Modular Abstractions of Reactive Nodes using
Disjunctive Invariants*

David Monniaux! and Martin Bodin!?2

' CNRS / VERIMAG
2 Ecole normale supérieure de Lyon

Abstract. We wish to abstract nodes in a reactive programming lan-
guage, such as Lustre, into nodes with a simpler control structure, with
a bound on the number of control states. In order to do so, we compute
disjunctive invariants in predicate abstraction, with a bounded number
of disjuncts, then we abstract the node, each disjunct representing an ab-
stract state. The computation of the disjunctive invariant is performed
by a form of quantifier elimination expressed using SMT-solving.

The same method can also be used to obtain disjunctive loop invariants.

1 Introduction

Our goal is to be able to compute sound abstractions of reactive nodes, with
tunable precision. A reactive node in a language such as LUSTRE,® or SCADE,?
SA0,8 or even SIMULINK,P has input streams, output streams, and an (optional)
internal state: at each clock cycle, the value on each output is a function of the
values on the inputs and the state; and so is the next value of the state.

If the state consists in a finite vector of Booleans, or other finite values, then
the node is a finite automaton, with transitions guarded according to the current
values of the inputs, and for each state a relation between the current values of
the inputs and the current values of the outputs. This is often referred to as the
control structure of the reactive program. The problem with that representation,
which exposes the full internal state, is that the number of states grows exponen-
tially with the number of state variables, making it unwieldy for analysis. The
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problem is even more severe if the control conditions are not directly exposed
as Boolean state variables, but as predicates over, say, integer or real variables
(see example in Sec. H).

The main contribution of this article is a method for constructing a more
abstract automaton, with a bounded number of states (< n), whose behaviors

still over-approximate the behaviors of the node. In order to do so:

1. We compute an over-approximation of the set of reachable states of the node,
in an unspecified context, as a union of at most n “abstract states”, each
defined by a conjunction of constraints (these abstract states need not be
disjoint).

2. We compute the most precise transition relation between these abstract
states.

This automatic abstraction maps a reactive node into another, more abstract
(and, in general, nondeterministic) reactive node. This enables modular and
compositional analysis: if a node is composed of several nodes, then one can
replace each of these nodes by its abstraction, and then analyze the compound
node.

As a secondary contribution, the analysis method at step 0 can also be used
to obtain disjunctive loop invariants for imperative programs (or, more generally,
invariants for arbitrary control flow graphs), given a precondition and an optional
postcondition. We describe this algorithm for obtaining invariants in disjunctive
normal form, but it in fact also works for other templates.

Our algorithms use satisfiability modulo theory (SMT) solving as an essential
subroutine; see e.g. [3] for an introduction.

2 Invariants by Predicate Abstraction

Predicate abstraction abstracts program states using the truth value of a given
finite set of predicates {1, ..., T, }: each state o is abstracted by a m-tuple of
Booleans(w1(0), ..., mm(0)). The most precise abstract transition relation be-
tween such vectors of Booleans is (By, ..., By) = (BY,...,B.,) if and only if
there exist ¢ = A(m = B;), o' E A(m = Bj), and 0 — o’ where — is the
transition relation of the program. Then, given an abstract initial state, the set
of reachable states of the abstract transition relation can be computed within
finite time (in general, exponential in m) by Kleene iterations (equivalently, by
computing the transitive closure of —).

Such an approach is, however, unworkable in general because of the expo-
nential number of states generated, and thus all current predicate abstraction
schemes use some stronger form of abstraction [[]; for instance, they may sim-
ply compute a conjunction of the 7; that holds inductively at a given program
point. Conjunctive invariants are however fairly restrictive; in this article, we
consider the problem of obtaining invariants as disjunctions of a fixed number
of conjunctions of the chosen predicates.

