
SQIRL: Grey-Box Detection of SQL Injection Vulnerabilities Using Reinforcement
Learning

Salim Al Wahaibi
Department of Computing
Imperial College London

s.al-wahaibi21@imperial.ac.uk

Myles Foley
Department of Computing
Imperial College London

m.foley20@imperial.ac.uk

Sergio Maffeis
Department of Computing
Imperial College London

sergio.maffeis@imperial.ac.uk

Abstract

Web security scanners are used to discover SQL injection
vulnerabilities in deployed web applications. Scanners tend
to use static rules to cover the most common injection cases,
missing diversity in their payloads, leading to a high volume
of requests and false negatives. Moreover, scanners often
rely on the presence of error messages or other significant
feedback on the target web pages, as a result of additional
insecure programming practices by web developers.

In this paper we develop SQIRL, a novel approach to detect-
ing SQL injection vulnerabilities based on deep reinforcement
learning, using multiple worker agents and grey-box feedback.
Each worker intelligently fuzzes the input fields discovered
by an automated crawling component. This approach gen-
erates a more varied set of payloads than existing scanners,
leading to the discovery of more vulnerabilities. Moreover,
SQIRL attempts fewer payloads, because they are generated
in a targeted fashion.

SQIRL finds all vulnerabilities in our microbenchmark for
SQL injection, with substantially fewer requests than most
of the state-of-the-art scanners compared with. It also signifi-
cantly outperforms other scanners on a set of 14 production
grade web applications, discovering 33 vulnerabilities, with
zero false positives. We have responsibly disclosed 22 novel
vulnerabilities found by SQIRL, grouped in 6 CVEs.

1 Introduction

The prevalent use of SQL databases as part of web appli-
cations constitutes a significant attack surface for malicious
actors. Despite a substantial body of research on SQL injec-
tion (SQLi) [4–6,8,12,13,17–19,21,24,28,34,55,58], recent
surveys such as [52] and the OWASP Top Ten [35] still find
SQLi to be one of the most common attacks against web ap-
plications. Sanitisation methods, such as those recommended
by OWASP [36], and best-practice defenses, such as param-
eterised queries and stored procedures, are often ignored or
incorrectly applied by developers [7, 45]. Such insecure prac-

tices and misconfigurations can lead to SQLi vulnerabilities
which are hard to find, as they are triggered only by complex
payloads [57].

Vulnerability scanners are commonly used to find vulnera-
bilities before they are placed in production. However, they
sometimes rely upon incorrect handling of errors and feed-
back from SQL queries on a web page, leading to reduced
effectiveness when these are not present. Scanners such as
Wapiti [2], use a small set of payloads from a payload list, with
minimal mutation or obfuscation techniques. Others, such as
Sqlmap [1], use simple rule-based approaches to cover the
most common SQLi payloads. By using payloads which lack
diversity, and due to their inability to tailor payloads to spe-
cific web applications, scanners miss legitimate vulnerabilities
and use a high number of requests in doing so [29, 32, 57].

To overcome such limitations, we develop a novel approach
to the automatic discovery of SQLi vulnerabilities which
leverages Reinforcement Learning (RL) to generate payloads
targeted to each injection point, specific context, and defenses.

RL has seen little adoption in web security [10, 16, 23, 25]
due to the difficulty of formulating security challenges as RL
games. We create an RL environment which separates the
complexities of crawling and interacting with a web appli-
cation and potentially multiple databases from the task of
discovering new payloads. We do not require access to the
application source code, but leverage access to the database
logs. This grey-box approach makes it possible to avoid false
positives and to effectively identify the application inputs
that occur in SQL queries. It encourages best programming
practices, and is a useful tool for defenders (which can access
logs) and it does not enable uninvited attacks.

Link [23] was the first deep RL model used to find injec-
tions, specifically XSS, in web applications in a black box
fashion. In comparison to practical tools such as BurpSuite,
Link managed to reduce the number of requests per vulnera-
bility found, and find a comparable number of vulnerabilities
in production web applications.

Off-the-shelf deep RL models, such as those used by Link,
suffer from a number of limitations which we address by



designing a more sophisticated RL architecture. First, to over-
come difficulty in using the variable length and complexity
of SQL statements and SQLi payloads, we introduce autoen-
coders to provide a meaningful latent representation. Second,
we use a diverse action space that requires no bootstrapping by
existing payloads. Third, we leverage multiple worker agents
to improve the stability of the learning process, and runtime
performance. We also explore the possibility of training the
agents in a federated learning fashion, providing each with
different payloads.

We demonstrate our approach is effective and practical by
comparing it against a number of established web applica-
tion scanners, both on a micro-benchmark, and on production
grade web applications. We then compare the advantages of
our design choices in a model ablation study. Our approach
finds more vulnerabilities than other scanners, and does so
using fewer requests. In particular, it discovers 22 new SQLi
vulnerabilities, which we have responsibly disclosed.

Summary of contributions:

• We implement an RL environment for agents to fuzz
web applications for SQLi that identifies inputs via a
state-of-the-art crawler we extend. The environment im-
plements actions for different database management sys-
tems (DBMS), so agents are target-agnostic.

• We design and implement a novel deep RL approach to
fuzzing called SQIRL. A single RL agent completes three
tasks of SQLi: syntax fixing, context escape, and sanitisa-
tion bypass. Using worker agents in a federated style this
knowledge is then shared among the agents. We explain
the significance of our model design choices with an ab-
lation study, and make our implementation publicly avail-
able at https://github.com/ICL-ml4csec/SQIRL.

• We compare SQIRL against 5 state-of-the-art scanners
on a novel benchmark and 14 web applications. Our
tool identifies the most SQLi vulnerabilities (63) of any
scanner, and has currently led to 22 new vulnerabilities
summarised in 6 CVEs.

• We analyse the payloads of the web scanners we use
in our evaluation to determine their payload diversity.
SQIRL achieves the greatest payload diversity and uses
the most features in doing so.

