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Previously at POPL

JSCert: A Trusted Mechanised JAVASCRIPT Specification

jscert.org

@ An operational semantics for JAVASCRIPT;
@ Trusted;
e Huge (~ 800 reduction rules).


jscert.org

How to derive
an abstract interpreter
from such a huge semantics?

.. proven in COQ?
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.. proven in CoQ?

How to avoid ad-hoc abstract rules?
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General Approach

Inspired by SCHMIDT's works:

Natural-Semantics-Based Abstract
Interpretation (Preliminary Version)
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Pretty-Big-Step

@ Introduced by CHARGUERAUD (ESOP 2013).
@ Can be compiled from Small-Step (ESOP 2014).

@ Similar to Big-Step semantics.



Pretty-Big-Step

@ Introduced by CHARGUERAUD (ESOP 2013).
@ Can be compiled from Small-Step (ESOP 2014).
@ Similar to Big-Step semantics.

@ But much more constrained.
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Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.
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Pretty-Big-Step

Executed Term Semantic Context Result

\t, aTlL r/

Each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.
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© Motivation

© Pretty-Big-Step: a Generic Rule Format

© Defining an Abstract Semantics Correct by Construction

@ Running Abstract Interpreters
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Defining Abstract Domains and Operations

Ve
L

Concrete Domain Abstract Lattice

The theory has already been formalized in CoQ.

CACHERA and PICHARDIE. A Certified Denotational Abstract Interpreter.
ITP’10
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Defining an Abstract Semantics, the Direct Approach
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Defining an Abstract Semantics, the Direct Approach

IFTRUE IFFALSE
si,ELE s, ELF
YA e {0
ifs15,(v,E) | E Y if s15,(v,E) | E ve{o

Let's just add § everywhere!
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Abstract Rules

In pretty-big-step, each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.
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Abstract Rules

Shared between the concrete and abstract semantics

In pretty-big-step, each rule has

@ A structural part: identifier, terms;

@ A semantic part: side-conditions, transfer functions.

To be specified in the abstract semantics.
To be locally proved correct.

@ The abstract semantics will follow the exact same structure as the
concrete semantics.

12



Abstract Semantics

But we don't define || and |}! the same way from the rules!

Concrete Semantics |} Abstract Semantics |}*
At each step, At each step,
apply one rule that applies apply all the rules that apply
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Abstract Semantics

But we don't define || and |}! the same way from the rules!

Concrete Semantics |} Abstract Semantics |}*
At each step, At each step,

apply one rule that applies apply all the rules that apply
Allow approximations

Inductive interpretation Co-inductive interpretation

of the rules of the rules
I = ifp(F) I = gfo (F)
S1, E(u) ‘U’ Eﬁ_ 52, Eg ‘U‘ Eu2
IIFTRUE IIFFALSE

if5152,<vn,Eg)iLEﬁl_lEu2 13



Example of Concrete Rules

WHILE(e, s)
whiley es, ret E |} o
whilees, E || o

WHILE1 (e, s)
e,El o while es, (E, 0) |} o
whiley es, ret E |} o

WHILE2TRUE(e, 5)
s,El o while; es, 0} o c 7+
v
while es, (E, valv) || o

WHILE2FALSE(e, 5)

€ {0
whiley es, (E, valv) || ret E velo
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Example of a Concrete Derivation Tree

VAR(x)
x{x—1} 1 s=(x=x-1)
: VAR(x)

x,{x— 0} {0

WHILE2FALSE(X, 5)

hilez x, ({x = 0}, val0) { {x — 0
whiley xs, ({x },val0) 4 {x } WHILE1(X, s)

whiley xs, {x— 1} || {x— 0}

s, {x—1} | {x— 0} :
whiley xs, ({x— 1}, vall) || {x+— 0}
while; xs, {x— 1} | {x— 0}
whilexs,{x+— 1} | {x— 0}

WHILE2TRUE(X, 5)
WHILEL(X, s)

WHILE(x, 5)

15



Example of Abstract Rules

WHILE(e, 5)
while; es, E l}ﬁ of
whilees, EF |F of

WHILE1 (e, s)
e, EF |JF while; es, (Eﬁ, vﬁ) Vot
whiley es, E Uﬁ of

WHILE2TRUE(e, 5)
sSEUf o while es, o | o
whiley es, (E*, ) ||F o*

’y(vﬁ>ﬂZ*7é@

WHILE2FALSE(e, s)

while; es, (Eﬁ, vu) e 7 (Vﬂ) n{o}#0
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Example of an Abstract Derivation Tree

s=(x=x-1)

WHILEL (e, s)
e,El o while es, (E, 0) |} o
while es, ret E || o

WHILE1(X, s)

whiley x s, {x — 4o} Y WHILE(X, 5)

whilexs, {x+— +o} |}/
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X, {x = +o} IF 4o
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Example of an Abstract Derivation Tree
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x {x +o} ¥ +o
: WHILE2FALSE(e, s)

while; es, (Eﬂ, vﬁ) U E 7 (Vﬁ> N0} #0

WHILE2TRUE(e, 5)
s, E yfo while; es, of |J¥ ot
whiles es, (Eﬁ, vﬁ) Uk ot

’y(vﬁ)ﬁZ*;é@
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Example of an Abstract Derivation Tree

VAR(x)
s=(x=x-1)

x, {x = 4o} IF +o

: 7 WHILE2FALSE(X, 5)
whiles xs, ({x+— +o},40) ¥ {x+— 4o}

i WHILEL(x, s)
whiley xs, {x — T} Ik {x—=T}

S,{Xl—>+0}~uﬂ{x'_>—|— ‘
whiley xs, ({x— +o}, +A\€ i&{x = T}

WHILE2TRUE(X, 5)

WHILE1(X, 5)

whiley xs, {x +— +o} |}/ {xwr—> T}
WHILE(xX, 5)

whilexs, {x — +o} | {x— T}
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An Abstract Semantics Correct by Construction

Hypotheses:
@ Correctness of the side-conditions,

@ Correctness of the transfer functions.

