |Θek |Θekxej , L |Ωek |Ωekxej) : K |Θek ≈∆ L |Ωek
}

is a domain bisimulation. Follows by analysis of the transitions of K |Θek |Θekxej ,
by syntactic reasoning using Lemma 5.3.7. The intuition is that since Θek and
Θekxej have the same transitions up-to renaming of triggers, every process gen-
erated by trigger transitions from Θekxej could also be generated by Θek alone,
and all that is needed is to match the transition of Θekxej with a corresponding
one by Ωekxej , which exists because K |Θek ≈Λ L |Ωek and Ωek can match Θek.

2

Lemma 5.3.14 (Parallel Composition) Bisimilarity is closed under parallel com-
position: K ≈Λ L =⇒ K |M ≈Λ L |M .

Proof. In order to show closure under parallel composition, we will identify a do-
main bisimulation ≈̇ containing all the pairs of the form (K |M, L |M) such that K
is bisimilar to L, plus any other pair of terms generated by the labelled transition sys-
tem. In particular, we must handle with care the terms generated by a communication
steps between K (or L) and M involving scripts. The idea is that we represent explic-
itly, using the merge operators, the definitions corresponding to the communicated
scripts. More in detail, by point 3 of Lemma 5.3.12 we know that, since K ≈Λ L,
then K ≡ Θek |P ′ and L ≡ Ωek |Q′ for some appropriate P ′,Θek, Q′, Ωek. Moreover,
using point 1 of Lemma 5.3.12 we can rewrite P ′ ≡ 〈〈P |Θem〉〉 and Q′ ≡ 〈〈Q |Ωem〉〉 for
some appropriate P, Θem, Q,Ωem. That is, K ≡ Θek | 〈〈P |Θem〉〉 and L ≡ Ωek | 〈〈Q |Ωem〉〉.
Again by point 1 of Lemma 5.3.12, we also know that M ≡ 〈〈Φen |R〉〉 |Φei for some
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R, Φei,Φen. The terms Θem, Ωem and Φen represent definitions corresponding to the
scripts that respectively K,L or M may communicate in a future transition.

Our candidate bisimulation is the family ≈̇ with generic element ≈̇∆ defined (up
to ≡) by the pairs
(
(ν c̃)(Θek | 〈〈P |Θem |Φeh〉〉 | 〈〈Θej |Φen |R〉〉 |Φei), (ν c̃)(Ωek | 〈〈Q |Ωem |Φeh〉〉 | 〈〈Ωej |Φen |R〉〉 |Φei))

(where all the h̃, ĩ, j̃, k̃, m̃, m̃ are distinct) such that

Θek |Θem |Θej |P ≈∆ Ωek |Ωem |Ωej |Q

The extra terms Φeh, Θej , Ωej represent the definitions corresponding to the scripts that
respectively M, K or L may have communicated using a labelled transition to either
K or L, or to M . Note that {(K |M, L |M) : K ≈∆ L} is contained in ≈̇∆ (up to
≡), by choosing Φeh = Θej = Φej = 0 and c̃ empty.

We now proceed to show that ≈̇ is a domain bisimulation. For readability, we
omit the subscript ∆ on weak transitions a−→→∆, and we use the abbreviations

K∗ = (ν c̃)(Θek | 〈〈P |Θem |Φeh〉〉 | 〈〈Θej |Φen |R〉〉 |Φei)
L∗ = (ν c̃)(Ωek | 〈〈Q |Ωem |Φeh〉〉 | 〈〈Ωej |Φen |R〉〉 |Φei)
K1 = Θek |Θem |Θej |P
L1 = Ωek |Ωem |Ωej |Q

Suppose K∗
αl−→ K ′. The proof is by cases on αl, where we only consider the subcases

with l ∈ ∆ as the others follow from the definition of domain bisimulation.
For each case we use Lemma 5.3.3, and pattern matching between the syntax of

the terms above and of the terms in the lemma. We start with the case for input
transitions, which is the easiest.

• (K∗
l·k(π̃σ)−−−−−→ K ′): We aim to bring the script instantiated by the transition

inside the leftmost merge operator in K∗. In order to do so, we need to avoid
both the capture of private channel names in σ by c̃, and clashes between trigger
names in sigma and the vectors h̃, m̃. We split the proof in two cases, depending
on whether k ∈ k̃ or k ∈ ĩ.

– Θek
l·k(π̃σ)−−−−−→ Θek |P kσ, where 〈k ⇐ (π̃)P k〉 is in Θek. To avoid clashes

between trigger names, we choose for some fresh h̃′, m̃′ and, using standard
properties of substitution, rewrite

〈〈P |Θem |Φeh〉〉 = 〈〈P{fm′/em}{eh′/eh} |Θemxfm′ |Φehx eh′〉〉

Let ρ = {fm′/em}{eh′/eh}{ec′/ec} for a fresh c̃′, and recall that the private
channel names c̃ cannot appear free in definitions (by well-formedness of
scripts). By α-conversion,

K ′ ≡ (ν c̃′)(Θek | 〈〈P kσ |Pρ |Θemxfm′ |Φehx eh′〉〉 | 〈〈Θej |Φen |R{ec′/ec}〉〉 |Φei)
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By K1 ≈∆ L1 and Lemma 5.3.8, K2 = K1ρ ≈∆ L1ρ = L2. Since Θek

occurs in K2, K2
l·k(π̃σ)−−−−−→ K2 |P kσ = K ′

2. By K2 ≈∆ L2, L2
τ−→→ l·k(π̃σ)−−−−−→

τ−→→Ωek |Ωemxfm′ |Ωej |Q′ = L′2 with L′2 ≈∆ K ′
2. We will now use the transi-

tion between L2 and L′2 to derive an appropriate one between L∗ and L′.

Since the action
l·k(π̃σ)−−−−−→ necessarily originated by Ωek, which contains the

definition 〈k ⇐ (π̃)Qk〉, we can reorder the reduction obtaining

L2
l·k(π̃σ)−−−−−→ Ωek |Ωemxfm′ |Ωej |Qρ |Qkσ

τ−→→Ωek |Ωemxfm′ |Ωej |Q′

By α-conversion, properties of substitutions and definition of lts,

L∗
l·k(π̃σ)−−−−−→ L′′

L′′ = (ν c̃′)(Ωek | 〈〈Qkσ |Qρ |Ωemxfm′ |Φehx eh′〉〉 | 〈〈Ωej |Φen |R{ec′/ec}〉〉 |Φei)
where we have brought Qk inside the leftmost merge operator, in order to
preserve the general structure that we have imposed on terms in ≈̇∆. By
syntactical reasoning, it must be the case that Qkσ |Qρ

τ−→→Q′. By point
2 of Lemma 5.3.12,

L′′ τ−→→ (ν c̃′)(Ωek | 〈〈Q′ |Ωemxfm′ |Φehx eh′〉〉 | 〈〈Ωej |Φen |R{ec′/ec}〉〉 |Φei) = L′

and we conclude because, since K ′
2 ≈Λ L′2, we have (K ′, L′) ∈ ≈̇∆.

– Φei
l·k(π̃σ)−−−−−→ Φei |Rkσ: similar to the previous case but simpler, since, in-

stead of using the hypothesis K1 ≈∆ L1, it is enough to use syntactical
reasoning.

• (K∗
l·a(ṽ)−−−−→ K ′): Similar to the previous case.

• (K∗
( eb∗,fk∗)l·a〈ṽ〉−−−−−−−−→ K ′): We distinguish two cases, depending on whether the

output transition is originated by R or P .

– Suppose 〈〈Θej |Φen |R〉〉 (eb′,ek′,ei′)l·a〈ṽ〉−−−−−−−−−→ K0, where c̃ = c̃′, b̃ and b̃∗ = b̃, b̃′.
We assume that the trigger names k̃′ come from Θej , whereas the ĩ′ come
from Φen or R. Unfolding the definition of merge, by Lemma 5.3.3 we
have that 〈〈Θej |Φen |R〉〉 = RΘ

ejΦen ≡ (ν b̃′)(l·a〈ṽ1
Θ
ej 〉 |RΘ

ejΦen
1 ) with

{
b̃′

} ⊆
fn(ṽ1), where ṽ1 = ṽ∗Φ

en
for some appropriate ṽ∗. Moreover, we have

K0 ≡ RΘ
ejΦen

1 |Θek′ |Φei′ , where X(ṽ1
Θ
ej
) = (ṽ; Θek′ |Φei′). To find out how

to split the definitions produced by the extraction into Θek′ and Φei′ , we
assume to have first applied the extraction X(ṽ1) = (ṽ′; Φei′), which ensures

that the definitions in Φei′ come from R or Φen. Then, applying X(ṽ1
Θ
ej
) =

(ṽ; Θek′ |Φei′) we can infer that for each 〈k′ ⇐ P0〉 in Θek′ there is 〈j ⇐ P0〉 in
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Θej , since, by points 1 and 2 of Lemma 5.3.11, we have that ṽ{ek′/ej′} = ṽ′,
where j̃′ are the triggers in j̃ occurring also in v1. With this information,
by definition of lts, we can rearrange K ′ to respect our general pattern

K ′ ≡ (ν c̃′)(Θek |Θek′ | 〈〈P |Θem |Φeh〉〉 | 〈〈Θej |Φen |R1〉〉 |Φei |Φei′)

By applying the same argument to L∗, 〈〈Ωej |Φen |R〉〉 = RΩ
ejΦen and

RΩ
ejΦen ≡ (ν b̃′)(l·a〈ṽ1

Ω
ej 〉 |RΩ

ejΦen
1 )

(eb′,ek′,ei′)l·a〈ṽ〉−−−−−−−−−→ RΩ
ejΦen

1 |Ωek′ |Φei′

for X(ṽ1
Ω
ej
) = (ṽ; Ωek′ |Φei′), where for each 〈k′ ⇐ Q0〉 in Ωek′ there is a

〈j ⇐ Q0〉 in Ωej . By definition of lts,

L∗
(eb,eb′,ek′,ei′)l·a〈ṽ〉−−−−−−−−−−→ L′ ≡ (ν c̃′)(Ωek |Ωek′ | 〈〈Q |Ωem |Φeh〉〉 | 〈〈Ωej |Φen |R1〉〉 |Φei |Φei′)

By K1 ≈∆ L1 and point 2 of Lemma 5.3.13,

Θek |Θek′ |Θem |Θej |P ≈∆ Ωek |Ωek′ |Ωem |Ωej |Q
and we conclude because (K ′, L′) ∈ ≈̇∆.