2 Background

2.1 Reinforcement Learning
Reinforcement Learning (RL) is a branch of machine learning
that has an agent learn an optimal policy (p) of actions (a)
in an environment. The agent does so by maximising the
expected reward (r) over a sequence of timesteps referred
to as an episode. After a timestep the agent receives a state
(s) which it uses to choose the next action [49]. The reward,
rt , received from taking action at , is used to determine the

performance of the action, leading to the expected episodic
reward after the terminal step T giving: R = å

T
t=0 grt , where

g is the discount factor.
To encourage the agent to explore its environment, an e-

greedy decay exploration takes random actions with proba-
bility e, otherwise taking the policy action. e is initially set
to a high value and gradually decays to a minimum, placing
emphasis on the policy.

One way to compute optimal actions is Q-learning, as
described by the Bellman equation: qp(s;a) = Ep[rt+1 +
gmaxat+1 qp(st+1;at+1)] which, given the previous action and
state, computes Q-values corresponding to each action [31].
However, Q-learning suffers from the “curse of dimensional-
ity” as state-action spaces become large. Instead, deep learn-
ing can be used to approximate the Q-values in a Deep Q-
Network: a Q-Network (Q) computes Q-values using the state
in a semi-supervised fashion; a Target Q-Network (Q̂) is used
to compute the loss of the agent; Q̂ is periodically updated
to Q, allowing the networks to converge to an optimal pol-
icy [53].

2.2 Federated Learning

Federated Learning (FL) is a decentralised form of machine
learning. A number of client models are trained independently
for a period, sending the parameters they have learned to a
central server model, which aggregates them (typically by
averaging) and then broadcasts the updated weights back to
the clients. FL has been recently proposed for use in RL
models [41]. Federated RL comes in two different flavors:
horizontal, where clients interact with different environments,
and vertical, where clients interact with multiple instances of
the same environment. Vertical RL is often referred to as using
‘rollout workers’ or simply ‘workers’ in RL settings [30].

3 Motivation and Challenges

An injection vulnerability aims to trigger unintended func-
tionality on a web application, typically violating a (possibly
implicit) security policy. The particular functionality can vary
from remote code execution to data exfiltration. In this paper,
we focus on SQLi, which injects a payload, typically into the
client side of a web application, aiming to cause the execution
of an unintended SQL query on the web application database
on the server. The simplest form of SQLi produces some feed-
back on the web page that triggered it, where a query result is
returned. A harder to find, but more powerful variant, called
blind SQLi, instead works even if there is no query feedback
on the web page, for example when a web application server
only issues generic responses to the client, such as ‘Thanks
for submitting your survey’. In our research, we address both
forms of injection.

There are two mains steps for finding SQLi vulnerabilities.

https://github.com/ICL-ml4csec/SQIRL


Table 1: A: SQLi payload (highlighted in pink ) escaping its SQL context to cause the database to pause for 1 second.
B-D: SQL queries showing 13 semantically different positions where user input can occur.
E: current WordPress example of dangerous parameterised query pattern.

A: SELECT * FROM tab WHERE val = ' ' AND SLEEP(1) -- '

B: SELECT input_1 FROM input_2 WHERE input_3 = 'input_4' GROUP BY 'input_5'
C: UPDATE input_6 SET ("input_7", "input_8")
D: INSERT INTO input_9 (input_10 , input_11) SET ('input_12', 'input_13')
E: $query = $wpdb ->prepare( "SELECT $id_column FROM $table WHERE meta_key = %s", $meta_key );

1. Identify the input locations that may be vulnerable to
SQLi. These include URLs, input tags, and dynamic link
elements associated with a web page.

2. Once the input locations are found, relevant payloads can
be crafted. Payloads must meet 4 criteria to trigger SQLi:
1) produce syntactically valid SQL, to avoid errors in
execution, 2) escape the intended SQL context, 3) bypass
any blacklist-based filtering applied to the payload, 4)
change the intended behaviour of the SQL statement. For
example, assuming no filtering, the payload shown in red
in Table 1 escapes the ' and executes a SLEEP statement.

Table 1 shows three SQL statements (B-D) that could have 13
different input locations, and 10 different contexts (as inputs
in parentheses share the same context). For each context, a
different escape pattern is required to trigger a vulnerability.

While methods to prevent SQLi are well-known, they are
often ignored or misused [7, 45], and SQLi was still the most
common web injection attack in 2020 (68.21%), accounting
for over 4 billion attacks [3]. The safest way to prevent SQLi
is to use parameterised queries to render user inputs benign.
This practice has developers define the types of SQL query
parameters before binding them to a query template, enforc-
ing type preservation. Although most modern web applica-
tions use parameterised queries, these are sometimes used
following insecure patterns. For example, current WordPress
code [56] includes line E from Table 1, which protects its last
parameter by coercing $meta_key to a string, but could be
vulnerable to SQLi if variable $id_column was previously
injected with the payload * FROM accounts --.

Some modern web applications, and many legacy ones
(which constitute the bulk of existing websites), attempt to
prevent SQLi by filtering user input. Developers can take
many different approaches including basic string manipula-
tion, regex matching, and rule-based approaches. However,
these implementations are dependent on the skill and knowl-
edge of the developer. Thus some instances of these inputs
may be vulnerable to SQLi, but require specific, tailored pay-
loads to be found. Existing vulnerability scanners consider
only the most common cases of SQLi, failing to capture the
complex cases that occur due to different developer knowl-
edge or implementation. Moreover, existing approaches lead
to a high volume of requests and a corresponding substantial
execution time, which is undesirable.

Figure 1: Principal Component Analysis of SQLi payloads.

3.1 SQLi Payload Distribution

Recent work [57] has shown the increasing complexity of
payloads that are required to detect SQLi, recognising several
characteristics of existing SQLi payloads. One is the sparsity
of existing payloads, specifically that in response to input val-
idation and sanitisation, payloads that are able to bypass them
become increasingly complex. Another characteristic is the
uneven distribution of existing payloads that leads to clusters,
where vulnerabilities occur from variations of a payload.

To illustrate this we provide a Principal Component Analy-
sis (PCA) dimensionality reduction of 1028 unique payloads
gathered from open-source injection payload lists [38, 50, 51]
and scanners (e.g. Wapiti). This is achieved by tokenising the
payloads via Byte Pair Encoding [44], extracting 128 feature
embeddings of each payload using Doc2Vec [22], and per-
forming PCA to reduce the embeddings from 128 dimensions
down to 3.

