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Abstract. We extend the w-calculus with polyadic synchronisation, a generalisa-
tion of the communication mechanism which allows channel names to be composite.
We show that this operator embeds nicely in the theory of w-calculus, we suggest
that it permits divergence-free encodings of distributed calculi, and we show that
a limited form of polyadic synchronisation can be encoded weakly in m-calculus.
After showing that matching cannot be derived in w-calculus, we compare the ex-
pressivity of polyadic synchronisation, mixed choice and matching. In particular
we show that the degree of synchronisation of a language increases its expressive
power by means of a separation result in the style of Palamidessi’s result for mixed
choice.
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1. Introduction

Process calculi provide a useful framework in which to reason about the the-
ory of concurrent and distributed systems. They are praised both for great
simplicity and expressiveness. The m-calculus of Milner et al. [1992] is a terse
and powerful language which describes the behaviour of concurrent systems,
and is endowed with a rich body of theoretical results. However, evidence
has been accumulated which suggests that it is inadequate to express certain
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aspects of distributed systems. In fact, the literature is rich with extensions
of the m-calculus explicitly designed for modeling such systems.

Following Occam’s razor principle!, we study a minimal extension of the
m-calculus in which to express concepts relevant to distributed systems such
as localities and encryption. We propose ¢m: the m-calculus with polyadic
synchronisation, a generalisation of the synchronisation mechanism which
allows channel names to be composite. The idea is that the subject of an
input or output action is no longer restricted to be a single name, but is
now a vector of names. For example we allow prefixes such as a - b(z) and
a - b{v), where the channel is identified by vector a - b. It turns out that this
construct cannot be encoded in w-calculus without introducing divergence.

1.1 Ezamples of polyadic synchronisation

To justify our proposal, we introduce concrete scenarios and theoretical is-
sues where polyadic synchronisation turns out to be helpful.

1.1.1 Two practical problems

The first example is ED7 (Carbone et al. [2001]), where we use a construct
which represents atomic transactions as a means to model e-services. Inter-
action between a client and a server takes place only if both parties agree on
a set of service parameters. The second example is the calculus of objects
(CO) of Vasconcelos and Tokoro [1993], upon which the TyCO program-
ming language is based (Vasconcelos [1994]). It models distributed object
systems where messages are dispatched to a certain object if and only if it
provides the method invoked in the request, and it is ready to execute it.
Its semantics requires agreement on both object identity and method name,
in order for a call to be dispatched.

Both these examples can be generalised as instances of the problem of
matching atomically vectors of values among different processes (the match-
ing problem). The solution consists in bringing the values to be matched
directly in the interface of each process towards the system, and provid-
ing semantic rules that allow interaction if and only if those interfaces are
compatible.

L “Occam’s razor is a logical principle attributed to the medieval philosopher William of
Occam (or Ockham). The principle states that one should not make more assumptions
than the minimum needed. This principle is often called the principle of parsimony. It
underlies all scientific modeling and theory building. It admonishes us to choose from a
set of otherwise equivalent models of a given phenomenon the simplest one. In any given
model, Occam’s razor helps us to "shave off” those concepts, variables or constructs that
are not really needed to explain the phenomenon. By doing that, developing the model will
become much easier, and there is less chance of introducing inconsistencies, ambiguities
and redundancies.” (F. Heylighen).
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1.1.2 Modeling locations

The ability of synchronising on many names at the same time, allows for
localities to be represented in 7. Many distributed calculi refer to an explicit
notion of location, intended as a unit of distribution where computation
takes place. Some of them are presented as extensions of the m-calculus,
and are based on the idea that processes running in parallel inside some
location can independently migrate or communicate with other processes,
locally or remotely. Examples of languages of such kind are to be found in
Hennessy and Riely [1998], Amadio et al. [1999], Cardelli and Gordon [2000],
Sewell et al. [1999], and Fournet [1998]. From a pragmatic point of view,
it emerged clearly that these models were to some extent more appropriate
than the w-calculus to describe physical distribution. From a theoretical
point of view, the necessity of these variants has not been fully explored.
Take the Distributed m-calculus of Hennessy and Riely [1998] (where 7-like
processes are explicitly enclosed in locations), as a paradigmatic example.
Its main reduction rule states that communication among two processes can
take place only when they are in the same location:

(RComm)  a(v).P] | lfa(z).Q] — I[P][1[Q{v/x}]

Our point is that a location can be seen as a name characterising all the
interactions in which a process participates: hence it can be modeled as an
additional synchronisation parameter in all the communications of a located
process. Migration is simply the dynamic (re)binding of the location com-
ponent of each prefix. For example the result of encoding the D7 network

l[@a(m).P | a(z).go .b(v).Q] | m[b(y).R]

is a process in this extension of m-calculus (°7), where the migration con-
struct go x disappears and the three threads of execution are run in parallel:

I-a{m).P | 1-a(x).z-b(v).Q | m-b(y).R.

Note that rule (RCoMM) reported above, stating that two processes are al-
lowed to react if and only if they share two values (location and channel) at
the same time, is another instance of the matching problem. Another exam-
ple of how localities can be expressed in terms of polyadic synchronisation
is in Carbone and Maffeis [2002], where we give a divergence-free encoding
of the Local Area m-calculus of Chothia and Stark [2001] in “7.

1.1.8 Partial restriction and matching

Polyadic synchronisation also enhances the m-calculus in that it allows for
partial restriction; that is, it gives the ability to restrict only some of the
names taking part in a communication. It turns out that thanks to this
feature, matching can be expressed as a special form of communication, and
therefore is not given as primitive in ¢w. Partial restriction allows us also to
model cryptographic protocols, as explained below.
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1.1.4 Modeling cryptography

We claim that 7 can express an interesting class of security protocols. In
fact, it is possible to use polyadic synchronisation to encode secure channels:
the sending along public channel a of datum m encrypted under key k is
expressed as a - k(m).P, implying that m can be received only by an agent
knowing the secret password k, beside the public name a. With respect
to the Spi-calculus of Abadi and Gordon [1998], this first solution lacks for
example the power of expressing keys obtained by hashing data. Consider
now a different, more expressive way to represent encryption in ¢w. We
propose constructs for encrypting and decrypting data, such that encrypted
messages are represented as names (therefore can still be encrypted, sent, or
used as keys), and encryption is nondeterministic (encrypting the same mes-
sage under the same key two times yields different results). These constructs
are:

[encrypt mez in P| = (vz)(lz-k{m) | P)
[decrypt z+-m in P] = x-k(m).P

The first construct encrypts data m under key k and returns the encrypted
message as the fresh name x, to be used in all the scope embraced by P.
Decryption of message x through key k£ binds name m in the continuation
P to the original message provided that the key is the same as the one used
to encrypt it. Note how z, the result of the encryption, is a restricted name
whose scope is process P. This is not a limitation because the scope of x
can be extended in the standard way using extrusion, allowing modularity
in the definition of processes. For example, the proces System below evolves
to a state where R and S share the classified data m, and that A cannot
compromise the security of the protocol.

Receiver : (v k)secure(k).public(y).decrypt y+-w in R
Sender : (v m)secure(z).encrypt mex in public(x).S
System : (v secure)(Sender | Receiver) | A

1.2 Owerview of the paper

We investigate the expressivity of polyadic synchronisation, using the 7-
calculus as a general framework. We are interested in finding out whether
it must be assumed as primitive or it can be derived, and in understanding
how it relates to the other operators of the calculus.