The set of reachable states of a reactive node, in an unspecified environment,
is the strongest invariant of an infinite loop:



while (true) {

i = inputs ();
o = outputs(state, i);
state = next_state(state, i);

We shall therefore investigate the problem of automatically finding disjunc-
tive inductive loop invariants (or, more generally, invariants for predicate ab-
straction following a fixed template), using predicate abstraction, given a pre-
condition and an optional postcondition. These invariants shall be minimal with
respect to the inclusion ordering: there shall be no stronger inductive invariant
definable by the same template.

2.1 Solution of a Universally Quantified Formula

Let us assume a finite set IT = {my,...,m,} of predicates over the state space
of the variables of the program. Let n > 1 be an integer. We are looking for
invariants of the form C; V ---V C,, where the C; are conjunctions of predicates
from IT (most of our techniques are not specific to this template form, see Sec. 23
for extensions).

Any such invariant can be obtained by instantiating the Booleans b; ; in the
following template:

T£\/
K3

Nbi
———

= T (1)
C;

Setting b; ; to true(respectively, false) in that template means that predicate ;
appears (respectively, does not appear) in the i-th disjunct C;. For instance, if
II={x>0,z <1,y >0} and n = 2, then by ; = true, b o = true, by 3 = false,
by, = false, by o = false, by 3 = true correspond to (z > 0Az < 1)Vy>0.

The problem of finding an invariant reduces to finding suitable values for
these Booleans. There is therefore a search space for invariant candidates of a
priori size 2. We impose that the invariant I obtained be minimal within
that search space with respect to the inclusion ordering; that is, there is no I’
expressive using the template such that I’ C I.

Our algorithm can in fact apply to any control-flow graph. For the sake of
simplicity, we shall describe it on a single loop.

In Hoare logic, the conditions for proving that a postcondition P holds after
a while loop whose condition is C', whose transition relation is 7' and whose
precondition is S using loop invariant I are:

— I must contain the precondition, otherwise said Vo S = I.

— I must be inductive, otherwise said Vo,0’ I AC AT = I’, with I’ denoting
I where all state variables have been primed.

— I A =C must imply the postcondition, otherwise said Vo I A =C = P.



If we impose I to be an invariant of the required form, that is, an instantiation
T[B/b] of T obtained by setting the b; ; variables to certain values B; ;, these
conditions boil down to the values B; ; of the b; ; variables must satisfy certain
formulas universally quantified over the state o or on the couple of states o, 0’.

We now make an additional assumption: the states o or o’ comprise a fixed,
finite number of variables? expressible in a theory T for which there exists a
satisfiability testing algorithm, in which the predicates m1,..., 7, can be ex-
pressed, and which allows propositional variables. Thus, the problem boils down
to finding a solution to a conjunction of universally quantified formulas of that
theory such that the only free variables are the b; ; Booleans.

In the following sections, lowercase o and ¢’ stand for states (thus stand
for a finite number of variables in the theory ¥), uppercase X and X’ stand
for values of these state variables. Similarly, lowercase b stands for the matrix of
propositional variables (b; ;)1<i<m,1<j<n, and uppercase B stands for the matrix
of Booleans (B; j)i<i<m,i<j<n. F[B/b] thus stands for the formula F' where the
propositional values b have been replaced by the corresponding Booleans in B,
and F[X' /o] stands for the formula F' where the state variable o has been replaced
by the state value X.

2.2 Naive Algorithm for a Given Postcondition

In this section, we shall explain how to compute an invariant suitable for proving
the Hoare triple of a loop, given a precondition, a postcondition (which may be
true), a loop condition and a transition relation.

Let us first give an intuition of the algorithm. A universally quantified formula
Vo F' with free Boolean variables b can be understood as specifying a potentially
infinite number of constraints F[X'/o] over b, where X' ranges all possible values
for o (in this section, we will lump together o and ¢’ as a single ). The idea is
to “discover” such constraints one at a time, when they are violated.

Let us now examine the algorithm in more detail; see Sec. B for a complete
algorithm run. The Hj sequence of propositional formulas over the b variables
will express successive refinements of the constraints during the search of a suit-
able assignment. Initially, we do not know anything about possible solutions, so

we set H; = true.

