
A Coq Formalisation of a Core of R
Martin Bodin

mbodin@dim.uchile.cl
Center of Mathematical Modeling

Santiago, Chile

Abstract
Real-world programming languages have subtle behaviours. In par-
ticular, their semantics often contains various corner cases that
programmers are unaware of, which can yield serious bugs. This
is an opportunity for our community as Coq enables to certify pro-
gram behaviours. Such certifications rely on a formal semantics,
which can sometimes be as difficult to trust as the original program.
Previous work proposed ways to trust such large semantics. This
work evaluates the feasibility of such a formalisation in the case of
the R programming language—a trending programming language
specialised in statistics. We introduce a formalisation of the core
of R related to the reference R interpreter.

1 Introduction
R [R C15; IG96; Cor] is a trending programming language for statis-
ticians. It is used in a large range of fields (biology, finance, etc.),
as illustrated by the list of available packages categories: https:
//cran.r-project.org/web/views/. This makes R unlikely to disap-
pear in the following years. This diversity is reflected among R
programmers, resulting in largely different programming styles.

The R programming language presents itself as an expressive
and powerful language, able to express complex notions in few
keystrokes. This sometimes come with the cost of readability. The
semantics of R is subtle and contains numerous corner cases, as
shown in Section 2. As a consequence, bugs can be frequent in
R programs (as illustrated by the existence of various debugging
tools [McP14]), and trusting such programs can be difficult. Formal
methods in general and the Coq proof assistant in particular offer
an interesting answer to this trust issue. But to formally prove that
an R program meets its specification, we need a semantics of R.

A semantics for the full R language will inevitably be complex,
as all corner cases need to be covered. To be able to trust such a
formalisation, it is important to identify trust sources. These can
be language specifications, test suites, or reference interpreters. It
can be difficult to convince non-Coq-users that they can trust our
formalisation [Ler14]: the most time-consuming part of the formal-
isation process is to relate the formalisation with its trust sources,
not actually defining the formal model itself.

In the case of R, there is unfortunately no precise language speci-
fication (there is an ongoing effort to write one, but it is too early to
base ourself on it). There are however test suites [TV14; MKV13],
as well as a reference interpreter [Cor] against which alternative
implementations of R are tested. To trust our formalisation, we
wrote it in a similar way than the source code of the reference in-
terpreter. We also made it executable to be able to run it on test
suites. We believe that these two relating methods are enough to
convince anyone that we closely captured all corner cases of R.

The R language is large, but it contains a core which is both
small and easy to identify.We introduce a full Coq specification for
this core. The formalisation presents itself as a monadic interpreter.
This interpreter mimics the operations of the reference interpreter,

using its C source code as a specification. Section 2 presents some
subtleties of the R programming language. Then Section 3 presents
how our formalisation is defined, and in particular, how it is related
to the R source code. The source of this project is available at https:
//github.com/Mbodin/proveR/tree/CoqPL2018Final.

2 Presentation of R and its Core
R is a weakly typed programming language. Its basic data types
mainly consist of various kinds of arrays. It was originally [IG96]
defined as a mutation of Scheme designed to look like its predeces-
sor, the S language. As a consequence, functions are first class in R.
Furthermore, R follows the code-is-data paradigm: it is possible to
delay the evaluation of statements, and even to manipulate their
inner structure (for instance using the substitute R function).

Almost all constructs of R are treated as functions. This includes
features like if, while, and assignments. R source code contains a
table, the symbol table, associating each construct to a C function.
Some of these functions (if, assignments, etc.) are special and di-
rectly manipulate the abstract syntax tree of their arguments. In
this work, we consider that the features of this table are not part
of the core of R. In other words, we define the core of R as the parts
of R needed to access this table and execute its C functions.

This definition of R’s core enables us to focus our formalisation
effort on a very restricted part of the language. It includes the ex-
ecution rules for function calls, environments, closures, promises
(delayed evaluation), as well as the parts initialising the symbol ta-
ble. Constructs like if and while are not part of the core, but (some
kinds of) assignments are, as they are used for function calls. This
core is easily extendable: we can add any other feature by imple-
menting its associated function and adding it to the symbol table.

We now present some corner cases of the R semantics. Most
R constructs try, in some ways, to “guess” what the programmer
meant. The same syntactic construct is thus often associated with
different behaviours. For instance, array look-up is written a[i]:
if i evaluates to an array of indices (numbers are considered to be
arrays of size 1), then a[i] is the array with the corresponding ele-
ments of a. But if i evaluates to an array of negative integers, then
the array a is copied, and all elements whose (opposite) index is in
the array i are removed. Other behaviours happen when i evalu-
ates to a boolean array or a string array. As R is untyped, a function
like function (a, i) a[i] is already complex to specify.

Another source of subtleties of R is that it lazily evaluates ex-
pressions, including those with side effects. For instance, the fol-
lowing function f only evaluates its second argument if the first is
1. Thus, in its second call, the variable b has confusingly not been
defined because the assignment b <- 1 has not been evaluated.
f <- function (x, y) if (x == 1) y
f (1, a <- 1); a # Returns 1.
f (0, b <- 1); b # Raises an error.

R contains numerous semantic exceptions. None are inherently
complex to deal with, but their quantity complexifies the language.

