
A Trustworthy Mechanized Formalization of R
Martin Bodin

Center for Mathematical Modeling &
Computer Science Department

University of Chile
mbodin@dim.uchile.cl

Tomás Diaz
Pleiad Lab & IMFD Chile

Computer Science Department
University of Chile
tdiaz@dcc.uchile.cl

Éric Tanter
Pleiad Lab & IMFD Chile

Computer Science Department
University of Chile

etanter@dcc.uchile.cl

Abstract
The R programming language is very popular for develop-
ing statistical software and data analysis, thanks to rich li-
braries, concise and expressive syntax, and support for in-
teractive programming. Yet, the semantics of R is fairly com-
plex, contains many subtle corner cases, and is not formally
specified. This makes it difficult to reason about R programs.
In this work, we develop a big-step operational semantics
for R in the form of an interpreter written in the Coq proof
assistant. We ensure the trustworthiness of the formaliza-
tion by introducing a monadic encoding that allows the Coq
interpreter, CoqR, to be in direct visual correspondencewith
the reference R interpreter, GNUR. Additionally, we provide
a testing framework that supports systematic comparison of
CoqR and GNU R. In its current state, CoqR covers the nu-
cleus of the R language as well as numerous additional fea-
tures, making it pass a significant number of realistic test
cases from the GNU R and FastR projects. To exercise the
formal specification, we prove in Coq the preservation of
memory invariants in selected parts of the interpreter. This
work is an important first step towards a robust environ-
ment for formal verification of R programs.

CCSConcepts •Theory of computation→Denotational
semantics; • Software and its engineering → Applica-
tion specific development environments;

Keywords R, Coq, Testing infrastructure
ACM Reference Format:
Martin Bodin, Tomás Diaz, and Éric Tanter. 2018. A Trustworthy
Mechanized Formalization of R. In Proceedings of the 14th ACM SIG-
PLAN International Symposium on Dynamic Languages (DLS ’18),

∗T. Diaz and É. Tanter are partially funded by the Millenium Institute for
Foundational Research on Data (IMFD Chile)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’18, November 6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-6030-2/18/11. . . $15.00
https://doi.org/10.1145/3276945.3276946

November 6, 2018, Boston, MA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3276945.3276946

1 Introduction
The R programming language [26, 11, 28] has gotten a lot of
traction in recent years, being used bymillions of users in ar-
eas as varied as biology and finance. This diversity among R
programmers results in largely different programming styles.
In fact, the language itself is community driven and reflects
this diversity. The R programming language is meant to be
both expressive and powerful, able to express complex no-
tions in few keystrokes. This sometimes comes at the cost
of readability and predictability. Indeed, the semantics of R
is subtle and contains numerous corner cases that can result
in unexpected behavior.
The reasons for these corner cases are numerous, ranging

from backward compatibility to the desire to accommodate
the use of R as both a traditional programming language and
an interactive shell. Even a feature as basic as function calls
can be a source of surprise in R. Indeed, there aremanyways
to call a function, and in particular there are two ways to
provide an argument: either by position or by name (includ-
ing prefixes). To illustrate the consequences of this feature,
Figure 1 defines a function f that concatenates its three argu-
ments. The first call associates arguments by position, and
the second by name. The third call mixes both mechanisms,
and exploits the prefix feature: d is associated to de because
it is the only argument whose name starts with d. Now, if
more than one argument matches by prefix, then R rejects
the call and throws an error, as in the fifth call in Figure 1.
However, exact matches are not counted in this process: in
the fourth call, the name ab is an exact match and thus only
the argument abc is left to be associated to a, leading to no
error thrown. R also comprises a ... feature to define func-
tions accepting any number of arguments. This feature adds
an exception to the prefix rule: the variables declared after

1 f <- function (abc, ab, de) { c (abc, ab, de) }
2 f(1, 2, 3) # By position
3 f(de=3, abc=1, ab=2) # By name
4 f(1, d=3, 2) # Mixed
5 f(3, a=1, ab=2) # a is associated to abc
6 f(a=3, 1, 2) # Error: several prefixes

Figure 1. Exploring function calls in R.

13

https://doi.org/10.1145/3276945.3276946
https://doi.org/10.1145/3276945.3276946

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

the ... special argument are not considered during prefix
matching, but only for exact matches.
Such subtle behaviors are numerous in R [3]. Debugging

tools exist [21], but they cannot always compensate for the
complex semantics of R. Consequently, unexpected bugs oc-
cur in R programs, and reasoning about such programs, even
informally, can be difficult. Formal methods support reason-
ing about the behavior of programs. In particular, proof as-
sistants such as Coq [31] enable us to formally prove pro-
gram properties. But to formally prove that an R program
meets its specification, we first need a formal semantics of
R. While there exists a language definition document [27],
this document is unfit as the basis of a verification effort: it
is both a specification effort and a manual, written in plain
English, with ambiguities and incomplete at times. Addition-
ally, we found several mismatches between the text descrip-
tion and the behavior of the reference interpreter, GNUR [28].1
Crucially, the formal semantics should account for all the
corner cases of the R semantics, such as the function call
conventions described above, implicit type conversions, and
so on. This is necessary because these corner cases are a typ-
ical place were bugs appear and are hard to track. A com-
plete semantics for the full R language will inevitably be
complex, because of the large amount of such corner cases.
This complexity in turn raises a trust issue: how do we

know that a formal semantics properlymodels the real-world
language it is supposed to describe? Such trustworthiness
is crucial to justify the relevance of any formal reasoning
based on such semantics, such as proofs of language proper-
ties or of properties of specific programs. Being able to relate
a formalism to trust sources is a crucial aspect of the formal-
ization process, and often requires a large amount ofwork to
be done properly [16]. This challenge has been faced repeat-
edly in attempts to provide formal foundations to JavaScript,
for instance. Some formalization approaches like λ JS [10]
and KJS [24] augment trust through extensive testing and
comparison with existing implementations. JSCert [2] also
uses testing and further augments trust through the notion
of a so-called eyeball correspondence, i.e. a line-to-line syn-
tactic connection, between the formalization (in Coq) and
the ECMAScript specification (in English and pseudo-code).

Contributions. We present CoqR, a trustworthy formaliza-
tion of the R programming language in the Coq proof as-
sistant. The formalization is a big-step operational seman-
tics, in the form of an interpreter (Section 2). We say that
this interpreter is trustworthy becausewe have followed two
complementary techniques to maximize trust: eyeball corre-
spondence, and testing.
First, the Coq interpreter has beenwritten using amonadic

encoding that allows for a direct eyeball correspondence
with the C source code of GNU R [28]. In the absence of a
1For instance, according to the language definition, if ("TRUE") 42
should raise an error, whilst the interpreter returns 42.

standardized formal semantics, GNUR is the reference point
that defines what R really is. Note that other alternative im-
plementations of R, such as FastR [13], also treat GNU R as
the ground truth.
Second, we have developed a testing framework that

streamlines the process of running both CoqR and GNU R
on a set of test cases and report on mismatches and errors,
among others (Section 3). We use several test suites to mea-
sure the advancement of the CoqR implementation.
We also report on a proof effort to establish that memory

invariants are preserved during execution, including some
specific proof automation (Section 4). Section 5 discusses re-
lated work and Section 6 concludes.
The current implementation of CoqR2 is not feature-

complete: R is a very large programming language and
achieving 100% coverage of the language and its main li-
braries is a huge implementation effort. The contribution
of this work is to provide realistic foundations for a trust-
worthy R formalization in Coq. First, the interpreter covers
the nucleus of the language and over 120 additional features.
It is implemented in an extensible manner, following the ar-
chitecture of GNUR itself. Second, the testing infrastructure
we provide is designed to help drive the development effort
towards the most pressing missing features. At present, the
CoqR implementation passes a substantial number of tests
from real-world R projects. This is realistic enough to sup-
port the claim that, given more engineering power, our ap-
proach scales up to the full language and its main libraries.