We recall the syntax and the semantics of m-calculus and of some im-
portant sub-calculi in Sections 2.1 and 2.2. In Section 2.3 we propose the
notion of sensible encoding as a subset of the requirements that the encoding
of an operator in a language should satisfy in order to be considered mean-
ingful. We actually strengthen the notion of reasonable encoding proposed
by Palamidessi [2002]: we require a stronger form of uniformity, namely



POLYADIC SYNCHRONISATION IN 7-CALCULUS )

that the encoding respects general substitutions, and we refine the notion
of reasonable semantics to distinguish deadlocks from livelocks.

We introduce ¢ in Section 3, and in Section 3.2 we show how a restricted
form of polyadic synchronisation can be encoded in m-calculus, at the price
of introducing divergence.

Section 4 starts with the answer to an open question: we show that match-
ing enhances the expressive power of the 7-calculus?. In ®7r, matching can
be encoded up-to strong bisimulation congruence. Also mixed choice is
known to increase the expressiveness of m-calculus: we extend the results
of Palamidessi [2002] to ®m, showing that polyadic synchronisation does not
have the power to encode mixed choice. In Section 4.3 we show that polyadic
synchronisation cannot be encoded in the full 7-calculus (and therefore it is
orthogonal to mixed choice) without introducing divergence, and we gener-
alise the result to higher degrees of synchronisation.

In Section 5 we conclude showing how the 7-calculi that we have considered
are partially ordered by expressivity, and constitute a complete lattice.

1.8 Previous research related to polyadic synchronisation

Ferrari [1997] extends CCS with composite prefixes in order to model trans-
actions, using a mixed form of polyadic synchronisation and synchronisa-
tion between multiple parties. Boudol and Castellani [1988] have studied
the impact of considering finite computations as atomic steps on concurrent
languages semantics, yet it seems that polyadic synchronisation is not ex-
pressible in their framework. Nestmann [1998] has studied the expressive
power of the joint input, a liberalisation of the join patterns of Fournet and
Gonthier [1996], in the m-calculus framework: it can be seen as a form of
bi-adic synchronisation for input processes only. The main reduction rule
for joint input is

afe) | b{d) | {a(@)[b(y)}.P N\ P{c/z}{d/y}

where {a(x)|b(y)}.P could be seen as similar to the ¢ process a- b(x,y).P.
As this example shows, there is a fundamental difference in the way of ex-
pressing outputs in the two languages: where the joint input requires multi-
way synchronisation, ¢ mantains the interaction confined to two processes.
For this reason, joint input does not provide a solution to the matching
problem.

Appendix A of Abadi and Gordon [1998] mentions synchronisation on
tuples to point out that m-calculus could be made more resistant to secu-
rity attacks, but the subject is not developed any further. Milner [1991]
considered a form of multi-way synchronisation, superseding both polyadic
synchronisation and joint input, that raised many interesting but non trivial
questions on the theory. Our independent development is strongly biased

2 Although its usefulness has been challenged in the literature, for example by Merro and
Sangiorgi [1998].
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towards enhancing the expressive power of m-calculus without introducing
significant changes in the underlying equational theory.

2. Preliminaries

2.1 The mw-calculus

The 7-calculus (Milner et al. [1992]) is a formalism to describe concurrent
execution of communicating processes based on the idea, inherited from
CCS, of synchronising over named channels. We introduce briefly the syntax
and semantics of the mixed-choice m-calculus with matching (7 for short).
Compared with the original formulation of the calculus, it drops the full-
choice construct in favour of the more well-behaved mixed choice, as found
for example in Sangiorgi and Walker [2001].

Given a countable set of names N ranged over by a,b,c,z,y,z, w, the
syntax of 7 is defined as follows:

(PROCESSES) P:u= 0 | P|P | (vz)P | P | [x=y|P | & a;.F
(PREFIXES) ax= 7| z(y) | Z(y)

The prefix « represents the basic operations of the calculus: z(y) is an
input, Z(y) is an output and 7 is an internal evolution step. The process
> «;.P; represents mixed guarded choice. The notation II; ,FP; is a short-
hand for polyadic parallel composition Pi|...|P,. Sums and products are
usually finite in 7-calculus. The process 0 stands for the inactive process,
(vz) and ! are respectively restriction and replication. The matching opera-
tor [z = y|P behaves like P if z is equal to y, and behaves like 0 otherwise.
Where necessary we will write prefixes of pure synchronisation in the style
of CCS: Z.P will be a shorthand for Z(y).P for some y, whereas z.P will
stand for z(y).P where y does not appear in P.

The structural congruence relation = states when two processes are to be
considered syntactically equivalent, and is defined as the least congruence
satisfying alpha conversion, the commutative monoidal laws with respect to
both (|,0) and (4,0) and the following axioms:

(va)P|Q = (va)(P|Q) if z & fn(Q);
(vx)P=Pifx & fn(P)
[z =z]P = P.

2.1.1 Semantics

The semantics is given in terms of a labeled transition system (Its for short).
The actions of the Its are the prefixes plus the output of a restricted name
Z(vy), as reported below.

(AcTIONS) pu= o | T(vy)
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The subject of an input or output action is the channel used for communica-
tion and the object is the parameter. Given an action u, we recall the notion
of its free names, bound names, and names (respectively fn(u), bn(u), and

n(p) = fn(p) Ubn(pw)).

1 | fn(p) | bn(w)
z(y), Z(vy) | {z} | {y}
z(y) él‘,y} 0

Functions fn and bn are extended in the usual way to processes, in particular
recalling that fn((vx)P) 2 fn(P)\ {z}. A substitution is a partial function
o: N — N. Given a process P, we will write Po for the capture-avoiding
application of o to the free names of P. Notation P{—/—} is equivalent to
Po for o defined only on a single name.

In Table 2.1 we report the late lts semantics for 7. We omit the symmet-
ric rules for (CoMM), (CLOSE) and (PAR). In order to simplify technical
passages we adopt in the lts the redundant rule (STRUCT) that accounts for
structural congruence.

PP, Q"¢

—————  (PREFIX) = (Comm)
plLip 2, pr T(vy) o z(y)
’% (BANG) P — Po—aq (CLOSE)

\p -t pr PlQ — (vy)(P' | Q')
PP i@ =0 (Pan
n( n = R
P|Q - P'|Q
M, pr
r ]: (MATCH)
[z =a]P — P’
— H / I — p/
P=q Q—I;Q @=r (STRUCT)
P— P
Z(y)
p-p P == P
yén(p) (RES) —————y#z (OPEN)

(vy)P == (vy) P’ (vy)P Y pr

TABLE 2.1: Labeled Transition System for 7
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2.1.2 Behavioural Equivalences

We report the definition of strong early bisimilarity, one of the basic be-
havioural equivalences defined on 7 processes.

DEFINITION 1. (BISIMILARITY) A binary symmetric relation S on processes
is an early bisimulation if and only if: PS Q and P L p implies

(1) if = aly) then Vz.3Q' : Q "2 Q' A P'{z/y} S Q'{z/y}
(2) if i is not an input then 3Q" : Q -5 Q' AP’ SQ'.
P is early bisimilar to Q (P~ Q) if PSQ for some early bisimulation S.

