
CVFP (Software Design and Formal Verification)
TP 1 : Let’s play with SPIN

SPIN (Simple PROMELA Interpreter; http://spinroot.com/) is one of the most used
model checker. This tutorial aims giving it an introduction.

Installation There exists some graphical interface for SPIN, but for the simplicity of the
tutorial we’ll stick to a command line version. Download and install SPIN using the link
http://spinroot.com/spin/Man/README.html.

Exercise 1 Playing with Spin and Promela

SPIN takes as input a program writen in PROMELA (Process Meta Language). It’s a C-like
language including parallelism and LTL formulae. You can get a documentation of this
language there1: http://spinroot.com/spin/Man/Quick.html.

Example Here is a small (patched) example taken from the documentation2.

bool turn, flag[2];
byte nbcriticalSection = 0;

proctype user() {
assert(_pid == 0 || _pid == 1); // _pid is the identifier of the current thread.

do :: (1) ->
atomic {

flag[_pid] = 1; turn = _pid; };

// This waits until the given formula is satisfied.
(flag[1 - _pid] == 0 || turn == 1 - _pid);

nbcriticalSection++;
// Dangerous part! There shall only be one thread there at any time.
nbcriticalSection--;

flag[_pid] = 0;
od;

}
1Or you can call me, but you might not be alone needing help. ¨̂
2In two pages!

1

MIT 2 CVFP (Software Design and Formal Verification) TP 1

init {
run user(); run user()

}

ltl alwaysone { [] (ncrit <= 1) }

1.1. What does the example do?

This example defines a formula alwaysone we can ask SPIN to check. To do so
run spin -a your\ file.pml. This generates a C file pan.c you can compile with
cc -o pan pan.c. You than can execute it by ./pan -N alwaysone.

1.2. Run the example.

Then remove the waiting formula (flag[1 - _pid] == 0 || turn == 1 - _pid) of the
program, rerun SPIN and compare the results.

In case of errors, SPIN generates a your\ file.pml.trail file corresponding to
a failing evaluation. To understand this particular execution, you can run
spin -psrvlg -k your\ file.pml.trail your\ file.pml.

1.3. Write a (non-deterministic) program emulating the following stack automaton:

A B

C
ε

ε

ε, 1/0
ε, 0/11

ε, 1/ε

In practise, every PROMELA model is finite. We’ll ignore the problem by using a byte to
store the stack.

1.4. Actually, SPIN translates formulae into automata. You can for instance play with
spin -f ’[]<>!p’ (or with any bigger formula) to see what’s inside SPIN.

You can also visualise the control flow computed by SPIN using the following command:
./pan -D | dot -Tps -o pan.ps and openning the resulting pan.ps file.

Exercise 2 The Dinning Philosophers.
The goal of this exercice is to make some experiments with the dinning philosophers
problem. You should find a file at http://people.irisa.fr/Martin.Bodin/instruado/
2013/CVFP/philosophers.pml.

2.1. Complete the file and run SPIN on it. Fix the problem so that every infinitely waiting
phisolopher eats infinitely often.

2