The three-dimensional PCA in Figure 1 demonstrates the
uneven distribution of payloads present in the latent payload
space, seen by the dense cluster and points that spread around
it. Importantly, it further confirms that commonly used SQLi
payloads, including those in scanners, share similar features
in a dense distribution.

It is unlikely that all legitimate payloads are captured in
this distribution, as there is a large space left unexplored. We



hypothesise that in this space there are alternative payloads
that lead to SQLi. Note however, that not all points in the latent
space of Figure 1 correspond to legitimate SQLi payloads, as
they must also conform to the syntax requirements of SQL.

3.2 Existing Scanner Methods
While research has been conducted to detect SQLi using tra-
ditional fuzzing paradigms, popular static analysis methods
such as constraint solvers are unable to solve the different
type of constraints precisely, leaving behind a high number
of false negatives and false positives [29, 32].

A common defense technique is to use web vulnerability
scanners to identify SQLi early, before attackers do, by issuing
a curated set of requests to the web application, and observing
its responses. However, current scanners still miss legitimate
SQLi vulnerabilities. Scanners such as Wapiti, and Arachni
[27] use a small number of simple payloads, and do not mutate
them, offering no dynamic payload generation methods to
bypass sanitisation. While Sqlmap [1] is seen as a “gold
standard” for fuzzing for SQLi, it doesn’t focus on generating
diverse payloads, instead focusing on breadth of functionality,
offering a number of different configurations such as type cast,
false positive, and length constraint detection. Whilst payloads
in Sqlmap are generated by a rule-based system or automaton,
Sqlmap is not able to tailor generation to specific targets,
limiting payload diversity. Furthermore, it only considers a
small set of anti-sanitisation methods (e.g. for addslashes of
PHP).

3.3 Challenges of Using RL for SQLi
Given the sparsity and uneven distribution of SQLi payloads,
it is difficult to develop automata or heuristics to adequately
cover their diversity. RL is able to search over large state
spaces to find an optimal solution by balancing exploration
and exploitation, and it is a natural candidate for this task. An
RL-based solution could tailor its strategy to individual test
cases, thus efficiently generating diverse payloads. However,
there are several challenges that must be overcome.

3.3.1 Interaction with the Web Application

In game playing settings, it is clear how an agent plays a game.
For SQLi, it is not so clear how an agent should interact with
a web application. In prior work [13] this challenge was not
fully explored, only using RL in contained environments and
not on real web applications. This is due to the difficulty in
designing a general environment where an agent is able to
interact with different web applications and DBMS.

3.3.2 Maximising Information Usage

An RL agent needs to have an understanding of the structure
and syntax of the current payload so that it knows which

mutations, or actions, to take. How the agent observes this
payload will dictate how the agent performs. The question is
how to provide this information in a meaningful and concise
manner. In prior work [13,23], this has been captured by a set
of manually defined features about the payloads themselves.
While domain knowledge is often useful for RL, each set of
bespoke features will impact the agent differently, and may
not contain enough meaningful information. For example,
traditional features would struggle to relate the presence of a
SQL keyword with the position where it occurs. Hence, we
face a challenge of how to maximise the usage of information
about the payload we are generating and the whole SQL query
we are trying to exploit to improve the learning process.

3.3.3 Generating New and Diverse Payloads

RL in general has difficulty in adapting to new actions, so
most approaches adopt fixed action spaces. This is even more
so in deep RL where input states, and output Q-values are
vectors of fixed length.

The agents in [13, 23] use a fixed action space. With a
fixed action space, useful payload-generation tasks such as
matching the number of open parentheses in an expression can
only be done by relying on nondeterminism, which has a high
performance cost. This is analogous to randomly sampling the
correct string from the language generated by an automaton
or grammar.

Using a dynamic action space, an agent can modify a pay-
load at specific meaningful points. For example, consider the
query snippet WHERE (x=1 AND y='$input') LIMIT 1. A typ-
ical first attempt at exploiting the query would be the payload
' OR 1=1 --, which fails because of unmatched parenthesis.
An agent with a dynamic action space could learn to insert
) directly in the right place to prevent the error and obtain
results from the query, using payload ') OR 1=1 --.

4 SQIRL

We developed a novel approach to fuzz for SQL injection
vulnerabilities leveraging RL worker agents to search over the
potentially infinite space of injection payloads, strategically
tailoring payloads to different injection points. We show the
full architecture of SQIRL in Figure 2. Below, we describe the
individual components and the architecture design.

4.1 An RL Environment for SQLi
The environment abstracts the web application to the RL
agents as a component that receives an action and returns
an observation. It encompasses all mechanisms that allow
for payloads to be submitted to the web application. It also
includes crawling the web application and monitoring the
SQL database to provide the feedback mechanism that allows
the agent to learn how to tailor SQLi payloads.



Figure 2:SQIRL architecture. RL agents (green) compute the mutation of the current payload. TheN federated local workers
(purple) train different agents to gather experiences for the global agent. Environment elements that interact with the web
application (blue) then �nd input locations, submit payloads in requests, and monitor the database for successful injections.

We reformulate the problem of creating valid exploits into
three separate RL games.Context Escapeconsists of escaping
the intended context of the input in the SQL statement. This al-
lows the payload to execute as SQL as discussed in Section 3,
thereby reducing false negatives. This is challenging as pay-
loads can be injected in a variety of different contexts in SQL.
By doing this, agents implicitly learn and correct the SQL
syntax. Examples of SQL contexts are shown in Examples
B - D in Table 1.Behaviour Changeconsists of changing the
behaviour of the SQL statement to cause unintended function-
ality. In SQLi this can be either a change in the output of the
query, or a manipulation of the database or its data. To prevent
any damage on the target,SQIRL demonstrates SQLi with
a SLEEPstatement as proof-of-concept.Sanitisation Escape
is triggered when trying to solve the �rst two games. When
a web application changes the payload and prevents it from
being effective,SQIRL must attempt to escape sanitisation
by replacing the affected statement with a semantic equiva-
lent one, an approach that is limited in existing scanners (see
Section 3.2).