Full bisimilarity (~) is the congruence relation defined as the closure of early
bisimilarity under all substitutions ¢. The previous relations are called
strong because they distinguish also processes that differ only by internal
actions. It is interesting in some cases to abstract over 7 actions and consider
bisimulation with respect to visible actions only. Let = be the reflexive

and transitive closure of —— and == be === Moreover let == be
— if yu = 7, =% otherwise. The definition of Weak early bisimulation (%)

is obtained by replacing all of the instances of () LN Q@' in Definition 1 with
Q= Q.

The semantic rules of w-calculus expressing interaction between processes
are (ComM) and (CLOSE), and in both cases the premise of the rule requires
that two parallel processes P and () are able to perform two complementary
actions with the same prefix. Therefore, it is natural to define such actions
as the observables of a process P: they must in fact be visible through the
parallel operator by a context (), in order for interaction to take place. This
justifies the following definition.

DEFINITION 2. (BARBS) The main observability predicates of w-calculus are
the barbs defined as:

Pl, 2 3.0P™Q Pl., 2 3R(P— RAR )
Plz 2 3P QvP™ Q) Py 2 IR(P— RARIz)
Pl 2 3u(Pl, vPly) PU £ 3n (Pl VP

A slash on the vertical arrow (e.g. P ) will mean that it is not the case
that the property holds. An equivalent characterisation of P |, and P |z
is syntactical: P |, = P = (va1)...(ve,)(2(y).Q + M|N), P |z & P =
(vzy)...(vey)(Z(y).Q + M|N) for some name x & x1, ..., Ty, and some pro-
cesses Q, M, and N.

Rule (MATCH) seems to contradict the intuition that barbs (i.e. observabil-
ity) should depend on the structure of a process, regardless of the actual
value of its state (the set of bindings between names and channels). In fact
7™, the sub-calculus without matching, enjoys the following property.
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OBSERVATION 2.1. For any process P in 7, for any name z, and for any
substitution o, P |, if and only if Po |, (), and P |z if and only if Po l@.

PROOF. By cases on the syntax and by definition of barbs. O

Conversely, this property does not hold in 7: given M £ [z = y|z, 01 =
{z/z}{w/y} (where z # w), and o2 = {z/x}{z/y} we have that Moy J/ but
Mos |..

REMARK 1. In the light of what we have just said, we advocate a different
definition of matching in

Syntax : P = .. |[x=y|r.P  Semantics: [v=x|T.P — P (MATCH)

This rule would allow Observation 2.1 to be extended to the whole language,
supporting the intuition that the difference introduced in the observability of
the process is due to an internal reduction: matching becomes an operation,
like in most other languages. We will see in Section 4.1 how this definition
is supported by a correspondence with the derivation of matching in ¢r.

2.2 The mop, family

The asynchronous m-calculus (am) proposed independently by Honda and
Tokoro [1991], and Boudol [1992], is the sub-calculus without summations
and matching, and where output can be prefixed only to the inactive process.

P:= z(y)0 | M | P|P | (vx)P | P
M:= 0| z(y).P | 7.P

Both the previous references show how to encode the synchronous output
Z(y).P in terms of the simpler asynchronous communication mechanism:
the real difference with 7 consist in the absence of matching and, more
remarkably, of choice.

The separate choice m-calculus (79) is the sub-calculus of 7 in which output
and input prefixes cannot be present in the same summation. This restric-
tion is captured by modifying the syntax of processes without affecting the
semantic rules.

P:= 0] %P | %aP.P | PIP | (ve)P | P

ol = 7| z(y)

a® = 7| Zy)

Nestmann and Pierce [2000] have shown how to encode input-guarded choice
in am, and Nestmann [2000] has proposed an encoding of the full 7°.
We denote with 7 the calculus with mixed choice, but without matching.
Palamidessi [2002] has proved that 7" is strictly more expressive than 7*.
Another operator sometimes considered in the 7-calculus is mismatch : it
consists of the production P ::= [x # y|.P, and its semantics can be defined
both by an Its rule or by a structural congruence rule:
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Pt p
X
[z #ylP -t P

#y [ #2P=0

All the sub-calculi that we have seen so far can be extended with match-
ing or mismatching. We will denote the extended versions by append-
ing apices to the calculus name. In the sequel, let mp, be defined as
{am, 75, 7™ an=, 7>~ ,7}. All the variants of the m-calculus considered in
the paper are summarised in Table 3.2.

2.8 Encodings

According to Palamidessi [2002], an encoding is uniform if it translates the
parallel operator homomorphically and if it respects permutations on free
names

[PlQ] = [P]IIQ] (2.1)
Vo 30 [Po] = [P]é (2.2)

and a reasonable semantics is one

“... which distinguishes two processes P and () whenever there

exists a maximal (finite or infinite) computation of @ in which
the intended observables (some visible actions) are different from
the observables in any (maximal) computation of P.”

Condition (2.1) states that the degree of parallelism in the system must
be preserved by the encoding, condition (2.2) states that the structure of
the encoding respects permutations of free names. Since we are interested
in the problem of encoding specific constructs that may occur in 7-calculus
terms, it is sensible to strengthen condition (2.2) to account for arbitrary
substitutions. In fact, a process can be syntactically placed in the scope
of an input, that in w-calculus behaves like a substitution. The following
example illustrates our point.

EXAMPLE 1. (ENCODING MISMATCHING) Consider the homomorphic en-
coding of 7% in 7 with infinite products, where mismatching is translated
as follows:

[lz # y|P] £ Tue pgple =w]P (if = #y) (2.3)
[l #z]P] £ 0
This encoding is uniform and is correct in a very strong sense: [[z #

y|P]~[z # y]P and [[z # z]P] = [z # x]P. Nonetheless it is not satis-
factory because it does not respect arbitrary substitutions:

(otherwise)

(v2)(z(a, a) |2(z,y).[x # y]P) = 0 (2.5)
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(z # y, for the input on z to be defined) and for the encoding to be mean-
ingful, we would expect an equivalent behaviour by its translation, whereas

(v2)(2(a, @) |2(2, y).[lx # y]P]) —— P{a/z}{a/y} (2.6)

The problem is that the term [[x # y]P] contains syntactically the term
[x = z] P that is not affected by the changes made on y after the translation:
it does not respect arbitrary substitutions.

Another appealing property that is not needed for the results in Palamidessi
[2002], but that is considered for example in de Boer and Palamidessi [1994],
Nestmann and Pierce [2000], and Nestmann [2000], is termination invari-
ance. We consider a crucial property of a semantics to distinguish inactive
processes (deadlocks) from processes involved in infinite internal compu-
tations (livelocks). We call sensible an encoding [—] which is (strongly)
uniform, preserves a reasonable semantics, and distinguishes deadlocks from
livelocks.

3. Polyadic Synchronisation in w-calculus

Our proposal is to extend the synchronisation mechanism of 7w-calculus to the
case where channels are denoted by wectors of names, allowing interaction
to happen only when such vectors match element-wise. Synchronisation
remains atomic: we enforce an all-or-nothing behaviour. A typical reduction
might look like

@ - y(2).PlTg(w).Q — P{w/2}|Q

8.1 Syntazr and semantics of °w

To define ¢ we need to generalise the syntax for prefixes given in precedence
to the one given below, where k£ and j are any two natural numbers.

