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Normative Positions
Marek Sergot

abstract. The Kanger-Lindahl theory of normative positions is
an attempt to apply the tools of modal logic to the formalisation of
Hohfeld’s ‘fundamental legal conceptions’, to the construction of a
formal theory of duties and rights, and to the formal characterisation
generally of complex normative relations that can hold between (pairs
of) agents with regard to an action by one or other of them. The
theory employs a standard deontic logic, a logic of action/agency of
the ‘brings it about’ or ‘sees to it’ kind, and a method of mapping
out in a systematic and exhaustive fashion the complete space of all
logically possible normative relations—or ‘positions’—of some given
type. The article presents a generalised version of the methods and
a brief dicussion of its limitations as a comprehensive theory of duty
and right.

1 Introduction

The theory of normative positions is an attempt to apply the tools of modal
logic to the formalisation of the ‘fundamental legal conceptions’ (duty, right,
privilege, power, immunity, etc.) most closely associated with the Ameri-
can jurist W.N. Hohfeld [1913], to the construction of a formal theory of
duties and rights, and to the formal characterisation generally of complex
normative relations that can hold between (pairs of) agents with regard to
an action by one or other of them. The development was initiated by Stig
Kanger and subsequently extended and refined, most notably by Lars Lin-
dahl. Ingmar Pörn applied similar techniques to the study of ‘control and
influence’ relations in social interactions.

The theory employs a standard deontic logic, a logic of action/agency
of the ‘brings it about’ or ‘sees to it’ kind, and a method for mapping out
in a systematic and exhaustive fashion the complete space of all logically
possible normative relations between two agents with respect to some given
act type. Kanger called these relations the ‘atomic types of rights rela-
tion’; we will follow later usage and refer to them generally as normative
‘positions’. The methods are presented in [Kanger, 1971; Kanger, 1985;
Kanger and Kanger, 1966] with a more general account of related issues
in [Kanger, 1972]. As described later in the article, Lars Lindahl [1977]
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developed Kanger’s account in several important respects, providing also
a commentary on the relationships to Hohfeld’s work and the jurispru-
dential tradition, of Jeremy Bentham and John Austin, within which it
falls. Ingmar Pörn [1977] applied similar techniques to the study of what
he called ‘control’ and ‘influence’ relations in which there are iterations
of the action/agency modalities in place of the deontic logic component.
For further discussion of the theory and some of its features and pos-
sible applications, see e.g. [Talja, 1980; Makinson, 1986; Lindahl, 1994;
Jones and Sergot, 1992; Jones and Sergot, 1993; Herrestad and Krogh, 1995;
Herrestad, 1996; Krogh, 1997; Sergot and Richards, 2000; Jones and Par-
ent, 2008]. The technical account presented in this article is extracted from
[Sergot, 2001].

The concepts treated by the theory of normative positions are usually
discussed within the context of law and legal relations. Hohfeld himself
referred to them as the ‘fundamental legal conceptions’. These are not
exclusively legal concepts, however, but characteristic of all forms of reg-
ulated and organised agent interaction. Although the theory does address
fundamental issues in the formal representation of laws and regulations and
legal contracts—Allen and Saxon [1986; 1993] for example long argued that
proper attention to the Hohfeldian concepts is essential for legal knowledge
representation—it also finds applications in other areas, such as the spec-
ification of aspects of computer systems (see e.g. [Jones and Sergot, 1993;
Krogh, 1997; Jones and Parent, 2008]), as a contribution to the formal
theory of organisations in the analysis of notions such as responsibility,
entitlement, authorisation and delegation, and in the field of multi-agent
systems, where the notion of commitment in particular, in the sense of a
directed obligation of an agent a to another agent b, features prominently in
the literature on co-ordinated action, joint planning, and agent communi-
cation languages. (See e.g. [Jennings, 1993; Shoham, 1991; Shoham, 1993;
Singh, 1998; Singh, 1999; Colombetti, 1999; Colombetti, 2000] for some
early references.)

The theory of normative positions has a number of important and well-
documented limitations. As a theory of rights, it lacks a treatment of the
role of counterparty, the agent who is the beneficiary of a right relation or
to whom a duty is owed. As a formalisation of the Hohfeldian framework,
it does not deal with the feature Hohfeld called ‘(legal) power’, also referred
to sometimes as ‘legal capacity’ or ‘competence’. See e.g. [Makinson, 1986;
Lindahl, 1994] for some of these points, and the discussion that follows in
Section 8 below. The theory of normative positions is therefore best seen
as a component of a formal theory of duty and right, and not as a complete
theory of all aspects of these complex concepts. Its methods need to be
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augmented: with a treatment of ‘power’, with temporal constructs, and
with a richer set of action concepts, at the very least.

Nevertheless, the Kanger-Lindahl theory is generally regarded as the most
comprehensive and best developed attempt to formalize distinctions such as
Hohfeld’s. For example, Hohfeld identified four distinct legal/normative re-
lations that could hold between any two agents with respect to some given
act type. Some examples are given later in Section 3. Kanger’s system-
atic, formal analysis yielded 26 distinct ‘atomic types of rights relations’
or ‘normative positions’ as a refinement of Hohfeld’s four. Lindahl’s subse-
quent analysis produced 35 of the same basic kind as Kanger’s and 127 if
a more precise set of possible relationships is considered instead. Section 4
discusses the methods in more detail. It also explains why there are more
possibilities still than are accounted for in Lindahl’s version: employing the
same logics, 255 distinct relationships can be generated refining Kanger’s
26 and Lindahl’s 127, and many more if we include more complex act types
and more agents than two.

This article follows the formal treatment presented in [Sergot, 2001] which
generalised the Kanger-Lindahl accounts in the following respects. (1) The
generalised theory deals with interaction between any number of agents,
not just two, including ‘ought-to-be’ statements where no agent is specified.
(2) The Kanger-Lindahl-Pörn theories deal with act expressions of the form
‘agent x brings it about that F ’. The generalised theory allows any number
of such act expressions in any combination, and allows compound acts, that
is to say, boolean compounds of propositions in the scope of the ‘brings
it about’ operator. (3) Building on a suggestion by David Makinson it is
possible to give an abstract characterisation of classes of ‘positions’ and
relationships between them, and a complete separation of the method of
generating the space of ‘positions’ from properties of the underlying modal
logics. The generalised theory does not rely on any in-built assumptions
about the specific deontic or action logics employed. It also means that,
in principle at least, a richer combination of modalities could be used to
represent more complex notions.

[Sergot, 2001] also shows how the methods for generating ‘positions’ can
be automated without the need for theorem provers for the modal logics, and
presents an automated computer system intended to facilitate application
of the theory to the analysis of practical problems. Those methods will not
be covered in this article.

2 Preliminary discussion

Hohfeld’s seminal work [1913] is still often taken as the starting point for
much that is written in this field. It identified two groups of four concepts
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Figure 1. Hohfeld’s ‘fundamental legal conceptions’

with various relationships between them, as summarized in Figure 1. Right
and duty are ‘correlatives’ in the sense that when x has a right (a ‘claim-
right’) against y that F (be done by y) then y owes a duty to x that F (be
done by y); and conversely. The relationships may be summarised semi-
formally by the following scheme, adapted from [Lindahl, 1977]:

Right(x, y, F ) ↔ Duty(y, x, F )

Right(x, y,not-F ) ↔ Duty(y, x,not-F )

Here not-F is intended to stand for y’s refraining from doing F . Of course
it remains to explain how this notion of refraining is to be represented
formally; this is one of the features of Kanger’s framework.

Duty and privilege (some authors prefer ‘liberty’) are ‘opposites’ in the
Hohfeldian scheme in the sense that x has a privilege/liberty from y with
respect to F when x does not owe a duty to y to refrain from F ; x has a
privilege/liberty from y to refrain from F when x does not owe a duty to y
that F (be done by x). In the semi-formal notation these relationships may
be summarised as follows:

Privilege(x, y, F ) ↔ ¬Duty(x, y,not-F )

Privilege(x, y,not-F ) ↔ ¬Duty(x, y, F )

Similarly, right/no-right and no-right/privilege are also opposite and cor-
relative pairs in the Hohfeldian scheme, in the following sense:

Right(x, y, F ) ↔ ¬No-right(x, y, F )

Right(x, y,not-F ) ↔ ¬No-right(x, y,not-F )

No-right(x, y, F ) ↔ Privilege(y, x,not-F )

No-right(x, y,not-F ) ↔ Privilege(y, x, F )
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One can see already, however, as pointed out in [Lindahl, 1977, pp26–27]

and in [Kanger and Kanger, 1966], that there are discrepancies in Hohfeld’s
account: the right/duty and no-right/privilege correlative pairs are not ex-
actly of the same form, and nor are the right/no-right and duty/privilege
opposites.

There is further inexactitude in Hohfeld’s scheme for his second group
of concepts, those on the right of the diagram in Figure 1. This second
group is concerned with changes of legal/normative relations, as when it
is said, for example, that x has power (competence) to impose a duty on
y that such-and-such or to grant a privilege or right to z that such-and-
such. Discussion of this second set of concepts raises a new set of questions
however and is beyond the scope of this article. The second part of [Lindahl,
1977] is concerned with this group of concepts. See [Jones and Sergot, 1996]

for an alternative account of power/competence.

For present purposes, the point is that Hohfeld’s writings, and much else
that has been written on these topics in legal theory, provide a wealth of
examples and the beginnings of a systematic account, but are not precise
enough to give a formal theory. Kanger attempted to provide such a theory
by applying the formal tools of modal logic to this task.

The Kanger-Lindahl theory has a deontic logic component, an action
logic component, and a method for generating the space of all logically pos-
sible positions. The language is that of propositional logic augmented with
modal operators O (for ‘obligation’) and its dual P (for ‘permission’), and
relativised modal operators Ea,Eb, . . . for act expressions, where a, b, . . .

are the names of individual agents. (This notation is slightly different from
Kanger and Lindahl’s, who use Shall and May for O and P, and Do for act
expressions. The alternative notation is chosen simply because it is more
concise and reduces the size of the formal expressions to be manipulated.)

An expression of the form OA may be read as ‘it is obligatory that A’ or
‘it ought to be the case that A’. P is the dual of O: PA =def ¬O¬A. The
expression PA may be read as ‘it is permissible that A’. We will also say
‘permitted’. The deontic logic employed by Kanger and Lindahl is—for all
intents and purposes—the system usually referred to as Standard Deontic
Logic (SDL). Specifically, the deontic logic employed is the smallest system
containing propositional logic (PL) and the following axiom schemas and
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rules:

O.RE
A ↔ B

OA ↔ OB

O.M O(A ∧ B) → (OA ∧ OB)

O.C (OA ∧ OB) → O(A ∧ B)

O.P ¬O⊥

The names of axiom schemas and rules in this article are based on those of
[Chellas, 1980]: the logic of O is a classical modal logic of type EMCP. For
comparison, Standard Deontic Logic (SDL) is a normal modal logic of type
KD, which is type EMCP together with the additional rule of necessitation

O.RN
A

OA

or, equivalently, the axiom schema O> (> any tautology). The absence or
presence of rule O.RN plays no role in the generation of normative positions:
this is why we say that Kanger’s choice of deontic logic is to all intents and
purposes Standard Deontic Logic. The ‘deontic axiom’ of Standard Deontic
Logic

O.D OA → PA

follows from O.C and O.P.
Of course Standard Deontic Logic (of type KD or EMCP) has many

well-known limitations and its inadequacies are taken as the starting point
for many of the developments in the field. Both axioms O.M and O.C can
be criticised as simplistic, for example. However, in combination with the
logic of action, and in the restricted ways it is employed in the generation
of normative positions, these inadequacies are relatively benign. In any
case, the extended theory of normative positions to be presented in later
sections is not dependent on specific choices for the deontic and action logics
employed. These can be changed, as explained below.

As regards the action component, expressions of the form ExA stand for
‘agent x sees to it that, or brings it about that, A’. This approach to the
logic of action has been extensively studied in analytical philosophy and
philosophical logic though is perhaps not so familiar in Computer Science.
The stit operator of [Belnap and Perloff, 1988; Belnap and Perloff, 1992]

and dstit of [Horty and Belnap, 1995] are instances of the general approach
that have had some exposure in the AI literature. The focus of attention
is not on transitions and state changes as in most treatments of action in
AI and Computer Science, but rather on the end result A and the agent x
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whose actions are responsible, in some appropriate sense, for this end result;
the specific means or actions employed by agent x to bring about A are not
expressed.

The logic of each Ex is that of a (relativised) classical modal system of
type ET in the Chellas classification, i.e. the smallest system containing
PL, closed under the rule E.RE:

E.RE
A ↔ B

ExA ↔ ExB

and containing the axiom schema

E.T ExA → A

The schema E.T indicates that this is a notion of successful action. It
does not matter, for the purposes of this article, whether x brings about A
intentionally or unintentionally, knowingly or unknowingly.