4.1.1 Crawler

Given a starting URL, the Crawler is able to recursively look
for anchor tags and URLs within the same domain, which are
then queued for exploration. On each web page, the Crawler
�nds two types of possible input: forms and dynamic URLs.
In each input, it injects a unique token that is searched for by
the SQL Proxy component, to identify unique input-output
combinations that correspond to interaction with the web
application database.

Note that an exhaustive search of the input injection space
is beyond the scope of this work. Instead, we extended the
state-of-the-art Black Widow crawler [14]. In particular we
capture dynamic AJAX requests to increase the attack surface
analysed bySQIRL. We also integrate the crawler with the new
SQL Proxy component, to detect the unique tokens injected
in each input without relying on information leakage on a
web page, extending our coverage to blind injections.

4.1.2 SQL Proxy

The SQL Proxy acts between the Payload Control Module and
the database. It retrieves an SQL statement from the database
log �les which contains the unique token present in the current
payload, or reports if an error occurred. The SQL Proxy is
used for the crawling and fuzzing phase ofSQIRL. To reduce
redundancy in the fuzzing effort, the SQL Proxy removes
duplicate statements, and if multiple SQL statements exist
containing the unique token, it selects the one most similar to
the original SQL statement triggered during crawling.

4.1.3 State

A stateat timet is made of three different components: the
payload injected att � 1; the SQL statement that has been
extracted from the SQL Proxy at timet � 1 (in the case of
an error and no new SQL statement, we use the one captured
at t � 2); and a bite to �ag if there was a SQL error at the
previous time step. To reduce the space of possible states, and
encourage generalisation, the payload and SQL statements
are converted into a generic form: string and integer values



Algorithm 1: The transition function used to compute
the reward, termination condition, and next game.

Function transition( et , payload, step,
max_step) :

done = False
step++
if et == 0:

if behaviourChanged(payload) :
r = 0
done = True

elif sanitised(payload) :
game = sanitisation_escape
r = -1

elif escapedContext(payload) :
game = behaviour_change
r = -1

else:
game = context_escape
r = -1

else:
game = context_escape
r = -1

if step == max_step :
done = True

return r, done, game

are replaced by the generic tokensSTRandINT, respectively.

4.1.4 Extrinsic Reward

RL agents need feedback on how their actions perform. Thus,
we de�ne a reward function to motivate the discovery of
SQLi vulnerabilities. Our handcrafted, orextrinsicreward is
designed to have the agent progress through the three games to
reach a legitimate vulnerability. We base this on the standard
sparse reward function used in RL, where agents are only
rewarded for completing the �nal objective; however, we use
a negative reward to incentivise the agent to �nd legitimate
payloads as quickly as possible.

The transition function used to compute the extrinsic re-
ward is shown in Algorithm 1. If no error occurs, we detect if
the payload changed the SQL behaviour, triggering the suc-
cessful termination condition and rewarding 0. For instance,
if a SLEEPkeyword is injected and is unsanitised outside of
the intended context it would be a legitimate SQLi payload.
Otherwise this provides a reward of -1 if the payload: 1) fails
to escape the context, 2) is sanitised, 3) doesn't change the be-
haviour of the executed SQL, or 4) results in a SQL syntax er-
ror. ThebehaviourChanged, sanitised andescapedContext
conditions in the transition function are implemented as syn-
tactic checks and regular expressions.

4.1.5 Payload Control Module

The local agents interact with the web application via the
Payload Control Module (PCM). First, the PCM translates
an action into a concrete payload, and injects it into the web

application. Then, it computes the resulting state and the
reward, and feeds them back to the relevant agent.

To generate concrete payloads, the PCM uses a vocabulary
of tokens dependent on the current objective ofSQIRL. Tokens
can be found in Table 2. Tokens are curated using existing
payloads found in the literature [6,58] and a popular GitHub
SQL payload list with 809 unique SQLi payloads, 3,400 stars
and 900 forks at time of writing [51]. We split actions into
three categories corresponding to each game, to reduce the
number of actions an agent can take:

• Context Escape:Add or removebasic tokenssuch as� ,
# , 1=1, SELECTfrom the payload.

• Behaviour Change:Add or removebehaviour chang-
ing tokens such asAND SLEEP(0), WHERE SLEEP(0), OR
SLEEP(0)from the payload.

• Sanitisation Escape:Alter existing payload tokens, for
example by keyword capitalisation (SeLect), char token
(CHAR(20)), and commenting out white space.

Each of the Context Escape and Behaviour Change tokens
can be inserted at any point in the payload. Each of the tokens
can also be removed at any point in the payload. This allows
SQIRL to search the entire payload space for valid payloads:
as tokens can be inserted at any point, there is an in�nite
number of payloads thatSQIRL can create. In practice,SQIRL

will learn to search this space for patterns in the payloads, and
tailor payloads to each injection point. The tokens present
in Table 2 are also used to represent the payload and SQL
statement for input into the autoencoders ofSQIRL. Greyed
tokens are used only for representation, and not for actions.
One advantage of our token structure is that the concrete ac-
tions on the payload can be changed depending on the speci�c
SQL syntax, allowing for even greater coverage between the
different SQL dialects (e.g. PostgreSQL and MySQL) without
having to retrain SQIRL.

After forming the concrete payload, the PCM sends it to
the relevant input of the web application and receives from
the SQL Proxy the new SQL statement executed. The PCM
then uses the transition function in Algorithm 1 (described
in Section 4.1.4) to determine the next game, the termination
condition, and the extrinsic reward for the payload.

To generate a payload,SQIRL takes a series of actions or
steps in an episode to mutate the payload until a vulnerability
has been found, or themax_steps termination condition is
reached. When this occurs, the PCM resets the payload to the
empty token (` '), generates a new state, and sets the game to
Context Escape.

4.2 Local Worker

The local worker is the core ofSQIRL, containing the logic to
handle actions, state and perform the main learning tasks.



Table 2: Token space used for SQL payload and statements. SQIRL actions are shown in white, grey for SQL representation.