2 CoqR: An R Interpreter in Coq
We develop the formal semantics of R in the form of an in-
terpreter defined in Coq; therefore, CoqR is a big-step opera-
tional semantics. Operational semantics written as a Coq re-
cursive function is usually not the best fit for Coq proofs—an
inductive definition of the operational semantics is usually
more convenient for reasoning—but our approach comes
with a crucial advantage: it can be run, and thus tested. We
show how we defined CoqR in order to achieve the first of
the two mechanisms in place for trust, namely the eyeball
correspondence with the GNU R interpreter. GNU R’s over-
all structure is fairly standard for an interpreter, so the prin-
ciples exposed here should be reusable in other contexts.

2.1 Bridging the Gap between C and Coq
The basic principle of the eyeball correspondence is that ev-
ery one or two lines of the Coq interpreter should corre-
spond to one or two lines of the C reference interpreter.
Of course, achieving a close correspondence between C

and Coq versions of the same program is quite challenging,
because C and Coq are widely different programming lan-
guages: Coq is purely functional whilst global side-effects
are frequent in C. Furthermore, Coq is designed to reject

2https://github.com/Mbodin/CoqR/releases/tag/DLS2018

14

https://github.com/Mbodin/CoqR/releases/tag/DLS2018

A Trustworthy Mechanized Formalization of R DLS ’18, November 6, 2018, Boston, MA, USA

1 Inductive result (A : Type) :=
2 | result_success : state -> A -> result A
3 | result_error : state -> string -> result A
4 | result_longjump : state -> context -> result A
5 | result_impossible : state -> string -> result A
6 | result_not_implemented : string -> result A
7 | result_bottom : state -> result A.

Figure 2. The result monad.

any function whose behavior is not entirely defined (it is for
instance impossible to miss a case in a pattern-matching),
whilst C is known for its undefined behaviors. Finally, con-
trary to C, Coq programs are required to terminate.
Modeling effectful computation in a purely functional

language can be done through the use of monads [34]. A
monad is essentially a data structure that denotes computa-
tion augmented with information that is threaded through-
out evaluation using a binder. For instance, the statemonad
threads values through a functional computation, accessible
via monadic operations like put and get, thereby simulat-
ing a mutable global store. Other typical monads includes
the option monad to represent potentially-failing compu-
tation (with constructors such as Some and None), and the
fuel monad to give a finite evaluation budget to potentially
diverging computation. Adequate notation allows monadic
programs to look like imperative programs, hiding the addi-
tional monadic information.
Therefore, in order to achieve an effective eyeball corre-

spondence between C code and Coq code, we introduce a
result monad, which combines both the state, error, and fuel
monads (Figure 2). The result monad constructors are:3

• The main constructor is result_success, used when a com-
putation is successful. In addition to the result (of type A in
the definition), it carries the global state (of type state).We
describe the representation of state later on in this section.
• The constructor result_error is meant to catch errors
thrown by GNU R, for instance an R runtime typing error:
these errors are not catchable and immediately end the ex-
ecution. A string is provided to help debugging.
• The constructor result_longjump corresponds to a call to
the longjmp C function in GNU R source code. It only ap-
pears in constructs involving non-local jumps, such as break
or return. The C behavior is mimicked thanks to a special
monadic binder, explained further below.
• Unspecified C behaviors (such as dereferencing an invalid
pointer) are translated into result_impossible. Getting this
result immediately ends the Coq interpreter: it is meant
to be unreachable. Observing such a result either means
CoqR has a bug, or that an actual bug in GNU R has been
found, which could possibly be undetectable by running

3A similar monad is used in the JSCert [2] and JSExplain [4] projects, which
aim to define a JavaScript interpreter in Coq, readable by non-specialists.

GNU R due to a C compiler optimization. At this date, we
have not encountered the latter situation.
• Given the size and complexity of the R language, it is im-
portant to be able to execute the Coq interpreter without
it being fully complete. The result_not_implemented con-
structor is thus important for development; it is treated
specifically in our testing framework, for instance to help
identity which features one should focus on next.
• Finally, result_bottom is returned to end the executionwhen
reaching the maximum number of executed instructions
(also called fuel). This is meant to artificially make our in-
terpreter terminate, despite the fact that the interpreted R
program may not (see Section 2.5 for more details).

The result monad is associated with a monadic binder,
written let%success. This binder expects its argument to
evaluate to a result of the form result_success. If so, it binds
the carried result to a name, and transparently propagates
the possibly-updated state. All other kinds of results are trans-
parently propagated to the top-level. A similarmonadic binder
has been defined to handle the special semantics of setjmp:
when calling setjmp, a default value is provided to continue
computations; when a result of the form result_longjump

reaches its corresponding setjmp, the continuation of setjmp
is run again, using the value carried by result_longjump to
replace the default one. This obliviousness to global state, er-
rors, jumps, and non-termination is what enables a close cor-
respondence between a program written in both languages.

2.2 Eyeball Correspondence
By developing CoqR as a monadic interpreter using the re-
sult monad introduced above, we are able to achieve an eye-
ball correspondence between the C and Coq interpreters.
This correspondence is extremely helpful during develop-
ment: whenever a bug is encountered while testing, we lo-
calize the function responsible for the bug, then directly and
visually compare both interpreters. Such checks are quick
and easy to perform, often leading to a quick fix of CoqR.
Figure 3 shows an example of the eyeball correspondence

that can be achieved using the resultmonad. Figure 3a shows
a C function, and Figure 3b its Coq translation. The SEXP

type is an alias for SEXPREC*, that is, pointers to basic lan-
guage elements (see Section 2.3). The binder let%success is
used when calling a function. Thanks to the monadic en-
coding, the calls to R_length and matchArgs may return an
unsuccessful result, but the code does not need to be explicit
about that possibility; the code after a call is only executed
if the result denotes success. Similarly, the return statement
from C is translated to result_success, and raising an error
is performed using result_error.
Other differences are that several arguments are system-

atically passed to each function (globals, runs, and S), the
use of read%list instead of CAR in the C version, as well as

15

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

1 SEXP do_attr (SEXP call, SEXP op,
2 SEXP args, SEXP env){
3 SEXP argList, car, ans;
4 static SEXP do_attr_formals = NULL;
5 /* ... */
6 int nargs = R_length (args);
7 argList = matchArgs (do_attr_formals, args, call);
8 PROTECT (argList);
9 if (nargs < 2 || nargs > 3)
10 error ("Wrong argument count.");
11 car = CAR (argList);
12 /* ... */
13 return ans;
14 }

(a) original C function

1 Definition do_attr globals runs S
2 (call op args env : SEXP) :=
3 let%success nargs :=
4 R_length globals runs S args using S in
5 let%success argList :=
6 matchArgs globals runs S
7 do_attr_formals args call using S in
8 if nargs <? 2 || nargs >? 3 then
9 result_error S "Wrong argument count."
10 else
11 read%list car, _, _ := argList using S in
12 (* ... *)
13 result_success S ans.