The Ex notation is from [Pörn, 1977]. For present purposes, however,
the (relativised) operators Ex should be regarded as standing for one of a
range of possible action modalities rather than any one of them specifically.
For a discussion of some candidates and their relative merits see e.g. [Chel-
las, 1969; Pörn, 1970; Pörn, 1974; Pörn, 1977; Pörn, 1989; Åqvist, 1974;
Segerberg, 1985; Segerberg, 1989; Segerberg, 1992; Belnap and Perloff, 1988;
Belnap and Perloff, 1992; Perloff, 1991; Horty and Belnap, 1995; Elgesem,
1992; Hilpinen, 1997; Horty, 2001] as well as more recent works on ‘stit’ log-
ics in particular. It is likely that a comprehensive theory of rights and/or
organisations would require several different notions of action and agency.
In [Santos and Carmo, 1996; Santos et al., 1997], for instance, it is suggested
that distinguishing between direct and indirect action may be important for
describing certain organisational structures. Nothing in the present account
depends on such detailed choices. As in the Kanger-Lindahl framework, the
only properties assumed for the action modalities Ex are the schema E.T
and closure under logical equivalence, E.RE.

3 Motivating examples

We conclude this introductory discussion with some brief examples to il-
lustrate the expressive power of the language and to motivate the formal
development to be undertaken in the remainder of the article. These ex-
amples are intended to be simple and familiar. They are the same as those
used in [Sergot, 2001].
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Example 3.1 (Library book) Let b name a borrower in a library who
has some book out on loan. Let R represent that this book is returned to
the library by the date due. b has an obligation to return the book by date
due. In the Kanger framework this obligation on b can be represented by the
following expression.

(1) OEbR

Expression (1) is not the only, nor perhaps even an adequate, representa-
tion of what we mean by saying that b has an obligation to return the book.
It employs what some authors refer to as the Meinong-Chisholm analysis,
whereby ‘x ought to bring it about that F ’ is taken to mean ‘it ought to
be that x brings it about that F ’. It is possible to question whether these
expressions are in fact equivalent. See e.g. the discussions in [Horty, 1996;
Horty, 2001; Sergot and Richards, 2000; Brown, 2000] among others. There
are also some senses of ‘obligation’—as when we say e.g. ‘x is responsible
for, or held accountable for, ensuring that F is the case’—which are not ad-
equately represented by this construction. Possible formalisations of these
other senses will not be discussed in this article.

Studies of duty and right, such as Hohfeld’s, adopt a relational perspec-
tive: the focus is on relationships between pairs of agents. So, given the
truth of e.g. OEbR, one is led to ask about the obligations and permissions
of other agents, a say, with respect to the returning of the book. One can
see that, according to the logics employed, the following three possibilities
are all consistent with OEbR:

1. a is obliged to return the book: OEaR;

2. a is permitted but not obliged to return the book:

(PEaR ∧ ¬OEaR) = (PEaR ∧ P¬EaR);

3. a is not permitted to return the book: ¬PEaR.

Note that the first of these is logically possible given (1): the expression
OEaR ∧ OEbR is not inconsistent. In the logics employed, it is equivalent

to O(EaR ∧ EbR), but there is no principle in the logic of action to say
that a and b could not both act in such a way that they both see to it that
R.

Are there any other possibilities besides the three listed above? It is the
systematic exploration of all such possible relations that motivates in large
part the construction of the Kanger-Lindahl theories.
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Notice that the three possibilities above may be distinguished by asking
in turn whether PEaR is true, and if so, whether P¬EaR is true. This is
the kind of analysis that the automated system described in [Sergot, 2001]

is designed to support.

Example 3.2 (Fence) The following example is adapted from [Lindahl,
1977]. Again, no claim is made here for the completeness or adequacy of
the representation. The aim is merely to illustrate some of the distinctions
and nuances that can be expressed with the resources available.

Suppose a and b are neighbours, and let F represent that there is a fence
on the boundary between their adjoining properties. We want to say that a
has a ‘right’ to erect such a fence, or more generally, that a has a ‘right’ to
see to it that there is such a fence.

We build up a (partial) representation in stages. In the first instance it
seems reasonable to assert that the following is true:

(2) PEaF ∧ ¬PEb¬F

The second conjunct of expression (2) captures something of the idea that
the neighbour b is not permitted to prevent a from seeing to it that F .
One could also add a conjunct ¬PEb¬EaF to cover a different sense in
which b is forbidden to prevent a from seeing to it that F . The ability to
iterate action operators in this fashion has been seen as one of the main
advantages of using the Ex device in the treatment of action. ‘x refrains
from seeing to it that F ’ can be represented as Ex¬ExF , for example. We
shall not study iterated act expressions in any detail in this article, however.
Some examples and some possible lines of development are discussed briefly
in Section 8. Iterated act expressions are the basis of the ‘control’ and
‘influence’ positions examined in [Pörn, 1977].

Of course a is not obliged to see to it that F , so also ¬OEaF is true in the
example. Furthermore, a’s permission to see to it that F does not depend
on b’s actions, in the sense that the following is also true: P(EaF ∧ ¬EbF ).
Putting these together:

(3) PEaF ∧ ¬PEb¬F ∧ ¬OEaF ∧ P(EaF ∧ ¬EbF )

Expression (3) is an approximation to the concept of a ‘vested right’.
It is only an approximation because as already observed there are other
possible ways in which b can be said to ‘prevent’ a’s seeing to it that F , e.g.
as expressed by Eb¬EaF . It also fails to capture the idea that a’s rights
may already be infringed by unsuccessful attempts by b to interfere with
a’s actions [Makinson, 1986]. Moreover (3) does not say what further rights
and obligations are created if b should so interfere.
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In this example b’s normative status in relation to F is clearly symmet-
rical to a’s and so we may add also:

(4) PEbF ∧ ¬PEa¬F ∧ ¬OEbF ∧ P(EbF ∧ ¬EaF )

Still there are a number of unresolved questions. Is it the case that
P¬F , or is it obligatory, ¬P¬F , that there is a fence? Is it the case that
P(¬F ∧ ¬Ea¬F ∧ ¬Eb¬F ): is it permitted that there is no fence when
neither a nor b brought this about? As a matter of fact, in the logics
employed (3) and (4) together imply

(5) P¬F ↔ P(¬F ∧ ¬Ea¬F ∧ ¬Eb¬F )

i.e., it is obligatory that there is a fence iff O(¬F → (Ea¬F ∨ Eb¬F ))

is true. On the other hand, (3) and (4) together do not imply P(F ∧
¬EaF ∧ ¬EbF ). That question remains unresolved. Perhaps some other
agent, besides a and b, is permitted to see to it that there is a fence between
their adjoining properties, perhaps not.

The example is intended in part to demonstrate why there is a need for
automated support even for the analysis of simple examples. Questions
such as those above can can be explored systematically by means of the
automated inference methods described in [Sergot, 2001] and summarised
in Section 7 below.

The fence example also demonstrates that there may be an obligation
on a and b together, without there being an obligation on either of them
individually: it is possible that O(EaF ∨ EbF ) is true while both OEaF
and OEbF are false.

Example 3.3 (Car park) Ronald Lee [1988] presents a rule-based lan-
guage intended for specifying permitted, obligatory and forbidden actions.
The example used for illustration concerns the rules governing a Univer-
sity car park. For simplicity “assume that administrators have unrestricted
parking privileges. Faculty, however, must obtain a parking permit to park
on campus. Students must park off campus.” Lee represents such rules
in the form of if/then rules whose antecedent (‘body’) is a conjunction of
factual conditions (‘is an administrator’, ‘has a parking permit’, etc.) and
whose consequent specifies an action (here, ‘park’) that can be permitted,
obligatory, or prohibited.

Leaving aside the details of the language, one might ask whether these
primitives ‘permitted’, ‘obligatory’, ‘prohibited’ are enough, whether they
cover all imaginable cases. Notice first that they are not mutually exclusive:
an obligatory action is also (presumably) permitted. It may be that the
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primitive ‘permitted’ in Lee’s language was intended to be understood in
the sense of permissible but not obligatory, or what is sometimes referred to
as ‘facultative’. In the logic we are using, A is facultative when PA ∧ ¬OA
is true, or equivalently when PA ∧ P¬A is true.

One can see a very close connection between this rule based representa-
tion and the conception of a normative system as introduced and developed
in Alchourrón and Bulygin’s classical work [1971]. There a normative sys-
tem N is defined in terms of a ‘universe of cases’—these are all the pos-
sible fact combinations that can be expressed using some fixed set Props
of propositional atoms—and a set of actions. For each action and case
(set of factual circumstances) a normative system assigns a ‘solution’ which
specifies whether that action is obligatory, prohibited, or facultative in that
factual circumstance. The normative system is consistent when no case is
assigned different solutions for any given action, and complete when every
case is assigned a solution for every action.

But again, taking a relational perspective, one is led to think in terms
of interactions between the administrator who is permitted to park and
other agents: other users of the car park, passers by, the gatekeepers who
control access to the car park, the University who owns the car park and to
whom the gatekeepers are responsible, and so on. An analysis based on the
Hohfeldian scheme, for example, would ask not whether there is a permission
to park simpliciter but whether the administrator has a ‘privilege’ to park
or whether this is in fact a ‘claim-right’ (vis-à-vis, in turn, other users of
the car park, the gatekeepers, the University). And likewise for other pairs
of agents.

If in place of the informal Hohfeldian scheme, we employ the formal
machinery offered by the Kanger-Lindahl theories or the extended scheme
of [Sergot, 2001], the if/then rules of the representation language would take
the form

if conditions then normative-position

where normative-position is one of some appropriately chosen class of nor-
mative positions. Lee’s rule-based language, and solutions in Alchourrón
and Bulygin’s formalisation of a normative system, can be regarded as a
special case where the class of candidate normative positions is a partic-
ularly simple one. For more precision, more complex classes of normative
positions should be considered.

We will return to this point in Section 8 after the formal machinery has
been introduced, and we will look again at the car park example in more
detail in Section 7.

One might ask why anyone would be interested in representing the rules
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of a library or the rules of a car park at these levels of precision. One answer
is that a precise specification may be essential if we were assigned the task
of constructing a system that advises the employees and users of a library
about their duties and rights, or if we were given the task of designing
a system for controlling access to a car park. Or instead of controlling
who may put cars in a car park, imagine for instance that the car park
is a computer file of some kind, and that p(x) represents not that car x
is parked in the car park but that data entry x is stored in the file. The
task is then to specify with precision which agents (computer agents or
human) are to be permitted to insert and delete data entries in this file, in
which circumstances and in which combinations. A gatekeeper agent g who
controls access to a car park is not so different from a ‘file monitor’ (human
or computer agent) which controls access to a computer file. And likewise
for many of the other forms of interactions that take place in regulated
human and electronic societies.

4 The Kanger-Lindahl theory

The focus in the Kanger-Lindahl theory is on mapping out the space of
logically possible legal/normative relations of given forms that can hold
between pairs of agents. In order to examine the possibilities systematically,
Kanger considers first what he called the ‘simple types of rights relations’
of two agents a and b with respect to some state of affairs F . They are
represented by the expressions falling under the scheme:

(6) ±O ±
(

Ea
E
b

)
± F

The notation was suggested by David Makinson [1986]. ± stands for the two

possibilities of affirmation and negation; the choice-scheme

(
Ea
E
b

)
indicates

the (here, two) alternatives Ea and Eb . There are thus sixteen expressions

falling under the scheme (6), ranging from OEaF to ¬O¬Eb¬F . The
choice-scheme notation can be seen as shorthand for a set of expressions
and so will be mixed freely with standard set notation.

The ‘simple types’ were given names by Kanger in addition to their
symbolic explication. Following Lindahl’s summary [1994], from the per-
spective of a’s rights versus b, those in the scheme O ± Eb ± F are called
Claim, Counter-claim, Immunity, Counter-immunity ; those in the scheme
¬O ±Ea ±F (equivalently, P ±Ea ±F ) are called Power, Counter-power,
Freedom, Counter-freedom. The Appendix of Henning Herrestad’s doctoral
dissertation [1996] lists out the correspondence between names of the ‘simple
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types’ and their symbolic expression. We will not reproduce the details here
since the naming scheme is of less importance than the symbolic scheme.
We note only that the choice of some of these names is unfortunate, since
they do not all correspond to Hohfeld’s terminology. ‘Power’ in particular
means something quite different in the Hohfeldian scheme (it is to do with
the capacity or competence to effect changes in rights relations).