– Suppose 〈〈P |Θem |Φeh〉〉 (eb′,ek′,fm′,ei′)l·a〈ṽ〉−−−−−−−−−−−→ K0, where c̃ = c̃′, b̃ and b̃∗ = b̃, b̃′.
We assume ĩ′ are the new trigger names from Φeh, m̃′ the ones from Θem and
k̃′ the ones from P . Differently from the previous case, we need to keep
track explicitly of the triggers coming from Θem, which will correspond in
L∗ to triggers coming from Ωem. We have that

〈〈P |Θem |Φeh〉〉 = PΘ emΦ
eh ≡ (ν b̃′)(l·a〈ṽ1

Θ emΦ
eh〉 |PΘ emΦ

eh
1 )

with
{
b̃′

} ⊆ fn(ṽ), and K0 ≡ PΘ emΦ
eh

1 |Θek′ |Θfm′ |Φei′ , where we assume that
k̃′, m̃′ and ĩ′ are disjoint from k̃, m̃ and ĩ. Moreover, we have

X(ṽ1
Θ emΦ

eh
) = (ṽ; Θ

ek′ |Θfm′ |Φei′)
X(ṽ1

Θ em
) = (ṽ′′; Θek′ |Θfm′

)

X(ṽ1) = (ṽ′; Θek′)

Hence, by Lemma 5.3.11, for each 〈i′ ⇐ R0〉 in Φei′ there is 〈h ⇐ R0〉 in
Φeh, and for each 〈m′ ⇐ P0〉 in Θfm′ there is 〈m ⇐ P0〉 in Θem. By definition
of lts,

K ′ ≡ (ν c̃′)(Θek |Θek′ |Θfm′ | 〈〈P1 |Θem |Φeh〉〉 | 〈〈Θej |Φen |R〉〉 |Φei |Φei′)

where we have used the information gathered above on Θek′ , Θfm′ and Φei′

to decide how to rearrange K ′, in order to fit our general pattern. By
definition of lts,

K1
(eb′,ek′)l·a〈ṽ′〉−−−−−−−−→ P1 |Θek |Θek′ |Θem |Θej = K ′

1
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where
{
b̃′

} ⊆ fn(ṽ′) and X(ṽ1) = (ṽ′; Θek′). By K1 ≈∆ L1 and point 3 of
Lemma 5.3.12,

L1
(eb′,ek′)l·a〈ṽ′〉−−−−−−−−→→Q1 |Ωek |Ωek′ |Ωem |Ωej = L′1

and K ′
1 ≈∆ L′1. We now derive a corresponding transition for L∗. Since

none of the transitions above can be generated by a definition, we can
deduce

Q
τ−→→ (ν b̃′)(l·a〈ṽ2〉 |Q2) = Q3, Q3

(eb′,ek′)l·a〈ṽ′〉−−−−−−−−→ Q2 |Ωek′ τ−→→Q1 |Ωek′

where X(ṽ2) = (ṽ′; Ωek′). By Lemma 5.3.11, ṽ2 has exactly the same occur-
rences of trigger names in h̃ as ṽ′, which are the same of ṽ1. By point 2 of
Lemma 5.3.12, 〈〈Q |Ωem |Φeh〉〉 τ−→→〈〈Q3 |Ωem |Φeh〉〉. By syntactical reasoning

〈〈Q3 |Ωem |Φeh〉〉 (eb′,ek′,fm′,ei′)l·a〈ṽ〉−−−−−−−−−−−→ 〈〈Q2 |Ωem |Φeh〉〉 |Ωek′ |Ωfm′ |Φei′

where X(ṽ2
Ω emΦ

eh
) = (ṽ; Ωek′ |Ωfm′ |Φei′). By point 2 of Lemma 5.3.12 and

by definition of lts,

〈〈Q2 |Ωem |Φeh〉〉 |Ωek′ |Ωfm′ |Φei′ τ−→→〈〈Q1 |Ωem |Φeh〉〉 |Ωek′ |Ωfm′ |Φei′

By definition of lts, L∗
(eb,eb′,ek′,fm′,ei′)l·a〈ṽ〉−−−−−−−−−−−−→→L′ and

L′ ≡ (ν c̃′)(Ωek |Ωek′ |Ωfm′ | 〈〈Q1 |Ωem |Φeh〉〉 | 〈〈Ωej |Φen |R〉〉 |Φei |Φei′)

By K ′
1 ≈∆ L′1 and point 2 of Lemma 5.3.13,

Θek |Θek′ |Θfm′ |Θem |Θej |P1 ≈∆ Ωek |Ωek′ |Ωfm′ |Ωem |Ωej |Q1

and we conclude because (K ′, L′) ∈ ≈̇∆.

• (K∗
( eb∗,fk∗)l·j〈ṽ〉−−−−−−−−→ K ′): Analogous to the case for output.

• (K∗
(k̃)l·req〈p〉(T )−−−−−−−−−→ K ′): By combining the argument for input and output.

• (K∗
l·τ−→ K ′): First we analyze the case where the transition is determined by

the interaction of R and P , then the case where the transition is derived by R
or P in isolation.

Interaction. We analyze the transitions resulting from an interaction between
R and P . We must distinguish four cases depending on whether R or P receives
the value, and whether the value is received by a replicated input. Suppose
〈〈P |Θem |Φeh〉〉 | 〈〈Θej |Φen |R〉〉 τ−→ K0.
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Replicated input by R: By Lemma 5.3.3, we have that

RΘ
ejΦen ≡ (ν b̃)(RΘ

ejΦen
1 | !l·a(π̃).RΘ

ejΦen
2 )

where b̃ is fresh with respect to P and c̃, and a 6∈ {
b̃
}
. We also have that

PΘ emΦ
eh ≡ (ν c̃′)(l·a〈ṽΘ emΦ

eh〉 |PΘ emΦ
eh

1 ), where c̃′ is fresh with respect to R

and c̃,
{
c̃′

} ⊆ fn(vΘ emΦ
eh
), and ṽΘ emΦ

eh
= π̃σ′. Moreover,

K0 ≡ (ν c̃′)(PΘ emΦ
eh

1 | (ν b̃)(RΘ
ejΦen

1 | !l·a(π̃).RΘ
ejΦen

2 |RΘ
ejΦen

2 σ′))

Since scripts cannot contain free private names,
{
c̃′

} ⊆ fn(vΘ emΦ
eh
) implies{

c̃′
} ⊆ fn(v). Since patterns cannot contain scripts (or trigger names),

there exists σ such that ṽ = π̃σ and σΘ emΦ
eh

= σ′. We want to derive
a configuration K ′ of the right form. By definition of merge, PΘ emΦ

eh
1 =

〈〈P1 |Θem |Φeh〉〉. Before rewriting

R∗ = (ν b̃)(RΘ
ejΦen

1 | !l·a(π̃).RΘ
ejΦen

2 |RΘ
ejΦen

2 σΘ emΦ
eh
)

in terms of the merge operator, we want to to be explicit about the scripts
occurring in ṽ. Suppose X(ṽ) = (ṽ′; Θek′) for fresh k̃′. Since ṽ = π̃σ and
ṽ′ differs from ṽ only for having triggers replacing scripts, there exists ρ

such that ṽ′ = π̃ρ. By Lemma 5.3.11, ṽ = ṽ′
Θ
ek′
. Since ṽ = π̃σ, ṽ′ = π̃ρ

and π̃ cannot contain trigger names, we have that σ = ρΘ
ek′
, and both ṽ

and ṽ′ have the same occurrences of triggers in h̃ and m̃. Without loss
of generality, we assume that

{
j̃, ñ

}
∩ fn(ρ) = ∅. By standard properties

of substitution, RΘ
ejΦen

2 σΘ emΦ
eh

= (R2ρ{fm′/em}Θ emxfm′ΦehΘ
ek′
)Θ
ejΦen , where the

vector m̃′ is fresh. By definition of merge,

R∗ = 〈〈Θej |Θek′ |Θemxfm′ |Φen | (ν b̃)(R1 | !l·a(π̃).R2 |R2ρ{fm′/em}Φ
eh
)〉〉

By definition of lts,

K ′ ≡ (ν c̃, c̃′)(Θek | 〈〈P1 |Θem |Φeh〉〉 |R∗ |Φei)

By definition of lts,

K1
(ec′,ek′)l·a〈ṽ′〉−−−−−−−−→ P1 |Θej |Θem |Θek |Θek′ = K ′

1

where, as noted above, X(ṽ) = (ṽ′; Θek′). By K1 ≈Λ L1,

L1
τ−→→ (ν c̃′)(Q1 | l·a〈ṽ2〉) |Ωej |Ωem |Ωek = L2

L2
(ec′,ek′)l·a〈ṽ′〉−−−−−−−−→ Q1 |Ωej |Ωem |Ωek |Ωek′ = L3

91



where X(ṽ2) = (ṽ′; Ωek′), and

L3
τ−→→Q′ |Ωej |Ωem |Ωek |Ωek′ = L′1

with K ′
1 ≈Λ L′1. By point 2 of Lemma 5.3.12, since Q

τ−→→ (ν c̃′)(Q1 | l·a〈ṽ2〉),

〈〈Q |Ωem |Φeh〉〉 τ−→→〈〈(ν c̃′)(Q1 | l·a〈ṽ2〉) |Ωem |Φeh〉〉 = (ν c̃′)(QΦ
eh

1 | l·a〈ṽ2
Ω emΦ

eh〉)

By syntactical reasoning, L∗
τ−→→ τ−→ L′′, where

L′′ = (ν c̃, c̃′)(Ωek | 〈〈Q1 |Ωem |Φeh〉〉 |R′
∗ |Φei)

where, using an argument similar to that used for R∗,

R′
∗ = 〈〈Ωej |Ωek′ |Ωemxfm′ |Φen | (ν b̃)(R1 | !l·a(π̃).R2 |R2ρ{fm′/em}Φ

eh
)〉〉

Note that R′∗ is essentially R∗ where each Θ is replaced by an Ω. By point
2 of Lemma 5.3.12, since Q1

τ−→→Q′ we have that L′′ τ−→→L′, where

L′ ≡ (ν c̃, c̃′)(Ωek | 〈〈Q′ |Ωem |Φeh〉〉 |R′
∗ |Φei)

By K ′
1 ≈∆ L′1 and point 2 of Lemma 5.3.13,

Θek |Θek′ |Θemxfm′ |Θem |Θej |P1 ≈∆ Ωek |Ωek′ |Ωemxfm′ |Ωem |Ωej |Q1

and we conclude because (K ′, L′) ∈ ≈̇∆.

Input by R: analogous to the previous case.

Input by P : By Lemma 5.3.3, we have RΦenΘ
ej ≡ (ν c̃′)(RΦenΘ

ej
1 | l·a〈ṽΘ

ej 〉), where
c̃′ is fresh and

{
c̃′

} ⊆ fn(ṽ). Moreover, PΘ emΦ
eh ≡ (ν b̃)(PΘ emΦ

eh
1 | l·a(π̃).PΘ emΦ

eh
2 ),

where b̃ is fresh and ṽ = π̃σ (since scripts and trigger names cannot appear
in patterns). Additionally, K0 ≡ (ν c̃′)((ν b̃)(PΘ emΦ

eh
1 |PΘ emΦ

eh
2 σΘ

ej
) |RΦenΘ

ej
1 ).

In order to derive a K ′ of a suitable form, we follow a strategy similar to
the one used in the case of replicated input by R. Let ṽ′ = ṽ{ej′/ej} for some
vector of fresh triggers j̃′. Since ṽ = π̃σ and π̃ cannot contain triggers,

ṽ′ = π̃σ{ej′/ej}. By standard properties of substitution, ṽΘ
ej

= ṽ′
Θ
ejxej′

.

Suppose X(ṽ′) = (ṽ1; Φ
eh′) for some fresh h̃′ such that ṽ1 = π̃ρ. By

Lemma 5.3.11 and by freshness of j̃′, h̃′, we have ṽ′ = ṽ1
Φ
fh′

, ρ = σ{ej′/ej}Φ
fh′

and PΘ emΦ
eh

2 σΘ
ej

= P2ρ
Θ
ejxej′Φ

fh′Θ emΦ
eh
. By definition of lts,

K ′ ≡ (ν c̃, c̃′)(Θek | 〈〈(ν b̃)(P1 |P2ρ) |Θem |Θejxej′ |Φeh |Φ eh′〉〉 | 〈〈Θej |Φen |R1〉〉 |Φei)

By definition of lts,

K1
l·a(ṽ1)−−−−→ τ−→ (ν b̃)(P1 |P2ρ) |Ωej |Θem |Θek = K ′

1
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By K1 ≈Λ L1 and composing the weak actions of L1,

L1
l·a(ṽ1)−−−−→→Q′ |Ωej |Ωem |Ωek = L′1

and K ′
1 ≈Λ L′1. By syntactical reasoning,

Q
τ−→→Q1

l·a(ṽ1)−−−−→ Q1 | l·a〈ṽ1〉
τ−→→Q′

By syntactical reasoning and by point 2 of Lemma 5.3.12,

L∗
τ−→→ (ν c̃)(Ωek | 〈〈Q1 |Ωem |Φeh〉〉 | 〈〈Ωej |Φen |R〉〉 |Φei) = L′′

By structural congruence, by ṽ′ = ṽ1
Φ
fh′

and ṽΩ
ej

= ṽ′
Ω
ejxej′

, and since
RΦenΩ

ej ≡ (ν c̃′)(RΦenΩ
ej

1 | l·a〈ṽΩ
ej 〉),

L′′ ≡ (ν c̃, c̃′)(Ωek | 〈〈Q1 | l·a〈ṽ1〉 |Ωem |Ωejxej′ |Φeh |Φ eh′〉〉 | 〈〈Ωej |Φen |R1〉〉 |Φei)

By point 2 of Lemma 5.3.12, L′′ τ−→→L′ where

L′ = (ν c̃, c̃′)(Ωek | 〈〈Q′ |Ωem |Ωejxej′ |Φeh |Φ eh′〉〉 | 〈〈Ωej |Φen |R1〉〉 |Φei)

By point 2 of Lemma 5.3.13, K ′
1 |Θejxej′ ≈Λ L′1 |Ωejxej′ . and we conclude

because (K ′, L′) ∈ ≈̇∆.