Action Type Token/Action Example Description
Comma ,
Comment #,- , convert# to - Comments at any location
Comment tokens # TOKEN_TO_COMMENT Comment out speci�c tokens
Conditional 1=1, "wdd" = "wq" A conditional statement
Identi�er
(MD5 Hash) 351bf115b49fdc38b92e00482000e9cd

Identi�er based on step counter
and random salt

Keyword SELECT, OR SQL Keywords
Number 1.0 ,2 Number tokens as Float or Int
Operator >, =>, / ,* Logical Operands
Paranthesis ) ,(
Quotes � ," ,`
Statement SELECT * FROM Users WHERE SLEEP(0) Complex SQL statements

String "ed"
Abstract strings present in the
SQL statement to a simpler form

Whitespace ( ) A whitespace token

Basic Tokens
(addition, removal)

Hex 0x12A Hex characters
AND AND SLEEP(0) SQL AND statement
OR OR SLEEP(0) SQL OR statement
IF IF (1=1) THEN SLEEP(0) ELSE SLEEP(10) SQL IF statement
UNION UNION SELECT * FROM Users WHERE SLEEP(0)SQL UNION statement
WHERE WHERE SLEEP(0) SQL WHERE statement

Behaviour
Changing
Tokens
(addition, removal)

SLEEP SLEEP(0) SQL SLEEP statement

Keyword random capitalistion SelECt
Randomly capitalise letters in
all selected Keyword

Whitespace obfuscation ( ) becomes (\**\)
Convert all whitespace elements
in the payload to comments

AND obfuscaion ANDbecomes& convert all AND tokens to &

Char token CHAR(TOKEN)
Convert the selected token to its
numeric ASCII representation and
include it in a CHAR operationSanitisation Escape

(token operation)

Concat token CONCAT(� TOKEN_PART_1� , � TOKEN_PART_2� )
Split the selected token in two
parts then include in a CONCAT
operation

4.2.1 Representation Learning

In Section 3.3.2, we argued in favour of representing SQL
statements and payloads in a way that captures the inter-
dependencies between tokens. Since SQL statements and
payloads have no �xed size, we use Gated Recurrent Unit
(GRU) autoencoders, which are designed to represent variable
length sequences and the semantic relationship between their
elements. Tokenising and one-hot-encoding techniques also
capture dependencies, but rely on �xed length inputs. Clip-
ping payloads and SQL statements to a �xed length introduces
noise or discards information valuable to the action-selection
process, making such techniques unsuitable.

We use separate autoencoders for representing SQL state-
ments and payloads, as we expect them to learn different
latent representations for the same tokens (for example, `� '
will have more signi�cance in the latter, and will not appear
there in matched pairs).

Starting from the generic representation of the payload and
SQL statement, we convert them into sequences of tokens
from Table 2. Each autoencoder takes as input a token at a
time. The �rst layer produces as output an 800-�oat vector for
the SQL statement, and of 280-�oat vector for the payload.
These are then fed into the respective GRUs together with the
output of the GRUs on the previous tokens of each sequence.
The output of each GRU is a 1024-�oat vector. Using a recon-
struction loss, we train the autoencoders in a self-supervised
way to reconstruct their inputs (the SQL statements, or the

payloads). To train these models we generate a dataset of
100,000 samples for each autoencoder. Each payload is gen-
erated by taking 30 random actions. MySQL statements are
generated using the grammar in Table 12. Through the pro-
cess of training, the autoencoders learn to recreate the input
data. When runningSQIRL, the autoencoder outputs and the
state error bitet are concatenated, yielding a state of2049
features.

The use of autoencoders providesSQIRL with an auto-
mated feature set that represents the payload in the latent
space, avoiding the pitfalls that RL agents can fall into from
manual features, such as dif�culty learning, learning an incor-
rect policy for the task, or exploiting unintended mechanics.

The features are then extracted from the autoencoders and
input into a DQN. This contributes an off-policy RL algo-
rithm, more data ef�cient than alternative RL algorithms such
as A2C [30] or PPO [43], which discard data after each update,
requiring longer training. Tabular Q-learning was considered,
but it is infeasible to handle the large number of states result-
ing from our formulation of the SQLi game.

4.2.2 Action Ranking

In SQIRL, the number of possible actions increases with the
payload length, as tokens can be added or removed from any
location within the payload. For example, at timet = 0 there
is only the possibility to add a token at one location, hence



27 possible actions. Att = 1, assuming the payload is not
sanitised, there is the possibility to add tokens before or after
the previous token, or remove the previous token, hence there
are 55 possible actions.

Traditional RL computes a Q-value for each action as the
output of the DQN, selecting the action with the highest value.
Due to the dynamic action space ofSQIRL, we are unable
to use this same mechanism. Instead we alter the DQN ar-
chitecture to compute a Q-value one action at a time. We do
this by taking the available actions at the current timestep and
converting these into a set of action representations, via the
Action Interface in Figure 2. These representations consist of
a 4-tuple that includes: the action number, indices of where
the action would mutate the payload (e.g. placing # at index
4, or keyword capitalisation from index 4-9), and action class
type (e.g. Comment or Operator).

We are thus able to compute Q-values for a variable number
of actions and select the action with the highest associated Q-
value as the mutation to perform on the payload. This allows
SQIRL to take dynamic actions to generate payloads, going
beyond the state-of-the-art practice of using a pre-existing
formula, a grammar, or a set of payloads.

4.2.3 Intrinsic Reward

Besides the extrinsic reward of Section 4.1.4, we use Ran-
dom Network Distillation (RND) [9] to generate anintrinsic
reward, which encourages the local agents to take different
actions and �nd new states. The ability of agents to be `curi-
ous' in �nding new states has a distinct advantage: it results
in agents that are able to generalise better when facing new
tasks (such as exploiting different SQLi endpoints).

The RND is implemented by associating to each local agent
a Target and a Predictor neural networks. A local agent feeds
a statest to both, and over time the Predictor learns to predict
the output of the Target. The intrinsic reward is computed
as the loss between the outputs of the two networks, and is
bound between 0 and 0.7 (see Table 9).