(PREFIXES) o i= 7 | @1-..-2p(y) | 1 2 (y)

A channel is now a vector of names, the synchronisation vector: mw-calculus
is the instance where only vectors of length one are allowed. Synchronisation
vectors will be denoted by letters uw and v. The syntax of processes is the
same as the one for 7™, and all the definitions given in Section 2.1 are
straightforwardly adapted to the case where a vector substitutes a single
name in the subjects of actions. As an example, we report two specific
reduction rules where vector u has replaced name x.

u(vy) / u(y) / u(y) /
P —)T P ) Q — Q (CLOSE) i
P|Q " (vy)(P'| Q) (vy)P Y pr

y¢Zu (OPEN)
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The only exception regards matching: as we will show in Lemma 4.1, match-
ing can be derived in 7w and therefore we exclude both the syntactic pro-
duction and the semantic rule (MATCH) from the definition of °w. As a
consequence, Observation 2.1 holds also for €.

It is worth noting that since restriction is defined on names rather than
on channels as a whole, process P £ z - y(2).Q is such that P |,., but
R = (vz)x - y(2).Q is such that R J, even if y € fn(R).

3.1.1 The my family

We denote with 7 the sub-language where the length of synchronisation
vectors is at most k. A degenerate case is my, where channels are name-
less and processes interact through a global ether®: (y).P | ().Q —
P | Q{y/z}. The sub-calculi defined in Section 2.2 can be analogously ex-
tended to polyadic synchronisation. In particular, 7™ is w1 where prefixes
with vectors of length 0 are ruled out, and 7 = J,, 7. The family of calculi
{amy, mp, amy, w1, amwe, ma, ...} will be denoted by my (see also Table 3.2).

Variants of w-calculus: The 7y family:

aP = # 45 “+m
am - - - = - aP +, ai-..-an
8 v oo - - v — amg — - 0
" v o - - - v am, — — - <n
am= - v - - - o v v 0
N S VN <n
VI v v - Y — e v v <w
T v o v - - v

TABLE 3.2: Some variants of the w-calculus.

3.2 Encoding polyadic synchronisation in m-calculus

It is possible to define a strongly uniform encoding of bi-adic synchronisation
in polyadic ar=%, where we use the conditional construct [a = b|P,Q as an
abbreviation for [a = b]P|[a # b]Q. By transitivity, the same idea can
be used to encode higher degrees of synchronisation. The encoding is a
homomorphism, except for the following cases (w,z,z & fn(P)):

3 Tt is essentially the local communication mechanism of the Ambient Calculus of Cardelli
and Gordon [2000].
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[~ a(c)] = (v2)(bla, c, 2) | Z) B
[ a(y).P] & (vw)(@ | lwb(z,y, 2).[r = a](z| [P]), (b(z,y, 2) |W))

In the encoding of the input we simulate the prefix b-a(y).P in two steps: an
input on b and a matching on a, introducing the need to backtrack in case
of failure. The parameter z added to the communication distinguishes the
behaviour of the two branches of the conditional, and is needed to preserve
the soundness of the translation. Note that if matching fails, the original
state is restored, introducing the possibility of divergence.

—~

{a,c,vz) [b-alve)] £ bla,ve,vz)

[b-afe)] = b
1£0(@,y,2) [r]&7

[b-a(y)

TABLE 3.3: Translation of actions

In Table 3.3 we define the correspondence among the actions of the source
terms and those of the target terms. Note that the correspondence in the
observables is not very strong, in particular the translation of an input action
replaces a free name with a bound name (in [b-a(y)] = b(z, y, 2), = replaces
a). We look now at the properties of the encoding.

PROPOSITION 3.1. The encoding of ams in ar=7% is strongly uniform.

PrROOF. The encoding is homomorphic with respect to parallel composi-
tion. By noting that the encoding preserves free names, and by a straight-
forward induction, follows that for all substitutions o, [P]o = [Po]. O

The encoding is sound with respect to &, whereas it is not complete, as it
can be seen from the following example.

EXAMPLE 2. Let P 2 (va)(b-a) and Q £ (va)(c-a). We have that P20~Q
whereas [P] #:[Q] since [P] |, and [P] Ve, but [Q] |. and [Q] Vp-

The proof of the theorem below is in the Appendix.

THEOREM 3.1. For all processes P and @) in amy:
(1) If P Q then [P] -5~ [Q].
(2) If [P] = Q' then there exists Q such that P = Q and Q' ~ [Q].
(3) If [P]=[Q] then P=Q.
The existence of the encoding shows that it is possible, to some extent,

to achieve the effects of polyadic synchronisation in 7, as long as one is not
concerned with termination properties.
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4. Expressivity of Polyadic Synchronisation

4.1 Matching

We show that the matching operator cannot be derived in mw-calculus, and
therefore needs to be taken as primitive. In 7 instead it is possible to define
matching as a derived operator. This fact constitutes a first separation re-
sult between the expressivity of the two languages. For example, in 7™ it is
not possible to write a tester process able to tell wether or not two arbitrary
names denote the same channel, without disturbing the communications on
the channel (or channels) denoted by those names. The peculiarity of match-
ing is in fact to allow a process to evolve if and only if two names denote the
same observable. Consequently the intended observables to be preserved by
a reasonable semantics of matching are all the visible actions performed on
the channel names that can be tested for equality, and therefore are all the
barbs.

4.1.1 The negative result

We start noting some properties of processes in w and 7.

OBSERVATION 4.1. For any processes P,Q in = or 7, if P — Q then, for
any substitution o, Po — Qo.

PROOF. By cases on the syntax the reduction must be defined on two
input and output prefixes with the same syntactical subject, and therefore
remains executable under any substitution on P. O

The crucial property that characterises the absence of matching in 7 is
that if a substitution does not affect the barbs of a process, then it does not
increase its ability to reduce.

PROPOSITION 4.1. For any process in ©, for any substitution o with do-
main Dy, if (Y& € Dy. P [y AP ) holds and Po —— Qo, then P — Q.

ProoF.  Similarly to the proof of Observation 4.1, if P [, and P J5 for
every z € Dy, then the reduction Po — Qo cannot be obtained by pre-
fixes whose subjects are syntactically different, and therefore the reduction
remains executable also without applying the substitution. O

This law does not hold both in 7 and in ®w. Consider the substitution
o = {z/y}, the m process P, 2 [z = y|7.Q, and the °w process Pe, =
(v2)(z7Z|z - y.Q): both P, J/and Pe, J, but both Pro and Pero can reduce
whereas P, and Pe; cannot. From Proposition 4.1 and Observation 4.1
follows this useful corollary.

COROLLARY 4.1. Let o range over arbitrary substitutions. For any ™ pro-
cess P, if P )/ then (30.Po — Qo) = (Vo.Po —— Qo).



POLYADIC SYNCHRONISATION IN 7-CALCULUS 15

THEOREM 4.1. (MATCHING) There exists no sensible encoding of aw= in
.