Replicated input by P : similar to the previous case.

Isolation. We show the case for R, as the case for P is similar. There are
four ways to derive the sub-transition 〈〈Θej |Φen |R〉〉 l·τ−→ M1.

– RΦenΘ
ej ≡ (ν ã)(RΦenΘ

ej
1 | l·c(π̃).RΦenΘ

ej
2 | l·c〈π̃σΦenΘ

ej 〉) and

M1 ≡ (ν ã)(RΦenΘ
ej

1 | (RΦenΘ
ej

2 )σΦenΘ
ej
) ≡ 〈〈Θej |Φen | (ν ã)(R1 |R2σ)〉〉

By syntactical reasoning, we can also derive

〈〈Ωej |Φen |R〉〉 ≡ (ν ã)(RΦenΩ
ej

1 | l·c(π̃).RΦenΩ
ej

2 | l·c〈π̃σΦenΩ
ej 〉)

l·τ−→ (ν ã)(RΦenΩ
ej

1 | (RΦenΩ
ej

2 )σΦenΩ
ej
) = 〈〈Ωej |Φen | (ν ã)(R1 |R2σ)〉〉

and we conclude because, by definition of lts, we can use this transition
to derive a transition for L∗ matching the one of K∗, with the resulting
states K ′ and L′ still in ≈̇∆.

– RΦenΘ
ej ≡ (ν ã)(RΦenΘ

ej
1 | !l·c(π̃).RΦenΘ

ej
2 | l·c〈π̃σΦenΘ

ej 〉): analogous to the previ-
ous case.

– RΦenΘ
ej ≡ (ν ã)(RΦenΘ

ej
1 |m·go l.RΦenΘ

ej
2 ): similar to the previous cases, al-

though the reasoning on RΦenΘ
ej

2 is carried on at location l.

93



– RΦenΘ
ej ≡ (ν ã)(RΦenΘ

ej
1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΘ

ej 〉) and

M1 ≡ (ν ã)(RΦenΘ
ej

1 |R2{l/x}σΦenΘ
ej
)

where we have used the equation RΦenΘ
ej

2 = R2, which holds because scripts
cannot contain trigger names. In order for RΦenΘ

ej
to have the form given

above, R itself must have one of the three forms given below.

1. If R ≡ (ν ã)(R1 | (x, π̃)R2◦〈l, π̃σ〉) then, by definition of script, ((x, π̃)R2◦
〈l, π̃σ〉)ΦenΘ

ej
= (x, π̃)R2 ◦ 〈l, π̃σΦenΘ

ej 〉 and the reasoning is similar to the
cases above.

2. If R ≡ (ν ã)(R1 | k ◦ 〈l, π̃σ〉) where Φen = Φfn1 | 〈k ⇐ (x, π̃)R2〉 |Φfn2 with
ñ1, k, ñ2 = ñ, then we have

RΦenΘ
ej ≡ (ν ã)(RΦenΘ

ej
1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΘ

ej 〉)

RΦenΩ
ej ≡ (ν ã)(RΦenΩ

ej
1 | (x, π̃)R2 ◦ 〈l, π̃σΦenΩ

ej 〉)

and the reasoning is once again analogous to case 1.
3. The last and most interesting case arises if R ≡ (ν ã)(R1 | k ◦ 〈l, π̃σ〉)

and Θej = Θ ej1 | 〈k ⇐ (x, π̃)R2〉 |Θ ej2 , where j̃1, k, j̃2 = j̃. In this case,
a tau transition by K∗ corresponds to a (Lts Def) transition by K1.
Without loss of generality, we assume that the names ã are fresh. In
order to derive an appropriate K ′, we need to be explicit about the
scripts in π̃σ. Hence, suppose that X(π̃σ) = (π̃ρ; Φ en′) where ñ′ is
fresh.
By definition of lts, K∗

τ−→ K ′ where

K ′ = (ν c̃)(Θek | 〈〈P |Θem |Φeh〉〉 | 〈〈(ν ã)(R1 |R2{l/x}ρ) |Φ en′ |Φen |Θej〉〉 |Φei)

Since R2 comes from the definition 〈k ⇐ (x, π̃)R2〉 which is part of Θej

(hence was originated by some previous transition of P ), we need to
move R2R2{l/x}ρ inside the leftmost merge operator.

K ′ ≡ (ν c̃, ã)(Θek | 〈〈P |R2{l/x}ρ |Θem |Φeh |Φ en′〉〉 | 〈〈R1 |Φen |Θej〉〉 |Φei)

With K ′ of this form, we will derive a transition from K1 to a suitable
K ′

1, and use the bisimilarity hypothesis to derive a matching transition
for L∗. By definition of lts,

K1
l·k(π̃ρ)−−−−−→ Θek |Θem |Θej |P |R2{l/x}ρ = K ′

1

By K1 ≈Λ L1 and by point 3 of Lemma 5.3.12 we know that Ωej =
Ω ej1 | 〈k ⇐ (x, π̃′)R3〉 |Ω ej2 . Using our standard reasoning on the hy-
pothesis K1 ≈Λ L1, we can derive the transition

L1
l·k(π̃ρ)−−−−−→→Ωek |Ωem |Ωej |Q′ = L′1 ≈Λ K ′

1
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Breaking down the transition into τ−→→ l·k(π̃ρ)−−−−−→→ τ−→→ and using point 2
of Lemma 5.3.12, we obtain

L∗
τ−→→L′ = (ν c̃, ã)(Ωek | 〈〈Q′ |Ωem |Φeh |Φ en′〉〉 | 〈〈R1 |Φen |Ωej〉〉 |Φei)

and hence (K ′, L′) ∈ ≈̇∆.

2

We can finally prove that domain bisimilarity is a congruence on both config-
urations and, more importantly, open processes. The extension to open processes
does not involve significant difficulties because, by definition, bisimilarity for open
processes is closed under arbitrary substitutions.

Theorem 5.3.15 (Congruence) Domain bisimilarity is a congruence:

1. for all configuration contexts C ∈ KW (Figure 5.1), if K ≈Λ L then C[K] ≈Λ

C[L];

2. for all full process contexts C ∈ Kf (Definition 4.4.1), if P ≈Λ Q then C[P ] ≈Λ

C[Q].

Proof.

1. By Lemma 5.3.10, K ≈Λ L =⇒ (ν c̃)K ≈Λ (ν c̃)L. By Lemma 5.3.14, K ≈Λ

L =⇒ K |M ≈Λ L |M . By Proposition 5.3.1, K |M ≈Λ L |M =⇒ M |K ≈Λ

M |L.

2. We need to show that

(a) P ≈Λ Q =⇒ (ν c̃)P ≈Λ (ν c̃)Q;
(b) P ≈Λ Q =⇒ P |R ≈Λ Q |R;
(c) P ≈Λ Q =⇒ l·c(π̃).P ≈Λ l·c(π̃).Q;
(d) P ≈Λ Q =⇒!l·c(π̃).P ≈Λ!l·c(π̃).Q;
(e) P ≈Λ Q =⇒ l·gom.P ≈Λ l·gom.Q.

By definition P ≈Λ Q if and only if Pσ ≈Λ Qσ for all closing substitutions σ.

(a) Consider an arbitrary closing substitution σ for P , Q. Since we assume
substitutions to be capture avoiding, ((ν c̃)P )σ ≡ (ν c̃′)(P {c′/c}σ) and
((ν c̃)Q)σ ≡ (ν c̃′)(Q{c′/c}σ). By hypothesis, P {c′/c}σ ≈Λ Q{c′/c}σ. By
point 1 above, (ν c̃′)(P {c′/c}σ) ≈Λ (ν c̃′)(Q{c′/c}σ).

(b) Similar to point 2a, using point 1.
(c) Let the family ≈̇ have the generic element

≈̇∆ = ≈∆ ∪{(l·c(π̃).Pσ |M, l·c(π̃).Qσ |M) : Pσ ≈∆ Qσ}

where σ is a closing substitution, M =
∏

n≥0

li·ci〈ṽi〉 and scripts(ṽi) = ∅. The

thesis follows by showing that ≈̇ is a domain bisimulation, using point 1.
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(d) Similar to point 2c, using also transitivity of ≈∆ (Lemma 5.3.9).

(e) Let the family ≈̇ have the generic element ≈̇∆ given by

if m 6∈ ∆: ≈̇∆ =≈∆ ∪{(l·gom.Pσ |M, l·gom.Qσ |M) : Pσ ≈∆ Qσ}

if m ∈ ∆: ≈̇∆ =≈∆ ∪




(l·go m.Pσ |M, l·go m.Qσ |M),
(Pσ |M, l·go m.Qσ |M),
(l·gom.Pσ |M, Qσ |M)

: Pσ ≈∆ Qσ





where dom(M) ⊆ ∆, σ is a closing substitution, M =
∏

n≥0

li·ci〈ṽi〉 and

scripts(ṽi) = ∅. The family ≈̇ is a domain bisimulation.

2

5.3.3 Soundness

In this section, we show soundness: if two processes are domain bisimilar with respect
to Λ, then they are request congruent with respect to Λ. Our strategy for proving
the soundness of ≈Λ consists of three main steps. First, we define an auxiliary
relation ³ on Core Xdπ networks such that two networks are in the relation if the
corresponding processes, in parallel with the definitions extracted from the scripts in
the corresponding stores, are Λ-bisimilar. Second we show that ³ is included in ∼Λ

r ,
and third we use ³ as a stepping stone to relate ≈Λ with ∼Λ

r .
We begin comparing reductions and transitions. If a configuration K can perform

a tau transition to become K ′, then the process 〈〈K〉〉 obtained by merging the con-
figuration can reduce to 〈〈K ′〉〉, for any store compatible with K. On the other hand,
if a process does a reduction step then, according to the lts, it can either perform a
request transition or a tau transition, depending on whether (CRed Request) was used
in the derivation.

Lemma 5.3.16 (Reductions) Tau transitions between configurations imply reduc-
tions between the corresponding networks. For all D, K such that dom(K) ⊆ dom(D)

1. if K
l·τ−→ K ′ then (D, 〈〈K〉〉) → (D, 〈〈K ′〉〉);

2. if K
τ−→→ΛK ′ then (D, 〈〈K〉〉) →∗ (D, 〈〈K ′〉〉).

Proof. Point 1 follows from point 2 of Lemma 5.3.12. Point 2 follows from point 1
noticing that tau transitions do not increase the domain of a configuration. 2

Lemma 5.3.17 (Transitions) Reductions between networks imply tau or request
transitions between the corresponding configurations. If (D,P ) −→ (D1, P1) then
one of the following holds:

1. P
l·τ−→ P1 and D = {l 7→ T} ] E = D1;
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2. P
(k̃)l·req〈p′〉(T ′)−−−−−−−−−−→ P2 |Θek and





P1 ≡ 〈〈P2 |Θei〉〉,
D = {l 7→ T} ] E,
D1 = {l 7→ T1} ] E,

where there exists a path

p such that





E(p, T ) = (T1, U1 p...pUn p∅),
X(p) = (p′; Θek),
X(r[ U1 ]p . . . pr[ Un ]p∅) = (T ′; Θei).

Proof. Both points follow by induction on the depth of the derivation tree of
(D, P ) → (D1, P1), using points 3 and 4 of Lemma 5.3.3 to derive the labelled tran-
sition from the structure of the processes as revealed by the reduction step. 2

We know by Definition 5.1.1 that a script-independent query language, starting
from queries and input trees which are equivalent up-to substitutions of scripts for
trigger names, gives equivalent output trees and results. The lemma below relates
this notion to extraction.