4.3 Global Agent

Rather than training a single RL agent, we use worker agents
in a vertical federation to accelerate learning, and provide a
more stable learning curve. The intuition is that we want to
harness different experiences that agents gather from their
independent interactions with the same target. To do so, we
create a Global Agent containing a global policy, and several
local workers with their local policies. Each of the workers
is able to interact with its own instance of the PCM, keeping
the objective dynamics separate as the agents execute sepa-
rate payloads in parallel. This knowledge is then aggregated
every 20 episodes by averaging the neural network weights
of the workers into the global policy which in turn updates
the workers individual weights.

4.4 Training

As a source of examples to trainSQIRL, and as a basis for
comparison with other scanners, we created a novelSQLi
MicroBenchmark(SMB). The 30 vulnerable samples cover
a didactic and realistic range of different SQLi contexts
and sanitisations, and are drawn from CVEs and established
sources [11,37,40]. For each vulnerable sample, we add to
the benchmark also a non-vulnerable version of the same in-
jection point, where we parameterise the underlying query
and sanitise each parameter. We implement theSMB as an
easy-to-crawl PHP web application which re�ects the user
input in the response web page, so that a crawler can �nd the
test input it submitted.

We used the 20 easiest vulnerable samples to trainSQIRL,
and we left the harder 10 as a test set to demonstrate its gen-
eralisation ability to novel examples not seen during training.
During testing, we include also the 30 non-vulnerable samples
to estimate false positives. The training set contains multiple
sanitisations and a variety of different contexts, andSQIRL

can learn the value of all actions in its action space. See
Table 10 for the SQLi statements and sanitisations.

We conduct training and experiments on a 64GB Intel i7
CPU. For each sample, we train untilSQIRL is able to produce
14 valid payloads in the last 20 episodes, or until the maxi-
mum of 200 episodes is reached. Each episode consists of up
to 30 steps (each corresponding to a fuzzing request). Random
actions are taken according to ane-decay policy to ensure
exploration of the payload space. This is to balance the policy
of an agent to produce valid payloads, and the stochasticity of
e taking random actions, in line with [16]. We use 4 worker
agents for training. A grid-search was conducted on the indi-
vidual components of the workers to select hyperparameter
values, details of which can be found in Table 9.

5 Evaluation

Our evaluation comparesSQIRL to 5 state-of-the-art scanners
on theSMB of Section 4.4 and on 14 production grade web
applications. The primary performance measure is the ability
to �nd SQLi vulnerabilities (true positives). The high volume
of traf�c generated by automated web fuzzing tools is consid-
ered one of their main shortcomings, alerting defenders that
an attack is taking place. Moreover, if a scanner needs fewer
requests than another to exploit the same injection point, it can
be considered more `intelligent' [10]. Hence, our secondary
performance measure is the number of fuzzing requests sent
(excluding crawling requests). Finally, we also report average
run time, although broadly speaking the total time, running in
minutes at most, is not a signi�cant concern for vulnerability
scanning.



Table 3: Comparison ofSQIRL against state of the art scanners on theSMB. Dark solid bars (red) emphasise poor performance,
light bars (green) emphasise good performance.Spurious Positivesare TPs deemed invalid after manual analysis.

Tool Feedback Exception
Avg Requests
per Vuln Input

Avg Requests per
Non-Vuln Input

Average
Run Time (s)

Spurious
Positives FP TN FN TP

ZAP

built-in 3 - 86.9 98.7 1.2 10 21 9 7 23
advanced 3 - 7760.1 8208.4 61.1 0 0 30 9 21
built-in 7 - 99.8 100.6 1.4 22 22 8 8 22

advanced 7 - 8031.9 8208.4 66.2 0 0 30 9 21

Sqlmap 3 - 2234.5 4524.5 148 0 0 30 13 17
7 - 2212.5 4533.2 145 0 0 30 13 17

BurpSuite 3 - 220.5 234.3 47.1 0 0 30 8 22
7 - 279.5 279.0 46.9 0 0 30 13 17

Arachni - 3 117.7 121.5 17.8 0 0 30 0 30
- 7 121.3 121.6 17.2 0 0 30 30 0

Wapiti - 3 23.8 35.0 1.0 0 0 30 9 21
- 7 35.1 34.6 1.9 0 0 30 30 0

RAND-SQIRL - - 92.9 300.0 5.7 0 0 30 8 22
SQIRL - - 24.8 300.0 65.5 0 0 30 0 30

5.1 Experimental Setup

We compareSQIRL against a number of state-of-the-art scan-
ners. We select Sqlmap v1.6, an open source SQLi-speci�c
scanner with 24.6k stars on GitHub, also included in the Kali
Linux distribution popular with penetration testers. We fur-
ther select 4 general security scanners with SQLi functional-
ity: OWASP ZAP v2.11.1, BurpSuite Pro v2022.6.1, Arachni
v1.6.1.3, and Wapiti 3.1.2. Whilst we would have liked to
compare with existing academic scanners for black-box de-
tection of SQLi, the implementations of these are not avail-
able [4, 28, 42, 55]. DeepSQLi [26] references an available
implementation, but the cited repository appears to be in-
complete and not usable. We run each of the scanners for a
maximum of 3 hours to ensure consistency in the scanning.
We report scanner con�gurations in Table 7.

During testing, we modifySQIRL by halving the learning
rate, and reducing the rate to take random actions to 0.1,
using the same decay. This places greater emphasis on the
learnt policy but still allows for exploration of new states.
We allowSQIRL a maximum of 10 episodes per parameter
fuzzed, relying on its ability to discover payloads quickly, and
limiting unnecessary attempts for non-vulnerable inputs.

As an additional fuzzing baseline, we forceSQIRL to only
take random actions to generate payloads, ignoring policy and
decay. We call this variant RAND-SQIRL.

5.2 Comparison on SMB

In this experiment we investigate the performance ofSQIRL

and the state-of-the-art scanners of Section 5.1 on theSMB

of Section 4.4, consisting of 30 different examples of SQLi
(positives), which use a variety of different contexts and sani-
tisations, and their 30 �xed variants (negatives).