PROOF. Suppose that [—] is such an encoding: we have noted that
a reasonable semantics of matching must preserve observations on barbs?,
and therefore

Vz. Py < [P]dz; Vo. Plz < [P] Iz (4.1)

which implies in particular that P }f < [P] {f. Considering M £ [z = y|z
we have that, by definition of matching and by (4.1),

Vo. Mo o) < [Mo] Vo) < o(z) =0a(y) (4.2)

where o is an arbitrary substitution. By strong uniformity the previous
condition becomes

V030, [M]6 Vo) o(x) = o(y) (4.3)

Consider now two substitutions o1 and o3 such that o1(z) = o1(y) and
o2(x) # 02(y). By (4.2) we have that Mo |}, () and Moz {f, and by (4.3)
follows that

3601, 0-. [[M]]@l U’al(x) A [[M]]HQ w (4.4)

Expanding the definition of | we have that
[M]6s Y & YM' [M]0y = M' N M"Y (4.5)

By reflexivity and transitivity of =, applying at each step Observation 2.1
and Corollary 4.1, we can conclude that

vo. [M]6 ¥ (4.6)

contradicts (4.4), therefore a sensible encoding of matching in 7" cannot
exist. O

REMARK 2. In the proof we have used process [z = y]z as a counterexample
for generality: it belongs both to the syntax of Milner et al. [1992] and of
Sangiorgi and Walker [2001]. This term doesn’t enjoy Observation 2.1, but
the proof holds also for process [x = y|7.x, which conforms to our definition
of matching (Remark 1), clarifying that the key property characterising the
non-encodability of matching is Proposition 4.1.

4 The result holds also for a weaker notion of observation preservance: replacing (4.1)
with P | < [P] .
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4.1.2 The positive result

We show that the encoding of matching in ®m preserves strong full bisimilar-
ity. Our encoding confirms the intuition that matching requires both input
and output capabilities on a channel.

LEMMA 4.1. (ENCODING OF MATCHING IN °m) Let P be any process in ‘m=
such that z & fn(P), and let [[x = y|7.P] = (v2)(z-% | z-y.P). Then
[z = y|]T.P and [[x = y|T.P] are strongly full bisimilar (~).

PROOF. By definition of ~, given P and @, P ~ Q if and only if for all o,
Po~Qo. We split the proof according to the behaviour of ¢ on x and y:
- o(x) # o(y): both processes [o(x) = o(y)]7.(Po) and (vz)(z-o(x) | z-
o(y).(Po)) cannot reduce and cannot perform any barb, therefore they
are bisimilar;

- o(z) = o(y): again both processes cannot perform any barb, and both
reduce to the same process
[0(2) = o(y)]7.(Po) — Po (4.7)
(v2)(z-o(z) | z-o(y).(Po)) — Po

By reflexivity of ~, Po~Po.

4.2 Mized Choice

We consider now the expressive power of the mixed choice construct. Pa-
lamidessi’s result, separating 7™ from 7°, holds analogously in our setting.
The key point is that the impossibility to break the symmetry between
identical processes that constitutes the core of the negative result, is not
influenced by the ability to synchronise on more than one channel name. In
fact, we can show that Lemma 4.1 of Palamidessi [2002] generalises to our
setting.

LEMMA 4.2. Let 8 be u(x) or u(vz), and let P be a process of w; for some

n. Assume that P can make two transitions P A, Q and P ) R. Then

there exists S such that Q) M S and R A, S.

Proor. Consider the syntactical definition of summations and prefixes in
m,, where k,j <n

Pi= .. | olP | ZaP.P | .. (4.9)

ol = 1z aly); o%u= 7| T T (y) (4.10)
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and recall the syntactical characterisation of barbs given in Definition 2
35, Q.P " Q & P = (va)...(van)(2(y).Q + M|N) (4.11)
3y, 0.(P 2% Qv P™ Q) & P = (van)...(van) (@y).Q + M|N) (4.12)

where z is different from each x1, ..., z,. We have that

P R e P=(var)..(ven)(0(y).Q1 + M| Ny) (4.13)
P L Qo P=wa)..(ven) @lx).Qs + Mo No) (4.14)

where the names in u and v are all different from x1,...,z,. By (4.9) and
(4.10) we have that M; cannot contain an output at the top level, and Ms
cannot contain an input. Therefore

Ny = Nl|u(z).Qa + M, (4.15)
Ny = N/|U(y).Q1 + M, (416)

that allows us to conclude that N = N’ and
P = (vay)...(van) (U(x).Q1 + Mi|N|v(y).Q1 + Ma) (4.17)

By applications of rules (REs), (OPEN), (PAR) and (PREFIX) follows the
thesis. O

REMARK 3. Technically speaking our Theorem 4.1, which shows that 7% is
less expressive than 7%=, restricts the generality of the separation result
given by Palamidessi [2002], because Lemma 4.1 shown in that reference is
proved only for processes of m°. Nonetheless it is an easy exercise to adapt
the proof of the cited lemma to processes in 7%=, restoring the full generality
of Palamidessi’s result.

Given the confluence property shown in Lemma 4.2, we can claim that an
analogous of Palamidessi’s separation result holds also in our setting.

PROPOSITION 4.2. (MI1xED CHOICE) For any n,m, there exist no uniform
encoding of m, into am,, which preserves a reasonable semantics.

PRrROOF. By inspection of the cases in the proof of Theorem 4.2 of
Palamidessi [2002], replacing Lemma 4.1 of the reference with Lemma 4.2,
we have that a symmetric electoral system cannot be encoded in am,, for
any m. On the other hand, Claim 1 of the reference stating the existence
of symmetric electoral systems in 7", holds also for m, with n > 0, noting
that 7" is a sub-calculus of 7. In the degenerate case of my we have that

for example
() + (x).0(y)) | ((2) + (z).0(2))

is a simple symmetric electoral system with two components. O
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4.8 Polyadic Synchronisation

We show our main expressivity result: the expressive power of calculi in my
depends on the degree of synchronisation. In particular, we show that there
exists a separation problem: it is not possible to write two non-divergent
processes in m, to detect whether two vectors of n + 1 identifiers are equal,
whereas it is possible in m,1.

4.3.1 Matching Systems

We define a family of binary relations on processes called Matching Systems.
In the following, let a server template of degree n be a process whose free
names (the process identifiers) are x1,...,zy,, and let a client template be
defined as a server template with an additional free name y (the process
index). In a matching system, copies of a template of each kind (say S
and C) are instantiated in parallel as in Cyo1]..|Crop|!S101]...|!Sk0), where a
substitution is applied to each process in order to “personalise” its identifiers.
If the same substitution is applied to an instance of a client C; and to one of a
server S, the two instances are meant to recognise each other and perform
some kind of meaningful behaviour. Therefore, a natural requirement is
that the recognition process shall be finite. The process index constitutes the
unique identity of a client. To represent the end of a (successful) recognition
process between C; and S, we require S; to notify the index i of C; on an
additional global channel o that must be used only for this purpose®. We
allow special observations on o, of the form P |54, in order to note the
object of the communication as well as the subject. The Matching Problem
MP,, consists in finding two processes that constitute a matching system of
degree n, according to the following definition.

DEFINITION 3. (Matching System) A client template C and a server tem-
plate S of degree n constitute a Matching System MS,,(C,S) of degree n if
and only if

- for all finite set of server indexes J,
- for all finite sets of fresh client indexes I C (N \ {x1,...,xpn,0}),
- for any set of substitutions {o;}r and {0;}; with domain {x1,...,x,}
(the process identifiers) and codomain N\ (I U{o}),
- for all the processes P of the form ;cr Ci{i/y}o; | ILjcs 1550,
the following properties hold:
(1) there is no infinite sequence of reductions starting from process P;
(2) an output (i) is observable if and only if there are a client i and a

server j with the same identifiers: Vi € I. (P {54 3j € J. 07 = 0;).