Lemma 5.3.18 (Extraction) Consider an arbitrary script-independent query lan-
guage. Suppose X(T ) = (T0; Θ

ek), X(p) = (p′; Θej), E(p, T ) = (T1, U1 p...pUn p∅),
X(r[ U1 ]p...pr[ Un ]p∅) = (T ′; Θei) and X(T1) = (T ′1; Θ

eh).

1. for any definition 〈k ⇐ A〉 occurring in Θei or Θeh there must be a definition
〈k′ ⇐ A〉 occurring in Θek or Θej.

2. if X(S) = (T0; Ω
ek) and X(q) = (p′; Ωej), then E(q, S) = (S1;V1 p...pVn p∅),

X(r[ V1 ]p . . . pr[ Vn ]p∅) = (T ′; Ωei) and X(S1) = (T ′1; Ω
eh).

Proof. Both points follow easily by Definition 5.1.1 and Observation 5.1.3. 2

We need to compare domain bisimilarity, which is defined on configurations with-
out taking the store into account, with domain congruence, which is defined using
reduction congruence (a relation on networks). We can do this because bisimilarity
requires a correspondence between matching actions of two configurations, which im-
plies that the stores in the networks corresponding to the configurations can diverge,
after each reduction step, only up-to equivalent scripts. To formalize this intuition,
we introduce the relation ³ on networks.

Definition 5.3.19 (Candidate Relation) We define the candidate relation ³ by

³ def=
{

((D, P ), (B, Q)) : X(D) = (D′; Θek), X(B) = (D′; Ωek), P |Θek ≈Λ Q |Ωek
}

where dom(B) = dom(D) = Λ and (fn(P ) ∪ fn(Q)) ∩ Y = ∅.

We can show now that the candidate relation ³ is sound with respect to 'r , the
relation on networks inducing request congruence.

Lemma 5.3.20 The candidate relation is contained in the reduction congruence in-
duced by request observables: ³⊆ 'r .
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Proof. By definition of 'r , we need to show that ³ is (1) observation preserving,
(2) contextual, and (3) reduction-closed.

1. Follows from the definition of request observables, the hypothesis P |Θek ≈Λ

Q |Ωek and Lemma 5.3.16, noticing that Θek and Ωek cannot perform tau or
request transitions.

2. Consider a generic reduction context (E ] −, (ν c̃)(R | −)). By definition of
X, X(E ] D) = (E′ ] D′; Φej |Θek) and X(E ] B) = (E′ ] D′; Φej |Ωek). By
hypothesis, P |Θek ≈Λ Q |Ωek. By Theorem 5.3.15, (ν c̃)(R |P |Θek |Φej) ≈Λ

(ν c̃)(R |Q |Ωek |Φej). Since scripts have no private channel names, by structural
congruence we conclude that (ν c̃)(R |P ) |Θek |Φej ≈Λ (ν c̃)(R |Q) |Ωek |Φej .

3. Suppose (D, P ) ³ (B, Q) and (D,P ) −→ (D1, P1). We need to show that
(B, Q) ∗−→ (B1, Q1) ³ (D1, P1). For convenience, we report below what
(D,P ) ³ (B, Q) means:

X(D) = (D′; Θek) (5.1)

X(B) = (D′; Ωek) (5.2)

P |Θek ≈Λ Q |Ωek (5.3)
dom(B) = dom(D) = Λ (5.4)

By Lemma 5.3.17, there are two cases:

1. P
l·τ−→ P1 and D = {l 7→ T} ] E = D1.

By definition of lts and by equation (5.3) above,

P |Θek l·τ−−−−→ P1 |Θek

≈Λ

y
x≈Λ

Q |Ωek τ−→→Λ
l·τ−−−−→ τ−→→ΛQ1 |Ωek

By syntactical reasoning, Q
l·τ−→→ΛQ1.

By Lemma 5.3.16, (B, Q) →∗ (B, Q1). By (5.1), (5.2) and (5.4) we con-
clude with

(D, P ) −−−−→ (D,P1)

³
y

x³
(B,Q) ∗−−−−→ (B,Q1)

2. P
(j̃)l·req〈p′〉(T ′)−−−−−−−−−−→ P2 |Θej where

P1 ≡ 〈〈P2 |Θei〉〉,
D = {l 7→ T} ] E,
D1 = {l 7→ T1} ] E
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for some p such that

E(p, T ) = (T1, U1 p...pUn p∅),
X(p) = (p′; Θej),
X(r[ U1 ]p . . . pr[ Un ]p∅) = (T ′; Θei).

By definition of lts and by (5.3),

P |Θek (j̃)l·req〈p′〉(T ′)−−−−−−−−−−→ P2 |Θej |Θek

≈Λ

y
x≈Λ

Q |Ωek τ−→→Λ
(j̃)l·req〈p′〉(T ′)−−−−−−−−−−→ τ−→→ΛQ2 |Ωej |Ωek

(5.5)

By syntactical reasoning and point 4 of Lemma 5.3.3,

Q
τ−→→Λ(ν a)(Q3 | l·reqq〈c〉) = QM (5.6)

QM
(j̃)l·req〈p′〉(T ′)−−−−−−−−−−→ (ν a)(Q3 | l·c〈T ′〉) |Ωej τ−→→ΛQ2 |Ωej (5.7)

for some q such that X(q) = (p′; Ωej). By (5.6) and Lemma 5.3.16,

(B,Q) ∗−→ (B, QM ).

By (5.1) and definition of X,

D′ = {l 7→ T0} ] E0 and Θek = Θ
ek′ |Θfk′′

where X({l 7→ T}) = ({l 7→ T0}; Θek′) and X(E) = (E0; Θ
fk′′).

By by (5.2) and a similar argument,

B = {l 7→ S} ] E′ and Ωek = Ω
ek′ |Ωfk′′

where X({l 7→ S}) = ({l 7→ T0}; Ωek′) and X(E′) = (E0; Ω
fk′′).

Suppose X(T1) = (T ′1; Θ
eh). By point 2 of Lemma 5.3.18,

E(q, S) = (S1; V1 p...pVn p∅),
X(r[ V1 ]p . . . pr[ Vn ]p∅) = (T ′; Ωei),
X(S1) = (T ′1; Ω

eh).

By definition of reduction,

(B, QM ) −→ (B1, (ν a)(Q3 | l·c〈r[ V1 ]p . . . pr[ Vn ]p∅〉))

By point 2 of Lemma 5.3.17,

(ν a)(Q3 | l·c〈r[ V1 ]p . . . pr[ Vn ]p∅〉) ≡ 〈〈(ν a)(Q3 | l·c〈T ′〉) |Ωei〉〉
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By syntactical reasoning on (5.7),

(ν a)(Q3 | l·c〈T ′〉) τ−→→ΛQ2.

By point 2 of Lemma 5.3.12,

〈〈(ν a)(Q3 | l·c〈T ′〉) |Ωei〉〉 τ−→→Λ〈〈Q2 |Ωei〉〉.

By Lemma 5.3.16,

(B1, 〈〈(ν a)(Q3 | l·c〈T ′〉) |Ωei〉〉) ∗−→ (B1, 〈〈Q2 |Ωei〉〉)

By two applications of point 1 of Lemma 5.3.18, for any definition 〈i ⇐ A〉
occurring in Θei or Θeh there must be a definition 〈k′ ⇐ A〉 occurring in Θek

or Θej .
By (5.5) and by Lemma 5.3.13,

P2 |Θeh |Θfk′′ |Θei ≈Λ Q2 |Ωeh |Ωfk′′ |Ωei.

By using an appropriate instance of the candidate bisimulation in the proof
of Lemma 5.3.14,

〈〈P2 |Θei〉〉 |Θeh |Θfk′′ ≈Λ 〈〈Q2 |Ωei〉〉 |Ωeh |Ωfk′′ ,

and we conclude with

(D, P ) −−−−→ (D1, 〈〈P2 |Θei〉〉)
³
y

x³
(B, Q) ∗−−−−→ (B1, 〈〈Q2 |Ωei〉〉)

2

We have now all the tools necessary to show the soundness of domain bisimilarity
with respect to request congruence.

Theorem 5.3.21 (Soundness) Domain bisimilarity is a sound approximation of
the domain congruence induced by request observables: for all Λ,P , Q where (fn(P )∪
fn(Q)) ∩ Y = ∅, if P ≈Λ Q then P ∼Λ

r Q.

Proof. By definition, P ∼Λ
r Q if and only if (D, C[P ])'r (D, C[Q]) for all D, C[−]

such that Λ ⊆ dom(D) and C[−] does not contain trigger names and is closing
for both P and Q. Suppose P ≈Λ Q and consider some arbitrary D, C[−] re-
specting the conditions above. Suppose X(D) = (D′; Θek). By point 2 of Theo-
rem 5.3.15, C[P ] |Θek ≈Λ C[Q] |Θek. By Definition 5.3.19, (D, C[P ]) ³ (D,C[Q]).
By Lemma 5.3.20, (D, C[P ])'r (D, C[Q]). 2
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5.3.4 Fixed-point characterization

As noted in Section 5.2, since our definition of domain bisimilarity is non-standard,
we need to argue that the largest domain bisimulation exists. Our proof follows the
structure of an analogous proof given by Milner for CCS [56]. We begin by defining an
operator whose fixed-point (according to the point-wise inclusion ordering) coincides
with domain bisimilarity.

Definition 5.3.22 (Operator F) Let Rel (W)L
def= ℘(L) ⇀ ℘(W ×W) be the do-

main of relations on configurations indexed by set of locations. We define the operator
F : Rel (W)L ⇀ Rel (W)L as

(K,L) ∈ F(R)(Λ) if and only if

• K
αl−→ K ′ implies:

1. if l ∈ Λ with rel (αl, L) then L
αl³Λ Q′ and (K ′, L′) ∈ R(Λ);

2. if l 6∈ Λ then (K,L) ∈ R(Λ ∪ {l});

• L
αl−→ L′ implies:

1. if l ∈ Λ with rel (αl,K) then K
αl³Λ K ′ and (K ′, L′) ∈ R(Λ);

2. if l 6∈ Λ then (K,L) ∈ R(Λ ∪ {l}).

Definition 5.3.23 (Order) We denote by v the point-wise ordering on Rel (W)L
given by

R v R′ ⇐⇒ ∀Λ ∈ ℘(L). R(Λ) ⊆ R′(Λ).

Below we show that the operator F defined above is monotonic, and that each
domain bisimulation is a pre-fixed-point of F . By these two results and by definition
of bisimilarity, it follows that bisimilarity is the largest fixed-point of F .

Lemma 5.3.24 (Largest Fixed-Point)

1. F is monotonic;

2. R is a domain bisimulation if and only if R v F(R);

3. domain bisimilarity is the largest fixed-point of F .

Proof.

1. We must show that given R v R′ we have F(R) v F(R′). By Definition 5.3.23
this is equivalent to show that given a generic Λ, F(R)(Λ) ⊆ F(R′)(Λ) knowing
that for all Λ, R(Λ) ⊆ R′(Λ). This follows from Definition 5.3.22.

2. By Definition 5.3.23, we have to show that for a generic Λ, R(Λ) ⊆ F(R)(Λ),
which follows by Definition 5.2.2.
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3. By point 2, each domain bisimulation is a pre-fixed-point and each pre-fixed-
point is a domain bisimulation. By Definition 5.2.2, ≈ is a domain bisimulation,
and being the largest, it is also the largest pre-fixed-point of F . By point 1
(monotonicity) we have that F(≈) v F(F(≈)), hence F(≈) is a pre-fixed-point.
Since ≈ is the largest, F(≈) v≈, hence F(≈) =≈. Since each fixed-point is
also a pre-fixed-point, ≈ is the largest fixed-point.