We start by taking any initial assignment B(Y) (since any will satisfy H;) and
check whether —~F[B™) /b] is satisfiable, that is, whether one can find suitable
values for o. If it is not, then B |= Vo F. If it is satisfiable, with example value

X1, we add F[X/o] as a constraint — that is, we take Hy = Hy A F[Xy/0];
note that this constraint excludes B() and possibly other values for b. Now find
an assignment B(?) satisfying Hs, check whether =F[B®) /b] is satisfiable. If it
is not, then B(® E Vo F. If it is satisfiable, with example value Y5, we take
Hs; = Hy AF[X5/0]; note that Hs excludes BW and B®@ . The process continues

" These variables are not necessarily scalar variables. It is for instance possible to
consider uninterpreted functions from the integers to the integers, which stand for a
countably infinite number of integers.



until a suitable assignment is found or the constraints exclude all assignments.
Note that one Boolean assignment at least is excluded at each iteration, and
that the number of Boolean assignments is finite (exponential in the number of
propositional variables in b).

More formally: recall that we have reduced our problem of finding an invari-
ant to finding Boolean values B; ; such that (B; ;)i<i<m,i<j<n = Vo F for a
certain quantifier-free formula F' whose free variables are (b; ;)1<i<m,1<j<n. Let
us now assume we have a SMT-solver for theory ¥, a function SMT(G) which
given a formula G answers sat(M) when G is satisfiable, where M is a model,
that is, a suitable instantiation of the free variables in G, or unsat otherwise. We
shall also assume a SAT-solver SAT with similar notations, for purely proposi-
tional formulas. We run the following algorithm, expressed in pseudo-ML:

H := true
loop
match SAT(H) with
| unsat — return “no solution”
| sat((Bij)i<i<mi<j<n) =
match SMT(—F[B/b]) with
| unsat — return “solution B”
| sat(X) — H := H A F[X/0].

This algorithm always terminates, since the main loop iterates over a finite
set of size 2/°l where |b| = mn is the size of the matrix b of propositional variables:
the number of models of the propositional formula H decreases by at least one
at each iteration, since model B is excluded by the F[X /o] condition. The loop
invariant is Vo ' = H. This invariant is maintained: whatever we choose
for ¥, it Vo F = H,¥Yo F = H A F[Y/o]. If the algorithm answers
“no solution” for H, because of the invariant, there is no solution for Vo F.
If the solution answers “solution B”, the “unsat” answer for SMT(—F[B/b])
guarantees that B = Vo F.

Note the use of two solvers: one SAT for the propositional variables b, and one
SMT for the state variables o (or o,0’). The SAT solver is used incrementally:
one only adds new constraints. The SMT solver is always used with the same
set of predicates, enabling it to cache theory lemmas.

2.3 Performance Improvements

The algorithm in the preceding subsection is sound, complete and terminating.
Yet, experiments have shown that it tends to generate useless iterations. One
reason is that the system may iterate across instances B that yield the same
formula T'[B/b] up to a permutation of the C; disjuncts. Another is that the
system may generate empty disjuncts C;, or more generally disjuncts that are
subsumed by the other disjuncts (and are thus useless). We shall explain how to
deal with those issues.



Removal of Permutations We impose that the disjunction CV- - -V, follows
a unique canonical ordering. For this, we impose that the vectors of m Booleans
(B1,j)i<j<m,-- - (Bn,j)i<j<m are in strict increasing order with respect to the
lexicographic ordering <y induced by false < true. This corresponds to n — 1
constraints (b; j)i<j<m <1 (bi+1,)1<j<m, €ach of which can be encoded over
the propositional variables (b; ;) as formula L, ; defined as follows:

— L; j, is a formula whose meaning is that (bi,j)jogjgm <L (bi-i-l,j)jogjgm

— Lj 41 is false

— L j, for 1 < jo < m is defined using L; j,+1 as follows: (=b; o A bit14,) V
((b,jo = bit1,jo) A Lijo+1)-

All such constraints can be conjoined to the initial value of H.