5 Without invalidating the result, we allow this special channel also in 7, that normally
cannot have channels.
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Note that the only condition on the server indexes is that J is finite. In fact
the server indexes play a role only at the meta-level, and are not needed
operationally.

EXAMPLE 3. The my processes C' = (y) and S’ = (w).0o{w) constitute a
matching system MSo(C’,S’): C" and S’ have no identifiers, and therefore
every exchange of indices is legal. For example:

(@)@ M (w) 0(w) ===~ 0(i")[o(i*)[o (i) |!(w).0(w)  (4.18)
and the conditions of Definition 3 are trivially satisfied.

EXAMPLE 4. The am processes C = T(y) and S = z(w).0{w) constitute
a matching system MS;(C,S). It is easy to verify that for any possible
substitution parallel instances of the processes interact if and only if the
channels resulting from a substitution on = are equal, and in that case the
identifier of the client is correctly forwarded on channel o by a server.

A crucial property of matching systems is to be open, in the sense that
a process cannot make assumptions on the parallel context where it is ex-
ecuted. In fact, matching systems are closed under parallel instantiation:
given MS,,(C,S) and two instances

I, J, Y é {JZ‘}], @ é {aj}J, P é Hie[ Cz{z/y}az ’ HjeJ !Sjej (4.19)

IJ, T2 iy, A2 {6}y, P2 icp Ci{ify}yi | Wiy 1556, (4.20)
also the parallel instance

Iur, JuJ, sur, euA, P’ = PP (4.21)

is a legal instance of the same matching system, provided that I NI’ = (.

4.83.2 The my Hierarchy

THEOREM 4.2. (EXPRESSIVITY) For all non-negative integer numbers n and
m, the problem MP,, has a solution in m, if and only if n > m.

PRrROOF. (<) We give a process in amy, (therefore also in 7,) providing a
solution to MP,,:

CE2zr amly); S22z zp(w).olw) (4.22)

The degenerate case for m = 0 is reported in Example 3. As required
by Definition 3, every instance of MS,,(C,S) terminates: there are only a
finite number of output prefixes at the top level, and the only outputs in the
continuations of the servers are on channel o, but no input on o is allowed in
the system. The only eventuality in which an output o(i) may be observed
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is when communication happens between two instances of C' and .S subject
to the same substitution.

(=) Counsider the minimal case where m = n+ 1 and assume that MP,, 1
has a solution in m,. We show that this hypothesis leads to a contradic-
tion. Let C,S be those two m, process templates of degree n + 1 such
that M S,4+1(C,S). They must necessarily satisfy conditions (1) and (2) of
Definition 3 for all the well-formed instantiations of their parameters. In
particular, we recall that matching systems are closed under parallel instan-
tiations. With a slight abuse of notation, let C; stand in the sequel for
Ci{i/y}. Consider the instance

P £ Cio; | 1S;0; (4.23)

where o; = 6;: by condition (2) we have that P | 0(7). It must be the case
that neither Cjo; 5(;) nor S;0; {5, otherwise the well-formed instances
Py £ Cjo; and P, £15;0; would not respect condition (2). Similarly, o(i)
cannot be made observable by an interaction of C;o; with a context not
containing !S;0;. We conclude that at least a synchronisation must take
place between a client and the corresponding server in order to verify the
compatibility of the identifiers.

Since the identifiers to be tested are n+1 and both C' and .S by hypothesis
are m, processes, a barb presented by a client can contain at most n free
names. Without loss of generality, suppose that C;o; |, and u = o;(z1) -
... - 0i(xy). For interaction to take place, it must be the case that S;6; |4.
Considering 6, such that 6 = 6; on the first n identifiers but i (zp41) #
0;(xn+1), we have from Observation 2.1 that Sipfr |z, and consequently
process

P3 £ Co; | 150k (4.24)

is such that both Ps; |, and Ps |gz. This shows that in principle C; can
communicate with a process that is not its right partner. Considering now

Py £ Cio; | 1Sk0k[15;0, (4.25)

it may be the case that Py — P}|!S;0; and consequently P; must eventually
attempt a synchronisation with S; in order to satisfy condition (2). We have
shown that C;o; must continue to attempt synchronisation until eventually
identifies S}, since it cannot make assumptions on the parallel context.

Noting that the set J| = {u|S;0; |,} is finite (the free names of S;6; are its
n+ 1 identifiers, and channel o) we can build a finite instance of MS,,(C,S)
that contains an infinite loop, contradicting condition (1)

P, £ Cioi|llnen'Snon (4.26)

where Vu € Jj.3h € H.Oy(z1) - ... - Op(n) = u A Op(Tn41) # 0i(Tpt1). O
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REMARK 4. Observation 2.1 holds also for m and 7=, provided that o is
injective. Therefore direction (=) of the proof holds also if matching is
allowed as a primitive operator in C and S, taking care to chose in the
counterexample an injective substitution ;.

We now look at the separation result from the perspective of encodings.

PROPOSITION 4.3. (POLYADIC SYNCHRONISATION) There exists no sensi-
ble encoding of amp 1 in m,, for any n.

PROOF. Supposing that [—] is such an encoding, we derive a contradiction.
By part (<) of the proof of Theorem 4.2, there are two am,4+1 processes C
and S providing a solution for MP, 1. A sensible encoding preserves the
properties of a matching system and therefore we would have that the two
7, processes [C] and [S] provide a solution for MP,, 1, contradicting part
(=) of Theorem 4.2. O

5. A hierarchy of Expressiveness

To conclude we compare the dialects of m-calculus that we have considered
so far by means of a lattice of expressivity induced by the notion of sensible
encoding.

DEFINITION 4. Given two process calculi P and Q in a set of calculi S, we
write:

- P < Q if there exists a sensible encoding of P in Q;
-P~Qifboth P =< Q and Q = P;

- P £ Q if it is not the case that P < Q;
-P<QifP<Qand QA P;
-P#QifbothP £Q and Q £ P.

LEMMA 5.1. Let S = 7wy U mop, let S/~ be S quotiented by ~, and for
each [Pl~,[Ql~ € S)n, let [Ple =2~ [Ql~ if and only if P X Q. Then
(S/:,j/z) 18 a complete lattice with bottom element amy and top element
°mw, corresponding to the diagram reported in Table 5.4 (where P — Q

means P = Q).

PRrROOF. Noticing that < is a preorder, and ~ is the equivalence rela-
tion induced on S by =, follows immediately that (S/~,=/~) is a partial
order. We now exhaustively check all the significative relations implied by
the diagram.

- am >~ 7%, ar™ ~ 7= in both cases < is an embedding and > follows
from (Nestmann [2000]), noticing in the formulation of Sangiorgi and
Walker [2001] that the encoding behaves well with respect to arbitrary
substitutions.
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-am < an—, ©" < mw: in both cases < is an embedding and ¥ follows
from Theorem 4.1, in the second case noticing that an= < .

-am < 7™ an= < 7, aw, < T, = is an embedding, ¥ follows respec-
tively from (Palamidessi [2002]), Remark 3, and Proposition 4.2.