2
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Chapter 6

Distributed Query Patterns

In this chapter, we apply our formal techniques to reason about examples of distrib-
uted query patterns, which are protocols used by the peers of data integration systems
to answer distributed queries more efficiently. In Section 6.1, we show how to repre-
sent and combine in Xdπ three particularly representative distributed query patterns,
and we show formally that their semantics satisfies an intuitive specification. In Sec-
tion 6.2, we propose a new pattern exploiting process mobility, and we prove that it
is semantically equivalent to a pattern, based only on remote communication, which
needs to transfer more data.

6.1 Chaining, recruiting and referral

In this section, we consider chaining, recruiting and referral, three distributed query
patterns studied by Sahuguet et al. in [68, 66] and described below. These patterns
are interesting because, as will soon be apparent, they are simple yet can express ways
of answering requests which are non-trivial, and display different levels of cooperation
between the parties involved.

The usage of these patterns presupposes an architecture of servers sharing a
common communication protocol for answering cooperatively the queries issued by
clients. The protocol consists of alternative actions which depend on the contents of
a query and on the local data, and is implemented by dedicated services running on
each peer. The distributed querying infrastructure obtained by combining the three
query patterns is very flexible and can provide location independence to the clients.
In fact, a client simply needs to invoke a service on a peer acting as the “entry point”
to the network in order to get access to data which may reside on some other server
unknown to the client itself.

We now describe the three patterns. In each case, a server receiving a query will
try to execute it locally, and if that is not possible, will take alternative action.

Chaining (Figure 6.1.(A)): if a server cannot deal directly with the call, it re-
issues it to an alternative server, waits for the answer, and then returns the
answer to the client.

Recruiting (Figure 6.1.(B)): if a server cannot deal directly with the call, it for-
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Figure 6.1: Chaining, recruiting and referral
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(a) Chaining. (b) Recruiting. (c) Referral.

Figure 6.2: Combining the query patterns
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wards it to another server (without notifying the client), so that the result
will eventually return to the client without further intervention of the first
server. To implement this pattern the address for returning the result must be
a parameter of the call, and the client must be willing to accept asynchronous
connections.

Referral (Figure 6.1.(C)): if a server cannot deal directly with the call, it suggests
to the client an alternative server which might be able to. This strategy re-
quires active collaboration from the client, which must be ready to contact the
alternative server.

When each server involved in answering a request is able to use any of the patterns
above, the flow of the data from the initial service call to the final answer can become
complex and involve arbitrary combinations of the patterns, as in the example shown
in Figure 6.2.
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6.1.1 Implementing the patterns

We now describe, step by step, some Core Xdπ code which implements a system
where a client request can be answered by servers using an arbitrary combination of
chaining, recruiting and referral. The code is based on services which retrieve and
combine data from different locations by exploiting remote communication and local
requests. In Section 3.2, we have seen how to represent service calls in Xdπ. The
corresponding code in Core Xdπ, running on location l, looks like

(ν c)(l·m·a〈ṽ, n, c〉 | l·c(π̃, y, z).P )

where a is the name of the service to be invoked at location m with parameters ṽ
yielding a result to be passed on channel c at location l, and P is the code for handling
the results, which are expected to match pattern π̃. In this section, a service call will
carry four parameters: a tree T used to represent a condition, checked using pattern
matching, that a server must satisfy in order to provide the right service (for example
specifying the kind of result expected), a query p which is meant to be run on the
store of the service matching tag T , and the return parameters n and c stating the
location and the channel where the result should be returned. This approach can be
easily applied also to service call having more parameters.

A client must be able to deal with the referral query pattern, therefore its code
consists essentially in a loop. The loop consists in calling a first server (which could
in principle provide the final result, terminating the loop), and then repeating the
same call at the alternative addresses received in unsuccessful replies, until a reply
containing the final result is received. The context defined below implements the
loop at location m:

m·Ref(n,l,s,T,p,z)[−] def= (ν c)

(
m·c(OK , z).− |
m·c〈REF , l〉 | !m·c(REF , x).m·x·s〈T, p, n, c〉

)

It is parametric in the location n where the result must be returned, the location l of
the first server to be interrogated, and the parameters of the call: the service name
s and condition T , the actual query p and the variable z for binding the result in the
continuation. The context uses a private channel c to implement the referral loop
and uses the tags OK and REF as guards to exit or continue the loop. Any process
built using this context always starts the referral loop by invoking s at l and then
waiting for two possible answers: either a referral message with the tag REF and the
name of an alternative location (bound to x), which starts another iteration of the
loop against the corresponding server, or a result message with the tag OK and the
result of the service call (bound to z), which terminates the loop and passes the result
on to the process which replaces the context hole “−”.

The server filters calls based on the parameter T in order to decide whether they
can be served locally or not. Its code consists of the following two processes, run in
parallel:

l·Local(s,T )
def= !l·s(T, x, y, z).(ν c)(l·reqx〈c〉 | l·c(w).l·y·z〈OK , w〉)

l·Remote(s,∆)
def=

∏

(m,Sm)∈∆

!l·s(Sm, x, y, z).




l·m·s〈Sm, x, y, z〉
⊕ l·y·z〈REF ,m〉
⊕ l·Ref(l,m,s,Sm,x,w)[l·y·z〈OK , w〉].



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If the first parameter matches T , the server runs the query (bound to x) on the
local data and sends the result back to the client on channel z at y. If the first
parameter does not match T , the server selects another server more appropriate for
that request out of the set ∆ relating servers to tags specifying their services (the
outermost parallel composition of the remote process). It then invokes s on the
chosen server using either chaining (third branch of the choice), or recruiting (first
branch), or referral (second branch). In the case of chaining, the server runs the
same code as the client with different parameters. Notice that the code handling the
result forwards the result to the client instead of using it locally.
Installation. In order to use these patterns, the code implementing the services
must be installed somehow on each participating server. We can assume that it is
pre-installed on each peer, or we can install it “on demand” using either process
migration or a specialized service which runs scripts. For example, consider the
code of a service P parametric in the location x where the service is run and some
other initialization pattern π. If we assume that an arbitrary location l exists then,
given an arbitrary initialization parameter v = πσ, it is easy to see that running the
code at m is equivalent to installing the service code from l

P {m/x}σ∼{l}r l·gom.(x, π)P ◦ 〈m, v〉.

Alternatively, one could use a dedicated installation service Inst at location m which
receives an abstraction and some parameters, and runs the abstraction locally

P {m/x}σ∼{l}r (ν Inst)(l·m·Inst〈(x, π)P , v〉 | !m·Inst(y, z).y ◦ 〈m, z〉).

6.1.2 Relating the patterns to a specification

We use a simple system with a client and two servers as an example of how to reason
using our equivalences. The reasoning is analogous in the case of multiple servers.
The client is on peer m, and runs the code

m·Client(l,s,a )
def= m·Ref(m,l,s,a ,p,z)[m·P ]

where the service is requested to match the tag a , and the continuation process P is
an arbitrary process located at m which does not contain free occurrences of channels
a and c mentioned in the definition of Ref(−). A server is composed by the parallel
composition of the branches dealing with local and remote processing, as described
in Section 6.1.1:

l1·Server(s,T,l2,S)
def= l1·Remote(s,{(l2,S)}) | l1·Local(s,T ).

We consider two processes P1 and P2, which both request to the server at l1 some
data, but in the first case the data is specified by a (hence it is served served locally
on l1), whilst in the second case it is specified by b (hence it is served remotely at l2)

Servers
def= l1·Server(s,a ,l2,b ) | l2·Server(s,b ,l1,a )

P1
def= m·Client(l1,s,a ) | Servers
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P2
def= m·Client(l1,s,b ) | Servers

We compare P1 and P2 with Q1 and Q2 defined below, which provide a specification
of the expected behaviour respectively of P1 and P2. Each process goes directly from
m to the relevant location, fetches the data returned by query p, and goes back to
paste it as the new data tree of m:

m·Spec(l)
def= m·go l.(ν c)(l·reqp〈c〉 | l·c(z).l·gom.m·P )

Q1
def= m·Spec(l1) | Servers

Q2
def= m·Spec(l2) | Servers.

An important difference between the client and the specification is that the client
sends an output message to a service which can in principle be intercepted by some
process external to the protocol which performs an input on the same service channel.
To rule out this undesired interference, we restrict the name of the service s both in
each Pi and Qi, with the side effect of preventing also the unharmful case in which
several clients use the services at the same time1.

We can show, in a domain containing both l1 and l2, the following equivalences:

(ν s)P1∼{l1,l2}
r (ν s)Q1 (ν s)P2∼{l1,l2}

r (ν s)Q2

Hence, by definition, we can replace (ν s)Pi by (ν s)Qi in any network, and preserve
network equivalence.
Proof of equivalence. By virtue of Theorem 5.3.21, a formal proof of each equiv-
alence above involves showing the existence of an appropriate domain bisimulation
containing the relevant pair, along the lines of the examples of Section 5.2.

We show the case for P2 and Q2. In order to make the proof more manageable,
we adopt the simplifying assumption that the query p does not contain scripts. The
proof of the general case follows a similar structure. Moreover, we use implicitly the
closure of bisimilarity under structural congruence.

We start by analyzing the non-input transitions of the two processes, and then we
indicate how to build a domain bisimulation by pairing compatible states and dealing
with input transitions. Consider (ν s)Q2. It is easy to see that Servers does not have
transitions, hence we concentrate on m·Spec(l2). All it can do is a tau transition at l2
corresponding to a migration step, followed by a request transition at l2 to become

(ν s)((ν c)(l2·c〈V 〉 | l2·c(z).l2·gom.m·P ) | Servers)

where V stands for a generic result obtained by the request. In turn, this process
can only do a local communication followed by a migration (both tau transitions,
respectively at l2 and m) to become

S0 = (ν s)((ν c)(m·P {V /z}) | Servers).
1In future, we plan to consider less restrictive ways to rule out this kind of interference using the

type based techniques for linearity of Yoshida et al. [86].
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Using the hypothesis c 6∈ fn(P ), we obtain

(ν s)((ν c)(m·P {V /z}) | Servers) ≡ (ν s)(m·P {V /z} | Servers).

We now analyze the transitions of (ν s)P2. First the client m·Client(l1,s,b ) per-
forms a tau transition at m corresponding to the initialization of the loop and then
one at l1 corresponding to the migration of the service call. The whole process be-
comes

(ν s, c)(C0 | l1·s〈b , p, m, c〉 | Servers)

where
C0 = m·s(OK , z).m·P | !m·s(REF , x).m·x·s〈b , p, n, c〉.

Because of b , l1·Server(s,a ,l2,b ) receives the call in the remote branch (the one for
l2 with tag b ). Nondeterministically, the process at l1 evolves to l1·Server(s,a ,l2,b )

with in parallel either l1·l2·s〈b , p,m, c〉 (recruiting), or l1·m·c〈REF , l2〉 (referral), or
l1·Ref(l1,l2,s,b ,p,w)[l1·m·c〈OK , w〉] (chaining). Both the communication for receiving the
call and the choice of the branch to execute are two tau transitions at l1. We now
consider the transitions of each choice branch.

Recruiting. If recruiting is chosen, the server at l1 performs a tau transition at l2
corresponding to the forwarding of the client request, becoming

(ν s, c)(C0 |R1 | l1·Server(s,a ,l2,b ) | l2·s〈b , p, m, c〉 | l2·Server(s,b ,l1,a ))

where R1 is a deadlocked process containing the code for the two discarded
choice branches. Due to the parameter b , server l2 receives the call in the local
branch, performing another tau transition at l2:

(ν s, c)(. . . | l2·Server(s,b ,l1,a ) | (ν c′)(l2·reqp〈c′〉 | l·c′(w).l2·m·c〈OK , w〉)).

This process can only do a request transition, followed by a tau transition
(corresponding to local communication) at l2, becoming

(ν s, c)(C0 |R1 | Servers | l2·m·c〈OK , V 〉),

where V stands for a generic result obtained by the request. After two tau
transitions at m, corresponding to migration and local communication between
C0 and m·c〈OK , V 〉, we obtain

S1 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF , x).m·x·s〈b , p, n, c〉) |R1 | Servers),

where we stop.