Removal of Subsumed Disjuncts We can replace the SAT-solver used to find
solutions for (b; ;) by a SMT-solver for theory ¥, in charge of finding solutions
for (b; ;) and for some auxiliary variables o1,...,0, (we actually shall not care
about the actual values of o1,...,0,). The following constraint expresses that
the disjunct C;, is not subsumed by the disjuncts (C;)1<i<n,izio"

doiy Cioloi /o] A /\ —Ciloi/0] (2)

1<i<n,iig

It therefore suffices to conjoin to the initial value of H the following con-
straints, for 1 <io < n: C,[04, /0] A \1<i<p izi, ~Ciloi/o].

A variant consists in simply imposing that each of the C; is satisfiable, thus
eliminating useless false disjuncts. For this, one imposes 1 < ig < n, the con-
straint C;, [04,/0]. Equivalently, one can pre-compute the “blocking clauses” over
the b;, ; propositional variable that constrain these variables so that Cj, is satis-
fiable, and add them as purely propositional constraint. This is the method that
we used for the example in Sec. B (we wanted to keep to propositional constraints
for the sake of simplicity of exposition).

2.4 Iterative Refinement of Invariants

We have so far explained how to compute any invariant, with or without im-
posing a postcondition. If we do not impose a postcondition, the formula true,
for instance, can denote a wholly uninteresting invariant; clearly we would like
a smaller one. In this section, we shall explain how to obtain minimal invariants
within the search space.

For a Fixed Disjunction Size Let us now assume we have the postcondi-
tion P (if we do not have it, then set P to true). A natural question is whether
one can get a minimal inductive invariant of the prescribed form for the inclu-
sion ordering; that is, an invariant T[By/b] such that there exists no B such



that T[B/b] C T[By/b], by which we denote Vo T[B/b] = T[By/b]. We shall
now describe an iterative algorithm that first obtains any inductive invariant of
the prescribed form, and then performs a downwards iteration sequence for the
inclusion ordering, until a minimal element is found.

Let us first note that it is in general hopeless to find a global minimum By,
that is, one such that VB T[By/b] C T[B/b], for there may exist incomparable
minimal elements. For instance, consider the program:

float i = 0;
while(random ()) {

i = i+1;

if (i >2)i=0;
}

The least inductive invariant of this loop, for variable 4, is the set of floating-
point numbers {0, 1,2}. Now assume our set of predicates is {i < 0,7 > 0,i >
1,7 < 1,4 < 2,4 > 2}, and take n = 2; we thus look for disjunctions of two
intervals. Two minimal incomparable invariants are (i > 0A7 < 1)V (i > 2Ai <
2), that is, [0,1] U {2}, and (i > 1 A7 < 2)V (i <0 A4 > 0), that is, [1, 2] U {0}.

Let us now assume we have already obtained an invariant T'[B’/b] and we
wish to obtain a better invariant T[B/b] C T[B’/b]. This last constraint can be
written as the conjunction of:

1. T[B/b] C T[B’/b], otherwise said Yo T[B/b] = T[B’/b]; such a universally
quantified constraint can be handled as explained in Sec. 2Z2.

2. Jo T[B'/b] A—T[B/b]. Again, as explained in Sec. 233, one can treat such an
existentially quantified constraint by using a SMT-solver instead of a SAT-
solver and adding to H an extra variable o and the constraint T[B’/b] A
—T'[B/b]. When an invariant T'[B/b] is found, the value X' of ¢ is a witness
that this invariant is strictly included in T[B’/b].

It is possible to compute a downward iteration sequence until a minimal
element is reached: compute any initial invariant B(?), then B C B etc. until
the system fails to provide a new invariant satisfying the constraints; one then
takes the last element of the sequence. The termination condition is necessarily
reached, for the (Bfg))lgigm,lgjgn Boolean matrices can never be twice the same
within the sequence (because of the strict descending property). Furthermore,
one can stop at any point B*) within the sequence and get a (possibly non
minimal) inductive invariant.