Of more interest than the ‘simple types’ are the various compounds that
may be formed from them, or what Kanger called the ‘atomic types of rights
relation’. Makinson’s observation [1986] was that Kanger’s ‘atomic types’,
for two agents a, b with respect to the bringing about of some state of affairs
F , can be characterised as the expressions belonging to the set:

(7)
r
±O ±

(
Ea
E
b

)
± F

z

The brackets denote maxi-conjunctions: where Φ is a choice-scheme (or set
of sentences)

q
Φ

y
stands for the set of maxi-conjunctions of Φ —the max-

imal consistent conjunctions of expressions belonging to Φ. ‘Consistent’
refers to some underlying logic, here the specific logics for O and Ex em-
ployed by Kanger and Lindahl. ‘Conjunction’ means a conjunction without
repetitions, and with some standard order and association of conjuncts. A
conjunction is ‘maximal consistent’ when addition of any other conjunct
from Φ yields an inconsistent conjunction: in other words, a conjunction Γ
is a maxi-conjunction of Φ if and only if Γ is consistent, and every expression
of Φ either appears as a conjunct in Γ or is inconsistent with Γ. Note that
maxi-conjunctions may contain logical redundancies (one or more conjuncts
may be logically implied by the others). We shall occasionally abuse the no-
tation and write also

q
Φ

y
for the set of conjunctions obtained by removing

all logical redundancies from the maxi-conjunctions of Φ. A justification for
this practice will be provided in later sections.

As can readily be checked, and will be shown more generally later (Theo-
rem 4.1), Kanger’s ‘atomic types’ (7) can be written as conjunctions of two
simpler expressions:

(8)
r
±O ±

(
Ea
E
b

)
± F

z
=

r
±O ± Ea ± F

z
·
r
±O ± Eb ± F

z

Here the notation is as follows: when P and Q represent sets of expressions,
P ·Q stands for the set of all the consistent conjunctions that can be formed
by conjoining an expression from set P with an expression from set Q.
(For technical reasons, it is convenient to take P·∅ =def ∅·P =def P.) In
order to reduce the need for parentheses, we adopt the convention that the ·
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binds more tightly than other operators. So, for example, the choice-scheme
expression (±O ± Φ1·Φ2) is to be read as (±O ± (Φ1·Φ2)).

The maxi-conjunctions in

(9)
r
±O ± Ea ± F

z

are, in the terminology of [Jones and Sergot, 1993], Kanger’s normative
one-agent act positions. According to the logic employed by Kanger, there
are six elements in (9). Following the numbering at [Lindahl, 1977, p100]

and eliminating logical redundancies, they are:

(K1) PEaF ∧ PEa¬F
(K2) O¬EaF ∧ O¬Ea¬F
(K3) OEaF

(K4) PEaF ∧ P¬EaF ∧ O¬Ea¬F
(K5) OEa¬F
(K6) O¬EaF ∧ PEa¬F ∧ P¬Ea¬F

These six expressions, by construction, are consistent, mutually exclusive,
and their disjunction is a tautology. In any given situation precisely one of
them must be true, according to the logical principles employed.

One can see that (K1)–(K6) are symmetric in F and ¬F (as is obvious
from the form of the expression (9)). (K3) expresses an obligation on a,
in the Meinong-Chisholm sense, to bring it about that F . In (K1) a is
permitted to bring it about that F and permitted to bring it about that
¬F . (K2) can be written equivalently in a number of different ways.

(K′2) ¬PEaF ∧ ¬PEa¬F

says that a is neither permitted to bring it about that F nor permitted to
bring it about that ¬F . Following Lindahl, it is convenient to define the
following abbreviation:

(10) PassaF =def ¬EaF ∧ ¬Ea¬F

PassaF represents a kind of ‘passivity’ of agent a with respect to state of
affairs F . (K2) can be written equivalently as:

(K′′2) O(¬EaF ∧ ¬Ea¬F ) = OPassaF

and so expresses an obligation on a to remain ‘passive’ with respect to F .
(K4) is equivalent to

(K′4) PEaF ∧ P¬EaF ∧ ¬PEa¬F
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According to (K′4), a is permitted to bring it about that F and permitted
to refrain from bringing it about that F , but a is not permitted to bring it
about that ¬F .

For Kanger’s ‘atomic types’ for two agents, expression (8), there are
6 × 6 = 36 conjunctions to consider. Of these, 10 turn out to be logically
inconsistent. On Kanger’s analysis, therefore, there are 26 atomic types of
right (for two agents with respect to the bringing about of some given state
of affairs). Again, by construction these 26 ‘atomic types’ are internally
consistent, mutually exclusive, and their disjunction is a tautology. In any
given situation precisely one of them must be true, according to the logics
employed. It is in this sense that Kanger can be said to provide a complete
and exhaustive analysis of all the logically possible normative positions.

Kanger’s 26 ‘atomic types’ are listed in full in [Kanger and Kanger, 1966,
pp93–94] and [Lindahl, 1977, p56] and in several other works. In these
works however each position (atomic type) is described by listing the names
(i.e., claim, freedom, power, etc) of the constituent single-agent types rather
than the symbolic expressions.

For example, the first of the 26 atomic types in the standard table is listed
as ‘Power, not Immunity, Counter-power, not Counter-immunity’ which cor-
responds to the conjunction of one-agent act positions (K1) for a and (K1)
for b and thus the symbolic expression:

PEaF ∧ PEa¬F ∧ PEbF ∧ PEb¬F

The 15th atomic type in the table, to pick just one other example, is listed
as ‘Liberty, not Power, Immunity, Counter-power, Counter-immunity’. This
corresponds to the conjunction of one-agent act positions (K6) for a and
(K2) for b and thus the symbolic expression:

O¬EaF ∧ PEa¬F ∧ P¬Ea¬F ∧ O¬EbF ∧ O¬Eb¬F

The complete listing and numbering used by the previous authors together
with the corresponding symbolic expressions in each case can be found in
[Herrestad, 1996, Appendix].

Each of Kanger’s 26 atomic types can be expressed as a conjuction of
two of the 6 single-agent types (K1)–(K6) by virtue of equation (8) (and
Theorem 4.1 below).

Kanger gives a complete and exhaustive analysis of all the logically pos-
sible atomic types. In general, all maxi-conjunctions of the form

q
± Φ

y

have this property of exhaustiveness. Moreover, all (consistent) boolean
compounds of expressions in Φ are logically equivalent to a (non-empty)
disjunction of elements from

q
± Φ

y
. As observed by Makinson [1986], the
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maxi-conjunctions can be given an algebraic interpretation (as atoms of a
Boolean algebra). For certain logics (those of type EMCP, though not for
weaker ones), they give the constituents of a distributive normal form in the
underlying modal logics. (They are not quite yet a normal form: for that
we would need to consider not just the sentences of Φ but also all of their
subsentences.)

The value of Makinson’s suggestion, besides the conciseness of the nota-
tion, is that the characterisation of positions in terms of maxi-conjunctions
emphasises their character rather than the specific procedures by which
they happen to be generated. There are many different ways of generating
the same set of maxi-conjunctions. The following elementary property of
maxi-conjunctions is particularly useful, and is the basis for a whole family
of such procedures.

Theorem 4.1 For any choice scheme Φ = Φ1 ∪Φ2 (Φ1 and Φ2 not neces-
sarily distinct):

1.
q
Φ1

y
·
q
Φ2

y
⊆

q
Φ

y

2.
q
± Φ

y
=

q
± Φ1

y
·
q
± Φ2

y

Proof. Straightforward. See [Sergot, 2001]. �

Computationally: to generate the set of maxi-conjunctions
q
±Φ

y
, decom-

pose the scheme (or set of sentences) Φ into smaller, not necessarily disjoint,
subsets Φ1 and Φ2 (there are many different strategies for this step); (recur-
sively) compute the sets of maxi-conjunctions

q
±Φ1

y
and

q
±Φ2

y
, possibly

in parallel; form all conjunctions of expressions from these sets of maxi-
conjunctions; discard those conjunctions that are logically inconsistent. The
steps, especially the last two steps, may be co-routined for efficiency. It is
straightforward to code any such procedure as a computer program, requir-
ing only an implementation of the inconsistency check for the generated
conjunctions. Although this is not difficult—it is only fragments of the
underlying modal logics that are required—it is not particularly useful ei-
ther. In Section 6 we show how a little additional manipulation eliminates
the need for theorem-proving techniques altogether, at least for the most
common types of modal logic.

As an example, the method used to generate classes of normative po-
sitions in [Jones and Sergot, 1993] (and in [Jones and Parent, 2008]) is a
special case of Theorem 4.1. For illustration, in [Jones and Sergot, 1993]

the generation of what are there called the ‘normative fact positions’

(11)
q
±O ± F

y
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proceeds as follows. Form two tautologies OF ∨ ¬OF and O¬F ∨ ¬O¬F .
Their conjunction is another tautology. Re-write it as a disjunction of con-
junctions by picking one disjunct from each in all combinations, to obtain
(OF ∧O¬F )∨ (OF ∧¬O¬F )∨ (¬OF ∧O¬F )∨ (¬OF ∧¬O¬F ). The first
disjunct of this expression is logically inconsistent and so can be deleted;
the others can be simplified. That procedure can be presented as a special
case of Theorem 4.1 as follows:

q
±O ± F

y
=

q
±OF

y
·
q
±O¬F

y
(by Theorem 4.1)

=

(
OF

¬OF

)
·
(

O¬F
¬O¬F

)

=

 OF
O¬F

PF ∧ P¬F

 (with logical redundancies removed)

Equation (8) expressing Kanger’s two-agent atomic types as conjunctions
of one-agent types is also a special case of Theorem 4.1. This follows im-
mediately from:

±O ±
(

Ea
E
b

)
± F = ±O ± Ea ± F ∪ ±O ± Ea ± F

There will be other examples presently.

Lars Lindahl [1977] presents a refinement and further development of
Kanger’s analysis. The second part of his book deals also with aspects of
‘change’ of normative positions. That part of Lindahl’s account will not be
pursued here.

Lindahl constructs his analysis on the following set of normative one-
agent act positions:

(12)
r
± P

q
± Ea ± F

yz

where now there is a maxi-conjunction expression within the scope of the
P operator. In words, (12) is the set of maxi-conjunction expressions of the
form ± PA, where each A is itself a maxi-conjunction of sentences of the
form ± Ea ± F . The iterated bracket notation is again from [Makinson,
1986].

There are three act positions in the set

(13)
q
± Ea ± F

y
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K1 is logically equivalent to (T1 ∨ T3)
K2 · · · · · · · · · T6

K3 · · · · · · · · · T5

K4 · · · · · · · · · T2

K5 · · · · · · · · · T7

K6 · · · · · · · · · T4

Table 1. Normative one-agent act positions

They are:

(A1) EaF

(A2) Ea¬F
(A3) ¬EaF ∧ ¬Ea¬F

The third of these (A3) is the ‘passivity’ of agent a with respect to state
of affairs F , which following Lindahl we also write using the abbrevation
PassaF .

There are 23 − 1 = 7 expressions in the set (12). They are, numbered as
in [Lindahl, 1977] and with logical redundancies removed:

(T1) PEaF ∧ PEa¬F ∧ PPassaF

(T2) PEaF ∧ O¬Ea¬F ∧ PPassaF

(T3) PEaF ∧ PEa¬F ∧ ¬PPassaF

(T4) O¬EaF ∧ PEa¬F ∧ PPassaF

(T5) OEaF

(T6) OPassaF

(T7) OEa¬F

(T2) and (T4) can be written equivalently as:

(T′2) PEaF ∧ ¬PEa¬F ∧ PPassaF

(T′4) ¬PEaF ∧ PEa¬F ∧ PPassaF

Lindahl’s construction gives a finer-grained analysis than Kanger’s. For
the one-agent types, five of the six in Kanger’s (9) are logically equivalent
to five of the seven in Lindahl’s (12), as summarized in Table 1.

On Lindahl’s analysis, therefore, Kanger’s type (K1) can be decomposed:

(K1) PEaF ∧ PEa¬F
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is logically equivalent to a disjunction of two of Lindahl’s types, viz.

(T1) PEaF ∧ PEa¬F ∧ PPassaF

(T3) PEaF ∧ PEa¬F ∧ ¬PPassaF

For an example of (T3), consider a judge (a) who is permitted to see to
it that the prisoner is imprisoned (F ) and permitted to see to it that the
prisoner is not imprisoned (¬F ); but a is not permitted to do neither of
these: ¬PPassaF .

In place of Kanger’s two-agent types (8), Lindahl has the following set of
positions:

(14)
r
± P

q
± Ea ± F

yz
·
r
± P

q
± Eb ± F

yz

There are 7 × 7 = 49 conjunctions to consider, of which 35 are internally
consistent. These are Lindahl’s ‘individualistic’ normative two-agent act
positions. The significance of ‘individualistic’ will be explained in a moment.
Lindahl’s construction again gives a finer-grained analysis than Kanger’s:
some of Kanger’s 26 two-agent ‘atomic types’ (7) are logically equivalent to
disjunctions of Lindahl’s corresponding 35 types (14). We omit the details:
the next section presents a general result and a computational method to
perform this kind of calculation.