- (a) amy, < ampy1, T < Tp41: in both cases < is an embedding and %

follows from Proposition 4.3;

(b) amg < amw, oy < 7: in both cases < is a simple encoding where
anonymous communication is translated by communicating on the
same unrestricted channel, and £ follows from Proposition 4.3
noticing that the process given in part (<) of the proof of Theorem
4.2 for n = 1 belongs to ar;

(¢) ar= < am, ™ < ma: in both cases =< is a simple encoding where
matching is translated according to Lemma 4.1, and £ follows
from Proposition 4.3 and Remark 4.

- Tp % amp41: £ from Proposition 4.2 and % from Proposition 4.3.

- am~ % Ty 2 from Proposition 4.3 by noticing that in part (<) of the
proof of Theorem 4.1, M belongs to aw, and ¥ from Remark 3.
According to the ordering =, the results above establish that amg is the
bottom element, “ is the top element and each subset X of S, has limits

inS /~- O

From Table 5.4 emerges that the two constructs of polyadic synchronisa-
tion and mixed choice can be considered orthogonal. On the other hand,
in the light of the results presented in Section 4.1, matching introduces a
difference only when binary synchronisation is not available.

REMARK 5. If a comparison operator and a total order on names were pro-
vided, the leader election problem could be easily solved in the w-calculus
without mixed choice, using for example the LCR algorithm of Chang and
Roberts [1979]. Analogously, if a composition operator on names was pro-
vided as primitive, also the Matching Problem would be solvable in 7-
calculus: the process identifiers could be composed together to constitute a
single channel name.

6. Conclusions and Future Work

Concluding remarks. We have extended the synchronisation mechanism of
m-calculus to allow for polyadic synchronisation, where channels are vectors
of names. It is a simple idea that has been adopted implicitly in many other
calculi, but a formal treatment of its expressivity has not been given until
now.

We have shown that matching cannot be encoded in 7-calculus, whereas it
is expressed naturally in terms of polyadic synchronisation. We have shown
how a restricted form of polyadic synchronisation can be encoded weakly in
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aTo

TABLE 5.4: Expressivity Lattice

m-calculus and how, in the general case, the higher the degree of synchron-
siation of a calculus, the greater its expressive power. We have adapted the
results on mixed choice to m, concluding that polyadic synchronisation and
choice are independent from one another.

We have not delved into the question of the expressivity of mismatching,
and we conjecture that it is not encodable in 7 (and consequently in 7).
Mismatching is seldom considered in the literature, it does not seem to have
many applications, and it complicates the equational theory of m-calculus.
A remarkable exception is the work of Frontana [2001], who proposes mp
(an extension of m-calculus with a blocking operator) to reason about the
concept of dynamic binding in process calculi. He shows that mg and 7=7
are mutually encodable. Polyadic synchronisation allows dynamic binding
to be expressed in the w-calculus framework in a different way. The Dm
example reported in the introduction, shows how a migrating process can
gain access to the local names of a subsystem without requiring any explicit
communication: the dynamic binding and re-binding of names is implicit in
the semantics.

A possible interpretation of our main expressivity result is that locations
are a fundamental concept in distributed calculi, since the attempt to en-
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code them in models with simple synchronisation in general introduces di-
vergence. We believe that ¢m has the expressive power to represent nested
locations, but only in a static setting. The Ambient Calculus instead, seems
to be beyond the reach of the expressive power of the model of synchroni-
sation adopted by m-calculi.

Future work. We identify three major lines of development for €r:

(1) identify how the ability to encode cryptography, distribution and con-
current objects in the ®m setting can improve the understanding of
these issues;

(2) consider how and to what extent the sorting and typing disciplines for
m-calculus can be generalised to °;

(3) consider further extensions of the synchronisation mechanism, explor-
ing the ideas of Milner [1991] in the light of the recent work of Nestmann
[1998] concerning joint input, and of our work on polyadic synchroni-
sation.
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Appendix A. Proof of Theorem 3.1

In the following we will distinguish between a relation (e.g. structural con-
gruence) in ar=7 and the corresponding notion in ams, by labeling the
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former with the symbol 7 (e.g. =,). We report below the lemmata used in
the proof of Theorem 3.1.
We start with a simple property based on the definition of barbs.

OBSERVATION 1.1. For any process P in amg\am:

(1) if p el Q then P=0b-alc)|Q;

bal/c

(2) if P ol Q then P = (ve)(b- alc) | Q);
(3) if P balz) Q@ then for some P;, P, and some 7 such that a,b &€ 7,
P=(wn)(b-a(z).P|P) and Q = (vn)(P1 | P2).
Proor. Follow directly adapting Definition 2 to ¢w. O

We now establish a strong operational correspondence between the actions
of a term and the actions of its encoding.

LEMMA 1.1. For any process P in amy\amy, if P £, Q then:

(1) if u € {b-ale), b-alve)} then, for any2€fn( ), 1P1 -, =1 Qs

(2) if u="b-a(y) then 3Q".[P] —x b@y,2

o ifo(z) =a, Qo~y zo|[Q]o;
o ifo(x) #a, Qo ~ypblz,y,2)o|[P]o;

(8) if p =7 then [P]——r——r—r ~x [Q].

ﬂ Q' and for any o : {x,y, 2} —

PROOF.

(1) If p = b - a(c), by Observation 1.1 we have that P =b-a(c) | Q
By definition of the encoding and lts, follows

b-a(c)
—

Q.

acuz

[P] =« (v2)(Bla, . 2) |2) | [Q] 57 7| [Q]

Note that using alpha conversion on z before applying the (OPEN) rule,
it is possible to derive an analogous transition for any 2z’ ¢ fn(P).

The case for yp = b - a(vy) is analogous to the previous case.

(2) If p’ Q then by Observation 1.1 we have that P = (vn)(b -
a(y ).P1|P2) and @ = (vn)(P;|P;). Consequently, by definition of

encoding and lts, [P] Lﬂb(ﬁz)ﬂQ’ where

Q' = (va)( (vw)( [z = d(I[P]), (b(z,y, 2) | W) |
fw.b(x,y,2).[x = d](z] []), (b(z,y, 2) | W) )|
[F-] )
Now for all o, if o(z) = a then Q'o =,
(vi) (0| [Pi]o ] (vw) (w.b(e, y, 2).[o = al (=] [PL]), (B, y. 2) | ) | [Po]o)
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=r zo|(vn)([PA] | [Po]|(vw)(lw.b(z, y, 2).[x = a](z | [A]), (b(z, y, 2) | W)))o
~r 20|[Q]o;

on the other hand, if o(x) # a then,

Qo =x

[ wb(z, y, 2).[x = a)(z| [P]), (Blz. . 2) | D))o | [Pa]o)

~m b<$,y, Z>0—H[P]]O—'

Note that in both cases the restrictions on 7o and w do not interfere

with the names substituted by o, because of the latter being capture-
avoiding.

(3) p = 7. A 7 action could be achieved by the rules (CoM), (PAR),
(CLOSE), (BANG) and (REs). We just show the (CoM) case as the
other ones are similar. Applying rule (CoM) we have that P = P; | P,
for some P;, P», and

b-a b-alc
Py o) Q1, P g Qo
PPy Qi{c/y} | Q2

By point (2) there exists @', Q" and Q" such that
© [[PIHL’WQ//a
o Q")
o and if o(z) = a, Q' o~y 20|[Q1]0.