Referral. In the case of referral, the server performs two tau transitions at m which
correspond to the forwarding of the message referring location l2, and to a
second iteration of the referral loop of the client. The client then sends a new
call to l2 (a tau transition at l2) and becomes

(ν s, c)(C0 |R2 | l1·Server(s,a ,l2,b ) | l2·s〈b , p, m, c〉 | l2·Server(s,b ,l1,a ))
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where R2 is a deadlocked process containing the code for the two discarded
choice branches. From now on, the transitions are the same as in the case for
recruiting until we obtain the process

S2 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF , x).m·x·s〈b , p, n, c〉) |R2 | Servers),

where we stop.

Chaining. In the case of chaining, the reasoning is similar. The first transitions cor-
respond to a local communication at l1 starting the referral loop of the server
and a migration followed by communication at l2 to start the local branch of
that service. At this point, the process performs a request transition analogous
to the one in the previous cases, and tau transitions corresponding to a local
communication to get the result at l2, a migration to l1, and a local commu-
nication to terminate the referral loop of the server. The continuation process
performs the transitions corresponding to the migration of the final result to m
and to the communication to terminate the referral loop of the client, reaching

S3 = (ν s)(m·P {V /x} | (ν c)(!m·s(REF , x).m·x·s〈b , p, n, c〉) |R3 | Servers),

where R3 is a deadlocked process containing the code for the two discarded
choice branches and the residual of the referral loop at l1.

Intuitively, S0, S1, S2 and S3 are all equivalent states, because they are structurally
equivalent to a process of the form

(ν s)(m·P {V /z} | Servers | δ).

The bisimulation relation we are looking for is obtained in three steps. First, we
pair each of the states preceding the request transition in the lts of (ν s)Q2 with each
one preceding a request transition in the lts of (ν s)P2 (and vice versa). Second, we
pair each of the states following the request transition giving a particular result V in
the lts of (ν s)Q2 with each one following a request transition giving the same result
in the lts of (ν s)P2 (and vice versa). Third, we close the relation obtained so far
under parallel composition with the output messages derived by input transitions (as
shown explicitly in Example 5.2.4). It is easy to verify that the relation defined
above is a domain bisimulation, by checking the definition.

6.2 Rendez-vous and shipping

In the previous example, the infrastructure of servers implementing the distributed
query patterns was fixed in advance, while the actual interactions between them were
determined at run-time. The messages exchanged between different locations were
always service calls or their results. Now, we consider a more flexible scenario which
exploits code mobility.

Data-shipping and query-shipping are two traditional database techniques for dis-
tributed query evaluation: the first consists of evaluating locally a query on remote
data by asking for the relevant data to be sent from the remote sources; the second
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Figure 6.3: Rendez-vous
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(a) Query-shipping. (b) Rendez-vous.

consists of delegating the evaluation of a query to one of the remote sources in order
to reduce the bandwidth used by data transfers. In the next section, we propose a
distributed query pattern, called rendez-vous, which combines data and query ship-
ping by using code mobility and private channels. The idea is to give a client the
ability to ship result-handling code to another location, and to redirect the results
of arbitrary service calls towards the location containing the result-handler. Within
an infrastructure of services such as the one used above for chaining, recruiting and
referral, this pattern can help to save bandwidth by eliminating unnecessary data
transfers.

6.2.1 The rendez-vous query pattern

We now compare the query-shipping and rendez-vous patterns by giving a concrete
example where a client calls a remote service using as parameters two large sets of
data obtained by other remote service calls.

Suppose that on location l there is a specialized service l·Join(x1, x2, y, z) which
returns on channel z at location y the result of joining the data bound to x1 with the
data bound to x2. Suppose moreover that a client running on location m wants to
join some data obtained by query p at location l1 with other data obtained by query
q at location l2. We assume that l1 and l2 run the services described in Section 6.1.2,
that l1 (respectively l2) serves locally the requests tagged by a (respectively b ).
Query shipping. The client can use query shipping: it first invokes the query
services at locations l1 and l2, then passes on the results as inputs to the join service
on location l (see Figure 6.3(a)). Below we give the code of a client implementing
this approach:

m·ClientQ
def= (ν c, c1, c2)




m·l1·s〈a , p, m, c1〉
| m·l2·s〈b , q, m, c2〉
| m·c1(OK , x1).m·c2(OK , x2).m·l·Join〈x1, x2, m, c〉
| m·c(z).m·P




It starts sending off the two service calls to l1 and l2 and then waits for the results
respectively on c1 and c2 to bind them to x1 and x2. The remaining code is a standard

110



service call for the join service at l with parameters x1 and x2, binding the final result
to z in the continuation m·P , which can be an arbitrary process.
Rendez-vous. In order to save bandwidth, a better strategy is to request the
query services at l1 and l2 to forward their results to location l, and to install at l a
process which collects the two results and invokes the join service locally, asking for
the final result to be returned at location m (see Figure 6.3(b)). Below we give a
context implementing the general pattern, with two holes for inserting the code to
handle the intermediate results at l and the final result at m. The code is parametric
in the tags Ti and the queries pi used to determine the partial results, the variables
xi for binding them in the intermediate code at “−1”, and the variable z for binding
the final result in the continuation code at “−2”:

m·RzV(T1,p1,x1,T2,p2,x2,z)[−]1[−]2
def= (ν c, c1, c2)




m·l1·s〈T1, p1, l, c1〉
| m·l2·s〈T2, p2, l, c2〉
| m·go l.l·c1(OK , x1).l·c2(OK , x2).−1

| m·c(z).−2




The code given above can be easily parameterized also on the number, the names
and the locations of the services involved, and can be adapted to return the final
results at an arbitrary location on an arbitrary channel.

We give below the code for a client, equivalent to ClientQ, which uses the rendez-
vous strategy:

m·ClientR
def= m·RzV(a ,p,x1,b ,q,x2,z)[l·Join〈x1, x2,m, c〉][m·P ]

The code for handling the intermediate results consists in a local call to the join
service, whereas the continuation is the same generic process used for ClientQ.

6.2.2 Equivalence of the patterns

Consider the process Servers defined in Section 6.1 consisting in the parallel compo-
sitions of the servers for implementing chaining, recruiting and referral at locations
l1 and l2. The clients given above, each in parallel with Servers, are equivalent in
any network regardless of what locations are present.

(ν s)(m·ClientQ | Servers)∼∅r (ν s)(m·ClientR |Servers)

In order to make the proof more manageable, we adopt once again the simplifying
assumption that p and q do not contain scripts, and we use implicitly the closure of
bisimilarity under structural congruence.

First of all, we simplify the problem further by studying an equation relating
only the parts of the client processes above which are different from each other and
which play a significant role in the proof. The full result follows by exploiting the
closure of bisimilarity under parallel composition, restriction and structural congru-
ence (Theorem 5.3.15 and Proposition 5.3.1) to recover the processes of the original
statement.
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Consider the definitions

m·ClientQ′ def= (ν c1, c2)




m·l1·s〈a , p,m, c1〉
| m·l2·s〈b , q,m, c2〉
| m·c1(OK , x1).m·c2(OK , x2).m·l·Join〈x1, x2,m, c〉




m·ClientR′ def= (ν c1, c2)




m·l1·s〈a , p, l, c1〉
| m·l2·s〈b , q, l, c2〉
| m·go l.l·c1(OK , x1).l·c2(OK , x2).l·Join〈x1, x2,m, c〉




Our goal is to build a domain bisimulation containing the pair
(

(ν s)(m·ClientQ′ | Servers) , (ν s)(m·ClientR′ |Servers)
)
.

The construction of the proof is summarized by the diagrams in Figure 6.4. We
represent the transitions of the two processes above in the form of lattices of states
related by the lts (to be read in the direction of the arrows). Like in Section 6.1.2, we
do not consider input transitions at this stage. The dotted arcs indicate the states
from the two diagrams which will be paired in the bisimulation.
Building the transition diagrams. We describe the steps leading to the
transitions. Later, we will explain how to build the bisimulation relation.

We begin with (ν s)(m·ClientQ′ | Servers), corresponding to the top diagram of
Figure 6.4. The starting state is the one pointed to by an arrow on the left of the
diagram. We follow the top-left border of the diagram. Consider the sub-processes
m·l1·s〈a , p, m, c1〉 and

l1·Local(s,a )
def= !l1·s(a , x, y, z).(ν c′)(l1·reqx〈c′〉 | l1·c′(w).l1·y·z〈OK , w〉).

Together they can perform, in order:

1. a migration step from m to l1;

2. an internal communication on s at l1;

3. a request transition generating an output l1·c′〈V1〉, where V1 is the data obtained
by query p;

4. an internal communication on c′;

5. a migration to m.

We are left with the processes l1·Local(s,a ) and m·c1〈Ok , V1〉. The second process can
communicate with

m·c1(OK , x1).m·c2(OK , x2).m·l·Join〈x1, x2,m, c〉,

and we are left with
m·c2(OK , x2).m·l·Join〈V1, x2,m, c〉.

Independently, m·l2·s〈b , q, m, c2〉 and l2·Local(s,b ) can mimic the 5 steps above (repre-
sented in the diagram by the bottom-left border), becoming l2·Local(s,b ) and m·c2〈Ok , V2〉.
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Figure 6.4: Bisimulation Diagrams

(ν s)(m·ClientQ′ |Servers)

l2·τ
l2·req〈q〉(V2)

l2·τ

m·τ

l2·τ

l1·τ

l1·req〈p〉(V1)
l1·τ

m·τ
m·τ

l1·τ

(ν s)(m·ClientR′ | Servers)

l·τ

m·τ

l2·τ
l2·req〈q〉(V2)

l2·τ

l·τ

l2·τ

l·τ

l·τ

l1·τ

l1·req〈p〉(V1)
l1·τ

l·τ
l·τ

l1·τ

These two independent groups of respectively 6 and 5 ordered transitions give a lat-
tice of 42 processes related by the lts, where the bottom element is the initial process,
and the top element (at the intersection between the top and bottom-right borders)
is the process

(ν s)




m·c2〈Ok , V2〉
| m·c2(OK , x2).m·l·Join〈V1, x2,m, c〉
| Servers




This process can only perform a communication on channel c2 and a migration from
m to l, becoming the point on the right with the outgoing arrow

(ν s)(l·Join〈V1, V2,m, c〉 | Servers)
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By a similar reasoning, we can derive for the process (ν s)(m·ClientQ′ | Servers)
the lattice of 36 + 42 + 1 processes reported in the bottom diagram of Figure 6.4.
The vertical transition possible from each of the 36 states in the lower layer of the
diagram is the initial migration step from m to l of the result handling code, where

m·go l.l·c1(OK , x1).l·c2(OK , x2).l·Join〈x1, x2,m, c〉

becomes process
l·c1(OK , x1).l·c2(OK , x2).l·Join〈x1, x2,m, c〉.

Only when this transition has occurred, can communication on c1 at l happen (hence
the additional 7 states appearing only in the upper layer). The final state, after
communication on c2 at l has happened, is once again

(ν s)(l·Join〈V1, V2,m, c〉 |Servers).

Building the bisimulation relation. We now describe how to pair-up the
processes (states) of Figure 6.4 to build a suitable bisimulation. First, we relate each
of the 25 processes in the top diagram reachable from the initial one after at most
4 transitions along each axis, with the two corresponding processes in the bottom
diagram (as shown by the left-most dotted arc in Figure 6.4). Then, we relate each
of the 10 processes obtained in the top diagram after 5 transitions along one axis
and at most 4 on the other axis with the corresponding 4 processes in the bottom
diagram (as shown by the second dotted arc in Figure 6.4). Next, we relate each
of the 5 processes obtained in the top diagram after 6 transitions along the first
axis and at most 4 along the second axis, with the corresponding 5 processes in the
bottom diagram (as shown by the third dotted arc in Figure 6.4). Then, we relate
the two processes reachable after 11 and 12 transitions in the top diagram with the
10 processes of the bottom diagram to which they are joined by the fourth arc in
Figure 6.4. We also relate the process obtained in the top diagram after 5 transitions
along each axis with the 8 processes at the vertices of the corresponding cube in the
bottom diagram. Finally, we associate the final process in the top diagram with the
final process in the bottom diagram (the fifth dotted arc in Figure 6.4).