One can replace point 2 above by a weaker strategy, but with the advan-
tage of operating only on propositional formulas. Note that B**1 has at least
one component higher than B*) for the standard ordering false < true on the
Booleans, for if all components are lower or equal, then B**1 D B®*) which is
the opposite direction of what we wish. The strategy is to enforce this condition
using \/; ;(bi,; A b ;). This is what we used in Sec. B.

For Varying Disjunction Sizes The algorithms described above work for a
given disjunction size n. The method for preventing subsumed disjuncts of part



Sec. 3 imposes that all n disjuncts are truly needed: it is thus possible that no
solution should be found for n = ng while solutions exist for n = ng — 1.

We therefore suggest that, once a minimal invariant I,,, is obtained for n = ng
fixed, one looks for an invariant strictly included in I, for n = ng+ 1. One can
choose to stop such iterations when no solutions are found for a given n, or when
a limit on n or a timeout is reached.

2.5 Extensions

Prohibition of Owverlapping Modes Our algorithms produce disjunctions that
cover all reachable states, but that do not define partitions: distinct abstract
states may be overlapping. This may be somewhat surprising and counterintu-
itive.

It is possible to impose that disjuncts should be pairwise disjoint. For any ¢
and j, one can impose that C; and C; are disjoint by the universally quantified
formula Vo—C; V -C';. We have explained in the preceding sections how to deal
with such universally quantified formulas.

Other Template Forms We have described our algorithm for templates of the
form C; V ---V (), where the C; are conjunctions constructed from the chosen
predicates, but the algorithm is not specific to this template shape. Instead of
disjunctive normal form, one could choose conjunctive normal form, for instance,
or actually any form [22], though reductions of the search space such as those
from Sec. 23 or 3 may be more difficult to define.

Predicate Choice Our method is based on predicate abstraction; so far we have
not discussed methods for obtaining the predicates, beyond the obvious syn-
tactic detection. In many systems based on predicate abstraction, one uses
counterexample-based abstraction refinement (CEGAR): from an abstract trace
violating the specification, but not corresponding to a concrete trace violating the
specification, one derives additional predicates for refining the system. Because
we did not implement such refinement, we shall only give a rough description of
our CEGAR method.

If there is no inductive invariant built from the requested template that can
prove the desired postcondition, the algorithm from Sec. E2 will end up with an
unsatisfiable constraint system. This system is unsatisfiable because of the post-
condition constraints (otherwise, in the worst case, one would obtain a solution
yielding the true formula); relevant postcondition constraints can be obtained
from an unsatisfiable core of the constraint system. One can then try remov-
ing such constraints one by one until the constraint system becomes satisfiable
again. Any solution of this relaxed constraint system defines an inductive invari-
ant, but one that does not satisfy the postcondition. As with the usual CEGAR
approach, one could try generating test traces leading from the initial states to
the complement of the postcondition and staying within the invariant; if the
postcondition holds, such searches are unsuccessful and yield interpolants from
which predicates may be mined.



3 Step-by-step Example of Invariant Inference

For the sake of simplicity of exposition, in this section we have restricted our-
selves to pure propositional constraints on the b; ;, and satisfiability modulo the
theory of linear integer arithmetic for the combination of the b; ; and the state
variables. We consider the following simple program.

int b, i=0, a; /x precondition a > 0 x/
while (i < a) {
b = random ();
if (b)
i =i + 1;
}
The predicates are {my,...,mg} = {i =0,i <0,i>0,i=a,i<ai>

a,b,—b}. The state variable o stands for (i,a,b). For the sake of simplicity,
we model 7 and a as integers in Z, and b as a Boolean. We assume the loop
precondition S 2 i = 0Aa > 1. The loop condition is C 2 i < a, and the
transition relation is T 2 VN =i+1)V (=0 AN’ =1i). We choose n = 2.