(b) Coq translation

Figure 3. Original C function and Coq translation of do_attr

header car cdr tagList:

header size i1 i2 . . . inInteger vector:

header size c1 c2 . . . cnComplex vector:

Figure 4. Basic language elements in memory

the absence of the PROTECT macro in the Coq version. We
clarify each of these points in the following subsections.

2.3 Modeling the Heap
We now describe how we modeled GNU R’s heap. Various
models of C’s heap [14, 15] exist in Coq, but in CoqR we ex-
ploit the specific structure aroundwhich GNUR is built [11]:
almost all objects manipulated by GNU R are basic language
elements (SEXPREC in C). Consequently, CoqR’s heap is ex-
actly a mapping from pointers to basic language elements.
Each basic language element is composed of a header and

some data. The header stores the type of the basic language
element, a list of attributes, as well as several boolean in-
formations (for instance whether it can be safely updated
in place). There are 24 different types of basic language el-
ements in R, 9 of which being different kinds of vectors.
The stored data depends on the type of the element. For in-
stance, lists contain three pointers: one to the first element
(named car), to the queue of the list (cdr), and to an optional
name for the first element (tag). Vectors store their length,
followed by a C array in memory. The size of this array de-
pends both of its length and the type of vector. Figure 4 illus-
trates this with integer and complex vectors (complexes are
composed of two floating-point numbers). The way mem-
ory is used in C makes it easy to unguardedly access a cell
out of bounds, which would lead to an undefined behavior.
This is an issue, aswe cannot directly translate unguarded

C accesses into Coq: we need a model of the heap. Figure 5

1 Record ListStruct := make_ListStruct {
2 list_carval : SEXP ;
3 list_cdrval : SEXP ;
4 list_tagval : SEXP }.
5

6 Record Vector_SEXPREC (A : Type) := {
7 Vector_length : nat ;
8 Vector_data :> list A }.
9

10 Inductive SEXPRECData :=
11 | listExp : ListStruct -> SEXPRECData
12 | envExp : EnvStruct -> SEXPRECData
13 | SEXPREC_VectorInteger :
14 Vector_SEXPREC int -> SEXPRECData
15 | SEXPREC_VectorComplex :
16 Vector_SEXPREC complex -> SEXPRECData
17 (* ... *).
18 Coercion listExp : ListStruct >-> SEXPRECData.
19 Coercion envExp : EnvStruct >-> SEXPRECData.
20 (* ... *)
21

22 Record SEXPREC := make_SEXPREC {
23 SEXPREC_header :> SEXPRECHeader ;
24 SEXPREC_data :> SEXPRECData }.

Figure 5. Basic language elements (SEXPREC) in Coq

shows how we defined SEXPREC in Coq. Basic language ele-
ments are records storing a header and data, which in turn is
defined as a sum type. For instance, lists are defined by three
pointers. Vectors are records storing their length and a list:
in Coq, the data of vector is stored directly in the SEXPREC

structure and not following it in memory as in C.
To ease readability, coercions have been used extensively.

Coercion is a mechanism to mark some constructors as im-
plicit. For instance, if Coq expects a SEXPRECData and is given
a ListStruct, then the constructor listExp will be implic-
itly added thanks to Line 18 of Figure 5. In the context of

16

A Trustworthy Mechanized Formalization of R DLS ’18, November 6, 2018, Boston, MA, USA

CoqR, this is more than a simple syntactic notation as it
helps the eyeball correspondence by hiding in the Coq code
what is not present in C. Of course, this implicit notation is
only one-way: given a ListStruct, we can convert it into
an SEXPRECData, but to perform the converse, we have to
pattern-match on the shape of the SEXPRECData. This pattern-
matching is performed by specific monadic binders. For in-
stance in Figure 3b, read%list gets the SEXPREC stored in the
state S and pointed by argList, then pattern-matches it as a
list, extracting the car, cdr, and tag fields. If the pointer is
not in the domain of the state S or if the associated SEXPREC

object is not a list, then result_impossible is returned: this
corresponds to an undefined behavior in C (dereferencing
an invalid pointer or accessing the wrong projection of a
union). The accesses in Coq are thus guarded by monadic
binders, closely mimicking the unguarded accesses of C.

2.4 Dealing with Global Variables
The GNU R interpreter features over 80 global variables that
need initialization, and are subsequently unchanged. The
initialization of these internal variables represents a large
portion of the source code. These basic language elements
are created and stored in global variables before even im-
porting any libraries.
For instance, the often-used variable R_NilValue is set to

be a list whose car, cdr, and tag fields point to R_NilValue

itself. This element is used instead of the NULL pointer to
mark absent elements. Another important global variable is
R_FunTab, which is the symbol table that maps operation and
function names to their C implementions. (We exploit this
structuring of the interpreter for building CoqR in an incre-
mental manner from a simple nucleus—see Section 2.7.)
The initialization of global variables performs local com-

putations, calling nucleus functions. To avoid this circular
dependency—which Coq would not accept—one could pa-
rametrize each nucleus function by the value of the global
variables it uses. This would however not scale, considering
the size of the project and the number of global variables in-
volved. Instead, we parameterize each function of CoqR by
a single globals environment, which is a mapping from a
definite set of global variables to SEXP. This additional argu-
ment can be seen in the Coq code of Figure 3b: it is passed
along at each call site.
To make definitions more convenient, we use coercions

to make Coq implicitly perform a lookup in the globals en-
vironment whenever a global variable is read. Therefore, ac-
cessing global variables is transparent, as illustrated by the
use of do_attr_formals in Figure 3b.

Hidden global variables. In fact do_attr_formals is a hid-
den global variable, introduced locally with the C static

keyword inside the do_attr function. Such a variable is per-
sistent across calls, just like a standard global variable.

In place of the commented-out part Line 5 of Figure 3a,
the code initializes the static variable do_attr_formals, as
shown in Figure 6a. Upon the first call of do_attr, this vari-
able is initialized by a basic language element. The value is
kept across calls to avoid a costly reallocation at each call.
Observe that this pattern exactly follows the scheme of the
other global variables: the variable is initialized once, then
never changes. Consequently, we treat static variables just
like global variables. We extracted out the part of do_attr
that performs initialization, shown in Figure 6b. This code
is executed after the standard global variables are initialized.

2.5 Dealing with Non-Termination
Another additional argument present in Figure 3b is the runs
argument. This argument aims at factorizing the fuel given
to Coq functions to make them artificially terminate. The
usual way to do this is to make each function check whether
its fuel reached 0, and if so return result_bottom. It is how-
ever cumbersome to do that manually, and affects the eye-
ball correspondence, since such a check does not exist in
C. We solve this issue by following the same method as
in JSCert: instead of a fuel argument, each function takes
a record runs. This record stores all recursive functions as
its projections. Each recursive call in C is then translated by
calling the corresponding projection of the record, as in a
regular fix-point combinator.
For instance, Figure 7 shows the definition of while loops

in CoqR. First the Runs record is defined with all the poten-
tially looping functions. A while-loop is obviously part of
these functions. We then define while_loop with an addi-
tional argument runs of type Runs. Line 11 corresponds to
the recursive call, but instead of an actual recursive call, we
call the while_loop function stored in the runs record.
Once all functions have been defined, we define runs of

type Runs by linking these functions to themselves. We de-
fine runs using fuel: at each step, its projections are func-
tions taking a runs with less fuel as argument; when reach-
ing 0, all its projections systematically return result_bottom.
Figure 8 shows its Coq definition. This idiom requires only
one pattern-matching on fuel in thewhole CoqR interpreter;
it is thus a lightweight way to enforce termination.

