
491 Knowledge Representation

Minimal models and fixpoint semantics
for definite logic programs

Marek Sergot
Department of Computing
Imperial College, London

January 2005 v1.0h

Overview

A definite logic program is a set of clauses of the form

A← A1, . . . , An (n ≥ 0)

where A and A1, . . . , An are all atoms, i.e., no negation.

For a definite logic program P (no negation), we have the following candidate semantics:

• the atomic (classical) consequences of P : {α | α ∈ atoms(P), P |= α}
i.e. atoms(P) ∩ Th(P).

• the least (unique minimal) Herbrand model of P

• lfp(TP) — the least fixpoint of TP , the immediate consequence operator of P .

lfp(TP) is the least (set inclusion) set of atoms I such that TP (I) = I.

• TP↑ω

• T ′P↑ω(∅) where T ′P (I)
def
= TP (I) ∪ I

For definite clause programs these different semantics are all equivalent.

Moreover, in deductive databases it is usual to split a logic program P into IDB (rules)
and EDB (facts)

P = IDB ∪ EDB
Then we have also the following semantics for P

• ClIDB(EDB) — the closure of EDB under the rules IDB — the smallest set of
atoms X such that

– EDB ⊆ X

– TIDB(X) ⊆ X

• T ′IDB↑ω(EDB)

Most of this does not hold for normal logic programs, i.e., where there can be occurrences
of negation-by-failure in the body of a clause. We will look at ways to modify it for normal
logic programs later.

1

Preliminary basics: minimal models

Given a set P of first-order formulas (a theory, a program, a database, or a knowledge
base) an interpretation is constructed thus:

(1) Choose a domain D.

(2) Specify a mapping from ground terms of P to the elements of D which says what
each ground term denotes in your interpretation.

Steps (1) and (2) together specify a pre-interpretation. Now . . .

(3) Give the extension of every predicate of P in the interpretation, by saying which
ground atoms of P are true and which are false.

A model of P is an interpretation of P in which every formula of P is true.

The (well-formed formula) α is a logical consequence of P

P |= α

when α is true in every model of P . In the earlier notation this is α ∈ Th(P).

Herbrand models

A Herbrand interpretation is a very special kind of interpretation: ground terms denote
themselves.

• The domain D is the set of all ground terms in the language of P (the Herbrand
universe UP).

• Each ground term of P denotes itself.

• It only remains to say which ground atoms of P are true and which are false.

So, to specify a Herbrand interpretation for a program or database P , only step (3) is
required – the pre-interpretation steps (1) and (2) are fixed.

A Herbrand model is a Herbrand interpretation which is a model.

Why do Herbrand interpretations have special status?

Because – in certain circumstances – there is no need to look at all possible interpretations
and models; it is sufficient to look at Herbrand interpretations and models only. This
obviously simplifies everything.

What are these circumstances?

2

Theorem If P is a set of universal sentences (all quantifiers are ‘at the front’ and all are
universal) then:

P has a model if and only if P has a Herbrand model

Proof : One half is trivial: if P has a Herbrand model then obviously P has a model. For
the other half, given a modelM of P , it is very easy to show how to construct a Herbrand
model for P as well.

Practical significance Suppose we have:

• a program or database P of universal sentences (say clauses);

• a query← G (which is a universal sentence because this is just conventional shorthand
for ∀(¬G)).

Now

P |= ∃(G) iff P ∪ {← G} has no model

iff P ∪ {← G} has no Herbrand model.

Very convenient!

How to specify Herbrand interpretation

In order to specify a Herbrand interpretation it is enough to say – step (3) – which ground
atoms are true and which are false (because the pre-intepretation steps (1) and (2) are
fixed for Herbrand interpretations).

The set of ground atoms of the language of P , denoted

atoms(P) or sometimes BP

is called the Herbrand base of P .

So to specify a Herbrand interpretation for a program or database P it is enough to say,
for each α in atoms(P), whether α is true or false.

Example Database P : p(a)←
p(b)←
q(X)← p(X)

The Herbrand base atoms(P) is {p(a), p(b), q(a), q(b)}.

Here is a Herbrand interpretation of P :

{p(a) 7→ true, p(b) 7→ false, q(a) 7→ false, q(b) 7→ true}.
This is an interpretation, but not a model of P .

Here is another Herbrand interpretation of P :

{p(a) 7→ true, p(b) 7→ true, q(a) 7→ true, q(b) 7→ true}.
This is a model of P .

3

Herbrand interpretations as sets of atoms

Listing out, for each atom α in atoms(P), whether it is true or false is tedious – and
unnecessary. We can adopt the following convention instead.

Given a database or program P , atoms(P) is fixed. To specify a Herbrand interpretation,
it is sufficient to say which atoms of P are true. The remainder are false by convention.

So every Herbrand interpretation of P can be identified with a subset of atoms(P). These
are the ground atoms that are true in the interpretation.

Note that we could choose the other convention, and list out all the false atoms instead.
But this is not so convenient.

