Certified Abstract Interpretation

with Pretty-Big-Step Semantics

Martin BODIN Thomas JENSEN Alan SCHMITT
Inria

13th of January

CPP'15

Previously at POPL

JSCert: A Trusted Mechanised JAVASCRIPT Specification

jscert.org

@ An operational semantics for JAVASCRIPT;
@ Trusted;
e Huge (~ 800 reduction rules).

jscert.org

How to derive
an abstract interpreter
from such a huge semantics?

.. proven in COQ?

How to derive
an abstract interpreter
from such a huge semantics?
.. proven in CoQ?

How to avoid ad-hoc abstract rules?

Abstract Interpretation

Semantics

- ~

Property
Definition

Unsafe States

Abstract Interpretation

Semantics

- ~

Property
Definition

Unsafe States

Abstract Interpretation

Semantics

- ~

e Property
Definition

[Abstract Reduction]

Unsafe States

Abstract Interpretation

Semantics

- ~

Property
Definition

Analysis

[Abstract Reduction]

Unsafe States

General Approach

Inspired by SCHMIDT's works:

Natural-Semantics-Based Abstract
Interpretation (Preliminary Version)

—
t/270-g ‘Uﬂ rﬂ2

t470-§1 U’ﬁ I’ﬁ_
t37‘7§ ‘U’ﬁ rﬁ3

to, O-g ‘U’ﬁ ”ﬁz

tlagg U’ﬂ ’J:j[

Abstract Derivation

ta, o4 1y
t,o2 I n t3,03 1 r3
ti,o1dn

Concrete Derivation

General Approach

Inspired by SCHMIDT's works:

Natural-Semantics-Based Abstract
Interpretation (Preliminary Version)

t470-3 U’ﬁ rtﬁl.

¥ ¥
tyoobrn [ts030rs

B3
ti,o1dn

Concrete Derivation

Pretty-Big-Step

@ Introduced by CHARGUERAUD (ESOP 2013).
@ Can be compiled from Small-Step (ESOP 2014).

@ Similar to Big-Step semantics.

Pretty-Big-Step

@ Introduced by CHARGUERAUD (ESOP 2013).
@ Can be compiled from Small-Step (ESOP 2014).
@ Similar to Big-Step semantics.

@ But much more constrained.

AXIOM RuLEl
—————— cond(o) M cond (o)
[,O'UQX(O') Lol r
RuLE2
up,up(o)dr mo next(o,r)lr’
cond (o)
Lol ’/

Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

AXIOM RuLEl
—————— cond(o) M cond (o)
l,o | ax(o) Lolr
RuLE2
up,up(o)dr mo next(o,r)lr’
cond (o)
Lol ’/

Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

AXIOM RuLEl
—————— cond(o) M cond (o)
l,o | ax(o) Lolr
RuLE2
up,up(o)dr mo next(o,r)lr’
cond (o)
Lol ’/

Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

AXIOM RuLEl
—————— cond(o) M cond (o)
l,o | ax(o) Lolr
RuLE2
up,up(o) b r mo next(o,r)lr’
cond (o)
Lol r/

Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

AXIOM RuLEl
—————— cond(o) M cond (o)
l,o | ax(o) Lolr
RuLE2
up,up(o)dr mo next(o,r)lr’
cond (o)
Lol ’/

Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

AXIOM RuLEl
————— cond(0o) M cond (o)
l,o | ax(o) Lolr
RuLE2
up,up(o) b r mo next(o,r)lr’
cond (o)
Lol ’/

© Motivation

© Pretty-Big-Step: a Generic Rule Format

© Defining an Abstract Semantics Correct by Construction

@ Running Abstract Interpreters

Concrete Domains

int, bool

Concrete Operations
T Concrete Semantics

t,olr

Sign Abstract Operations

T

Abstract Semantics
Abstract Interpreter
t (7ﬁ

t,of Y4 A

Concrete Domains

int, bool

Concrete Operations
T Concrete Semantics

t,olr

- Abstract Domains

Sign

b

Abstract Semantics
Abstract Interpreter
t Uii

t,of ¥ A

Defining Abstract Domains and Operations
/ | \
+

X X]
\I/
1

Concrete Domain Abstract Lattice

Defining Abstract Domains and Operations

Ve
L

Concrete Domain Abstract Lattice

Defining Abstract Domains and Operations

Ve
L

Concrete Domain Abstract Lattice
+1 <. - 0 4+ — £ +o T
1 |1 1L L 1 1 1 1 <=L
- /L - - T - T T 7T
0 L - 0 + — £ +0 T
+ |L T + 4+ T T 4+ 7T
0 |L = = T — T T T
+ <. T £ T T T T T
“+o0 1L T 40 + T T 40 T
T |L T T T T T T T

Defining Abstract Domains and Operations

Ve
L

Concrete Domain Abstract Lattice

The theory has already been formalized in CoQ.