2.6 Limitations
The use of the PROTECT macro in Figure 3a is missing in the
Coq translation. This macro use performs a garbage collect-
ing action, namely it saves the object argList from garbage
collection. We choose not to model the garbage collection
aspect of GNUR in CoqR. A garbage collector is an optimiza-
tion of a language implementation, which is arguably irrele-
vant for the specification of the language itself (for instance,
neither R6RS for Scheme nor ECMAScript for JavaScript even
mention garbage collection).
Currently, CoqR only considers ASCII strings, and hence

does not support various locales and character encodings

17

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

1 if (do_attr_formals == NULL)
2 do_attr_formals =
3 allocFormalsList2 (install ("x"),
4 install ("which"));

(a) C snippet

1 Definition do_attr_init globals runs S :=
2 let%success x :=
3 install globals runs S "x" using S in
4 let%success which :=
5 install globals runs S "which" using S in
6 allocFormalsList2 globals S x which.

(b) Coq translation

Figure 6. Another snippet of do_attr and its Coq translation

1 Record Runs : Type := Runs_intro {
2 runs_while_loop : forall A, state -> A ->
3 (state -> A -> result bool) ->
4 (state -> A -> result A) -> result A ;
5 runs_eval : state -> SEXP -> SEXP -> result SEXP ;
6 (* ... *) }.
7

8 Definition while_loop runs A S (a : A) expr stat :=
9 if%success expr S a using S then
10 let%success a := stat S a using S in
11 runs_while_loop runs S a expr stat
12 else result_success S a.

Figure 7. Definition of loops as a fix-point combinator

1 Fixpoint runs max_step globals : Runs :=
2 match max_step with
3 | O => {|
4 runs_while_loop := fun _ S _ _ _ =>
5 result_bottom S ;
6 runs_eval := fun S _ _ =>
7 result_bottom S ;
8 (* ... *) |}
9 | S n => {|
10 runs_while_loop := fun A S (a : A) expr stat =>
11 while_loop globals (runs n) A S a expr stat ;
12 runs_eval := fun S e rho =>
13 eval globals (runs n) S e rho ;
14 (* ... *) |}
15 end.

Figure 8. Definition of runs in Coq

supported by R. More generally, CoqR ignores any possi-
bility to dynamically parametrize the behavior of the inter-
preter using options stored the shell environment.
Note that the eyeball correspondence between GNU R

and CoqR would pay off in the future if one wants to extend
CoqR to account for some of these features.

2.7 Incremental Development of CoqR
R is by no means a small language. Currently, CoqR spans
over 18,000 lines of Coq definitions. This is larger than the
interpreter of JSCert, named JSRef [2], which consists of
12,500 lines of Coq definitions. Therefore, for pragmatical
reasons, it is important to be able to proceed incrementally

1 FUNTAB R_FunTab[] = {
2 {"if", do_if, 3, true, false},
3 {"while", do_while, 2, true, false},
4 {"break", do_break, 0, true, false},
5 {"return", do_return, 1, true, false},
6 {"function", do_function, -1, true, false},
7 {"<-", do_set, 2, true, false},
8 {"(", do_paren, 1, true, true},
9 {".Internal", do_internal, 1, true, false},
10 {"which", do_which, 1, false, true},
11 {"+", do_arith1, 2, true, true},
12 {"-", do_arith2, 2, true, true},
13 {"cos", do_math20, 1, true, true},
14 {"sin", do_math21, 1, true, true},
15 /* ... */ }

Figure 9. Symbol table of GNU R

in the development of CoqR. We hence identify a minimal
nucleus of R to support initially, and then incrementally ex-
tend CoqR. To this end, we exploit the fact that GNU R is
structured around a huge symbol table with more than 700
entries, corresponding to all functions present in the initial
environment of R, whose code is written natively in C.
Figure 9 shows an excerpt of the symbol table. This C

array associates the name of each function with the cor-
responding C function implementing it, along with its ar-
ity and some additional information.4 Interestingly, all syn-
tactic constructs correspond to a C function. This includes
constructs like if, while, return, and even assignments: al-
though the parser accepts a seemingly imperative syntax,
it is internally replaced by Lisp-style function calls. For in-
stance, the two abstract syntax trees generated by GNU R’s
parser for the two lines below are identical.5

1 if (TRUE) x <- 1 else return ()
2 "if" (TRUE, "<-" (x, 1), "return" ())

The symbol table provides us with an opportunity for in-
cremental development, as this array clearly defines a set
of functions that can be individually removed from GNU R
4Namely, whether the function is to be directly defined in the initial envi-
ronment or available in the .Internal construct, and whether it evalu-
ates lazily or eagerly. Some information has been removed for simplicity.
5R usually uses a lazy evaluation strategy: the expression x <- 1 is only
evaluated when actually used. Performing side effects in function argu-
ments can yield to unexpected results, but is acceptable for an if.

18

A Trustworthy Mechanized Formalization of R DLS ’18, November 6, 2018, Boston, MA, USA

without breaking the overall interpreter—only the parts us-
ing them. We therefore consider the nucleus of the R lan-
guage to consist of the functions used to evaluate R expres-
sions that are not present in the symbol table. Nucleus func-
tions include the execution process for function calls, envi-
ronments, closures, promises (delayed evaluation), as well
as the parts initializing the symbol table. Constructs like if

and while are not part of the nucleus, but some assignment
functions are, because they are used when calling functions.
All functions in the symbol table are then considered ad-

ditional features. The first version of the interpreter only
supported the nucleus of R, allowing us to focus the effort
on a very restricted sub-language. We were then able to add
additional features one at a time, by implementing the as-
sociated function and adding it to the symbol table. In the
current CoqR development, out of the 18,000 lines, around
5,000 lines are for the nucleus of R, and 4,000 lines are for
additional features. At the time of writing, we support 128
entries from the symbol table.

2.8 Parsing R
Verified software, e.g. written in Coq, needs to interact with
unverified code, for instance for performing input/output.
This additional code is called the shim, and unfortunately, it
usually concentrates most bugs in certified software [36]. In
the case of CoqR, a particularly important part of the shim
is the R parser. Parsing real-world programming languages
is known to be challenging, so in order to maximize trust,
we first tried to develop the parser in Coq using the Menhir
tool [12] in order to obtain a formally-verified parser. Unfor-
tunately, the grammar of GNU R (defined in Bison) does not
respect the grammar constraints of Menhir’s Coq front-end.
We had to fall back on Menhir’s OCaml front-end, making
the parser part of the shim.
In order to achieve high confidence in the parser imple-

mentation, we nevertheless can follow the eyeball correspon-
dence methodology. Consequently, we did not optimize or
change GNUR’s grammar in anyway.While doing somight
have enabled us to use the Coq front-end ofMenhir, it would
have resulted in a grammar very different from GNU R’s,
and spotting bugs and inconsistencies between both gram-
mars would have been challenging.
Sticking to the original grammar has its own downside,