We shall now run the algorithm described in Sec. 222 with the iterative refine-
ment of Sec. EA. For the sake of simplicity, we shall use none of the improvements
described in the preceding sections that need the H; to contain non propositional
variables: no removal of subsumed disjuncts as described in Sec. 3 and no strict
inclusion enforcement as described in Sec. 2.

We initialize H as follows: Hy contains Boolean constraints on (b; ;)1<i<2.1<j<s

— That prevent C; and Cs from being unsatisfiable, using blocking clauses as
explained in Sec. EZ3: one cannot have both ¢ = 0 and ¢ > 0, and so on.

— That force (b1 ;)i1<j<s <r (b2,j)1<j<s for the lexicographic ordering <z, on
Boolean vectors (this avoids getting the same disjunction twice with the
disjuncts swapped).

Let us now see the constraint solving and minimization steps.

1. We perform SAT-solving on H; and obtain a satisfying assignment B;ll) =
true,BﬁQ) = false,Bilg) = false, Bﬁz = true,B&) = false,Bilg = false, B§17) =
true,Bﬁg = false, Béll) = true, Bélz) = false,Béylgz = false,BSi = true,Bg,lg =
false, ng = false, Bél7) = false, B;lg = true. This corresponds to the invariant-
candidate T[B™M) /b], that is, (i = 0Ai =aAb)V (i=0Ai=aA-b).

Now is this invariant-candidate truly an inductive invariant? It is not, be-
cause it does not contain the whole of the set of initial states. SMT-solving

on SA-T[BM /b] gives a solution X = (i =0,a =1,b = false). We therefore
take Hy 2 Hy A F[31 /o).

2. A satisfying assignment B of Hy yields the invariant candidate (i = 0A7 =
aAb)V (i =0Ai < aAb). Again, SMT-solving shows this is not an invariant



. . C ey A
because it does not contain the initial state Xy = (i = 0,a = —1,b = false).

We therefore take Hj = Hy A\ F[X3/0].
3. A satisfying assignment B®) of Hy yields the invariant candidate (i = 0N =
aAb)V (i=0A1i < a). SMT-solving shows this is not inductive, since it is

not stable by the transition X5 2 (i =0,a =1,b = false,s’ = 1,b' = true).

We therefore take H; = Hs A\ F[Xs/0].
4. A satisfying assignment B®) of Hy yields the invariant candidate (i = 0N <
a A —b) Vv b. SMT-solving shows this is not inductive, since it is not stable by

the transition X, 2 (i=1,a =3,b=true,i’ = 1, = false). We therefore
take Hs 2 Hy A F[Z4/0].

5. A satisfying assignment B(®) of Hy yields the invariant candidate (i = 0A7 <
a)V (i >0Ai=aAb). SMT-solving shows this is not inductive, since it is
not stable by the transition X 2 (i =0,a = 2,b = false,i’ = 1,b' = false).
We therefore take Hg = Hs A F[X5/0].

6. A satisfying assignment B(®) of Hg yields the invariant candidate I, = (1=
0N <a)Vi>0. SMT-solving shows this is an inductive invariant, which
we retain. We however would like a minimal inductive invariant within our
search space. As described at the end in Sec. B4, we take H7 the conjunction
of Hg and a propositional formula forcing at least one of the b; ; to be true

while Bg? is false. Furthermore, as described in point 1 of Sec. E4, we now

consider F SFA (T = I,), which ensures that we shall from now on only
consider invariants included in I;.

7. A satisfying assignment B(") of H; yields the invariant candidate (i > 0 A
i = aAb) Vi < a. SMT-solving shows this is not included in I, using
X = (i = —47,a = 181, b = true). We therefore take Hg = H; A Fy[X7/0].