We take the symmetric closure of this relation, and we close it under parallel
composition with output messages like in Example 5.2.4. Note that in the diagram
we have shown the transitions for one possible choice of the data items V1 and V2

obtained as results of the request transition. To be completely formal, the reasoning
above must be quantified on all possible result values, by pairing the corresponding
states as in the example of Section 6.1.2.
Following a simulation step. We consider now an example to explain the
rationale behind the pairing of states in the relation. We focus on the simulation
of (ν s)(m·ClientQ′ | Servers) by (ν s)(m·ClientR′ |Servers) which is subtle. The other
direction is straightforward.

In the top diagram, the process connected to the leftmost dotted arc can per-

form a weak transition
l1·req〈p〉(V1)−−−−−−−−→→{l1,m} to become the process connected to the

third dotted arc. In the bottom diagram, the top process connected to the arc can

simulate the step by performing a weak transition
l1·req〈p〉(V1)−−−−−−−−→→{l1} to become the
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top-left process of those connected to the bottom end of the third arc. The bottom
process connected to the first arc cannot simulate the transition by reaching the same
process, because that would involve using location l. Instead, it performs a transition
l1·req〈p〉(V1)−−−−−−−−→→{l1} to become the bottom-left process of those connected to the bottom
end of the third arc, which is also in the relation. Also the states reached by the
process on the top diagram by performing one or two transitions the less are related
to the two states of the bottom diagram mentioned above. The idea is that the last
two tau transitions at m cannot be matched by tau transitions at l, in fact they do
not need to be matched at all, so the processes in the bottom diagram stay the same.

The association between the states of the two diagrams above is not completely
straightforward because we are showing the most general result in which domain
congruence holds for the empty domain (∼∅r ). In this case, we had to make sure that
for each transition between processes in the top diagram there was a corresponding
transition in the second diagram (possibly null) which related two processes bisimilar
to the original ones involving only locations used also by the original transition. The
problems are due to the additional transitions at l which are possible in the second
diagram. If we tried to prove ∼{l}r instead, the association between processes would
have been straightforward.

115



Chapter 7

Concluding Remarks

In this chapter, we draw our conclusions. In Section 7.1, we review the contents
of the thesis, discussing the merits and the shortcomings of our approach, and the
previous work on Xdπ. In Section 7.2, we propose directions for future work on Xdπ
and dynamic Web data.

7.1 Review

Our work shows that a behavioural understanding of systems for the exchange of
dynamic data on the Web can be grounded on the existing research on process calculi,
and requires new reasoning techniques as well as well-established ones.
The Xdπ model. Chapter 2 introduced Xdπ, a simple calculus for describing the
interaction between data and processes across distributed locations. We used a simple
data model consisting of unordered labelled trees, with embedded processes and links
to other parts of the network, and processes based on the π-calculus. We tried to
keep the definition of Xdπ to a minimum, by including only the simple operations of
asynchronous local communication based on pattern matching, execution of a query-
update expression on the local repository, migration, spawning of scripted code and
creation of fresh channels. As shown in Chapter 3, these basic operations were
sufficient to derive conditional statements, nondeterministic choices, constructs for
parsing and iterating on list-like structures and remote communication in the style
of Web services. We have used these derived constructs to give a precise semantics
to AXML-like behaviour, and to extend its expressivity by generalizing service calls
to arbitrary scripts and exploiting code mobility. Overall we have found that the use
of many derived constructs makes the representation of the examples more readable,
at the expense of losing the direct correspondence to the operational semantics.

An important design choice, enabling us to study how properties of data can
be affected by process interaction, was to model data and processes at the same
level of abstraction, rather than encoding data into processes, as customary in the
π-calculus [56, 57, 58, 71]. While such an encoding can make sense when using the
π-calculus as a low level concurrency modelling language, it becomes a burden when
reasoning about coordination of higher-level processes. Our choice gave us also the
opportunity to keep our language modular with respect to the choice of a query
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language, which can be easily adapted from the existing literature on XML [12].
With hindsight, we can now identify two design choices worth reconsidering. First,

pointers need not be primitive objects. A pointer p@l could be simply represented by
a script receiving a private channel x and sending the pair p, l on x, as for example
in

[[link[ p@l ]]] = link[ 〈(x)x〈p, l〉〉 ].

Second, rather than delegating migration control to external security checks, it would
be interesting to include at the location level a construct to constrain process mi-
gration based on types, along the lines of [40]. We have indeed already considered
such an extension, which has not been included in this thesis because it is of limited
interest in the untyped setting. A refined t treatment of migration could also lead to
consider interesting failure scenarios [29].
Equivalences. In Chapter 4, we investigated behavioural equivalences for Xdπ.
Our approach does not focus on the communication actions of processes, which are
the basis of observational equivalences for process calculi. Instead, it uses as the
basic observable property what data can eventually be present at a given location,
which is of central concern in reasoning about dynamic Web data, and compares
the equivalences induced by these and other observables. Network equivalences are
parametric with respect to the language used for querying and updating documents,
and can be instantiated to specific cases.

In order to define process equivalences in terms of network equivalences, and to
reason about groups of processes interacting across several locations, we have found
it convenient to translate Xdπ into Core Xdπ, which is a semantically equivalent
calculus where processes are located explicitly and are separated from the data store.
In Core Xdπ, it is easy to express a partial specification of a network by means of
located processes running in parallel, possibly sharing private names. Migration
has been included in Core Xdπ only to maintain a closer correspondence with Xdπ,
but is not necessary. In fact, each located action already contains information about
where it is to be executed. For example, in the process below we can imagine that
each input on ai at li is followed by an implicit migration step li·go li+1 to the next
location:

l1·a1(x).l2·a2(y).l3·a3〈x, y〉,
intuitively corresponds to

l1·a1(x).l1·go l2.l2·a2(y).l2·go l3.l3·a3〈x, y〉.

Overall, if Xdπ were to be discarded completely, in favour of using the fragment of
Core Xdπ without migration (which is more fundamental and is at the right level
where to carry on equational reasoning) the presentation of our model would be to
some extent simpler. Nevertheless, we have decided to remain with our original pre-
sentation because we think that is more intuitive, and hopefully helps the reader less
familiar with process algebras to understand the examples. Moreover, the encoding
of Xdπ in Core Xdπ and its full abstraction (Theorem 4.3.15) are interesting results
in their own right, constituting the first formal proof of full abstraction of between
a distributed π-calculus and a π-calculus without explicit locations, confirming the
informal thesis of [17] that locations can be encoded without divergence in eπ.
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Process equivalences are typically difficult to use directly because they require
a costly property of closure under contexts. To overcome this problem, in Chap-
ter 5 we defined domain bisimilarity, a coinductive equivalence relation which entails
process equivalence. The definition of domain bisimilarity is non-standard, due to
the fact that scripts (which can appear in data) are part of the values, and process
equivalences are sensitive to the set of locations constituting the network. Domain
bisimilarity generalizes the notion of bisimulation to families of relations indexed by
sets of locations, and is based on a labelled transition system which incorporates
ideas on asynchronous transitions from [44], and on translating higher-order actions
into first order actions from [69, 46].

Domain bisimilarity is intrinsically incomplete, due to its being parametric on a
query and update language. In fact, without specializing the labelled transition sys-
tem to a particular language, we are forced to distinguish request transitions as soon
as they contain queries which are syntactically different. On the other hand, equiv-
alences dependent on specific knowledge of the equational theory of queries would
lead to optimizations which are no longer correct when the query language changes.
Even if, for the sake of argument, we fixed a concrete query-update language and
knew everything about its semantic equivalences, it would still be unclear how to
deal with the case of Example 5.2.5. There, the initial updates that two processes
can perform are by no means equivalent, yet by an “idempotence” argument the
overall behaviours turn out to be equivalent. A complete bisimilarity would need
to be able to consider is some way the cumulative effect of request transitions, also
when interleaved with communication steps, in order to equate sequences of updates
with the same global effect on the data-store.
Applications. Using bisimilarity, in Chapter 6 we studied some communication
patterns employed by servers in distributed query systems to answer queries from
clients. Queries took the form of processes which retrieve and combine data from
different locations by using remote communication and local requests. In particu-
lar, we considered chaining, recruiting and referral, three distributed query patterns
studied in [68, 66] which are interesting because, despite their simplicity, they can
express ways of answering requests which are non-trivial and display different levels
of cooperation between the parties involved. By exploiting process migration, we
have proposed the rendez-vous query pattern which can help to save bandwidth in
certain applications.

A challenging application which for reasons of complexity has eluded us, and
which we leave to future work, is to extend the distributed query pattern examples
to model a robust system where the servers return streams of results which can dry
out or be restarted, and show its equivalence to a simpler, non-streaming specification.
We believe that our techniques are suitable for this task, but we think that there is a
need for automated tools and symbolic techniques (such as the open bisimulation of
Sangiorgi [70]), which help in producing manageable bisimilarity proofs. For example,
even in the simple example given in Section 6.2.2, the bisimulation relation was
difficult to represent succinctly because each state of one process could be related to
several states of the other process.
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7.1.1 Publication history

The ideas in this dissertation evolve from those presented in previous publications on
Xdπ and Core Xdπ. Overall, the most significant improvements of the presentation
of our model over the ones described further below are:

• the simplification of the command for interacting with the store, which used to
bound the results of a query to variables in the continuation process, and now
returns the results as an output message;

• the independence of the whole framework from the choice of a particular query
language, which in precedence was fixed;

• the introduction of binding patterns instead of simple variables to parse input
messages.

Minor changes include syntactical differences, the change from an unordered data
model to an ordered one, and the parametrization of scripts (which in previous pre-
sentations were closed processes) by bound variables, which can be bound to run-time
parameters passed to the script upon invocation.

We now briefly overview our previous work on dynamic Web data.

1. Modelling Dynamic Web Data, with Philippa Gardner. The workshop pa-
per [32] contains the first definition of Xdπ, which has evolved significantly since
then. The technical report [33] introduces an “ancestor” of Core Xdπ called
Xπ2, and proposes a proof technique for process equivalence based on higher-
order bisimulation for process languages, as studied for example in [75, 25, 69].
The journal version [34] revises slightly the first definition of Xdπ, and presents
several examples of dynamic Web data. It introduces Core Xdπ and formal-
izes its equivalence to Xdπ, but it does not contain a proof method for process
equivalence.

2. Behavioural Equivalences for Dynamic Web Data, with Philippa Gardner [55].
This paper contains a previous formulation of Core Xdπ (presented as a stand-
alone calculus), and the first definition of domain bisimilarity. Domain bisimi-
larity improves on the higher-order bisimulation of [33] by equating more terms,
while remaining a sound approximation of process equivalence. The proof of
soundness is similar to the one presented here in Chapter 5, but the lts is
different (due to the different definition of Core Xdπ).

3. Dynamic Net Data: Theory and Experiment, with Philippa Gardner, Nobuko
Yoshida and Alex Ahern [35]. This poster outlines the Xdπ framework and
delineates some related and future work on implementation and security (also
mentioned here in Section 7.2), which is part of a project on dynamic Web data
funded by an EPSRC e-Science grant.

4. Process calculi and peer-to-peer Web data integration [53]. This short paper
contains an extract from Chapter 1 of this thesis.
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7.2 Future work

We now delineate directions for future work on Xdπ and dynamic Web data.
Types and security. Type systems for Xdπ would be useful to guarantee the
absence of run-time errors, refine the behavioural equivalences, guarantee the confor-
mance of data trees to schemas, and study security properties.

We have already begun to investigate a basic type system to guarantee safety,
intended as the absence of run-time errors due to objects of a specific sort being
found where objects of another sort are expected. We plan to extend the basic
system with access-control capabilities, to guarantee that well-typed terms do not
violate security assumptions. Our preliminary studies were based on the techniques
of Pierce and Sangiorgi [63] (for the π-calculus), and Hennessy and Riely [42] (for
dπ), but involved also a substantial reworking due to the presence of data storage
and scripted processes. The treatment of location types was also influenced by our
work on intersection types [54] for the π-calculus and eπ. Other works which could
be directly relevant involve the use of types in process algebras to study security
properties of Web services [37], reasoning about mobile resources [36] and verifying
authorization properties [28].