Theorem (Correctness)

Let t a term, o and o? a concrete and an abstract semantic contexts,
and r and ¥ a concrete and an abstract results.

i
If Z:Jr(‘7> then rE’y(lﬁ).

t, ot Yt A >
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An Abstract Semantics Correct by Construction

Hypotheses:
@ Correctness of the side-conditions,

@ Correctness of the transfer functions.

Theorem (Correctness)

Let t a term, o and o? a concrete and an abstract semantic contexts,
and r and ¥ a concrete and an abstract results.

i
If Z:Jr(‘7> then rE’y(lﬁ).

t ot i 4 / >

Proven independently of

the rules!
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Defining Abstract Interpreters: a Verifier

@ An abstract interpreter is a function building an abstract derivation.

20



Defining Abstract Interpreters: a Verifier

@ An abstract interpreter is a function building an abstract derivation.

@ But this abstract semantic tree can be infinite!

A Verifier

o It takes an oracle, i.e., a set O of triples t,of, r*.
o O
w w
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It tries to prove O C F#" (0).
By PARK's principle, this implies O C |}¥.
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Generic Abstract Interpreters

@ We have built some generic abstract interpreters.

@ We can extract them to OCaml and run them.

a:=6,b:=7;r:=0;n:=a,whilen (r:=r+ b;n:=n—1)

({r—=+,b—+a—~>+,n— T}, 1)

21
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Generic Abstract Interpreters

@ We have built some generic abstract interpreters.
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Conclusion and Future Works

We have investigated how to define, in COQ, certified abstract interpreters
for pretty-big-step semantics.

Recipe

@ define the concrete semantics;
@ define the abstract domains and operations on the abstract domain,
o this automatically defines an abstract semantics;

© prove the abstract operations are correct,
o this implies the abstract semantics is correct;

Q define an analysis.

Future Works
@ Apply it to JSCert.

@ Allow non-local reasonning.

@ Taking into account non-terminating behaviours.
22



Thanks You for Listening!

int, bool
Concrete Operations
= Concrete Semantics
t,olr
Abstract Domains
Sign Abstract Operations
IR J—-
Abstract Semantics
Abstract Interpreter
s
t a’i
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Bonus Slides
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Concrete Semantics

apply; (o) ==
match rule (i) with

| Ri(up) = {([,-,a, r)

| Rz (up, next) = < (li,0,r)

| = Ifp(F)

| Ax(ax) = {(lj,0,r) | ax(0) = Some(r)}

up (o) = Some(a’)}

Augj ol Yo r

up (o) = Some(o’)
Augj,o’ o n
A next (o, r) = Some(c”)
Angj, o o Some(r)

F (Vo) = {(t,0,r) | i, cond; (o) A (t,0,r) € apply; ({}0)}

25



Abstract Semantics

apply} (V5) = {(t» o,1)

EI0-073’/0’
O'EﬁO'o A rogﬁr/\

(t, 70, 70) € apply; (U5)
I = gfp (F%)

7 (#5) ={an

Vi.t = l; = cond; (o) =
(t,0,7) € apply! (43) }

26



Non Local Reasonning

Analysing in {x — +}

@ Only the rule IFTRUE applies.
o We get r— 0.

Analysing in {x+— T}

@ Both rules IFTRUE and IFFALSE apply.

o We get r— 0 from [FTRUE.
o We get r— T from IFFALSE.
o We get r— T at the end.



CoInductive aeval : term -> ast -> ares -> Prop :=
| aeval_cons : forall t sigma r,
(forall n,
t = left n >
acond n sigma —>
aapply n sigma r) ->
aeval t sigma r
with aapply : name -> ast -> ares -> Prop :=
| aapply_cons : forall n sigma sigma' r r',
sigma L sigma' ->
r' Cr —>
aapply_step n sigma' r' ->
aapply n sigma r



with aapply_step : name -> ast -> ares -> Prop :
| aapply_step_Ax : forall n ax sigma r,

rule_struct n = Rule_struct_Ax _ —>
arule n = Rule_Ax ax ->

ax sigma = Some r —>

aapply_step n sigma r

| aapply_step_R1 : forall n t up sigma sigma'

rule_struct n = Rule_struct_R1 t ->
arule n = Rule_R1 _ up —>

up sigma = Some sigma' ->

aeval t sigma' r —>

aapply_step n sigma r

| aapply_step_R2 : forall n tl t2 up next

sigma sigmal sigma2
rule_struct n = Rule_struct_R2 tl1 t2 ->
arule n = Rule_R2 up next —>
up sigma = Some sigmal —>
aeval tl1 sigmal r —>
next sigma r = Some sigma2 ->
aeval t2 sigma2 r' ->
aapply_step n sigma r'.

29



© Motivation

© Pretty-Big-Step: a Generic Rule Format

© Defining an Abstract Semantics Correct by Construction

@ Running Abstract Interpreters
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