though. First, the Bison grammar of GNU R is ambiguous,
with 27 shift/reduce conflicts. As a consequence, both Bison
and Menhir make some arbitrary choices, which could in
theory be different (we checked through testing that they
are not). Another source of potential mismatch between the
parsers of GNU R CoqR are new lines. There are contexts in
R where new lines are significant and others where they are
not. For instance, in { function () break + 1 }, adding a
new line after the function or + keywords does not change
the final result, but adding a new line after the break key-
word does. In such situations, lexers usually produce the

new-line token nevertheless, leaving to the parser the choice
to ignore it or not. However in GNU R, whenever the lexer
encounters a new line, it reads a global boolean variable
which indicates whether the lexer should ignore the new
line. This variable is controlled by the parser: the lexer and
the parser thus communicate through side-effects. Such ef-
fects are usually considered to be bad practice as they heav-
ily depend on when the parser calls the lexer (otherwise
they might become desynchronized). To keep the eyeball
correspondence, we nevertheless built the same communi-
cation channel between the lexer and the parser in OCaml.
Unfortunately, Bison andMenhir do not always call the lexer
the same way. For instance, empty blocks {} wrongly lead
new lines to be eaten in our parser. This is easily fixable by
replacing them by the equivalent R constant NULL.
Despite the few differences of behavior, we believe that

our methodology helped us reduce the amount of bugs in
the parser. The differences of behavior are precisely known
and easily fixable in the parsed R code.

3 Testing CoqR
Being able to syntactically relate our interpreter with the
source code of GNU R helped us catch numerous bugs—
in some sense as a variant of Linus’s law.6 To further aug-
ment the level of trust of CoqR, we have developed a testing
framework that supports comparative execution of CoqR
and GNU R. The framework additionally helps the devel-
opment process by providing useful reports. This section
presents the general testing methodology and the frame-
work we developed to support it, discusses the support for
the base library of R, and then presents the results of the cur-
rent status of CoqR with respect to the chosen test suites.

3.1 Testing Methodology and Framework
Test suites. To exercise CoqR, we exploit different exist-
ing test suites: the test suite of GNU R itself [28], and two
test suites from the FastR project [13], which we refer to
as FastR17 and FastR28. These test suites are first curated
to eliminate expressions that rely on external effects and
resources (internet connection, files, specific packages), or
produce charts or PDFs (whose comparison is cumbersome);
additionally, we excluded generated tests.9 In total, these cu-
rated test suites include over 17,000 tested expressions.
In addition to these test suites, we have developed our

own test suite, referred to as Corners, specifically tailored
for testing corner cases of the R language. It is also meant
to be used as a faster way of testing some implemented
features, during the development process. Corners features
around 3,000 tested expressions.

6https://en.wikipedia.org/wiki/Linus%27s_Law
7https://github.com/h2oai/fastr
8https://github.com/oracle/fastr
9The details of the filtering can be found on the CoqR Github repository.

19

https://en.wikipedia.org/wiki/Linus%27s_Law

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

Note that tests come in various shapes: some files provide
expressions supposed to evaluate to TRUE, some are just sup-
posed not to raise any error, and some tests print on the
standard output whether they passed. To uniformly process
these test suites, we compare the results produced byGNUR
and by CoqR, at each step of execution, as described further
below. Also, some tests are supposed to be executed as a
normal file, while some tests are meant to be read line-by-
line, resetting the environment at each line. We manually
marked the latter files with a #@line tag, recognized by our
testing framework.

Comparing results. After interpretation of the R code, we
obtain the raw outputs for each interpreter, GNUR andCoqR.
These strings cannot be compared directly for equality as
many syntactic details makes them superficially different.
Indeed, CoqR’s pretty-printer is part of the shim (the non-
formalized part) and does not follow an eyeball correspon-
dence with GNU R’s pretty-printer, which is quite complex.
This introduces harmless output mismatches. For instance,
when printing vectors with GNU R, some are left padded,
others are right padded. Other minor sources of mismatch
are spaces and newlines. Therefore, the testing framework
first processes the result strings of both interpreters into a
common set of values that can meaningfully be compared.
This step is carried out by result processors (implemented

in Python). There are two classes of processors; one that
handles GNU R outputs, and one that handles CoqR outputs.
Each processormatches the received raw string against a list
of regular expressions (regexes). As soon as a regexmatches,
an object of type Result is created and the matching stops.
There are nine subclasses of Result, corresponding to dif-
ferent result types, such as ListResult and VectorResult,
the latter with further subclasses for boolean, numeric and
string vector results.
The differences between the GNU R and CoqR processors

lies in the regexes they use to recognize result strings, and
hence in the particular instances of Result they produce.
When creating result objects, processor include additional
information that can be necessary for later comparison. For
example, if the regex for numerical vector matches, the pro-
cessor extracts the actual numerical value contained in the
raw string and stores it in the NumericVectorResult object.

Testing outcomes.After processing, the testing framework
obtains the result objects and uses their interface to compare
them, returning the corresponding outcome of the compar-
ison. The testing framework categorizes each step of com-
putation in one of 8 categories, denoting different possible
scenarios. The passed category corresponds to successfully
executed test cases. The failed category is used when an ac-
tual mismatch in results is observed.

All other categories are there to help the development of
CoqR by refining failure cases. The not implemented cat-
egory gathers tests whose execution has reached the Coq
constructor result_not_implemented inside CoqR (recall Fig-
ure 2). This therefore corresponds to a test execution reach-
ing some as-yet-unimplemented function (or case) in the
Coq code of CoqR. Additionally, the not found category cor-
responds to failures due to a test requiring an R function or
object that is not defined in the CoqR environment.
The impossible category corresponds to the constructor

result_impossible. As mentioned before, if CoqR were bug
free, an impossible result would correspond to a critical bug
in GNU R. All the impossible results we have observed so
far were instead due to CoqR bugs.
Sometimes processing a result string fails. For instance,

there exist special attributes that affect the way vectors are
printed, and our pretty-printer is not aware of all of these
special attributes. In such cases, the processor fails, and re-
turns an UnknownResult object. Such tests are consequently
marked as unknown; they could be functionally correct or
not, so classifying them apart is practical. Also, once a sin-
gle step in a line-by-line test file fails, or leads to a not-
implemented result, we cannot say anything about the steps
that follow in the test file: subsequent errors and success
could both be coincidental. To categorize these tests, we use
the potential pass/potential fail categories; while theymean
nothing for correctness, they help in the development pro-
cess by showing possible future results.

Guiding the development process. Having different cat-
egories of testing outcomes is crucial when facing a huge
development, in order to apprehend the task at hand. In
particular, we found extremely helpful to separate actual
failures from internal uses of result_not_implemented, and
from missing definitions (mostly functions).
Recall that a not-implemented result generally corre-

sponds to an entry of the symbol table that has not been
translated into CoqR. It can also correspond to some branch
in a large switch statement that we decided to postpone for
some reason. On the other hand, a missing function defini-
tion corresponds to the use of an undefined R function in the
test; this is typically because the function was not imported
in the CoqR test code base. (Missing objects are often failed
assignments due to previous errors.)
Therefore, in addition to counting the classified testing

outcomes for the run of a test suite, our testing framework
reports the 10 most common not-implemented features and
the 10 most common missing function definitions. Both of
these reports are useful to identify low-hanging fruits to
make progress in running the selected test suite. For in-
stance, at the initial stages of the project, the base library of
R showed up prominently in the list of missing functions, as
discussed below. We also used the report of most used not-
implemented features iteratively in order to decide which

20

A Trustworthy Mechanized Formalization of R DLS ’18, November 6, 2018, Boston, MA, USA

Table 1. Current results of running the different test suites.
(P = Pass, F = Fail, NI = Not Implemented, NF = Not Found,

I = Impossible, U = Unknown, PP = Potential Pass, PF = Potential Fail)

Suite P F NI NF I U PP PF
Corners 2,613 7 48 119 0 149 20 6
GNU R 243 31 739 723 1 27 0 0
FastR1 1,103 25 987 115 0 161 59 326
FastR2 2,411 1,128 6,888 493 0 1,914 297 343
Total 6,370 1,191 8,662 1,450 1 2,251 376 675

total number of tests: 20,976

features from the symbol table to implement first, leading
us to the 128 features that are currently implemented.