1

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/
https://github.com/Mbodin/proveR/tree/CoqPL2018Final
https://github.com/Mbodin/proveR/tree/CoqPL2018Final


CoqPL’18, January 2018, Los Angeles, United States Martin Bodin

EXP* applyClosure (EXP* op, EXP* arglist, EXP* rho){
EXP* formals, actuals, savedrho, newrho, res;
if (rho->type != ENVSXP)
error ("'rho' must be an environment.");

formals = op->clo.formals;
savedrho = op->clo.env;
PROTECT (actuals = matchArgs (formals, arglist));
/* ... */
return res;

}

Figure 1. The original C function

3 Formalisation
Our formal semantics is presented as a monadic interpreter in Coq.
It is related to the C source code of the R reference interpreter by
a line-to-line correspondence: every one or two lines of our inter-
preter correspond to one or two lines of the reference interpreter.
Our semantics is runnable, which enables us to test it against R test
suites. However, as the core of R is very limited, non-core features
have to be added for testing. These features can be added follow-
ing the same methodology than the one presented here. Figure 2
shows our Coq translation of the C function shown in Figure 1.

We used monads very similar to the ones of JSRef [Bod+14]: a
result is either a success—it then carries the actual result and the
resulting state S of the program—, an error, or result_bottom—
meaning that the interpreter ran out of fuel during the execution.
These monads enable us to abstract most of the aspects of impera-
tivity and memory handling from C. Examples of monads include
let%success, to extract the result given by a function (it corre-
sponds to the monadic bind operator), or read%defined, to read
the content of a pointer. Coq notations have heavily been used for
the line-to-line correspondence. For instance, let us consider the
line if (rho->type != ENVSXP) of Figure 1. It has been trans-
lated into two lines: the monad read%defined first dereferences
the pointer rho (which may fail if the pointer is unbound), then
the test is performed. Every line has been similarly translated.

We chose to ignore some aspects of the original C source code
during the formalisation. For instance, the support for various lo-
cales and character encodings: our interpreter only considers ASCII
strings. More importantly, the garbage collector of the reference
interpreter has not been translated. We indeed consider that, as it
is assumed not to change the final result, its formalisation is not
needed to prove the functional correctness of R programs. For in-
stance, the PROTECT macro from Figure 1 temporarily disables the
garbage collector: it has thus been formalised out in Figure 2.

Instead of defining such an interpreter, we could have used al-
ready existing Coq semantics for C [KW11; Ler09] to directly de-
fine a semantics for R. We however believe that the abstraction
layers of C would come with a non-trivial additional complexity
to the formalisation, making it more difficult to use. Furthermore,
the R reference interpreter has been built with a strong intuition
in mind [IG96]. This intuition is reflected in R internals, which
would have been hidden if we attempted such a direct approach.
As a future work, it would be a very valuable contribution to use
these semantics of C to relate our formal model to the source code
of R. We furthermore believe that our line-to-line correspondence
would greatly help such a proof.

Definition applyClosure S (op arglist rho : EXP_pointer)
: result EXP_pointer :=

read%defined rho_ := rho using S in
ifb type rho_ <> EnvSxp then

result_error S "'rho' must be an environment."
else

read%clo op_clo := op using S in
let formals := clo_formals op_clo in
let savedrho := clo_env op_clo in
let%success actuals :=
matchArgs S formals arglist using S in

(* ... *)
result_success S res.

Figure 2. The Coq translation

4 Conclusion and Future Work
In this work, we presented a Coq monadic interpreter mimicking
the behaviours of the R reference interpreter. We believe that our
approach provides a high level of trust for our formal semantics,
on which new projects about R can be based—for instance proving
that a given R programmeets its specification. Our formalisation is
easily extendable through the symbol table, andwe aim to continue
the formalisation process to cover new features of R.

We think that the usability of this work can be improved: the
current formalisation is so close to the C source code that imple-
mentation details still appear in it. We plan to build a more abstract
formalisation, more suitable to prove the functional correctness of
real-world R programs. In particular, we believe that most pointers
can be formalised out, the semantics of R being mostly functional.

References
[Bod+14] Martin Bodin et al. “A Trusted Mechanised JavaScript

Specification”. In: POPL. 2014.
[Cor] R Core Team. The Comprehensive R Archive Network.

url: https://cran.r-project.org/ (visited on 2017).
[IG96] Ross Ihaka and Robert Gentleman. “R: a Language for

Data Analysis and Graphics”. In: Journal of Computa-
tional and Graphical Statistics (1996).

[KW11] Robbert Krebbers and FreekWiedijk. “A Formalization
of the C99 Standard in HOL, Isabelle and Coq”. In: Cal-
culemus/MKM. 2011.

[Ler09] Xavier Leroy. “Formal Verification of a Realistic Com-
piler”. In: Communications of the ACM (2009).

[Ler14] Xavier Leroy. “Howmuch is amechanized proofworth,
certification-wise?” In: Principles in Practice. 2014.

[McP14] Jonathan McPherson. “Debugging in R”. In: The R User
Conference, UseR! 2014.

[MKV13] Petr Maj, Tomas Kalibera, and Jan Vitek. “TestR: R Lan-
guage Test Driven Specification”. In: The R User Con-
ference, UseR! 2013.

[R C15] R Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Com-
puting. Vienna, Austria, 2015. url: https : / /www.R -
project.org/.

[TV14] Roman Tsegelskyi and Jan Vitek. “TestR: Generating
Unit Tests for R internals”. In: The R User Conference,
UseR! 2014.

2

https://cran.r-project.org/
https://www.R-project.org/
https://www.R-project.org/

	Abstract
	1 Introduction
	2 Presentation of R and its Core
	3 Formalisation
	4 Conclusion and Future Work