Sqlmap, ZAP, and BurpSuite can bene�t from receiving
the SQL query result in the web page as feedback. Arachni
and Wapiti instead can bene�t from seeing on the web page
the exception trace caused by malformed queries. We test

each of these scanners twice: in the default con�guration of
the benchmark (re�ect input only), and with the additional
bene�cial output (query results or exception trace, as needed).
ZAP can use its built-in SQLi plugin, or use an advanced
plugin to improve performance: we test it in both con�gura-
tions. Table 3 shows the aggregate results of this experiment.
The key performance metric is the number of vulnerabilities
found (TP).SQIRL and Arachni are the only scanners able
to �nd all the 30 vulnerabilities. BurpSuite,RAND-SQIRL

(22), ZAP-advanced and Wapiti (21) �nd two-thirds of the
vulnerabilities, and Sqlmap (17) �nds half.

Wapiti and Arachni (0) are ineffective when the exception
trace is not shown on the page, indicating that their perfor-
mance on production web applications may suffer. Sqlmap
does not appear to leverage the feedback, as it �nds 17 injec-
tions irrespective of feedback.RAND-SQIRL andSQIRL need
neither feedback nor exceptions, as they leverage the SQL
Proxy information.

ZAP-built-in suffers from a high percentage of FPs (two
thirds). Moreover, upon manual inspection, it turns out that
most of its TPs (10 with feedback, 22 without) arespurious.
This is due to tests which, on certain inputs, fail to verify the
presence of SQLi, yet lead ZAP to report SQLi. A concrete
example is a test that compares the page output length after
injecting two payloads, expecting that the �rst would cause
the query to return some results (ZAP� OR� 1� =� 1� -- ) and
that the second would not (ZAP� AND� 1� =� 2� -- ). The in-
jection fails (say single quotes are sanitised), but ZAP thinks
it succeeds, because it mistakenly detect a difference in page
size due to the re�ected (ineffective) payloads.

The average number of requests per vulnerable input mea-
sures how `intelligent' a scanner is, in terms of using effective
payloads instead of brute-force. Wapiti andSQIRL, with less
than 25 requests, are the most effective. Wapiti leverages a
curated set of 35 payloads, andSQIRL bene�ts from the use of
RL (RAND-SQIRL takes 4 times as many requests). Thanks
to its small set of payloads, Wapiti is also the scanner that
uses fewer requests to detect a TN, as the other tools give



Table 4: Comparison of SQIRL and state of the art tools, on production grade web applications.

Tool
Average Requests

per Vuln Input
Average Time (s)

WordPress & Plugins B2evolution
Sourcecodester

e-learning

Sparks Hotel

Management
Total

FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP

ZAP (bulit in and advanced) 4414.0 452.5 5 4 4 0 1 0 0 2 4 0 1 17 5 8 25

Sqlmap 2280.5 778.2 0 1 7 0 0 1 0 4 2 0 6 12 0 11 22

BurpSuite 211.0 276.6 0 3 5 0 0 1 0 1 5 0 9 9 0 13 20

Arachni 720.0 446.8 0 6 2 0 1 0 0 1 5 0 5 13 0 13 20

Wapiti 30.0 63.1 0 7 1 0 0 1 0 6 0 0 14 4 0 27 6

RAND-SQIRL 475.0 133.1 0 0 8 0 0 1 0 0 6 0 1 17 0 1 32

SQIRL 111.1 159.2 0 0 8 0 0 1 0 0 6 0 0 18 0 0 33

up �nding a vulnerability after a higher number of attempts.
Sqlmap's rule-based approach shows some effectiveness in
payload generation, in that it takes half as many attempts
in exploiting a vulnerable input than in exhausting a non-
vulnerable one. ZAP-advanced instead, with over 8k requests,
seems to rely mostly on brute force.

In terms of time elapsed, the average time spent on an input
varies between 1 second and 2.5 minutes. Simpler approaches,
in terms of number of payloads (Wapiti), or design (RAND-
SQIRL) are faster than high volume (Sqlmap, ZAP-advanced)
or intelligent scanners (SQIRL).

5.3 Comparison on Production Web Apps

In this experiment, we compare the ability of all scanners
to �nd vulnerabilities in production grade web applications.
We select at random 10 open source web applications from
a popular repository [33], and 4 web applications with SQLi
CVEs reported in 2021 with CVSS 3.1 scores more than 7.1.
One of these is WordPress, for which we select 7 popular
plugins with more than 2k downloads. The list of selected
applications and plugins is in Table 8.

In order to avoid any bias due to the use of different
crawlers, we test all of the scanners on each input (URL and
parameter) found bySQIRL, and we also let the scanners
crawl the entire web applications on their own, to verify that
SQIRL's crawler did not miss any additional vulnerabilities.
We also provide each scanner the session cookie, to ensure
they are logged in. For ZAP, we enable both the built-in and
advanced plugins.

Table 4 reports the results of the experiment on the 4
applications for which vulnerabilities were found.SQIRL is
the only scanner able to identify all of the 33 vulnerabilities.
Arachni, which found all vulnerabilities in theSMB, found
only 20 in production. A similar drop in performance is
observed in Wapiti, detecting only 6. This was expected
as both scanners performed poorly on theSMB without
exception feedback, and production applications should
not expose exception traces. For example, Arachni fails to
detect the vulnerability CVE-2022-2489 in Sourcecodester
e-learning. The vulnerability is on a web page with a search
bar, which internally runs the following vulnerable query:
SELECT * FROM posts WHERE body LIKE� %USER_INPUT%�

AND courseCode=� class101_a� ORDER BY id DESC. The
search results are shown on the page itself, and several
scanners are able to �nd this vulnerability successfully.
For example, BurpSuite uses the payload41896576� or
1334=1334--. Arachni instead attempts payloads of the form
%TEXT"� `-- which intentionally trigger an exception (due to
the` between the� and the comment). Since Sourcecodester
does not reveal the exception on the page, returning instead a
default empty search result, Arachni fails to detect success,
and reports an FN.

SQIRL has the lowest average number of requests (111) of
any effective scanner. ZAP, which is the third-best scanner
with 25 TPs, requires 44 times more requests thanSQIRL,
takes 3 times longer, and is the only scanner to produce false
positives.