3.2 Base Library
Unsurprisingly, our initial experiments running the test
suites of GNU R and FastR raised a huge number of miss-
ing function errors, whose consolidated report allowed us
to locate in the base library of R. As anecdote, having im-
plemented 105 features from the symbol table, around 1,000
of 1,200 failures for the GNU R test suite were due to miss-
ing definitions. After extending CoqR to be able to load the
base library, the total number of failures fell to 700, with
only 300 due to missing definitions, corresponding to other
basic libraries, most importantly the statistics library.
The base library consists of about 160 R source files, to-

talizing 19,000 lines of code, which are executed by GNU R
prior to any other expression. This base library includes
the definition of several functions and objects, such as mean,
matrix or pi. Several of these functions are just wrappers
over internal functions, adding argument checking or de-
fault arguments. For example, the eval function sets default
values for the arguments of the internal eval function:
1 eval <- function(expr, envir = parent.frame(),
2 enclos = if(is.list(envir) || is.pairlist(envir))
3 parent.frame() else baseenv())
4 .Internal(eval(expr, envir, enclos))

Most of these definitions do not require many features to
be implemented in the interpreter in order to be executed:
only the function keyword and the assignment <- have to
be implemented. However, there are cases where some com-
putation is performed on the right-hand side of the assign-
ment. For instance, the file constants.R of the base library
contains the definition pi <- 4 * atan (1). To evaluate this
expression, the atan function has to be implemented.
Of course, being able to execute the definitions and in-

clude them in the CoqR environment does not mean that
these definitions are usable: the internal function called by
a library functionmay not yet be implemented in CoqR, so if
a test executes that function, it will yield a not-implemented
result. This is why it is crucial to be able to differentiate ac-
tual failures from not-implemented and not-found results.

Note that several functions may end up relying on the same
internal (not implemented) feature, giving more meaning to
the report of the most common unimplemented features.

3.3 Current Status
Table 1 presents the current status of executing the four test
suites described earlier with CoqR. On a 2-core Intel Xeon
2.20GHz with 4 GB of RAM, execution times range from
1.5 hrs for GNU R’s test suite to over 12 hrs for FastR2. CoqR
is several orders of magnitude slower than GNU R, but its
aim is to provide a faithful formalization of R’s semantics,
not to be an alternative production-level interpreter.
Overall, CoqR successfully covers 30% of all the tests. The

Corners test suite is almost completely covered, while FastR2,
which we integrated more recently in our development pro-
cess, is lagging behind compared to FastR1.
Unsurprisingly, 50% of the negative results are either not

implemented or not found. This was to be expected consid-
ering in particular that we have currently implemented only
128 out of the 700 features of the symbol table (Section 2.7).
We manually analyzed the reported failed results (5.7%) and
observed that about 40% are due tomismatch of double num-
bers precision. We are currently looking for ways to eradi-
cate such mismatch, and exploring the actual discrepancies.
10.7% of test cases end up classified as unknown, which sub-
sequently lead to potential passes and fails (5%). Recall that
these are due to mismatches with GNU R’s pretty printer.
However, the relatively low percentage of these cases does
not seriously question the validity of the implementation.
Fixing these unknown results is tiresome, but not conceptu-
ally challenging.
Finally, it is worth highlighting that only 1 impossible re-

sult remains in the current version. This corresponds to an
actual bug in CoqR, which is currently under scrutiny. Over-
all, this report shows that CoqR is a realistic implementation
(coverage-wise, not performance-wise) that, given more en-
gineering power, can be grown to fully cover R and its li-
braries. The testing framework we developed provides im-
portant clues into where to direct implementation efforts.

4 Formal Reasoning about R
We now address one of the objective stated in the introduc-
tion: our operational semantics should be usable to build
proofs about the R language. This section describes one use
case: proving that invariants about the state of the memory
are preserved during execution. We also discuss the associ-
ated need for proof automation.
As described in Section 2.3, each basic language element

in R is associated one of 24 types, and each of these types
are differently stored in memory. Figure 10 shows a snip-
pet of the invariants defined by the safe_SExp inductive
property (the full definition is 230 loc). The constructor
safe_ListStruct captures the requirements on well-formed

21

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

1 Inductive safe_SExp S : SExp -> Prop :=
2 | safe_ListStruct : forall car cdr tag,
3 may_have_types S [NilSxp ; ListSxp] cdr ->
4 may_have_types S [NilSxp ; CharSxp] tag ->
5 safe_SExp S (make_ListStruct car cdr tag)
6 | safe_StrStruct : forall data,
7 (forall a, Mem a data ->
8 may_have_types S [CharSxp] a) ->
9 safe_SExp S (make_StrStruct data)
10 (* ... *).

Figure 10. Typing invariants for memory

lists. The requirements are expressed using the predicate
may_have_types S l p, which states that the pointer p is
associated in the state S with an object whose type is in the
list l. Hence, the hypothesis on cdr states that the tail of a
list is either a list (ListSxp) or nil (NilSxp).10 Similarly, the
constructor states that the tag of a list is either a character
vector or a NilSxp element. Note that no constraint is given
for the first element car of the list: lists in R are heteroge-
neous. As another example, the constructor safe_StrStruct
states that a string vector contains an array of C pointers,
all of which associated with a character vector in memory.
Such invariants are relatively simple, but given the size

of the formalization, they are quite long to establish. Prov-
ing that some step of the interpreter preserves the invari-
ants quickly becomes very tedious. In order to address this,
we developed various Coq tactics to ease the proof process.
Tactics are programs manipulating Coq proof terms. They
are an important component of interactive theorem provers,
allowing a controlled form of automation. Our tactics are
mainly useful to propagate known information through state
changes. Overall, we defined 80 tactics, most of which per-
form simple operations on the proof context.We first proved
about 200 simple lemmas about monadic binders and heap
invariants. Our tactics look in the proof context for patterns
where these lemmas can be fruitfully applied. Auxiliary tac-
tics try to rewrite the context into specific forms that allow
these lemmas to be applied.
Figure 11 illustrates the use of these tactics, with a lemma

that states that the do_attr function defined in Figure 3b pro-
duces a result that satisfies the invariants. The safe_state

predicate specifies that the given state only stores objects
that satisfy the invariants, and similarly for the global vari-
ables of globals with the predicate safe_globals. The argu-
ments call, op, args, and env of do_attr are also assumed
to satisfy these invariants, as well as being of the expected
type. In the conclusion of the lemma, the result_prop predi-
cate specifies what the resulting state of do_attr satisfies in
the interesting cases (ignoring cases such as result_bottom).

10The type NilSxp is the type of the R_NilValue global variable (see Sec-
tion 2.4); it is used both to end lists and to indicate a missing information.