Notice that, since P is the dual of O, Kanger’s one-agent positions (9)
may be written equivalently as

q
±P±Ea ±F

y
. The expression within the

maxi-conjunction brackets may be seen in two ways: either as a scheme of
four (not mutually exclusive) act positions ± Ea ± F prefixed by ± P, or
as two mutually exclusive act positions Ea ± F prefixed by ± P± . What
is obtained by combining the second view, ± P± , with the three mutually
exclusive act positions

q
±Ea±F

y
used by Lindahl? In other words, consider

the following:

(15)
r
± P ±

q
± Ea ± F

yz
=

r
±O ±

q
± Ea ± F

yz

(The equality here is because P and O are duals.) This is the construction
used in Jones and Sergot’s account of normative positions [1992; 1993]. It
turns out that for the logics employed by Kanger and Lindahl the positions
in set (15) are exactly the same seven as those in Lindahl’s simpler form (12).
By Theorem 4.1 the following holds irrespective of the logic of O:

(16)
r
±O ±

q
± Ea ± F

yz
=

r
± P

q
± Ea ± F

yz
·
r
±O

q
± Ea ± F

yz
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But when the logic of O is of type EMCP (or stronger), then also (as shown
later in Section 6, Theorem 6.1):

(17)
r
±O ±

q
± Ea ± F

yz
=

r
± P

q
± Ea ± F

yz

For weaker logics the equality (17) does not hold. In that case the Jones-
Sergot form (15) gives a more refined analysis than Lindahl’s (12).

There is another important respect in which Lindahl extends Kanger’s
analysis of two-agent ‘atomic types’. In [Lindahl, 1977, Ch.5] the account
is extended to what are called ‘collectivistic two-agent types’, to cover the
case where, for instance, there is an obligation on two agents which does
not apply to either of them individually:

O(EaF ∨ EbF ) ∧ ¬OEaF ∧ ¬OEbF

Lindahl is there addressing the co-ordination of a and b’s actions, which
introduces distinctions that cannot be expressed by conjunctions of the
‘individualistic’ types (14). The reason is simply that, in the logics em-
ployed, P does not distribute over conjunction (nor O over disjunction):
(PA ∧ PB) → P(A ∧ B) is not a theorem for arbitrary A and B. For
instance, PEaF ∧ PEbF is consistent with both P(EaF ∧ EbF ) and

¬P(EaF ∧ EbF ).
Lindahl’s ‘collectivistic’ two-agent positions are obtained by the following

construction:

(18)
r
± P

q
±
(

Ea
E
b

)
± F

yz
=

r
± P

(q
± Ea ± F

y
·
q
± Eb ± F

y)z
In the EMCP-equivalent Jones-Sergot form these positions are:

(19)
r
±O ±

q
±
(

Ea
E
b

)
± F

yz
=

r
±O ±

(q
± Ea ± F

y
·
q
± Eb ± F

y)z
For the logics employed by Kanger and Lindahl, there are 27 − 1 = 127

‘collectivistic normative two-agent act positions’ in the sets (18) and (19).
Each collectivistic type implies one of the ‘individualistic’ types (14); each
of the ‘individualistic’ types is logically equivalent to a disjunction of one or
more of the collectivistic types. This can be seen by reference to the table
compiled by [Lindahl, 1977, p180], or, as shown in later sections, from a
general property of maxi-conjunctions which holds when the logic of O is
of type EMCP.

[Sergot, 2001] presents a generalised theory of normative positions that
builds upon Makinson’s maxi-conjunction characterisation. It is summarised
in the next two sections, and addresses the following questions in particular:
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(1) How can the account be generalised to the case of n agents? This is
a possibility mentioned by Lindahl but not developed by him, presumably
because of the size and number of the symbolic expressions to be manipu-
lated.

(2) How can the account be generalised to deal with related states of af-
fairs, in the same kind of way that the ‘collectivistic’ positions generalise
the ‘individualistic’? Consider two neighbours, a and b. Let F repre-
sent that there is a fence at the front of their adjoining properties, and
G that there is a fence at the back of their properties. Suppose both
neighbours are permitted to see to it that there is a fence at the front,
PEaF ∧ PEbF , and permitted to see to it that there is a fence at the back,
PEaG ∧ PEbG. We might nevertheless want to distinguish between the

case represented by P(EaF ∧ EaG) ∧ P(EbF ∧ EbG) and the case repre-

sented by ¬P(EaF ∧ EaG) ∧ ¬P(EbF ∧ EbG). It is conceivable that there

could be other constraints, such as that represented by O(EaF ↔ EaG),
i.e. ¬P(EaF ∧ ¬EaG) ∧ ¬P(EaG ∧ ¬EaF ). These distinctions cannot be
expressed in the Kanger-Lindahl framework.

(3) To what extent can these various constructions be generalised to other,
weaker logics than those employed by Kanger and Lindahl? Which features
of the theory are properties of the specific logics employed, and which of
maxi-conjunctions in general?

(4) Lindahl’s construction yields a finer-grained analysis than Kanger’s. Is
there similarly a finer-grained analysis than Lindahl’s? Is there a finest
analysis?

The last question can be answered as follows. For one agent a and one
state of affairs F , Lindahl bases his analysis on the set of three act positionsq
±Ea ±F

y
. But a finer analysis can be obtained by taking instead the act

positions from the following scheme:

(20)
q
± Ea ± F

y
·J± F K

We might call these ‘cumulative fact/act positions’. There are four such
positions:

(A1) EaF

(A2) Ea¬F
(A3a) F ∧ ¬EaF (which is equivalent to PassaF ∧ F )

(A3b) ¬F ∧ ¬Ea¬F (which is equivalent to PassaF ∧ ¬F )

Lindahl’s ‘passive’ act position (A3) does not distinguish between (A3a) and
(A3b).
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T1

{ PEaF ∧ PEa¬F ∧ P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
PEaF ∧ PEa¬F ∧ ¬P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
PEaF ∧ PEa¬F ∧ P(F ∧ ¬EaF ) ∧ ¬P(¬F ∧ ¬Ea¬F )

T2

{
PEaF ∧ ¬PEa¬F ∧ P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
PEaF ∧ ¬PEa¬F ∧ ¬P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
PEaF ∧ ¬PEa¬F ∧ P(F ∧ ¬EaF ) ∧ ¬P(¬F ∧ ¬Ea¬F )

T3

{
PEaF ∧ PEa¬F ∧ ¬PPassaF

T4

{ ¬PEaF ∧ PEa¬F ∧ P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
¬PEaF ∧ PEa¬F ∧ ¬P(F ∧ ¬EaF ) ∧ P(¬F ∧ ¬Ea¬F )
¬PEaF ∧ PEa¬F ∧ P(F ∧ ¬EaF ) ∧ ¬P(¬F ∧ ¬Ea¬F )

T5

{
OEaF

T6

{
OPassaF ∧ OF
OPassaF ∧ O¬F
OPassaF ∧ PF ∧ P¬F

T7

{
OEa¬F

Table 2. Normative one-agent cumulative fact/act positions

The corresponding single-agent ‘normative act positions’ are:

(21)
r
±O ±

q
± Ea ± F

y
·
q
± F

yz

There are 24 − 1 = 15 conjunctions in the set (21), as compared with
the seven (T1)–(T7) constructed in Lindahl’s analysis. They are listed in
Table 2. Three are identical to Lindahl’s (T3), (T5) and (T7); the other
four of Lindahl’s types are each logically equivalent to a disjunction of three
conjunctions from (21). Just as Lindahl is able to give examples to illustrate
the ambiguity in Kanger’s type (K1), so it is easy to find examples to illus-
trate the ambiguities in Lindahl’s types (T1), (T2), (T4), (T6). Consider
(T1) for example, and suppose that a neighbour a is permitted to see to it
that there is a fence (F ), permitted to see to it that there is no fence, and
permitted to remain passive with respect to there being a fence. It may
be, however, that if there is a fence then a must see to it, in other words
that O(F → EaF ), equivalently ¬P(F ∧ EaF ), is true. That possibility
is covered by the second of the (T1) refinements in Table 2 but not by the
other two.

For two-agent positions, the corresponding expressions for ‘individualis-
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tic’ and ‘collectivistic’ positions are, respectively:

(22)
r
±O ±

q
± Ea ± F

y
·
q
± F

yz
·
r
±O ±

q
± Eb ± F

y
·
q
± F

yz

(23)
r
±O±

q
±
(

Ea
E
b

)
±F

y
·
q
±F

yz
=

r
±O±

q
±Ea±F

y
·
q
±Eb±F

y
·
q
±F

yz

When the logic of O is of type EMCP or stronger, constructions (21) for
one agent and (23) for any pair of agents are—effectively—the finest-grained
set of normative positions that can be constructed for a given state of affairs,
respectively. The next section explains what is meant by ‘finest-grained’.

The account can be generalised, to any (finite) number of agents {a, b, . . .}
not just two, and any (finite) number of separate states of affairs {F,G, . . .}
not just one. Consider for instance the following construction:

(24)
r
±O ±

q
±

Ea
Eb
...

±
FG

...

y
·
q
±

FG
...

yz

There are still more complex classes of normative positions if we allow also
iterations of the action modalities. We will give some examples in Section 7
below.

5 Partitions

Lindahl’s construction yields a finer-grained analysis than Kanger’s. But
Kanger’s analysis is also exhaustive, in the sense that his ‘atomic types’ are
logically consistent, mutually exclusive, and their disjunction is a tautology.
Kanger’s analysis and Lindahl’s analysis are both exhaustive, but Lindahl’s
is finer than Kanger’s. We now formalise these notions.

We begin by defining a syntactic version of the standard notion of a par-
tition of a set whereby a set is partitioned into non-empty disjoint subsets.
All definitions are given with respect to some underlying logic Λ. Since Λ is
usually obvious from context we write ` A for A ∈ Λ. The only assumption
we make in this section is that Λ includes classical propositional logic, i.e.
contains all tautologies PL and is closed under modus ponens.

Definition 5.1 Let P = {P1, P2, . . .} be a set of sentences and Q a sen-
tence of the language of Λ. Then P = {P1, P2, . . .} is a Λ-partition of Q
iff it satisfies the following conditions:

1. every element Pi of P is logically consistent: 6` ¬Pi;
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2. every element Pi of P logically implies Q: ` Pi → Q;

3. distinct elements of P are mutually exclusive: ` ¬(Pi ∧ Pj) (i 6= j);

4. the set P ‘exhausts’ Q: ` Q →
∨

P∈P P .

Conditions (2) and (4) together are: ` Q ↔
∨

P∈P P .
When Q is a tautology we shall say that P is a complete Λ-partition,

or simply a Λ-partition. Where context permits we omit the Λ-prefix and
simply say ‘partition’. In what follows partitions will be finite sets.

Example 5.2 All of the following (the terminology is from [Jones and Ser-
got, 1993]) are (complete) partitions:

• fact positions: J± F K = {F, ¬F};

• Lindahl’s one-agent act positions:

q
± Ea ± F

y
= {EaF, Ea¬F, PassaF};

• normative fact positions: J±O ± F K = {OF, O¬F, PF ∧ P¬F};

• Lindahl’s normative one-agent act positions (T1)–(T7):

r
± P

q
± Ea ± F

yz

In general, any maxi-conjunction of the form J±ΦK is a (complete) partition.
In contrast:

• The act positions used by Kanger, ±Ea ± F , are not mutually exclu-
sive, whereas Ea ± F = {EaF, Ea¬F} are mutually exclusive but do
not form a complete partition.

Naturally, if {P1, . . . , Pn} is a set of consistent, mutually exclusive sen-
tences, then {P1, . . . , Pn} is a partition of P1 ∨ . . . ∨ Pn.

Λ-partitions are just syntactic analogues of the standard notion of a par-
tition of a set. The two are easily related. For any modelM of Λ, let ‖Q‖M
denote the ‘truth set’ of Q, i.e. the set of possible worlds ofM at which Q is
true. The exact structure ofM does not matter. Then the set of sentences
P = {P1, P2, . . .} is a Λ-partition of Q when, for all models M of Λ, the

sets ‖P1‖M, ‖P2‖M, . . . partition the set ‖Q‖M.
In view of this observation, it would be possible to eliminate the need

for Definition 5.1 altogether and use instead the set-theoretic language indi-
cated above, identifying each sentence with the set of all maximal consistent
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sets that contain it, and taking the notion of partition in its ordinary set-
theoretic sense. We will stick to the syntactic version of Definition 5.1,
however, because its application is more immediate in the present context.
Furthermore, given a set of sentences, it is still necessary to check whether
they constitute a partition, and for this purpose Definition 5.1 is more use-
ful. We record in this section a number of properties of (syntactic) partitions
that will be used later. All of them are easy to check, either directly from
Definition 5.1 or by translating first to the set-theoretic analogue.

Proposition 5.3 Let P and Q be partitions of some sentence R. Then the
set of conjunctions P ·Q is non-empty and is also a partition of R.

In the above, P·Q must be non-empty, else R is logically inconsistent and
P and Q could not be partitions. We now define some relations between
partitions.