An interesting extension is to assign precise types to trees, describing their sche-
matic structure, rather than regarding them as all belonging to the same sort. In
this way, it would be possible to guarantee that a certain transformation conforms
to a schema, and to enforce fine-grained access control. A starting point to type the
trees could be the work on types and logics for semi-structured data [45, 7, 19]. A
further step, which we consider necessary in order to give schema types to Xdπ trees,
is to extend the type system with process types [87, 85], which record information
about the behaviour of processes. In the case of dynamic Web data, we believe that
this extension is needed because the structure of a tree depends also on the result
of executing the scripts that it contains, hence a type for a tree must depend on the
behavioural types of the scripts it contains.

Given the use of mobile code in our systems, in the absence of trust, we face the
problem of protecting a host from a potentially malicious agent. This problem could
be tackled by type-checking each agent dynamically entering a location [40] (possibly
relying on the ability of a location to infer the type of the agent), or by using the
Proof Carrying Code [60] approach (to send the a migrating process along with its
type), or by a combination of both techniques.

A type system usually restricts the number of terms that are admissible in a
calculus. Hence, the behavioural equivalences can become easier to verify (since
there can be less-counter-examples), and some laws that do not hold in the untyped
calculus become valid for the typed fragment. An obvious theoretical question arising
from the definition of a type system for Xdπ, is to understand how the behavioural
equivalences are affected by typing, for example along the lines of [64, 39].
Implementation. Several final year students at Imperial College London have
based their graduation projects on prototype implementations of Xdπ, with encour-
aging results about the feasibility of our approach in practice. Some have developed
it as a stand-alone application, others as a set of library functions to integrate with
their favourite programming language. For example, Alex Ahern has developed
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a distributed prototype implementation of Xdπ based on XML standards [5]. The
implementation embeds processes in XML documents and uses XPath as a query lan-
guage. Communication between peers is provided through SOAP-based web services
and the working space of each location is endowed with a process scheduler based on
ideas from PICT [65]. Another strategy, followed by Anthony Cheah [22], consisted
in extending the open source implementation of AXML [78] with ideas from Xdπ, in
particular with support for more flexible service calls and for mobile queries.

In view of a more substantial implementation of Xdπ as a platform for empowering
dynamic Web data, we believe that Xdπ could provide the lower-level language spoken
directly by peers, while it would be beneficial to define a higher-level language at the
application layer rich in derived operations (in the style of those of Section 3.1), with
a rigourous semantics given in terms of a translation to Xdπ.

Concluding, we think that the presence of a theoretical framework, which can be
sometimes seen as limiting the freedom of the implementor to adapt the language
specification in view of engineering considerations, has the advantage of providing a
solid basis for developing semantically correct programs, and helping the development
of program analysis tools.
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Appendix A

Tables

Figure A.1: Function dom for Xdπ networks

dom(l [T ‖P ]) = {l} dom(0) = ∅
dom(N |M) = dom(N) ∪ dom(M) dom((ν c)N) = dom(N)

dom(N |CN [−]) = dom(N) ∪ dom(CN [−]) dom(CN [−] |N) = dom(N) ∪ dom(CN [−])
dom((ν c)CN [−]) = dom(CN [−]) dom(−) = ∅

Figure A.2: Function dom for Core Xdπ

dom(D) = domain(D) dom(0) = ∅
dom(P |Q) = dom(P ) ∪ dom(Q) dom((ν c)P ) = dom(P )

dom(l·c〈ṽ〉) = {l} dom(l·c(π̃).P ) = {l}
dom(!l·c(π̃).P ) = {l} dom(l·go m.m·P ) = {l}
dom(A ◦ 〈l, ṽ〉) = {l} dom(l·reqp〈c〉) = {l}

dom(−) = ∅ dom(CS [−] ]D) = dom(D)
dom(P |CP [−]) = dom(CP [−] |P ) = dom(P ) dom((ν c)CP [−]) = ∅
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Figure A.3: Full structural congruence for Xdπ

(ν c)0 ≡ 0 (Struct Res PNil)

c 6∈ fn(P ) =⇒ P | (ν c)Q ≡ (ν c)(P |Q) (Struct Res PPar)

(ν c)(ν d)P ≡ (ν d)(ν c)P (Struct Res PRes)

P | (Q |Q′) ≡ (P |Q) |Q′
(Struct Par PAssoc)

P |Q ≡ Q |P (Struct Par PComm)

P |0 ≡ P (Struct Par PZero)

P ≡ Q =⇒ (ν c)P ≡ (ν c)Q (Struct Cong PRes)

P ≡ P ′ =⇒ P |Q ≡ P ′ |Q (Struct Cong PPar)

P ≡ Q =⇒ a(π̃).P ≡ a(π̃).Q (Struct Cong PIn)

P ≡ Q =⇒!a(π̃).P ≡!a(π̃).Q (Struct Cong P!In)

P ≡ Q =⇒ gom.P ≡ go m.Q (Struct Cong PGo)

(ν c)0 ≡ 0 (Struct Res NNil)

c 6∈ fn(N) =⇒ N | (ν c)M ≡ (ν c)(N |M) (Struct Res NPar)

(ν c)(ν d)N ≡ (ν d)(ν c)N (Struct Res NRes)

l [T ‖ (ν c)P ] ≡ (ν c)l [T ‖P ] (Struct Res NLoc)

N | (M |M ′) ≡ (N |M) |M ′ (Struct Par NAssoc)

N |M ≡ M |N (Struct Par NComm)

N |0 ≡ N (Struct Par NZero)

N ≡ M =⇒ (ν c)N ≡ (ν c)M (Struct Cong NRes)

N ≡ N ′ =⇒ N |M ≡ N ′ |M (Struct Cong NPar)

t ≡ t (Struct Refl)

t ≡ t′ =⇒ t′ ≡ t (Struct Symm)

t ≡ t′′ and t′′ ≡ t′ =⇒ t ≡ t′ (Struct Trans)

P ≡ Q =⇒ (D, P ) ≡ (D, Q) (Struct Proc)

Notation: t ranges over P or N .
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Figure A.4: Free variables and free names for Xdπ

fv(E pT ) = fv(E) ∪ fv(T ) fv(∅) = ∅
fv(x) = {x} fv(a[ V ]) = fv(V )

fv(p@l) = fv(l) ∪ fv(p) fv(l) = ∅
fv((π̃)P ) = fv(P ) \ fv(π̃) fv(0) = ∅
fv(P |Q) = fv(P ) ∪ fv(Q) fv((ν c)P ) = fv(P )

fv(c〈ṽ〉) = fv(c) ∪ fv(ṽ) fv(c(π̃).P ) = fv(c) ∪ (fv(P ) \ fv(π̃))
fv(!c(π̃).P ) = fv(c) ∪ (fv(P ) \ fv(π̃)) fv(go l.P ) = fv(l) ∪ fv(P )
fv(A ◦ 〈ṽ〉) = fv(A) ∪ fv(ṽ) fv(reqp〈c〉) = fv(p) ∪ fv(c)

fv(c) = fv(c) = ∅

fn(T ) = fn(E) = fn(A)
fn(p) = fn(l) = fn(x)

}
= ∅ fn(0) = ∅

fn(P |Q) = fn(P ) ∪ fn(Q) fn((ν c)P ) = fn(P ) \ {c}
fn(c〈ṽ〉) = fn(c) ∪ fn(ṽ) fn(c(π̃).P ) = fn(c) ∪ fn(P )

fn(!c(π̃).P ) = fn(c) ∪ fn(P ) fn(go l.P ) = fn(P )
fn(A ◦ 〈ṽ〉) = fn(ṽ) fn(reqp〈c〉) = fn(c)

fn(c) = {c} fn(c) = ∅
fn(l [T ‖P ]) = fn(P ) fn(0) = ∅

fn(N |M) = fn(N) | fn(M) fn((ν c)N) = fn(N) \ {c}
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Figure A.5: Full structural congruence for Core Xdπ

(ν c)0 ≡ 0 (CStruct Res PNil)

c 6∈ fn(P ) =⇒ P | (ν c)Q ≡ (ν c)(P |Q) (CStruct Res PPar)

(ν c)(ν d)P ≡ (ν d)(ν c)P (CStruct Res PRes)

P | (Q |Q′) ≡ (P |Q) |Q′
(CStruct Par Assoc)

P |Q ≡ Q |P (CStruct Par Comm)

P |0 ≡ P (CStruct Par Zero)

P ≡ Q =⇒ (ν c)P ≡ (ν c)Q (CStruct Cong Res)

P ≡ P ′ =⇒ P |Q ≡ P ′ |Q (CStruct Cong Par)

P ≡ Q =⇒ l·a(π̃).P ≡ l·a(π̃).Q (CStruct Cong In)

P ≡ Q =⇒!l·a(π̃).P ≡!l·a(π̃).Q (CStruct Cong !In)

P ≡ Q =⇒ l·gom.P ≡ l·ping m.Q (CStruct Cong Go)

P ≡ Q =⇒ (D, P ) ≡ (D, Q) (CStruct Proc)

(ν c)0 ≡ 0 (Struct Res CNil)

c 6∈ fn(K) =⇒ K | (ν c)K ′ ≡ (ν c)(K |K ′) (Struct Res CPar)

(ν c)(ν d)K ≡ (ν d)(ν c)K (Struct Res CRes)

K | (K ′ |L) ≡ (K |K ′) |L (Struct Par CAssoc)

K ≡ K ′ =⇒ K ′ ≡ K (Struct Par CComm)

K |0 ≡ K (Struct Par CZero)

K ≡ K ′ =⇒ (ν c)K ≡ (ν c)K ′ (Struct Cong CRes)

K ≡ L =⇒ K |K ′ ≡ L |K ′ (Struct Cong CPar)

t ≡ t (CStruct Refl)

t ≡ t′ =⇒ t′ ≡ t (CStruct Symm)

t ≡ t′′ and t′′ ≡ t′ =⇒ t ≡ t′ (CStruct Trans)

Notation: t ranges over P or K.
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Figure A.6: Free variables and free names for Core Xdπ

fv((x, π̃)P ) = fv(P ) \ fv(x, π̃) fv(0) = ∅
fv(P |Q) = fv(P ) ∪ fv(Q) fv((ν c)P ) = fv(P )

fv(l·c(π̃).l·P ) = fv(l) ∪ fv(c) ∪ (fv(P ) \ fv(π̃)) fv(l·c〈ṽ〉) = fv(l) ∪ fv(c) ∪ fv(ṽ)
fv(!l·c(π̃).l·P ) = fv(l) ∪ fv(c) ∪ (fv(P ) \ fv(π̃)) fv(l·go m.m·P ) = fv(l) ∪ fv(m) ∪ fv(P )

fv(A ◦ 〈l, ṽ〉) = fv(A) ∪ fv(l) ∪ fv(ṽ) fv(l·reqp〈c〉) = fv(l) ∪ fv(p) ∪ fv(c)

fn(0) = ∅ fn(P |Q) = fn(P ) ∪ fn(Q)

fn((ν c)P ) = fn(P ) \ {c} fn(l·c〈ṽ〉) = fn(c) ∪ fn(ṽ)
fn(l·c(π̃).P ) = fn(c) ∪ fn(P ) fn(!l·c(π̃).P ) = fn(c) ∪ fn(P )

fn(l·go m.m·P ) = fn(P ) fn(A ◦ 〈l, ṽ〉) = fn(ṽ)
fn(l·reqp〈c〉) = fn(c) fn((D,P )) = fn(P )

fv(K |K ′) = fv(K) ∪ fv(K ′) fv((ν c)K) = fv(K)
fv(〈k ⇐ A〉) = ∅ fv(k) = ∅

fn(K |K ′) = fn(K) ∪ fn(K ′) fn((ν c)K) = fn(K)
fn(〈k ⇐ A〉) = {k} fn(k) = {k}
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