1 Lemma do_attr_result :
2 forall S globals call op args env,
3 safe_state S ->
4 safe_globals S globals ->
5 safe_pointer S args ->
6 may_have_types S [NilSxp; ListSxp] args ->
7 (* ... *)
8 result_prop (fun S' ans =>
9 safe_state S' /\ safe_globals S' globals
10 /\ safe_pointer S' ans)
11 (do_attr globals runs S call op args env).
12 Proof.
13 introv OKS OKglobals OKargs Targs. unfolds do_attr.
14 cutR R_length_result. computeR.
15 cutR matchArgs_result. computeR.
16 (* ... *)
17 Qed.

Figure 11. Example of specification and tactic usage.

Thanks to our tactics, the proof closely follows the source
code of do_attr. After introducing the hypotheses, the func-
tion do_attr is unfolded, leaving its definition ready to be
processed by further tactics. The function do_attr starts by
calling R_length (see Figure 3b). We here call the cutR tactic
with a lemma about R_length. This novel tactic discharges
the premises of the lemma and introduces the resulting state:
only the success case is left, the other kinds of results be-
ing transparently propagated. The call to R_length is thus
rewritten to a simple expression of the form result_success

S' n, where n is the number returned by R_length. We then
apply the computeR tactic. This is the most important tactic
provided by our framework: it moves forwards in the cur-
rent expression, propagating everything that can be propa-
gated. In the example, it unfolds the let%success monadic
binder, as this binder is now given a fully-computed result—
thanks to the cutR tactic. It also updates all properties known
to hold for the previous state S to the new state S' using the
results of the R_length_result lemma. For instance, the hy-
pothesis safe_pointer S args is replaced by safe_pointer

S' args. This transition would not be particularly difficult
to prove by hand given the right lemma, but it would be
cumbersome and repetitive. The proof continues by apply-
ing the tactic cutR againwith a lemma about matchArgs, then
computeR to propagate the hypotheses. And so on.
We have proven that the invariants are safely propagated

throughout the execution of 20 simple functions. Some of
these significantly change the structures described by the
invariants, but eventually preserve the invariants. In Coq,
this translates into a large number of intermediate states be-
ing generated, and some invariants proofs are not automat-
ically discharged by the computeR tactic, as some invariants
do not hold in them. The proofs about such functions some-
times involve proving from scratch that the invariants hold.
This typically involve following all possible paths from the

22

A Trustworthy Mechanized Formalization of R DLS ’18, November 6, 2018, Boston, MA, USA

newly-allocated objects and show that the invariants hold
for each of them; this is a rather complex proof to build.
The proofs of our 20 simple functions spans over 440 lines

of proofs. This is to be compared to the size of the defini-
tion of the automation: 1,900 lines of tactic definition, and
more than a thousand lines for the lemmas used by these
tactics. The compiled file for the proofs about our 20 simple
functions is however larger than the one containing all the
lemmas used by the tactics: automation enabled us to build
large proofs through relatively small proof scripts. However,
in the long run, in order for formal reasoning about R to
scale, it will be necessary to develop a program logic on top
of CoqR. This is a major undertaking, towards which CoqR
is an essential first step.

5 Related Work
R is a notably difficult programming language [3], whose
semantics is constantly moving—see for instance the recent
addition of R’s alternative representation [32]. In our for-
malization, we chose to ignore these fast moving parts, but
these parts are used by real-world R programs. Furthermore,
the diversity of R users is such that different R programswill
use widly different libraries and features, as the generally ac-
cepted guidelines [9] do not restrain users about them. This
makes it difficult to build tools. Consequently, relatively few
tools for R exist in comparison to the size of its community.
In particular, there exist few testing frameworks in R. The

testR project [20, 33], which later evolved into the Genthat
library [8], aims at generating unit tests for R functions. It
starts from a program using the functions to be tested. It
then annotates and executes this program, storing the trace
of the calls to the functions to be tested. Unit tests are then
generated from this trace. These tests can be used to ensure
that further versions of a library do not break existing code.
GNU R is not the only R interpreter that exists. Many ex-

isting interpreters are based on the same C nucleus code, but
use different libraries for linear algebra, usually optimized
for a specific usage. The FastR project [13] takes a different
approach as it also reimplements the nucleus of the R in-
terpreter, using the Truffle self-optimizing framework [35].
FastR is faster than the reference interpreter not only in the
linear-algebraic part, but also in the language interpretation
layer. FastR agrees with us that the GNU R interpreter is
the reference semantics: any behavioral difference between
FastR and GNU R is considered a FastR bug.
Work on formal specification of R is sparse. The language

definition document [27] is unfit for verification due to its
ambiguities and mismatches with the behavior of GNU R.
In an effort to understand R features and their usage in the
wild, Morandat et. al. formalize a minimal core of R [22].
This core models functions and some assignment forms, but
no control-flow constructs (such as if or return); neither do
they attempt to capture the semantics of additional features

from the symbol table. To the best of our knowledge, our
work is also the first mechanized specification of R.

However, the general goal of formalizing full real-
world languages—as opposed to small subsets—is not new.
JavaScript is a particularly relevant example. Empirical anal-
yses have indeed confirmed that the language features that
are usually ignored in formalized subsets of JavaScript are
actually important for actual web developers [29]. In the
case of JavaScript, there are several trust sources. First, the
language is precisely specified by the ECMAScript specifi-
cation [5]. Second, there exist various test suites [6, 23] as
well as several widely used interpreters. Consequently, vari-
ous formal specifications of JavaScript exist, each related to
some of its trust sources.
The first full formal semantics of JavaScript [17] has been

related to the ECMAScript specification. It had a major in-
fluence on the definitions of further JavaScript formal spec-
ifications [1, 2, 7, 30] and also served as the formal basis
to prove the soundness of security-related JavaScript sub-
sets [18, 19]. This work was however not mechanized.
In parallel, several formal semantics for JavaScript are

based on a JavaScript interpreter [10, 24, 25]. These seman-
tics are related to JavaScript test suites, either by comparing
the results with the expected result, or by comparing results
with widely-used JavaScript interpreters. These formaliza-
tions tend to be easier to build as testing frameworks already
exist. Furthermore, they are usually easier to understand by
non-specialists. However, such formalizations suffer from
all the issues of test suites: for instance, in JavaScript the
for-in feature was then loosely tested, and its behavior var-
ied from interpreters to interpreters.
The JSCert formalization [2] is an interesting step for-

ward as it was designed to be related with both the EC-
MAScript specification and the JavaScript test suites. The
formalization is composed of two parts: a mechanized spec-
ification and an interpreter. The JSCert specification is syn-
tactically relatedwith the ECMAScript specification through
an eyeball correspondence, and the interpreter passes its
test suite. The specification and the interpreter are related
to each other by a Coq proof. This double-relation provides
a large amount of trust to JSCert. These relations served to
find issues in both the JSCert specification and in other inter-
preters, as well as mistakes in the ECMAScript specification.
In CoqR, we take a different approach by defining the big-
step operational semantics as an interpreter: the same defi-
nition is both executable and syntactically close to its spec-
ification (the GNU R interpreter). CoqR nevertheless shares
several design ideas with JSCert. JSCert served as a basis for
the JSExplain tool [4], aiming to explain JavaScript to non-
specialists. As CoqR uses a similar monadic structure than
JSCert, a similar tool for R is an interesting future work.