8. Hg has no solution. I; is thus minimal and the algorithm terminates.

A postcondition for this loop is thus Iy A =(i < a), thus ¢ > 0 A i = a. Note
that the method did not have to know this postcondition in advance in order to
prove it.

4 Construction of the Abstract Automaton

We can now assume that the set of reachable states is defined by a formula
I=1V---VI,, with each formula I; meant to define a state g; of the abstract
automaton.

To each couple of states (g;,¢;) we wish to attach an input-output relation
expressed as a formula 7; ; with variables Z, ranging over the set of possible
current values of the inputs and O over the set of possible current values of the
outputs.

Recall that T is a formula expressing the transition relation of the reactive
node, over variables Z (inputs), o (preceding state), o’ (next state) and O (out-



puts). Then the most precise transition relation is:
A / /
7,5 = 30,0 I; NI;[o'Jo] NT (3)

Any over-approximation of this relation is a sound transition relation for the
abstract automaton. If we have a quantifier elimination procedure for the theory
in which T" and the I; are expressed, then we can compute the most precise
Ti,; as a quantifier-free formula; but we can also, if needed, use an approximate
quantifier elimination that yields an over-approximation.

Let us consider, as an example, the following Lustre node. It has a single
integer input dir and a single integer output out. If dir is nonzero, then it is
copied to out; else out decays to zero by one unit per clock cycle:

node clicker(dir : int) returns (out : int);
let
out = if dir > 1
then dir
else if dir < -1
then dir

else 0 — if pre out < —1
then (pre out) + 1
else if pre out > 1
then (pre out) — 1
else 0;
tel.

In mathematical notation, let us denote dir by d, pre out by o and out by o'.
The state consists in a single variable o, thus ¢ is the same as 0. The transition
relation then becomes

Tl (d£0Nd =d)V(d=0AN0o>1N0 =0-1) )
T lVd=0A0< -1Ad =0+1)V(d=0A0d =0=0)

Suitable predicates are {o < —1,0 = 0,0 > 1}, thus defining the set of reachable
- A A A
states as a partition I_1 V Iy VI where [_1 =0< —-1,Ip=0=0,1; =0 > 1.

Let us compute 79 1 2 Jo,0’ Iy NI1[0' /o] AT, that is, Jo,0'0 = 0N’ > 1AT:
we obtain d > 0. More generally, by computing 7 ; for all i,j € {-1,0,1},
we obtain the automaton below; the initializers (left hand side of the Lustre
operator —) define the initial state ¢q.



d<0

d>0

Note that the resulting automaton is nondeterministic: in state g; (respec-
tively, g_1), representing o > 0 (resp. o < 0), if d = 0, then one can either remain
in the same state or return to the initial state qq.

5 Related Work

There have been many approaches proposed for finding invariants and proving
properties on transition systems. [Z1] surveys earlier ones.

The problem of finding the control structure of reactive nodes written in e.g.
Lustre has been studied previously, most notably by B. Jeannet [[2,13,[d], but
with respect to a property to prove: the control structure is gradually refined
until the property becomes provable. This supposes that we know the desired
property in advance, which is not always the case in a modular setting: the
property may pertain to another module, and may not be easy to propagate back
to the current module. The NBAC tool performs such an analysis using convex
polyhedra as an abstract domain. More recent methods for refining the control
structure of reactive nodes include [0]. We have already proposed some modular
abstractions for reactive nodes, but these targeted specific filters with no control
structure [[H] or needed some precomputation of the control structure [I6].

The problem of finding disjunctive invariants has been much studied espe-
cially in the context of convex numerical domains, such as polyhedra: if the
property to prove is not convex, or relies on a non-convex weakest precondition,
then any analysis inferring convex invariants will fail. A number of methods have
been proposed to infer invariants consisting in finite disjunctions of elements of
an abstract domain: some distinguish states according to the history of the com-
putation, as in trace partitioning [19], some recombine elements according to
some affinity heuristics [20,I8], or decompose the transition relation according
to some “convexity witness” [M0]. Some recent methods leverage the power of
modern SMT-solvers to impose convex invariants only at a limited subset of pro-
gram points, and distinguish all execution paths between them, therefore acting
as applying a complete trace partitioning between the points in the distinguished
subset [16,5]; the method in the present article also considers a limited subset
of program points (e.g. loop heads), but can infer disjunctive invariants at these
points too.