Definition 5.4 Let P and Q be partitions of some sentence R. P and Q
are equivalent (P ≡ Q) iff their elements are pairwise logically equivalent,
i.e. iff there is a bijection f : P→ Q such that ` P ↔ f(P ) for all elements
P of P.

Definition 5.5 Let P and Q be partitions of some sentence R. P is a
refinement of Q (P ≥ Q) iff every element of P logically implies some
element of Q:

P ≥ Q iff ∀P ∈ P ∃Q ∈ Q such that ` P → Q.

When P ≥ Q we shall also say that partition P refines partition Q.

Proposition 5.6 Let P, Q, R be partitions of some sentence S.

1. P ≡ Q iff P ≥ Q and Q ≥ P;

2. P ·Q ≥ P and P ·Q ≥ Q;

3. P ·Q ≡ P iff P ≥ Q;

4. Moreover, the conjunction operator · is the ‘meet’ operator (glb) for
partitions: if R ≥ P and R ≥ Q then R ≥ P ·Q.

Example 5.7

• Here is an instance of a general property to be established in a moment:
q
± P

y
·
q
±Q

y
≥

q
± P

y
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• [Lindahl, 1977, p100] provides a table comparing his atomic (one-
agent) types with those of Kanger, reproduced as Table 1 above. From
the table it is clear that Lindahl’s types (which are a (complete) par-
tition) are a refinement of Kanger’s:

r
± P

q
± Ea ± F

yz
≥ J±O ± Ea ± F K

In later sections we shall be able to establish this relationship without
having to compute these sets explicitly. It holds when the logic of O
is of type EMCP. See Example 5.9 and Theorems 6.1 and 6.3 below.

• The procedure used in [Jones and Sergot, 1993] constructs a set of
maxi-conjunctions that is a refinement of Lindahl’s normative one-
agent act positions:

r
±O ±

q
± Ea ± F

yz
≥

r
± P

q
± Ea ± F

yz

This is just a corollary of Theorem 4.1 and does not depend on the
logic of O. See Example 5.9 below. When the logic of O is of type
EMCP we have also

r
± P

q
± Ea ± F

yz
≥

r
±O ±

q
± Ea ± F

yz

i.e., an equivalence. See Theorem 6.1.

• Lindahl’s ‘collectivistic’ two-agent types are a refinement of the ‘indi-
vidualistic’ types:

r
±P

q
±
(

Ea
E
b

)
±F

yz
≥

r
±P

q
±Ea ±F

yz
·
r
±P

q
±Eb ±F

yz

This can be seen by examination of the table compiled by [Lindahl,
1977, p180] but again it can be established, without evaluating the two
expressions in full, by means of general properties of maxi-conjunctions.
It holds when the logic of O is of type EMCP. See Theorems 6.1 and
6.3 below.

• Normative positions based on cumulative fact/act postions (21) are a
refinement of Lindahl’s normative one-agent act positions:

r
±O ±

q
± Ea ± F

y
·
q
± F

yz
≥

r
±O ±

q
± Ea ± F

yz

≥
r
± P

q
± Ea ± F

yz
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This can be seen by inspection of Table 2 above. It holds becauseq
± Ea ± F

y
·
q
± F

y
≥

q
± Ea ± F

y
. In general when O is of type

EMCP, A ≥ B implies
q
± O ±A

y
≥

q
± O ±B

y
. See Theorem 6.3

below.

• There is a similar relationshp between the corresponding two agent
‘collectivistic’ positions:

r
±O ±

q
±
(

Ea
E
b

)
± F

y
·
q
± F

yz
≥

r
±O ±

q
±
(

Ea
E
b

)
± F

yz

The following property is very useful. It follows from Theorem 4.1 and
Proposition 5.6, part (2).

Proposition 5.8 For sets of sentences Φ1 ⊆ Φ2:
q
± Φ2

y
≥

q
± Φ1

y
.

Example 5.9 Since P is the dual of O, ±P
q
±Ea±F

y
⊆ ±O±

q
±Ea±F

y
,

and hence
r
±O ±

q
± Ea ± F

yz
≥

r
± P

q
± Ea ± F

yz

as observed in Example 5.7 above. Similarly, Ea ± F ⊆
q
± Ea ± F

y
so

r
±O ±

q
± Ea ± F

yz
≥ J±O ± Ea ± F K

Definition 5.10 For P a set of sentences and Q any expression:

P/Q =def {P ∈ P | P ∧ Q consistent}.

For example: suppose that in the analysis of some scenario or set of
regulations, it is determined that OEaF is true. The library example of
Section 3 is of this form. Then

r
±O ±

q
± Eb ± F

yz/
OEaF

represents the (Jones-Sergot) normative one-agent act positions consistent
with OEaF . The ‘collectivistic’ two-agent act positions consistent with
OEaF are given by the expression:

r
±O ±

q
±
(

Ea
E
b

)
± F

yz/
OEaF
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P

Q

P1 P2 · · · Pk Pk+1 · · · P` · · · P`′ · · · Pm

Q1 Q2 · · · Qn

P/Q1 P/Q2 P/Qn

-� -� -�

R

Figure 2. Partitions P and Q of R with P ≥ Q

We can say much more about the structure of partitions P and Q in the
case that P is a refinement of Q. When P ≥ Q and Q is an element of Q
then P/Q is also the set of elements of P that logically imply Q. Indeed,
when P ≥ Q and Q is an element of Q then P/Q is a Λ-partition of Q.
And further: the set P itself is partitioned (standard set notion) into the
collection of disjoint subsets P/Qi where the Qi are the elements of Q. The
relationships are summarised in Figure 2. (The rectangles can be seen as
Venn diagrams of the corresponding truth sets, moved apart to show the
structure of the two partitions.)

We are now in a position to summarise the relationship between Kanger’s
(one-agent) ‘atomic types’, Lindahl’s more refined version, the more compli-
cated construction used in [Jones and Sergot, 1993], and the maxi-conjunctions
identified at the end of Section 4 as a further refinement still. We include for
completeness the set of ‘normative fact positions’

q
±O ± F

y
. The Kanger

and Lindahl forms are not refinements of this last one. They have a weaker
relationship which we term an elaboration.

Definition 5.11 Let P and Q be partitions of some sentence R. P is an
elaboration of Q (P � Q) iff for every Q ∈ Q there is a P ∈ P such that
` P → Q.

Example 5.12 Consider the ‘one-agent act positions’ used by Lindahl:

q
± Ea ± F

y
= {EaF, Ea¬F, PassaF}

Since Ea is a ‘success’ operator,
q
±Ea±F

y
is an elaboration of J±F K. Butq

±Ea±F
y

is not a refinement of J±F K because PassaF = ¬EaF ∧¬Ea¬F
does not imply any element of J± F K.



Normative Positions 29

r
± O ± F

z

Kanger
r
± O ± Ea ± F

z

Lindahl
r
± P

q
± Ea ± F

yz

Jones-
Sergot

r
± O ±

q
± Ea ± F

yz

Q
Q

Q

r
± O ±

q
± Ea ± F

y
·
q
± F

yz

Figure 3. Normative one-agent act positions

It is possible to establish various relationships between refinements, elab-
orations and equivalences of partitions, but we shall not do so here. The re-
lationships between the various forms of one-agent positions are summarised
in Figure 3. The broken line represents an elaboration. The solid lines are
refinements. The partitions at the bottom of the diagram are refinements
(elaborations) of those higher up.

The relationships between Lindahl’s individualistic and collectivistic nor-
mative positions are summarised in Figure 4.

Finally, the following properties are useful for performing (hand) compu-
tations.

Proposition 5.13 Let P, Q, R be partitions of some sentence S such that
P ≥ R. Then for any R ∈ R: P ·Q/R = (P/R) · (Q/R).

As a special case, for any choice schemes (or sets of sentences) Φ1 and
Φ2, and any sentence A ∈ (± Φ1 ∪ ± Φ2):

(
q
± Φ1

y
·
q
± Φ2

y
)/A = (

q
± Φ1

y
/A)·(

q
± Φ2

y
/A).

We will refer to these properties when looking at some small examples
later.
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r
± O ± F

z

�
�

�

Q
Q
Qr

± P
q
± Ea ± F

yz r
± P

q
± E

b
± F

yz

Q
Q
Q

�
�
�r

± P
q
± Ea ± F

yz
·
r
± P

q
± E

b
± F

yz
individualistic

r
± P

q
±

(Ea
E
b

)
± F

yz
collectivistic

Figure 4. Lindahl’s individualistic and collectivistic positions

6 Normative positions

There are two main questions to consider:

(a) Given logic Λ and scheme (set of sentences) Φ, what is the set of
maxi-conjunctions

q
± Φ

y
?

(b) For given logic Λ, which schemes (sets of sentences) Φ yield the most
meaningful, or useful, sets of maxi-conjunctions

q
± Φ

y
?

6.1 Maxi-conjunctions for logics of type EMCP

We begin by looking at a special case of question (a), focussing on maxi-
conjunctions of the form:

(25)
q
±O ±A

y
=

q
± P ±A

y
(A a complete partition)

The equality is because O and P are duals.
We assume only that A is a complete partition. We shall not take into ac-

count the structure of sentences in A and the possibility of rules and axiom
schemas in Λ that would allow reductions of certain iterated modalities. In
this article we restrict attention to the logics employed by Kanger and Lin-
dahl: type EMCP for the logic of O and type ET for the action modalities
Ex . Elsewhere [Sergot, 1996] we set out the structure of maxi-conjunctions
of the form (25) for a range of logics from type EP to type EMCP, and
beyond.

For O of type EMCP and A a complete partition, the maxi-conjunctions
in

q
±O ±A

y
have a particularly simple form.
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Theorem 6.1 Let A = {A1, . . . , An} be a complete partition. When the
logic of O is of type EMCP the set of maxi-conjunctions:

q
±O ±A

y
=

q
± P ±A

y

is equivalent (Definition 5.4) to the set of conjunctions of the form

(26) ± PA1 ∧ . . . ∧ PAj ∧ . . . ∧ ± PAn

that is, conjunctions such that, for each Ai ∈ A, there is a conjunct of the
form PAi or ¬PAi, and at least one conjunct is of the form PAj.

We write πA to stand for any conjunction of the form (26). π+A is the
set of the permissible Ai in πA, i.e.

π+A =def {Ai ∈ A | πA ` PAi}

π−A is the set of the ‘prohibited’ Ai, i.e.

π−A =def {Ai ∈ A | πA ` ¬PAi} = A− π+A.

Proof. See [Sergot, 2001]. In outline: every conjunction πA of the form
(26) is consistent, and maximal for expressions falling under the scheme
± PA. The conjunction ¬PA1 ∧ . . . ∧ ¬PAn, where there is no conjunct
of the form PAj , is inconsistent. The remaining expressions to consider
are those falling under the scheme ± P¬A, i.e. those of the form ± P¬Aj ,
Aj ∈ A. It can be readily checked that every such expression is either
inconsistent with or implied by every conjunction of form (26). �

Corollary 6.2 When the logic of O is of type EMCP, and A is a complete
partition:

q
±O ±A

y
≡

q
± PA

y
.

The corollary generalises the remarks in Section 4 on the equivalence,
when O is of type EMCP, between Lindahl’s form for normative one-agent
and two-agent act positions, (12) and (18) respectively, and the forms (15)
and (19) employed in [Jones and Sergot, 1993] for the same purpose.

Notice that in order to specify any element πA of
q
±O ±A

y
it is suffi-

cient to specify the permissible elements π+A. For O of type EMCP and
A a complete partition,

q
± O ±A

y
can thus be represented by the set of

non-empty subsets of A. [Talja, 1980] takes a special case of this observa-
tion as the starting point for an algebraic treatment of the [Lindahl, 1977]
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account of ‘change’ of normative positions. Notice also that when π+A is a
singleton, and O is of type EMCP (or stronger), the conjunction πA can be
written equivalently in a simpler form: when π+A = {Aj}, πA is logically
equivalent to OAj .

For example, Lindahl’s normative one-agent act positions (12) are given
by the expression

q
± P

q
± Ea ± F

yy
. There are three act positions in the

partition
q
±Ea ±F

y
, viz. {EaF, Ea¬F, PassaF }. There are 23− 1 = 7

non-empty subsets of
q
± Ea ± F

y
, and hence 7 elements in (12). They

were listed earlier using Lindahl’s numbering (T1)–(T7). The application
of Theorem 6.1 is clearer when (T2) and (T4) are re-written in the logically
equivalent forms (T′2) and (T′4).

As one more example, Jones and Parent [2008] study what they call
normative-informational positions as a contribution to the investigation of
such rights as the right to silence, the right to know and the right to conceal
information.

Let IjA represent that ‘agent j is informed/told that A’. Let OkA rep-
resent that ‘it is obligatory for agent k that A’. Pk is the dual. The logic of
each Ok is a normal logic of type KD, which is type EMCP together with a
rule of necessitation A/OkA. As observed earlier, the rule of necessitation
plays no role in the generation of normative positions for logics of this type.