CACHERA and PICHARDIE. A Certified Denotational Abstract Interpreter.
ITP’10

Concrete Domains

int, bool

Concrete Operations
+

Sign

L Concete Semantcs

t,olr

Abstract Domains
- Abstract Operations

bt Semantcs

t,of ¥ A

b

Abstract Interpreter
t Uii

10

Defining an Abstract Semantics, the Direct Approach

IFTRUE IFFALSE
SlaEU’ E 527E‘U’ E
YA e {0
if s15,(v, E) | F Y ifs15,(v, E) | veio)

11

Defining an Abstract Semantics, the Direct Approach

IFTRUE IFFALSE
si,ELE s, ELF
YA e {0
ifs15,(v,E) | E Y if s15,(v,E) | E ve{o

Let's just add § everywhere!

IFTRUE £yt gt

S1, |2 *
I'f"51$2,<vﬁ,Eﬂ>»U«T'ALE"tt 7<Vﬁ)mZ #Q)
IFFALSE -

2EVE (n £

ifSl 92 <Vﬁ, Eﬁ> Uﬁ E,Ti

11

Defining an Abstract Semantics, the Direct Approach

IFTRUE IFFALSE
si,ELE s, ELF
YA e {0
ifs15,(v,E) | E Y if s15,(v,E) | E ve{o

Let's just add § everywhere!

IrADHOC
51,EﬁUﬂEdl 527Eﬁqug

if s1 s, (Vﬂ, Eﬂ) »Uﬁ Eti L Eg

=T

11

Abstract Rules

In pretty-big-step, each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

12

Abstract Rules

Shared between the concrete and abstract semantics

In pretty-big-step, each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

To be specified in the abstract semantics.
To be locally proved correct.

@ The abstract semantics will follow the exact same structure as the
concrete semantics.

12

Abstract Semantics

But we don't define || and |}! the same way from the rules!

Concrete Semantics |} Abstract Semantics |}*
At each step, At each step,
apply one rule that applies apply all the rules that apply
S1, E(u) ‘U’ Eﬁ_ 52, Eg ‘U‘ Eu2
IIFTRUE IIFFALSE

if5152,<vn,Eg)iLEﬁl_lEu2 13

Abstract Semantics

But we don't define || and |}! the same way from the rules!

Concrete Semantics |} Abstract Semantics |}*
At each step, At each step,

apply one rule that applies apply all the rules that apply

Allow approximations

S1, Eg ‘U’ Eﬁ_ 52, Eg ‘U‘ Eu2
IIFTRUE IIFFALSE

if5152,<Vn,E(u)) UEﬁI_IE“2

13

Abstract Semantics

But we don't define || and |}! the same way from the rules!

Concrete Semantics |} Abstract Semantics |}*
At each step, At each step,

apply one rule that applies apply all the rules that apply
Allow approximations

Inductive interpretation Co-inductive interpretation

of the rules of the rules
I = ifp(F) I = gfo (F)
S1, E(u) ‘U’ Eﬁ_ 52, Eg ‘U‘ Eu2
IIFTRUE IIFFALSE

if5152,<vn,Eg)iLEﬁl_lEu2 13

Example of Concrete Rules

WHILE(e, s)
whiley es, ret E |} o
whilees, E || o

WHILE1 (e, s)
e,El o while es, (E, 0) |} o
whiley es, ret E |} o

WHILE2TRUE(e, 5)
s,El o while; es, 0} o c 7+
v
while es, (E, valv) || o

WHILE2FALSE(e, 5)

€ {0
whiley es, (E, valv) || ret E velo

14

Example of a Concrete Derivation Tree

VAR(x)
x{x—1} 1 s=(x=x-1)
: VAR(x)

x,{x— 0} {0

WHILE2FALSE(X, 5)

hilez x, ({x = 0}, val0) { {x — 0
whiley xs, ({x },val0) 4 {x } WHILE1(X, s)

whiley xs, {x— 1} || {x— 0}

s, {x—1} | {x— 0} :
whiley xs, ({x— 1}, vall) || {x+— 0}
while; xs, {x— 1} | {x— 0}
whilexs,{x+— 1} | {x— 0}

WHILE2TRUE(X, 5)
WHILEL(X, s)

WHILE(x, 5)