The Coq proof assistant has already been used in a variety
of mechanized language formalization projects. The most

23

DLS ’18, November 6, 2018, Boston, MA, USA Martin Bodin, Tomás Diaz, and Éric Tanter

well-known is the CompCert project [15], a verified opti-
mizing compiler for C. This compiler is proven to be free of
compilation bugs, leading to safer programs in critical soft-
ware. This project comes with a formalization of the C pro-
gramming language, as well as its intermediate compilation
languages. Due to the compilation nature of the CompCert
project, it was acceptable to restrict the behaviors of the C
programming language in their formalization, restricting it
to the behaviors that will actually be compiled by CompCert.
The Formalin project [14] is another formalization of the C
language. It aims at precisely listing all the possible behav-
iors of C programs. We could have reused these formaliza-
tions of C to build a deep-embedding semantics, by defining
R to be the interpretation of GNU R’s source code by one of
these semantics. Such a semantics would however be of lit-
tle practical use, as deep embeddings are notoriously hard
to reason about in proof assistants. We instead define CoqR
as a shallow embedding, suitable for building proofs about
R and R programs, as shown in Section 4.

6 Conclusions
We present the first formal specification of R, written as an
interpreter in Coq.We present themonadic encoding that al-
lows CoqR to be in eyeball correspondence with the GNU R
reference interpreter, provide a testing infrastructure useful
to incrementally enrich CoqR, and show that CoqR can be
used to formally reason about R. Considering the number
of realistic test cases that CoqR currently passes, and its ex-
tensible architecture, we believe that CoqR can be grown
to fully cover R and its main libraries. Among the different
venues for future work, it would be particularly interesting
to reduce the shim further, by moving the parser and the
pretty-printer to Coq. On the formal reasoning side, CoqR
should be the basis on top of which to develop an appro-
priate program logic, to more conveniently reason about R
programs. As such, it is a necessary first step towards a ro-
bust environment for formal verification of R programs.

References
[1] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maf-

feis. 2013. Language-BasedDefensesAgainst Untrusted BrowserOri-
gins. In Usenix security symposium.

[2] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gard-
ner, SergioMaffeis, DaivaNaudinien, Alan Schmitt, andGareth Smith.
2014. A Trusted Mechanised JavaScript Specification. In POPL.

[3] Patrick Burns. 2011. The R Inferno.
[4] Arthur Charguéraud, Alan Schmitt, and Thomas Wood. 2018. JSEx-

plain: A Double Debugger for JavaScript. In The web conference.
[5] ECMA International, editor. ECMAScript language specification. Stan-

dard ECMA-262. https://tc39.github.io/ecma262/.
[6] ECMA International. 2010. Test262. https://github.com/tc39/test262.
[7] Philippa Gardner, Sergio Maffeis, and Gareth Smith. 2012. Towards

a Program Logic for JavaScript. In POPL.
[8] Filippo Ghibellini. 2017. Dynamic test generation for R packages.

Bachelor’s Thesis.

[9] Google. [n. d.] R Style Guide. Retrieved 2018 from https://google.
github.io/styleguide/Rguide.xml.

[10] ArjunGuha, Claudiu Saftoiu, and ShriramKrishnamurthi. 2010. The
Essence of JavaScript. In ECOOP.

[11] Ross Ihaka and Robert Gentleman. 1996. R: a Language for Data
Analysis and Graphics. Journal of computational and graphical sta-
tistics.

[12] Jacques-Henri Jourdan, François Pottier, andXavier Leroy. 2012. Val-
idating LR(1) Parsers. In ESOP.

[13] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. 2014.
A Fast Abstract Syntax Tree Interpreter for R. In Virtual execution
environments.

[14] Robbert Krebbers and Freek Wiedijk. 2011. A Formalization of the
C99 Standard in HOL, Isabelle and Coq. In Calculemus/mkm.

[15] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler.Com-
munications of the acm.

[16] Xavier Leroy. 2014. How much is a mechanized proof worth, certifi-
cation-wise? In Principles in Practice.

[17] Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Opera-
tional Semantics for JavaScript. In APLAS.

[18] Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2009. Isolating
JavaScript with Filters, Rewriting, and Wrappers. In ESORICS.

[19] Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2010. Object Ca-
pabilities and Isolation of Untrusted Web Applications. In SP. IEEE.

[20] Petr Maj, Tomas Kalibera, and Jan Vitek. 2013. TestR: R Language
Test Driven Specification. In The R User Conference, UseR!

[21] Jonathan McPherson. 2014. Debugging in R. In The R User Confer-
ence, UseR!

[22] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012.
Evaluating the design of the R language. In ECOOP.

[23] Mozilla. 2013.Mozilla Automated JavaScript Tests. https://developer.
mozilla . org / en - US /docs /SpiderMonkey /Running_Automated_
JavaScript_Tests.

[24] Daejun Park, Andrei Stefnescu, and Grigore Rou. 2015. KJS: A Com-
plete Formal Semantics of JavaScript. In PLDI.

[25] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pom-
brio, and Shriram Krishnamurthi. 2012. A Tested Semantics for Get-
ters, Setters, and eval in JavaScript. DLS.

[26] R Core Team. 2015. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. https://www.R-
project.org/.

[27] R Core Team. 2000. R Language Definition. R foundation for statisti-
cal computing.

[28] R Core Team. [n. d.] The Comprehensive R Archive Network. Re-
trieved 2018 from https://cran.r-project.org/.

[29] Gregor Richards, ChristianHammer, Brian Burg, and JanVitek. 2011.
The eval that Men Do. A large-scale study of the use of eval in
javascript applications. In ECOOP.

[30] Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller, and
Jasvir Nagra. 2011. AutomatedAnalysis of Security-Critical JavaScript
APIs. In SP.

[31] TheCoq development team. 1984. the Coq Proof Assistant. Retrieved
2018 from https://coq.inria.fr/.

[32] Luke Tierney, Gabe Becker, and Tomas Kalibera. 2017. ALTREP and
Other Things. In R-devel.

[33] Roman Tsegelskyi and Jan Vitek. 2014. TestR: Generating Unit Tests
for R Internals. In The R User Conference, UseR!

[34] Philip Wadler. 1992. Comprehending Monads. Mathematical struc-
tures in computer science.

[35] ThomasWuerthinger. 2012. Truffle: A Self-Optimizing Runtime Sys-
tem.

[36] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. In PLDI.

24

https://tc39.github.io/ecma262/
https://github.com/tc39/test262
https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml
https://developer.mozilla.org/en-US/docs/SpiderMonkey/Running_Automated_JavaScript_Tests
https://developer.mozilla.org/en-US/docs/SpiderMonkey/Running_Automated_JavaScript_Tests
https://developer.mozilla.org/en-US/docs/SpiderMonkey/Running_Automated_JavaScript_Tests
https://www.R-project.org/
https://www.R-project.org/
https://cran.r-project.org/
https://coq.inria.fr/

	Abstract
	1 Introduction
	2 CoqR: An R Interpreter in Coq
	2.1 Bridging the Gap between C and Coq
	2.2 Eyeball Correspondence
	2.3 Modeling the Heap
	2.4 Dealing with Global Variables
	2.5 Dealing with Non-Termination
	2.6 Limitations
	2.7 Incremental Development of CoqR
	2.8 Parsing R

	3 Testing CoqR
	3.1 Testing Methodology and Framework
	3.2 Base Library
	3.3 Current Status

	4 Formal Reasoning about R
	5 Related Work
	6 Conclusions