Both polyhedral abstraction and predicate abstraction search for an inductive
invariant I; then, in order to prove that a certain property P always holds, one
shows that [ is included in P. In all static analyzers by abstract interpretation
known to the authors, some form of forward analysis is used: the set of initial
states influences the invariant I obtained by the system. In contrast, with k-
induction, as in the KIND tool [[1] the initial states play a very limited role
(essentially, they invalidate P if there exists a trace of k states starting in an
initial state such that one of them does not satisfy P). A known weakness of pure
k-induction is that it may fail to prove a property because it bothers about bad,
but unreachable, states. If one has obtained an invariant I by other methods,
one can use it to constrain the system and get rid of these bad, unreachable
states. Thus, abstraction-based methods and k-induction based methods nicely
combine.

The algorithms presented in this article can be seen as a form of minimization
constrained by a universally quantified formula Vo F', achieved by maintaining
a formula H such that Vo F' = H, H being a conjunction of an increasingly
large number of constraints generated from F “on demand”: a constraint is
added only if it is violated by the current candidate solution. This resembles
quantifier elimination algorithms we have proposed for linear real arithmetic [I77];
one difference is that the termination argument is simpler: with a finite number
n of Booleans as free variables, a new added constraint suppresses at least one
of the 2" models, thus there can be at most 2" iterations; in comparison the
termination arguments for arithmetic involve counting projections of polyhedra.

Reductions from invariant inferences to quantifier elimination, or to min-
imization constrained by a universally quantified formula, have already been
proposed for numerical constraints, where the unknowns are numerical quanti-
ties, in contrast to the present work where they are Booleans [I6].

Reductions from loop invariant inference in predicate abstraction to Boolean
constraint solving were introduced in [9], but that work assumed a postcondition
to prove, as opposed to minimizing the result. The problem we solve is the same
as the one from the later work [22, Sec. 5], but instead of concretely enumerating
the (potentially exponential) set of paths inside the program (corresponding to
all disjuncts in a disjunctive normal form of the transition relation), each path
corresponding to one constraint, we lazily enumerate witnesses for such paths.
Unfortunately, we do not have an implementation of the algorithm from [22] at
our disposal for performance comparisons.

More generally, a number of approaches for invariant inference based on
constraint solving have been proposed in the last years, especially for reducing
numerical invariant inference to numerical constraint solving [8,d] or mathemat-
ical programming [6]. One difference between these constraint approaches and
ours, except that our variable are Boolean and theirs are real, is that we use a
lazy constraint generation scheme: we generate constraints only when a candi-
date solution violates them, a method long known in mathematical programming
when applying cuts. We applied a similar technique for quantifier elimination for
linear real arithmetic, using lazy conversions to conjunctive normal form [I7]. A



recent maz-policy iteration considers each path through the loop as a constraint,
and lazily selects a combination of paths, using SMT-solving to point the next
relevant path [G].

6 Conclusion

We have given algorithms for finding loop invariants, or, equivalently, invariants
for reactive nodes, given as templates with Boolean parameters. Using disjunc-
tive invariants for reactive nodes, one obtains an abstraction of the reactive node
as a finite automaton with transitions labeled with guards over node inputs.

If a system consists of a number of nodes, then some of these nodes may be
replaced by their abstract automaton, resulting in a more abstract system whose
behaviors include all behaviors of the original system. This new system can in
turn be analyzed by the same method. Thus, our method supports modular and
compositional analysis.

We provide the CANDLE tool, built using the YICEs SMT-solver and the
MJOLLNIR quantifier elimination procedure, which computes abstractions of
LUSTRE nodes.
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