15

Example of Abstract Rules

WHILE(e, 5)
while; es, E l}ﬁ of
whilees, EF |F of

WHILE1 (e, s)
e, EF |JF while; es, (Eﬁ, vﬁ) Vot
whiley es, E Uﬁ of

WHILE2TRUE(e, 5)
sSEUf o while es, o | o
whiley es, (E*,) ||F o*

’y(vﬁ>ﬂZ*7é@

WHILE2FALSE(e, s)

while; es, (Eﬁ, vu) e 7 (Vﬂ) n{o}#0
16

Example of an Abstract Derivation Tree

s=(x=x-1)

WHILEL (e, s)
e,El o while es, (E, 0) |} o
while es, ret E || o

WHILE1(X, s)

whiley x s, {x — 4o} Y WHILE(X, 5)

whilexs, {x+— +o} |}/

17

Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

X, {x = +o} IF 4o

whiley xs, ({x+— 40} ,+0) I*

WHILE1(X, s)

whiley x s, {x — 4o} Y WHILE(X, 5)

whilexs, {x+— +o} |}/

17

Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

x {x +o} ¥ +o
: WHILE2FALSE(e, s)

while; es, (Eﬂ, vﬁ) U E 7 (Vﬁ> N0} #0

WHILE2TRUE(e, 5)
s, E yfo while; es, of |J¥ ot
whiles es, (Eﬁ, vﬁ) Uk ot

’y(vﬁ)ﬁZ*;é@

whiley xs, ({x+— +o}, +0) i}ﬁ

WHILE1(X, s)

while; xs,{x — +o} M WHILE(x, s)

whilexs, {x+— +o} |}/

17

Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

x, {x = 4o} IF +o

: 7 WHILE2FALSE(X, 5)
whilez xs, ({x+ +o},40) I* {x—= 4o}

WHILE1(X, 5)

whiley x s, {x — 4o} Y WHILE(X, 5)

whilexs, {x+— +o} ik

17

Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

x, {x = 4o} IF +o

: 7 WHILE2FALSE(X, 5)
whilez xs, ({x+ +o},40) I* {x—= 4o}

i WHILEL(x, s)
whiley xs, {x — T} Ik {x—=T}

s, {x— 4o} K {x—T}
whiley xs, ({x+— +o}, +0) ik {x— T}

WHILE2TRUE(X, 5)

WHILE1(X, 5)

while; xs,{x — +o} M WHILE(x, s)

whilexs, {x+— +o} ik

17

Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

x, {x = 4o} IF +o

: 7 WHILE2FALSE(X, 5)
whiles xs, ({x+— +o},40) ¥ {x+— 4o}

i WHILEL(x, s)
whiley xs, {x — T} Ik {x—=T}

S,{Xl—>+0}~uﬂ{x'_>—|— ‘
whiley xs, ({x— +o}, +A\€ i&{x = T}

WHILE2TRUE(X, 5)

WHILE1(X, 5)

whiley xs, {x +— +o} |}/ {xwr—> T}
WHILE(xX, 5)

whilexs, {x — +o} | {x— T}

17

An Abstract Semantics Correct by Construction

Hypotheses:
@ Correctness of the side-conditions,

@ Correctness of the transfer functions.

Theorem (Correctness)

Let t a term, o and o? a concrete and an abstract semantic contexts,
and r and ¥ a concrete and an abstract results.

i
If Z:Jr(‘7> then rE’y(lﬁ).

t, ot Yt A >

18

An Abstract Semantics Correct by Construction

Hypotheses:
@ Correctness of the side-conditions,

@ Correctness of the transfer functions.

Theorem (Correctness)

Let t a term, o and o? a concrete and an abstract semantic contexts,
and r and ¥ a concrete and an abstract results.

i
If Z:Jr(‘7> then rE’y(lﬁ).

t ot i 4 / >

Proven independently of

the rules!
18

Concrete Domains

int, bool

Concrete Operations
+

Sign

Concrete Semantics

t,olr

Abstract Domains
- Abstract Operations

Abstract Semantics

t,of ¥ A

b

tatt

19

Defining Abstract Interpreters: a Verifier

@ An abstract interpreter is a function building an abstract derivation.

20

Defining Abstract Interpreters: a Verifier

@ An abstract interpreter is a function building an abstract derivation.

@ But this abstract semantic tree can be infinite!

A Verifier

o It takes an oracle, i.e., a set O of triples t,of, r*.
o O
w w

*

Fi
S

) 7
°ec O

It tries to prove O C F#" (0).
By PARK's principle, this implies O C |}¥.

Defining Abstract Interpreters: a Verifier

@ An abstract interpreter is a function building an abstract derivation.

@ But this abstract semantic tree can be infinite!

A Verifier

o It takes an oracle, i.e., a set O of triples t,of, r*.