Example Database P : p(a)←
p(b)←
q(X)← p(X)

Here are some Herbrand interpretations of P :

{p(a), q(b)} This is not a model of P
{p(a), p(b), q(a), q(b)} = atoms(P) This is a model of P
∅ (the empty set) This is not a model of P

(There are other Herbrand models of P .)

Note It is important not to confuse two different things. Associating Herbrand models
with subsets of atoms(P) is nothing to do with ‘Closed World Assumptions’. It is just a
convenient and concise way of representing Herbrand interpretations of P .

Example Database P :

p← q, r

Here are some Herbrand interpretations of P :

{q, r} This is not a model of P
{p, q, r} = atoms(P) This is a model of P
∅ This is a model of P

(There are other Herbrand models of P .)

Final remark In all my examples so far, the Herbrand base atoms(P) is finite. This
saves writing for me. But atoms(P) is not always finite. atoms(P) is not finite if there are
function symbols in P .

4

Minimal (Herbrand) models

The relation ⊆ (subset) is obviously a partial ordering for subsets of atoms(P), and there-
fore for Herbrand interpretations and Herbrand models. So we can talk of minimal Her-
brand models.

Definition A Herbrand model is minimal if no proper subset of it is also a model.

Note that minimal does not imply unique, in general. A set of formulas might have several
minimal Herbrand models. For example, {a ∨ b} has the following Herbrand models:

{a, b}

{a} {b}
The models {a} and {b} are both minimal.

The usual terminology for any partial ordering is that least means unique minimal. So
sometimes we speak of the least Herbrand model, which is the unique minimal model, if it
exists.

Definite clauses

Sets of definite clauses (atom in the head, no negations anywhere) have some very conve-
nient and very important properties.

Theorem Let P be a set of definite clauses. Then:

• atoms(P) is always a model of P ;

• Model intersection property
If M1 is a model of P and M2 is a model of P then M1 ∩M2 is a model of P .

Theorem Let P be a set of definite clauses. Then:

• P has a model. (atoms(P) is one.)

• P has a minimal Herbrand model.

• P has a unique minimal Herbrand model, denoted M(P).

• M(P) = the intersection of all Herbrand models of P .

These very strong properties do not hold in general. They hold for sets of definite clauses.

A natural contender for the intended semantics of a definite clause program P is its least
(unique minimal) Herbrand model M(P).

How does this new semantics relate to what we had earlier? They are equivalent!

5

Theorem Let P be a set of definite clauses. The minimal Herbrand model M(P) is the
set of all ground atoms of P that are logical consequences of P :

M(P) = {α | α ∈ atoms(P) and P |= α} = atoms(P) ∩ Th(P) in the other notation

Proof α ∈ atoms(P) and P |= α
iff α ∈ atoms(P) and P ∪ {← α} has no model
iff α ∈ atoms(P) and P ∪ {← α} has no Herbrand model
iff α ∈ atoms(P) and ¬α is false in all Herbrand models of P
iff α ∈ atoms(P) and α is true in all Herbrand models of P
iff α ∈ atoms(P) and α is in the intersection of all Herbrand models of P
iff α ∈ atoms(P) and α ∈M(P).

‘Supported’ interpretations

The notion of a ‘supported’ interpretation of a set of clauses is not so important for definite
clause programs but it will come up later so I might as well deal with it now.

Motivating example Consider the program or database P :

p(a)←
q(b)←
r(X)← p(X)

Here is a Herbrand model of P :

M1 = {p(a), q(a), q(b), r(a), r(b)} (not minimal)

And here is another:

M(P) = {p(a), q(b), r(a)} (minimal)

Apart from minimality, is there anything else to distinguish model M(P) from model M1?

Notice that in M(P), every atom is the head of a clause of P whose body is true in M(P).
We say that such a model (or interpretation more generally) is supported. This is not the
case in M1. In M1 there are atoms (q(a) and r(b)) which have no ‘support’ in this sense:
they are not the heads of any clause in P whose body is true in M1.

Definition Let I be a Herbrand interpretation of a set P of clauses (not necessarily
definite). I is a supported interpretation of P if and only if, for every α ∈ I:

α← B1, . . . , Bm (m ≥ 0)

is a ground instance of a clause in P , and B1, . . . , Bm are all true in I, i.e.,
{B1, . . . , Bm} ⊆ I.

6

Notice that ‘supported’ is defined for interpretations not just models. An interpretation
of P can be a supported interpretation without being a model of P . For example, same
example P as above:

p(a)←
q(b)←
r(X)← p(X)

The interpretation {p(a), r(a)} is supported, but is not a model.

When we look at normal logic programs and extended logic programs we shall be interested
in their (not necessarily unique) minimal supported Herbrand models. For definite clause
programs, ‘supported’ is not so interesting: the minimal Herbrand model M(P) is unique,
and it’s easy to see it is always supported as well.

Fixpoint semantics

Again, the following holds for definite clause programs. We will look at how it generalises
for normal logic programs and extended logic programs later.