RAND-SQIRL �nds 32 TPs, missing only one, but takes
more than 4 times as many requests asSQIRL, for a compa-
rable execution time. This shows that although our dynamic
action space is already effective in generating diverse pay-
loads, the additional use of RL in our approach substantially
reduces both the number of requests required, and the vari-
ance in the payload discovery process:SQIRL has perfect
performance in both experiments, whereasRAND-SQIRL had
middling performance on theSMB. The ability ofSQIRL to
identify in total 63/63 vulnerabilities with a low number of
requests, after being trained on 20 of them, shows that it has
effectively learned, and was able to generalise to new data.

Remarkably, 22 of the 33 vulnerabilities discovered by
SQIRL are new zero-days in apps/versions which had already
been reviewed for vulnerabilities (the remaining 11 vulner-
abilities), demonstrating that the present approach is prac-
tically useful and effective. We have responsibly disclosed
the new vulnerabilities in WordPress (CVE-2022-2717, CVE-
2022-2718), Sparks (CVE-2022-38918, CVE-2022-38919,
CVE-2022-38920), Sourcecodester (CVE-2022-38921), and
B2evolution.

5.4 Distributed Learning Capability

SQIRL uses multiple worker agents which fuzz the same SQLi
and reconcile their learning via the global agent every 20
episodes. This is the simplest case of federated learning. We
investigate ifSQIRL could bene�t from applying the workers



Figure 3: Four federated workers ofSQIRL fuzzing random
targets of the SMB.

to different tasks (input targets, or even web applications),
sharing their experiences, in a potentially privacy-preserving
way, as in traditional FL.

We therefore use federated RL using 4 local workers to
interact with different, randomly chosenSMB vulnerabilities.
We call this variantFED-SQIRL. We assess its learning per-
formance by measuring the reward the workers receive. We
compare with two baselines: a version ofFED-SQIRL that can
take only random actions, andSQIRL with 4 workers using
the same budget of episodes (hence all workers train on the
same vulnerabilities).

We show the experimental results in Figure 3. The ran-
dom baseline shows signi�cant variance, as expected, as
each worker targets a training sample of different complex-
ity. SQIRL shows minimal variance, as it bene�ts from each
worker targeting the same training sample. The irregularity
in the learning curve, corresponds to the switch to different
training samples, where learning `restarts' and eventually sta-
bilises.FED-SQIRL sows a signi�cant variance in the workers
moving averages. This is due to the different SQLi that each
worker is exploiting, requiring the generation of different pay-
loads. Yet, the incremental increase in the moving average,
and the gradual reduction of the variance around it, demon-
strate that learning is still happening, as the agents improve
the quality of the exploits.

The signi�cance ofFED-SQIRL is that, with a small loss
of performance fromSQIRL, we can distribute the learning
across local agents which could be deployed across different
organisations, targeting proprietary web applications, yet mu-
tually improving their SQLi detection capabilities. We leave
the investigation of a practical deployment of distributed learn-
ing to future work.

5.5 SQIRL Ablation Study

To measure the impact of the various design choices behind
SQIRL, we present an ablation study of the model. We start
from RAND-SQIRL, as described above, and gradually intro-
duce and compare the use of RL, its enhancement with au-

Table 5: Ablations of SQIRL on the SMB

Agent
Avg Cumul

Reward
SQLi
Found

Avg Time (s)
per Vuln Input

Avg Requests
per Vuln Input

RAND-SQIRL 585.6 22 5.7 91.9
DQN, 1-hot encoded 682.4 25 191.7 65.8

DQN, AEs 765.3 26 26.8 50.1
DQN, AEs, RND 799.1 30 31.1 41.8

SQIRL: Multi-Worker
DQN, AEs, RND

984.3 30 27.9 24.0

FED-SQIRL: Distributed
DQN, AEs, RND

917.7 29 29.7 33.0

toencoders (AEs) and RND, and the use of the multi-worker
architecture (SQIRL) and distributed learning (FED-SQIRL).

We train each model on theSMB (Section 4.4) and chal-
lenge each to �nd its 30 vulnerabilities. The results can be
found in Table 5. We include the average cumulative reward,
normalised so that it is analogous to common RL practice,
where greater positive reward implies better performance. At
timeT, the reward is computed as follows:

rsum=
T

å
t= 0

min(40+ ( rt );30) (1)

wherert is the average reward of the the workers in the
episodet.

We observe that each improvement fromRAND-SQIRL to
SQIRL increases the number of vulnerabilities detected and
decreases the number of requests necessary to do so, justi-
fying its introduction. RND improves the generalisation of
the model, leading to an increase in reward and reduction in
number of requests. The AEs drastically reduce the average
time. The multi-worker architecture almost halves the number
of requests used. Finally, the introduction of distributed learn-
ing introduces only a small performance cost, to the potential
bene�t of a broader application scenario.

6 SQLi Payload Analysis

The payloads generated by scanners reveal more about their
general capabilities. In Table 6, we display the different
features that each scanner generated, including context es-
cape (comments, quote and parentheses) and sanitisation by-
pass (concatenation of parameters, capitalising key features,
whitespace escaping,ANDescaping). These are not exhaustive,
as they come from the payloads observed during the experi-
ments in Section 5. We provideSQIRL payloads in Listing 1,
and payloads from all scanners in Table 11.

ZAP-built-in is only able to insert comments to clean up
the SQL after the payload, even when there is feedback on
the page, generating two payload types. With the advanced
plugin, it escapes both single quotes and parentheses. Relying
only on these features causes ZAP to miss the most complex
cases in theSMB and the real world web applications. ZAP




	Introduction
	Background
	Reinforcement Learning
	Federated Learning

	Motivation and Challenges
	SQLi Payload Distribution
	Existing Scanner Methods
	Challenges of Using RL for SQLi
	Interaction with the Web Application
	Maximising Information Usage
	Generating New and Diverse Payloads


	Sqirl
	An RL Environment for SQLi
	Crawler
	SQL Proxy
	State
	Extrinsic Reward
	Payload Control Module

	Local Worker
	Representation Learning
	Action Ranking
	Intrinsic Reward

	Global Agent
	Training

	Evaluation
	Experimental Setup
	Comparison on Smb
	Comparison on Production Web Apps
	Distributed Learning Capability
	Sqirl Ablation Study

	SQLi Payload Analysis
	Discussion and Limitations
	Related work
	Conclusions
	Appendix