The Jones-Parent normative-informational positions are given by the ex-
pression:

(27)
q
±Ok ± J± Ij ±AK

y

The logic of Ij is taken to be a classical logic of type K. There are four
informational positions in the set J± Ij ±AK:

(I1) IjA ∧ ¬Ij¬A
(I2) Ij¬A ∧ ¬IjA

(I3) ¬IjA ∧ ¬Ij¬A
(I4) IjA ∧ Ij¬A

(I1) and (I2) are called the straight truth/straight lie positions, depending
on whether A is or is not the case. (I3) represents the silence position. (I4)
represents the conflicting information position.

There are 24−1 = 15 non-empty subsets of J±Ij±AK and so 15 normative-
informational positions of type (27). They are symmetric in A and ¬A.
Jones and Parent re-write some of them in more readable equivalent form
but our purpose here is merely to illustrate the application of Theorem 6.1.

Note that the difference between a ‘straight truth’ and a ‘straight lie’ is
the difference between A ∧ IjA ∧ ¬Ij¬A on the one hand and ¬A ∧ IjA ∧
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¬Ij¬A (or A ∧ Ij¬A ∧ ¬IjA) on the other. Suppose then we consider the
following more refined class of normative-informational positions:

(28)
q
±Ok ± J± Ij ±AK·J±AK

y

There are 8 informational positions in J± Ij ±AK·J±AK and so 28− 1 = 255
normative-informational positions of type (28), symmetric in A and ¬A.

6.2 Refinement structures

As will be established presently, when O is of type EMCP, then A ≥ B
implies

q
± O ± A

y
≥

q
± O ± B

y
. There is much more that can be said

about the structure of such maxi-conjunctions, however.
We now summarise the structure of conjunctions of the form

q
±O ±A

y/
πB (A ≥ B)

The question is also of considerable practical significance. (It is the basis of
the automated inference methods presented in [Sergot, 2001].)

Suppose Bj ∈ π+B, i.e. πB is an element of
q
± O ± B

y
containing

a conjunct PBj . Since A ≥ B there is some set of elements A/Bj =

{Aj
1, . . . , A

j
mj
} such that ` Bj ↔ (Aj

1 ∨ . . . ∨ Aj
mj

). By O.RE, ` PBj ↔
P(Aj

1 ∨ . . . ∨ Aj
mj

), and when O is of type EMCP, then also ` PBj ↔
(PAj

1 ∨ . . . ∨ PAj
mj

). It follows that every element πA of
q
±O ±A

y/
πB

must have at least one conjunct PAj
i , i.e. every π+A contains at least one

element of A/Bj .

Conversely, suppose Bj ∈ π−B. Then, since ` Aj
i → Bj for every Aj

i in

A/Bj , it follows when O is of type EMCP that ` ¬PBj → ¬PAj
i .

Theorem 6.3 Let A and B be complete partitions such that A ≥ B. Sup-
pose πB is an element of

q
± O ± B

y
; πB is logically equivalent to a con-

junction of the form:

¬PB1 ∧ . . . ∧ ¬PBk ∧ PBk+1 ∧ . . . ∧ PBn (k ≥ 1)

i.e. π−B = {B1, . . . , Bk} and π+B = {Bk+1, . . . , Bn}. When O is of type
EMCP, every element of

q
±O ±A

y/
πB is logically equivalent to a con-

junction of the form:

¬PB1 ∧ . . . ∧ ¬PBk ∧ π(A/Bk+1) ∧ . . . ∧ π(A/Bn).

Proof. In the previous discussion. �
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It follows that when O is of type EMCP, A ≥ B implies
q
± O ±A

y
≥q

±O ±B
y
.

Example 6.4 Suppose we are given the truth of OF (F represents, let us
suppose, that there is a fence between two adjoining properties) and we wish
to investigate what this implies about obligations of some agent a. We wish
to determine the normative positions of form (21) that are consistent with
OF , i.e.

(29)
r
±O ±

q
± Ea ± F

y
·
q
± F

yz/
OF

Proceed as follows. OF can be written equivalently as PF ∧ ¬P¬F . All
conjunctions (29) will thus be equivalent to conjunctions ¬P¬F ∧ C where
C is a conjunction of the form π(

q
± Ea ± F

y
·
q
± F

y
/F ). Consider nowq

±Ea±F
y
·
q
±F

y
/F . By Proposition 5.13 this is {F ∧EaF, F ∧¬EaF} ≡

{EaF, F ∧ ¬EaF}. There are three non-empty subsets of this set, and so,
by Theorem 6.3, three normative positions in set (29). They are (equivalent
to): ¬P¬F ∧ PEaF ∧ ¬P(F ∧ ¬EaF )

¬P¬F ∧ ¬PEaF ∧ P(F ∧ ¬EaF )
¬P¬F ∧ PEaF ∧ P(F ∧ ¬EaF )

 ≡
 OEaF

OF ∧ ¬PEaF
OF ∧ PEaF ∧ P¬EaF


In similar fashion we may calculate which of the ‘collectivistic’ normative
positions of form (23) for two agents a and b are consistent with, say OEaF :

r
±O ±

q
±
(

Ea
E
b

)
± F

y
·
q
± F

yz/
OEaF =

r
±O ±

q
± Ea ± F

y
·
q
± Eb ± F

y
·
q
± F

yz/
OEaF

These positions will be (equivalent to) conjunctions of the form OEaF ∧C:
to determine C we need to consider

q
± Ea ± F

y
·
q
± Eb ± F

y
·
q
± F

y/
EaF

= (
q
± Ea ± F

y/
EaF )·(

q
± Eb ± F

y/
EaF )

= {EaF ∧ EbF, EaF ∧ ¬EbF}

There are three non-empty subsets, and so again three normative positions
of the form we seek. They are (equivalent to):OEaF ∧ PEbF ∧ ¬P¬EbF

OEaF ∧ ¬PEbF ∧ P¬EbF

OEaF ∧ PEbF ∧ P¬EbF

 ≡
 OEaF ∧ OEbF

OEaF ∧ O¬EbF

OEaF ∧ PEbF ∧ P¬EbF


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The procedure illustrated in the previous example is quite mechanical,
and is readily automated. It is the basis of the automated inference methods
presented in [Sergot, 2001].

The example also illustrates an important advantage of basing the gen-
eration of normative positions on cumulative fact/act positions of the formq
± Ea ± F

y
·
q
± F

y
in preference to the simpler act positions

q
± Ea ± F

y

employed by Lindahl. Not only is the resulting analysis more precise, but
Lindahl’s act positions are not a refinement of

q
± F

y
and so the computa-

tional methods just described cannot be exploited, except in a messy and
rather indirect way.

For O of type EMCP,
q
±O±A

y
, and hence

q
±PA

y
, is the most refined

set of normative positions that can be constructed from a partition A. It
is essentially the basis of a disjunctive normal form for the fragment of the
logic consisting of sentences falling under the schemes ±O ±A and A and
their subsentences [Sergot, 2001].

What of the act positions? Which act positions A yield the most refined
set of normative positions

q
± O ± A

y
? Here the answer is more compli-

cated because it depends on the specific properties of the action modalities
employed besides E.RE and E.T. Full discussion of the possibilities is far
beyond the scope of this article. For practical purposes it seems reasonable
to restrict attention to act expressions containing propositional atoms or
their negations within the scope of an action operator. That rules out of
consideration act expressions such as Ea(p∧ q), Ea(p∧¬q), Ea(p∨ q), and
so on. In principle there is nothing problematic about allowing these more
general forms of act expressions; in practice, it is not clear that the added
level of precision is worth the extra trouble.

So, as a practical compromise, for a (finite) set of agents Ag = {a, b, . . .}
and a (finite) set of propositional atoms Props = {p, q, . . .} it seems reason-
able to focus on act positions of the following form:

(30)

〈
±

Ea
Eb
...

±
pq

...

〉 =def

r
±

Ea
Eb
...

±
pq

...

z
·
r
±

pq
...

z

This is the form of act expression supported by the automated analysis
program described in [Sergot, 2001].

The number of positions in
q
± O ± A

y
when O is of type EMCP is

2|A| − 1. When A is of the form (30) and there are m agents in Ag and
n propositional variables in Props, the number of act positions is 2(m+1)n.

The number of normative positions is then 22(m+1)n
−1. Although it is easy

to write a computer program to generate all these expressions, that is a very
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large number of positions to examine even when m and n are small. It can
nevertheless be practical to examine positions of this complex form because
the analysis can be broken down into simple stages using the refinement
results outlined in this section.

7 Example

The previous sections presented an extended and generalised version of the
Kanger-Lindahl theory of normative positions. This framework is an im-
portant but still incomplete component of a full formal theory of duties,
rights and other complex normative relations. We comment on some of the
missing ingredients in Section 8 below.

[Sergot, 2001] describes how the procedures described in previous sections
can be implemented in a computer program that is intended to facilitate
application of the theory to the analysis of practical examples, either for
the purpose of interpretation and disambiguation of legal texts, rules, and
regulations, or in the design and specification of a new set of norms. A
typical example is the case discussed in [Jones and Sergot, 1992; Jones and
Sergot, 1993] concerning access ‘rights’ to sensitive medical information in
a hospital database [Ting, 1990]. The problem here is to clarify and expand
an incomplete and very imprecise statement of requirements into a precise
specification at some desired level of detail.

In order to conduct such an analysis, the general strategy is to pick some
scheme

q
± O ± A

y
which represents the problem under consideration at

the appropriate level of detail. The objective of the analysis is to identify
which position in this target partition holds in the (real or hypothetical)
circumstances under consideration. In practice, there will often be points
of detail on which we will be unable or unwilling to decide. In that case the
result of the analysis will be a disjunction of positions.

As suggested in previous sections such an analysis can be conducted
by a process of progressive refinement. At each stage the analysis com-
pleted so far is used to constrain the choice of possible positions at the
next level of detail. Given a target partition

q
± O ±A

y
, find a sequence

of refinements A0 ≤ A1 ≤ . . . ≤ AN ≤ A and proceed as follows. First
determine which position π0A0 of

q
± O ±A0

y
holds in the given circum-

stance. Then consider the candidate positions at the next level of detail:
determine position π1A1 from the candidate set

q
±O ±A1

y/
π0A0. Now

consider
q
±O ±A2

y/
π1A1, and so on, until left with the task of iden-

tifying a position from the target partition, which will be an element ofq
±O ±A

y/
πNAN . As described in the previous section, the calculation

of the candidate positions at each individual step is simple (especially when
O is of type EMCP) and quite mechanical.
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r
± O ± F

z

�
�

�

Q
Q
Qr

± O ±
q
± Ea ± F

y
·
q
± F

yz r
± O ±

q
± E

b
± F

y
·
q
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Figure 5. Positions for two agents a and b and one state of affairs F

In practice the procedure is more complicated because usually it will not
be a sequence of refinements that has to be considered but a more elaborate
structure. Figure 5 shows the refinement structure for the case of two agents
a and b and one state of affairs F . Figure 6 shows the structure for the case
of one agent a and Props = {F, G}. In each case, the analysis would begin
with the partitions at the top of the figure and work its way down to the
more refined partitions shown lower down.

We present here a small example of how this can work. The example
is for illustration only; longer accounts with detailed transcripts from the
automated system and supplementary comments are provided in [Sergot,
2001] and in [Sergot and Richards, 2000].

The example is a modified version of Ronald Lee’s [1988] car park ex-
ample discussed briefly in Section 3. It concerns the specification of which
categories of staff are permitted and not permitted to park in a car park.
We will use it to make a number of different points to Lee’s. We choose it
because it is familiar and requires no further explanation. In Lee’s example,
administrators are permitted to park in the car park. We will ignore other
categories of staff here.

Consider the following scenario:

a is an administrator, permitted to park in the car park. a
has two cars, car-a1 and car-a2. b is a disgraced administrator,
banned from the car park. b has one car, car-b. c is a passer-by.
g is the gatekeeper, charged with controlling access to the car
park and ensuring the rules are obeyed.
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Figure 6. Positions for one agent a and two states of affairs F and G

We will not attempt to cover every feature of the example. In particular
the representation of what it means to say that the gatekeeper g is respon-
sible for ensuring that the rules of the car park are obeyed raises a number
of difficult points which are outside the scope of this article.

Let p(a1), p(a2), p(b) represent that cars car-a1, car-a2, car-b are parked
in the car park, respectively. We take it that the following at least is implicit
and obvious from the scenario description as given above: that it is not
permitted that car-b is parked in the car park, ¬Pp(b); that it is permitted
but not obligatory that car-a1 is parked in the car park, Pp(a1) ∧ P¬p(a1);
and that it is permitted but not obligatory that car-a2 is parked in the car
park, Pp(a2) ∧ P¬p(a2).