By point (1) and rule (CLOSE)

b{a,c,vz

Q") o [P 21 [Qal, o = {a,c, 2/, y, 2}
Q" | [Pa]—=x(v2)(@c | 2] [Qa])

where o(a) = x and again by (Com) and (RES)

Q'0-—:Q", Z|[Q2] Q2]
(v2)(Qo| (Z| [P2]) = (v2)(Q" | [Q2])

Note that z is not free in Q" or [Q2], giving us (v2)(Q" |[Q2]) ==
Q" [Q2], which allows us to conclude, again by point (2), Q" | [Q2] ~x

[@1]1[Q2].

O
The following lemma explores the relation between weak actions, from a

term to its encoding.

LEMMA 1.2. For any process P in amy\am;
(1) if P =5 Q then [Pl=r—r—r—r==r~n [Q];
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(2) if P =5 Q, where p € {b-alc), b-alvy)}, then for any z & fn(P),
(P12 -+~ 2| [Q);

(3) if P = R"“YW— Q then 3R, Q" .[P]=>n R —." "% — @, and
for any o : {x,y,z} = N,

o ifo(x) =a, Qo~r zol[Q]o;
o ifo(x) #a, Qo ~y blr,y, 2)o|R'c and R’ ~, [R].

PROOF.
(1) By point (3) of Lemma 1.1 and by transitivity of ~.

(2) By points (1) above and (1) of Lemma 1.1.
(3) By points (1) above and (2) of Lemma 1.1.
(]

We now establish a limited form of correspondence between strong actions
in encoded terms and actions in the original terms. This lemma will be useful
to establish the weak correspondence needed to prove soundness.

LEMMA 1.3. For any process P in amo\am :

(1) If [P] —x Q’ where p € {bla,c,vz),bla,ve,vz)}, then there exists
Q such that P bate Q (respectively b-a(ve)), Q' =, z|[Q] and z &
fn(Q).

(2) If [P]"x b(x—’yffr) Q' then there exists a,Q such that for any o :
{;U7 y7 Z} - N7

oifo(x)=a, Qo ~y z0|[Q]o;
o if o(x) #a, Qo ~z blz,y, 2)o | [P]o;

and, if a € fn(P) then P baly) Q;
PROOF.
(1) By Definition 2, if [P] (a_c)l/ﬂz @’ then by the presence of a bound name

as third parameter in the output action and by definition of encoding,
P = b-alc)|Q and [P] =, (v2)(bla,c,2)|Z)|[Q]. By rule (OPEN)

[P] Hecr) Z | [@] and by construction z & fn(Q).
The case with balve) is analogous.
(2) Analogous to point (1), reasoning similarly to point (2) of Lemma 1.1.

O

The next two lemmata are technical lemmata needed to prove the weak
operational correspondence between tau actions.

LEMMA 1.4. If [P]%,P" and P'~",Q" then 3Q.[P]=-[Q] and [Q]~.Q'.
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ProOF. If [P]%,Q" we are done taking Q = P. If [P]#,Q’, then by the
hypothesis [P]%, P’ we have that it must be the case that IR.[P]=—R,
and R%~,Q’ but R#Z,[P]. By definition of encoding, the only actions that
[P] can perform without preserving weak bisimulation, come from the trans-
lation of a communication in ¢w. We can chose a trace of actions, originating
from [P] such that for each such reduction there is one and only one step of
initialisation and termination of the protocol. Since all those additional steps
preserve weak bisimilarity, we have that [P]==,R implies 3Q.[P]=[Q]
where R, [Q]. By transitivity of ~,, we conclude. O

LeMMA 1.5. If [P]=7[Q] then P = Q.

PRroOF. Follows by definition of encoding and by induction on the number
of reduction steps. O

We can now state the weak operational correspondence between actions
in encoded terms and actions in source terms.

LEMMA 1.6. For any process P in ams\am:
(1) If [P]==,Q' then there exists Q such that P = Q and [Q] ~ Q'.

(2) If [P]==:Q" where p € {bla,c,vz),bla,ve,vz)} then there exists Q
such that P "5 Q (respectively b-a{vc)) and Q' =~ Z|[Q] and z ¢
fn(Q).

(3) If [[P]]:>7FR’L>WI](@>Z)W:>WQ’ then there exists a,Q, R such that
P = R and, for any o : {z,y,z} = N,

o if o(z) = a, Qo s 20| [Qlo
o ifo(z) #a, Qo ~y blr,y,2)0| R'o and R =~ [R];

and if a € fn(P) then R bﬂ):> Q.

PROOF.
(1) Follows from the preceding two lemmata.

(2) Follows by point (1) above and by point (1) in Lemma 1.3.
(3) Follows by point (1) above and by point (2) in Lemma 1.3.
(4) Follows by point (1) above and by point (5) in Lemma 1.3.
O

The following lemma states the soundness of the encoding.
LEMMA 1.7. If [P]%-[Q] then P=Q.

PROOF. In the proof we reason up to weak bisimilarity, following a re-
mark of Sangiorgi and Milner [1992]: the technique is sound because we are
considering weak actions both for the player and for the adversary in the
bisimulation game. We split the proof in four cases.
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o P "% p.. by point (2) of Lemma 1.2 [P] 22

> & fn(P); by the hypothesis [P][Q], [Q]" 2™, /%2 | [PA]: by

point (2) of Lemma 1.6 we have that 3Q1. Q baly) Q1 and Q'Z%,Z|[Q1];
by transitivity of &, we have that Z|[P1]%,Z|[Q1]; by definition of
A~ ., noting that z is fresh, we have [Pi]~,[Q1]; inductively, P1~Q.

« ~ 7| [P], for any

ba .. .
o P az%J ) P similar to the previous case.

o p W P;: by point (3) of Lemma 1.2, there exists P’ such that

[[P]]b(%z)ﬂ]?’ and for any o : {z,y,2} — N, ifo(x) = a, P'o~y zo|[Pi]o,
where z ¢ fn(P), by definition of encoding. By the hypothesis [P]~,[Q]

. b(zx,y, .
and by definition of /&, it must be the case that [Q] (:C——yf)ﬂQ’ o=, Plo.

By point (4) of Lemma 1.6, we have that there exist a’, Q1 such that,
for any o : {z,y,z} = N, if o(z) = @/, then Qo = zo |[Q1]o, and if

a € fn(Q) then Q bg) 1. Considering all the substitutions o such
that o(z) = a and o(z) = w for some fresh name w, from the hypothesis
Q04 P'c we have that a = @/, obtaining w|[P]o~&,w | [@1]o. From
the freshness of w follows that [Pi]o~;[Q1]o, whence by uniformity
of the encoding, follows inductively Vo.Pio~,Q0.

o P == P;: by point (1) of Lemma 1.2, there exists P’ such that [P] ==
P’ ~; [P1]; by the hypothesis [P]%,[Q] and by definition of =,
3Q'. [Q]==+Q’, and P'%~,Q’; by transitivity of &, and by point (1)
of Lemma 1.6 we have that 3Q1.Q = @1 and Q' =~ [Q1]~:[F];
inductively, P1=Q).

O

Reassuming, we report the statement of Theorem 3.1 below.

(THEOREM 3.1.) For all processes P and Q in ams:
(1) If P - Q then [P] -~ [Q].
(2) If [P]=>Q’ then there exists Q such that P — Q and Q' ~ [Q)].
(3) If [P]~[Q] then PZQ.

PROOF.
(1) Point (3) of Lemma 1.1.

(2) Point (1) of Lemma 1.6.
(3) Lemma 1.7.

O