(@) o
W W

FH
) At
°c/O

It tries to prove O C F#" (0).
By PARK's principle, this implies O C |}¥.

Generic Abstract Interpreters

@ We have built some generic abstract interpreters.

@ We can extract them to OCaml and run them.

a:=6,b:=7;r:=0;n:=a,whilen (r:=r+ b;n:=n—1)

({r—=+,b—+a—~>+,n— T}, 1)

21

Generic Abstract Interpreters

@ We have built some generic abstract interpreters.

@ We can extract them to OCaml and run them.

a:=6;b:=7,;prod(n) := {ifn (prod(n—1);r:=r+ b)(r:=0) }; prod(a)

({r—=+,b—+a—~>+},1)

21

Generic Abstract Interpreters

@ We have built some generic abstract interpreters.

@ We can extract them to OCaml and run them.

a:=6;b:=7,;prod(n) = {ifn (prod(n—1);r:=r+b)(r:=0)}; prod(a)

({r—=+,b—+a—~>+},1)

21

Conclusion and Future Works

We have investigated how to define, in COQ, certified abstract interpreters
for pretty-big-step semantics.

Recipe

@ define the concrete semantics;
@ define the abstract domains and operations on the abstract domain,
o this automatically defines an abstract semantics;

© prove the abstract operations are correct,
o this implies the abstract semantics is correct;

Q define an analysis.

Future Works
@ Apply it to JSCert.

@ Allow non-local reasonning.

@ Taking into account non-terminating behaviours.
22

Thanks You for Listening!

int, bool
Concrete Operations
= Concrete Semantics
t,olr
Abstract Domains
Sign Abstract Operations
IR J—-
Abstract Semantics
Abstract Interpreter
s
t a’i

23

Bonus Slides

24

Concrete Semantics

apply; (o) ==
match rule (i) with

| Ri(up) = {([,-,a, r)

| Rz (up, next) = < (li,0,r)

| = Ifp(F)

| Ax(ax) = {(lj,0,r) | ax(0) = Some(r)}

up (o) = Some(a’)}

Augj ol Yo r

up (o) = Some(o’)
Augj,o’ o n
A next (o, r) = Some(c”)
Angj, o o Some(r)

F (Vo) = {(t,0,r) | i, cond; (o) A (t,0,r) € apply; ({}0)}

25

Abstract Semantics

apply} (V5) = {(t» o,1)

EI0-073’/0’
O'EﬁO'o A rogﬁr/\

(t, 70, 70) € apply; (U5)
I = gfp (F%)

7 (#5) ={an

Vi.t = l; = cond; (o) =
(t,0,7) € apply! (43) }

26

Non Local Reasonning

Analysing in {x — +}

@ Only the rule IFTRUE applies.
o We get r— 0.

Analysing in {x+— T}

@ Both rules IFTRUE and IFFALSE apply.

o We get r— 0 from [FTRUE.
o We get r— T from IFFALSE.
o We get r— T at the end.

CoInductive aeval : term -> ast -> ares -> Prop :=
| aeval_cons : forall t sigma r,
(forall n,
t = left n >
acond n sigma —>
aapply n sigma r) ->
aeval t sigma r
with aapply : name -> ast -> ares -> Prop :=
| aapply_cons : forall n sigma sigma' r r',
sigma L sigma' ->
r' Cr —>
aapply_step n sigma' r' ->
aapply n sigma r

with aapply_step : name -> ast -> ares -> Prop :
| aapply_step_Ax : forall n ax sigma r,

rule_struct n = Rule_struct_Ax _ —>
arule n = Rule_Ax ax ->

ax sigma = Some r —>

aapply_step n sigma r

| aapply_step_R1 : forall n t up sigma sigma'

rule_struct n = Rule_struct_R1 t ->
arule n = Rule_R1 _ up —>

up sigma = Some sigma' ->

aeval t sigma' r —>

aapply_step n sigma r

| aapply_step_R2 : forall n tl t2 up next

sigma sigmal sigma2
rule_struct n = Rule_struct_R2 tl1 t2 ->
arule n = Rule_R2 up next —>
up sigma = Some sigmal —>
aeval tl1 sigmal r —>
next sigma r = Some sigma2 ->
aeval t2 sigma2 r' ->
aapply_step n sigma r'.

29

© Motivation

© Pretty-Big-Step: a Generic Rule Format

© Defining an Abstract Semantics Correct by Construction

@ Running Abstract Interpreters

30

	Motivation
	Pretty-Big-Step: a Generic Rule Format
	Defining an Abstract Semantics Correct by Construction
	Running Abstract Interpreters