What else holds according to the rules of the car park (as we imagine them
to be from the scenario and previous experience of typical car parks)? In
order to investigate the possibilities in a systematic fashion, and to identify
any points requiring further clarification, the task is to pick out one or,
in the case of some residual uncertainty, several of the positions from the
following target partition:

(31)
r
±O ±

〈
±


Ea
Eb
Ec
Eg

±
p(a1)
p(a2)
p(b)

〉z

We want to restrict attention to those positions in the target partition that
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are consistent with the initial assertions and thus to compute

(32)
r
±O ±

〈
±


Ea
Eb
Ec
Eg

±
p(a1)
p(a2)
p(b)

〉z/

¬Pp(b) ∧ (Pp(a1) ∧ P¬p(a1)) ∧ (Pp(a2) ∧ P¬p(a2))

The problem can be simplified by focussing first on, say, the two car
owners a and b, and analyzing

(33)
r
±O ±

〈
±
(

Ea
E
b

)
±

p(a1)
p(a2)
p(b)

〉z/
¬Pp(b) ∧ (Pp(a1) ∧ P¬p(a1)) ∧ (Pp(a2) ∧ P¬p(a2))

This in turn can be simplified to sub-problems

(34)
r
±O ±

〈
±
(

Ea
E
b

)
±
(
p(a1)

p(a2)

)〉z/
¬Pp(b) ∧ (Pp(a1) ∧ P¬p(a1)) ∧ (Pp(a2) ∧ P¬p(a2))

and

(35)
r
±O ±

〈
±
(

Ea
E
b

)
± p(b)

〉z/
¬Pp(b) ∧ (Pp(a1) ∧ P¬p(a1)) ∧ (Pp(a2) ∧ P¬p(a2))

The automated analysis program described in [Sergot, 2001] provides a
graphical interface to help visualize the structure of these sub-problems, and
to keep track of the analysis as it proceeds.

Consider (34). Some questions are immediate. Presumably P(¬p(a1) ∧
¬p(a2)) is true in the car park. But is it the case that P(p(a1) ∧ p(a2))?
Is it permitted for both of administrator a’s cars to be parked at the same
time? In a practical setting, this would need to be checked with the car park
authorities, or left undetermined if it were not regarded as important. One
purpose of the analysis to identify points of detail that may have remained
undetected otherwise.

Similarly PEap(a1) and PEa¬p(a1) seem straightforward. But what of
P(p(a1)∧¬Eap(a1)) and P(¬p(a1)∧¬Ea¬p(a1)), equivalently, O(p(a1) →
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Eap(a1)) and O(¬p(a1) → Ea¬p(a1))? It might be tempting to read the
first as saying that if car-a1 is parked then it must have been the administra-
tor a who parked it. But note that expression Eap(a1) does not necessarily
signify ‘a parks car-a1’; a may bring about p(a1) in some different way,
perhaps even unintentionally. The correct reading of Eap(a1) depends on
which version of the logic of action is employed and its semantics. There are
many variations. We will make a few further remarks in Section 8 below.
And similarly for the question O(¬p(a1) → Ea¬p(a1)).

What of PEbp(a1) and PEb¬p(a1)? Again, we might be tempted to
read the first as asking whether the banned administrator b is permitted to
park a’s car, though again that really depends on how precisely the action
modality is to be read. And similarly for the second question. Note that in
general EaF does not imply ¬EbF for other agents b 6= a. a and b could
act jointly to bring about F , or could even act unintentionally in such a
way that each brings about F .

Switching now to the sub-problem (35): ¬Pp(b) implies both ¬PEap(b)
and ¬PEbp(b) in the logics we are employing. Presumably PEb¬p(b) is

true in the car park. But is it the case that PEa¬p(b)? Is a permitted to
see to it that b’s car is not parked? That is far from clear. It will depend
on what precisely the act expression Ea¬p(b) represents. We will return
briefly to some of these points in Section 8.

[Sergot, 2001] and [Sergot and Richards, 2000] present detailed tran-
scripts of a full exploration of partition (33) in the example. Depending on
the answers given to earlier questions, about a dozen questions are required
to determine a unique position in the partitions (34) and (35); from that
about a dozen more pick out a unique position from the partition (33). An
exploration of the original target position (31) where there are other agents
c and g to consider in addition can be undertaken in similar fashion.

8 Discussion

8.1 Alchourrón-Bulygin’s normative systems, and conditional
positions

We will comment briefly on the connnection between the mapping out of
classes of normative positions and Alchourrón and Bulygin’s [1971] formal-
isation of a normative system. A normative system N maps a universe of
cases to solutions. The universe of cases is the set of all possible fact com-
binations that can be constructed from a given set Props of propositional
variables. In the maxi-conjunction notation, it is

q
± Props

y
. Where there

is one action F for which solutions are specified, a (consistent and complete)
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normative system N is a mapping of the form:

(36) N :
q
± Props

y
7→

q
±O ± F

y

As observed earlier, when the logic of O is type EMCP (or Standard Deontic
Logic, type KD)

q
±O ± F

y
is (with logical redundancies removed) the set

of mutually exclusive normative ‘fact positions’ {OF,O¬F,PF ∧P¬F}, or
in words, ‘obligatory’, ‘prohibited/forbidden’, ‘facultative’.

More generally, for a set of propositional variables Props and actions
{F1, . . . , Fn}, a consistent and complete normative system N maps the uni-
verse of cases to solutions as follows:

N :
q
± Props

y
7→

q
±O ± F1

y
· . . . ·

q
±O ± Fn

y
(37)

which is

N :
q
± Props

y
7→

 OF1

O¬F1

PF1 ∧ P¬F1

 · . . . ·
 OFn

O¬Fn

PFn ∧ P¬Fn


Note that a mapping N ′ of this alternative form:

(38) N ′ :
q
± Props

y
7→

q
±O ±

F1

...
Fn

y

defines normative system N ′ as a refinement (in the sense used by Al-
chourrón and Bulygin) of the normative system N : the set of solutions in
N ′ is a refinement (in the sense of this article) of the set of solutions in N .

Viewed in this way, the solutions in expressions (36)–(38) are classes of
normative positions of a rather simple kind, where no agent is specified.
More generally then, one could define a normative system as mapping a
universe of cases to sets of normative positions, of arbitrary degrees of pre-
cision, as exemplified by the following possible forms (among many others):

N :
q
± Props

y
7→

r
±O ±

q
± Ea ± F

yz

N :
q
± Props

y
7→

r
±O ±

q
± Ea ± F

yz
·
r
±O ±

q
± Eb ± F

yz

N :
q
± Props

y
7→

r
±O ±

q
±
(

Ea
E
b

)
± F

yz

N :
q
± Props

y
7→

r
±O ±

q
±

Ea
...

Eb

±
F1

...
Fn

y
·
q
±

F1

...
Fn

yz
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Alchourrón and Bulygin’s formalisation can thus be seen as a special case
of a much more general account.

Similarly, a rule-based representation language such as that employed in
[Lee, 1988] (Example 3.3, Section 3) can be seen as a set of if/then rules
whose consequents are agent-free normative positions of a very simple kind.
A more general representation language would have if/then rules of the form

if conditions then normative-position

where normative-position is one of some class of normative positions, of ar-
bitrary complexity and precision depending on the needs of the application.

The representation of conditional (normative) positions is far from straight-
forward. It is not just the additional combinatorial complexity that would
have to be addressed; there are also strong interactions between conditional
structures and deontic logic, and between conditional structures and the
treatment of action adopted. For example, unless all actions can be as-
sumed to be instantaneous (an assumption which is made in some of the
works cited above) there is a great deal to sort out. If we say that Alice is
permitted to park her car if, and only if, it is raining, and if the action of
parking takes some significant length of time, do we check that it is raining
when she begins to park, or when she completes the job? Do we require it
to be raining throughout the entire process? The first of these seems the
most natural but that would require quite far-reaching adjustments to the
logic of action that has been employed.

8.2 Extended forms of act expression

For certain purposes we might consider extending the initial class of act
expressions from which the normative positions are constructed. Some reg-
ulations pertain not to individual agent positions of the form ExF , but to
what have been termed interpersonal control positions, e.g. of type Ex EyF
or Ex¬EyF . Indeed, the ability to iterate action operators in this way is
one of the generally perceived benefits of employing this approach to the
treatment of action.

Consider the car park example. The banned administrator b’s car may
not be parked, ¬P p(b). It follows in the logic that the banned administra-
tor b may not see to it that his car is parked, ¬P Eb p(b). Consider now
the responsibilities of the gatekeeper. It seems reasonable to say that the
gatekeeper g is permitted to see to it that the banned administrator does
not park his car, or more generally that P Eg¬Eb p(b) holds according to

the rules of the car park. (One might even be tempted to say that there
is an obligation on the gatekeeper g to see to it that b does not park his
car. However, as discussed in the introductory sections, an expression of
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the form O Eg¬Eb p(b) does not represent such an obligation adequately.

We will not discuss it further.) One would surely not insist, however, that g
sees to it that Eb¬p(b)—surely we would expect that P¬Eg Eb¬p(b) holds
in the car park. Are there any other possibilities?

Ingmar Pörn [1977] has applied similar position-generating techniques to
the systematic study of what he called ‘control’ and ‘influence’ positions,
and in particular to classes of positions of the following forms:

r
± Eb ±

q
± Ea ± F

yz
(39)

r
± Eb ± Can±

q
± Ea ± F

yz
(40)

Here Can is a modality for a notion of (practical) possibility.
[Sergot and Richards, 2000] have considered normative positions of the

following general form:

(41)
r
±O ±

q
±

Ex
...

Ey

±
Ex

...
Ey

±
F...
G

y
·
q
±

F...
G

yz

The general principles and methods of construction are exactly as presented
in previous sections, though much more complicated in application. For
simplicity [Sergot and Richards, 2000] consider in detail only the simpler
case of normative positions of the following form:

(42)
r
±O ±

q
± Ex ± EyF

y
·
q
± Ex ± Ey¬F

y
·
q
± Ey ± F

y
·
q
± F

yz

The act-expressions are

(43)
q
± Ex ± EyF

y
·
q
± Ex ± Ey¬F

y
·
q
± Ey ± F

y
·
q
± F

y

There are 16 act-expressions in this set, symmetric in F and ¬F , and hence
216 − 1 normative positions of type (42).

Note that in some versions of action/agency, notably the ‘stit’ logics, it
is not meaningful to say x ‘sees to it’ that y ‘sees to it’ that F for x 6= y (see
e.g. the discussion in [Belnap and Perloff, 1988]). In those logics, ¬ExEyF
is a theorem for all x 6= y. If a ‘stit’ version is adopted for Ex , then the list
of act positions (43) can be simplified. There are 12 act-expressions in that
case, and 212 − 1 corresponding normative positions.

If we look now at the car park and the gatekeeper’s control over the
banned administrator then we need to consider which of the following act
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expressions can be permitted given P (Eg¬Eb p(b) ∧ ¬p(b)) (supposing, as

we do, that this is true in the car park):

(44)
q
± Eg ± Ea p(b)

y
·
q
± Eg ± Eb ¬p(b)

y
·
q
± Eb ± p(b)

y
·
q
± p(b)

y

Applying the methods of the previous sections, we obtain the following set of
mutually exclusive act expressions. At least one of them must be permitted,
but there may be more than one.

(a) Eg Eb¬p(b) ∧ Eg¬Eb p(b)

(b) Eb¬p(b) ∧ ¬Eg Eb¬p(b) ∧ Eg¬Eb p(b)

(c) ¬p(b) ∧ Eg¬Eb¬p(b) ∧ Eg¬Eb p(b)

(d) ¬p(b) ∧ ¬Eg¬Eb¬p(b) ∧ Eg¬Eb p(b)

In the case of a ‘stit’ logic for the action modalities, the first of these can be
eliminated as it is logically inconsistent, and the second can be simplified
by removing the second conjunct.

In each of these expressions b’s car is not parked and g’s actions are such
as to ensure that b does not see to it that b’s car is parked. In each case
however the interaction between g and b is subtly different. Which of these
acts are permitted in the car park (as we imagine it to be)?

It is not easy to give a concise reading to these expressions. A careful
reading of each would be quite involved, and more importantly, would again
depend critically on what precisely the action modalities are taken to rep-
resent. Apart from the huge number of new positions that are created, even
with a relatively small number of agents and states of affairs, it is very far
from clear whether there is any real value in providing this level of anal-
ysis. As the example illustrates, deciphering these complex expressions is
far from straightforward. One may be offering a level of precision that is
simply unusable in practice.

One of the main difficulties in deciphering the control positions is in
interpreting negatives. It is hard to decide what ‘x does not see to it that
F is not the case’ actually means. This is made all the harder because it
is unclear what ‘not being parked’ means exactly: do we mean that the
car was never in the car park, or that it was in the car park and was then
removed? This can make a big difference. We turn to that next.

It is very easy to imagine a car park in which the gatekeeper g is permitted
to prevent a banned car from parking but not permitted to remove a car
even if it is illegally parked. With the presently available resources all we
can say is that PEg¬p(b) —the gatekeeper is permitted to see to it that b’s
car is not parked. Clearly some kind of termporal extension is required.
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One possible approach is to follow a suggestion made by von Wright
[1968; 1983], Segerberg [1992], and Hilpinen [1997]. We will follow the ter-
minology of Hilpinen’s version; the others are essentially the same. There
are two components: first, the idea that actions are associated with tran-
sitions between states; and second, a distinction between transitions corre-
sponding to the agent’s activity and transitions corresponding to the agent’s
inactivity. The latter are transitions where the agent lets ‘nature take its
own course’. There are then eight possible modes of agency, and because of
the symmetry between F and ¬F , four basic forms to consider:

• x brings it about that F (¬F to F , x active);

• x lets it become the case that F (¬F to F , x inactive);

• x sustains the case that F (F to F , x active);

• x lets it remain the case that F (F to F , x inactive).

As discussed by Segerberg and Hilpinen there remain a number of fun-
damental problems to resolve in this account. Moreover, not discussed by
those authors, the picture is considerably more complicated when there are
the actions of other agents to take into account and not just the effect of
nature’s taking its course.

To illustrate one possible line of development, Sergot [2008a; 2008b]

presents a formalism which combines a logic of action of the ‘brings it about’
kind with a transition-based treatment of action. Leaving aside the details,
an expression 0:F is true at a transition when F is true at its initial state;
1:F is true when F is true at the final state of a transition. The distinctions
above can then be expressed as follows. The first (‘brings it about that’)
and third (‘sustains the case that’) are:

Ex(0:¬F ∧ 1:F ), equivalently (as it turns out) 0:¬F ∧ Ex1:F(45)

Ex(0:F ∧ 1:F ), equivalently 0:F ∧ Ex1:F(46)

The second and fourth cases, where x is inactive, can be expressed as follows

(0:¬F ∧ 1:F ) ∧ ¬Ex(0:¬F ∧ 1:F )(47)

(0:F ∧ 1:F ) ∧ ¬Ex(0:F ∧ 1:F )(48)

These four cases are mutually exclusive.
With these additional resources we are able to distinguish between seeing

to it that a car not parked in the car park remains not parked (approxi-
mately, preventing a car from entering), and seeing to it that a car which
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was parked is no longer parked (approximately, removing it). In the (imag-
inary) car park, the first is permitted for the gatekeeper g, the second is
not:

PEg (0:¬p(b) ∧ 1:¬p(b)) and ¬PEg (0:p(b) ∧ 1:¬p(b))(49)

In the logic, these expressions are equivalent to, respectively

P(0:¬p(b) ∧ Eg1:¬p(b)) and ¬P(0:p(b) ∧ Eg1:¬p(b))(50)

One could make a case that in the car park we have in mind, P(0:¬p(b) ∧
Eg1:¬p(b)) could be strengthened to

(51) O(0:¬p(b) → Eg1:¬p(b))

These brief examples are offered as suggestions for further lines of develop-
ment. We will not discuss them further here.

More generally, the various examples in this article are intended in part
to illustrate some of the difficulties of employing the ‘brings it about’ or ‘sees
to it that’ treatment of action in the representation of practical problems.
These are very abstract treatments of action. There is often a temptation
in particular to read expressions containing Ex with emphasis on the ‘end
result’ feature and insufficient attention to the agency component. Where
p(x) stands for ‘x’s car is parked’, for example, it can be tempting to read
the expression Exp(x) as ‘x parks his car’, and further, OExp(x) as a
representation of an ought-to-do statement that ‘x ought to park his car’.
But this is not what these expressions say. What they do say depends on the
semantics of the action logic adopted. One problem is that in most versions
the semantics of the action operators is very abstract indeed, making it very
difficult to see how to interpret some expressions in a practical setting.

For example, in the car park it seems intuitively right to say that the
banned administrator b is not permitted to park the administrator a’s car,
or rather, not permitted to see to it that the administrator a’s car is parked.
But is this correctly represented by ¬P Eb p(a1) ? In the logics employed,

P Eb p(a1) is consistent with the following

(52) P (Ea p(a1) ∧ Eb p(a1))

Are the administrator a and the banned administrator b, perhaps when
acting together, permitted to park the administrator a’s car? Perhaps they
act in such a way that both bring it about that the car is parked (or remains
parked). One can imagine circumstances where that would seem to be
reasonable, and we could certainly create other similar examples where it
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would be so. We have P (Ea p(a1) ∧ Eb p(a1)), and since the logic contains

all instances of P (A ∧ B) → PB, we have also:

P (Ea p(a1) ∧ Eb p(a1)) → PEb p(a1)

It seems that P Eb p(a1) is likely to be true in the car park after all, if we
consider all possible imaginable combinations of actions by a and b.

The erroneous reading of such expressions seems very easy to slip into.
For instance, Lindahl uses the example of two adjoining properties, one
of which is owned by an agent called John. When discussing the possible
normative relations between John and his neighbour in regard to various
kinds of acts, including the painting of the neighbour’s house white, Lindahl
suggests: “. . . a case in which John is completely unauthorized to influence
the situation (since it is no business of his): John may neither bring about
nor prevent the main building on his neighbour’s property being painted
white.”[Lindahl, 1977, pp93–94]. In the light of the previous discussion, this
is unlikely to be correct. More likely, there are permitted circumstances in
which John and his neighbour between them act in such a way that they
both bring about that the neighbour’s property is painted white. It would
then follow that John is permitted to influence the situation, even though
the colour of his neighbour’s house is no business of his. The conjunction
Ea p(a1) ∧ Eb p(a1) may but does not necessarily signify (intentional) joint
action by a and b. It could be that both a and b choose independently to see
to it that p(a1). It could be that both bring it about that p(a1) by chance.
It could be that one does it intentionally and the other by chance. Nor does
the conjunction represent a composite agent a-and-b-together.

Whether or not these general observations apply for a particular choice of
action logic will depend on the details of that choice and on the semantics.
The point is that the theory of normative positions makes only minimal
assumptions about the properties of the action modalities. For practical
applications, it will be necessary to look at some of the detailed choices.

8.3 Limitations

The Kanger-Lindahl theories have several well-documented limitations. Lin-
dahl [1994] himself argues that Kanger’s attempted classification of types
of rights is better seen as a typology of duties.

There are two main shortcomings. As a formalisation of the Hohfeldian
scheme, the theory of normative positions does not address the feature Ho-
hfeld called ‘(legal) power’. It has long been understood that ‘power’ in the
sense of (legal) capacity or ‘competence’ cannot be reduced to permission,
and must also be distinguished from the ‘can’ of practical possibility. An
agent can have ’power’, to effect a marriage say, without necessarily hav-
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ing the permission nor the practical possibility of exercising that power.
The example is from [Makinson, 1986]. Jones and Sergot [1996] argue that
‘power’ in this Hohfeldian sense is to be understood as a special case of
a more general phenomenon, whereby in the context of a given normative
system or institution, designated kinds of acts, when performed by desig-
nated agents in specific circumstances, count as acts that create or modify
specific kinds of institutional relations and states of affairs. This switches
attention from the formalisation of permission to the formalisation of the
count as relation more generally.

The second shortcoming of the theory of normative positions, when viewed
as a theory of duties and rights or as a formalisation of the Hohfeldian frame-
work, is that it fails to deal with the notion of counterparty—the idea that
when a party x owes an obligation or duty to party y that such-and-such,
or when y has a claim-right against x that such-and-such, then the counter-
party y has a special relationship in the normative relation between x and
y that is not shared by other agents.

There are two main views of how to treat the counterparty : as claimant
or as beneficiary. Discussions of the relative merits are sometimes framed as
if they were competing accounts for the same notion. It is more helpful to
see them not as competitors but as meaningful and distinct notions in their
own right. In some cases claimant and beneficiary coincide, in other cases
they do not. Both views however present severe challenges to an adequate
formal characterisation.

The counterparty as claimant notion is associated with ‘power’. Thus a
commonly expressed view of what it means to be a counterparty is in terms
of a conditional power: ‘A relative duty in the law is owed to the party who
has the legal power to initiate proceedings to enforce that duty.’ [Wellman,
1989]

Makinson [1986] puts it like this:

The informal account that suggests itself is that x bears an obli-
gation to y that F under the system N of norms iff in the case
that F is not true then y has the power under the code N to
initiate legal action against x for non-fulfillment of F (or in the
case of a moral rather than a legal code, iff in such a case y is
‘entitled to complain’ of x for non-fulfillment of F ). [Makinson,
1986, p423]

There is nevertheless a fundamental difficulty. Generally speaking, a party y
has a power to initiate legal action against x even when x has no obligation
to y, even when the legal action is initiated on what will turn out to be
completely unsubstantiated grounds, or perhaps even frivolously. What is
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missing is the idea that when x does bear an obligation to y, y has the
power to initiate legal action with some expectation of success. One could
not say there is a guarantee of success because legal action by its nature
is never that certain. But some extra ingredient is essential to eliminate
speculative, unsubstantiated or frivolous legal actions. It is very far from
clear how one might approach a characterisation of that idea.

Some authors have preferred to take the view that what it means to be a
counterparty is to be the beneficiary of another’s duty or obligation. That
notion also remains a serious challenge to formal characterisation. Herrestad
and Krogh [1995] for instance, along with others, have proposed adding an
index to the obligation operator to designate the beneficiary. Let O

x→y
F

represent that there is directed obligation that F on the bearer x that is
for the benefit of the counterparty y. (It is the obligation that is of benefit
to y, not necessarily the content F of the obligation itself.) This device
allows useful distinctions to be expressed though adding an index in itself
obviously does not provide any insight into what the beneficiary is.

One simple suggestion, which nevertheless shows much promise, has been
made by Lars Lindahl [1994] as a variation of the Andersonian reduction.

Where x and y are (names of) agents, let propositional constants W (x, y)
be read as x ‘is wronged by’ y. Let O

x→y
F represent that x is the bearer of

a directed obligation (relative duty) to y that F , or on Lindahl’s suggested
reading, that ‘y has a right-proper versus x to the effect that F ’. Define
O

x→y
in terms of W (y, x) as follows:

(53) O
x→y

F =def 2(¬F → W (y, x))

In words, x owes an obligation to y that F (y has a right-proper versus x
that F ) when, if it is not the case that F , then y is wronged by x. Lindahl
takes 2 to be a normal (alethic) modality of type KT; one could consider
other options.

Let S be the Andersonian propositional constant representing that a
violation or Something Bad has occurred. It is natural to add the axiom
schema:

(54) W (x, y) → S (for all x and y)

The usual Andersonian reduction

OF ↔ 2(¬F → S)(55)

¬2S(56)
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then makes the logic of each O
x→y

Standard Deontic Logic (a normal logic

of type KD). We also get, for all x, y, w and z:

O¬W (x, y)(57)

O
x→y

F → ¬ O
z→w
¬F(58)

O
x→y

F → OF(59)

The idea is simple but it can be refined in several interesting respects.
For instance, as Lindahl points out, one can make a case for the following
additional schema:

(60) 2(ExW (x, y) → W (y, x))

If x himself sees to it that x is wronged by y, then y is wronged by x.
With the addition of some rather simple general properties of Ex and

2, which we omit here in the interests of space, it is possible to derive the
following:

(61) O
x→y

ExF → O
y→x
¬Ey¬F

If x owes a duty to y to see to it that F then y owes a duty to x not to see
to it that ¬F . This seems entirely plausible. One can investigate several
variations along these lines.

9 Conclusion

We have presented an account of the theory of normative positions, as
originally developed by Kanger and Lindahl, and in the generalised and
extended form developed in [Sergot, 2001] building on David Makinson’s
maxi-conjunction characterisation. The methods for mapping out and in-
vestigating classes of ‘positions’ are quite general and are independent of the
choice of specific deontic and action logics, though specific results can be ob-
tained for the special case where the underlying logics are those employed
by Kanger and Lindahl. The deontic logic component is (a very slightly
weakened version of) Standard Deontic Logic. The action logic component
makes minimal assumptions: the action logic could be strengthened and
refined in many ways.

A secondary aim of this article has been to illustrate the inherent com-
plexity of normative concepts such as duty, right, authorisation, responsi-
bility, commitment, which are encountered not just in legal discourse, but
in any description of regulated and organised agent interaction. The theory
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of normative positions as presented here is an important but limited compo-
nent of a formal treatment of this complex network of concepts. It is already
clear even from this limited theory that there is no point in searching for
some, possibly large but nevertheless identifiable, set of basic types—‘lowest
common denominators’ in Hohfeld’s words—in terms of which all normative
relations between any (two) agents could be articulated. The representation
of such relations can be taken to arbitrary levels of detail and complexity.
There are nevertheless grounds to believe that a more comprehensive for-
mal account could be developed, together with the automated support tools
necessary for its practical use.
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