The immediate consequence operator TP

Every definite clause program or database P has an operator TP – the immediate conse-
quence operator – associated with it.

TP maps subsets of atoms(P) to subsets of atoms(P):

TP : ℘(atoms(P))→ ℘(atoms(P))

Or if you prefer, TP maps sets of ground atoms of P to sets of ground atoms of P , or
Herbrand intrepretations of P to Herbrand interpretations of P .

Definition Let P be a set of definite clauses and I a set of ground atoms of P .

TP (I) = {α ∈ atoms(P) |α← B1, . . . , Bm (m ≥ 0) is a ground instance of a clause in P

and {B1, . . . , Bm} ⊆ I}

Or in words: α ∈ TP (I) iff α ← B1, . . . , Bm(m ≥ 0) is a ground instance of a clause in P
and the conditions B1, . . . , Bm of the body are all true in the interpretation I.

It should be obvious why TP is called the ‘immediate consequence’ operator.

7

Example The program or database P :

p(a)←
q(b)←
r(X)← p(X)

TP (∅) = {p(a), q(b)}
TP ({p(a), q(b)}) = {p(a), q(b), r(a)}

TP ({p(a), q(b), r(b)}) = {p(a), q(b), r(a)}
TP ({q(a)}) = {p(a), q(b)}
TP ({p(b)}) = {p(a), q(b), r(b)}

...

For definite clause programs P , the immediate consequence operator TP has some very
important properties:

1. TP is monotonic:
If I1 ⊆ I2 then TP (I1) ⊆ TP (I2)

This property is actually implied by the next.

2. TP is ‘continuous’.

For present purposes, it does not matter what ‘continuous’ means. The definition takes
too long to state. I’ll give a more careful account later. What matters is that there are
some important results which hold for continuous operators.

In particular:

• a continuous operator TP has a fixpoint I

TP (I) = I

• it has a least (unique minimal) fixpoint

• the least fixpoint is
TP↑ω (defined in a moment)

8

The significance of fixpoints of TP

Theorem The interpretation (set of ground atoms) I is a model of P if and only if

TP (I) ⊆ I (‘I is closed under TP ’)

Proof Trivial: just apply the definition of TP .

Theorem The interpretation (set of ground atoms) I of P is supported if and only if

TP (I) ⊇ I

Proof Trivial: just apply the definition of TP .

So now any fixpoint I of TP
TP (I) = I

will be a supported model of P . And the least such fixpoint TP↑ω will be the (unique)
minimal supported model of P . This I is a natural candidate for the semantics of P .

The least fixpoint of TP

There is a standard result for all ‘continuous’ operators such as TP (which is ‘continuous’
when P is a set of definite clauses). This result says

lfp(TP) = TP↑ω

(lfp is ‘least fixpoint’).

Definition

TP↑0 def
= ∅

TP↑1 def
= TP (TP↑0) (= TP (∅))

TP↑2 def
= TP (TP↑1)

...

TP↑n+1 def
= TP (TP↑n)

...

TP↑ω def
=

⋃
n≥0 TP↑n

Now the key result:

9

Theorem (van Emden and Kowalski)

If P is a set of definite clauses, its unique minimal Herbrand model M(P) is given by

M(P) = lfp(TP) = TP↑ω

Proof The first half of the equation is quite easy to prove. The second half just uses the
standard result once it is established that TP is continuous.

Example Suppose P is:

q(a, b)←
p(b)←
p(X)← q(X, Y), p(Y)

The minimal Herbrand model M(P) is obviously

M(P) = {q(a, b), p(a), p(b)}
by inspection.

The least fixpoint lfp(TP) is obtained thus:

TP↑0 = ∅
TP↑1 = TP (∅) = {q(a, b), p(b)}
TP↑2 = TP ({q(a, b), p(b)}) = {q(a, b), p(b), p(a)}
TP↑3 = TP ({q(a, b), p(b), p(a)}) = {q(a, b), p(b), p(a)}

...

TP↑ω = {q(a, b), p(b), p(a)} = M(P)

M(P) is a model of P : TP (M(P)) ⊆M(P)

M(P) is supported: TP (M(P)) ⊇M(P)

Example Consider the database/program P = {p← q, q ← p}. Its Herbrand interpre-
tations are:

{p, q}

{p} {q}

{}

TP ({p, q}) = {p, q} fixpoint – supported model; but not minimal
TP ({p}) = {q} not a model; not supported
TP ({q}) = {p} not a model; not supported
TP ({}) = {} fixpoint – supported model; minimal

10

Example Consider the database/program P = {q(0)←, p(X)← p(f(X))}.
Is {q(0), p(f(f(0))), p(f(0)), p(0)} a model of P? Yes:

TP ({q(0), p(f(f(0))), p(f(0)), p(0)}) = {q(0), p(f(0)), p(0)}

Is {q(0), p(0)} a model of P? Yes:

TP ({q(0), p(0)}) = {q(0)} ⊆ {q(0), p(0)}

Is {q(0)} a model of P? Yes:

TP ({q(0)}) = {q(0)} (So also supported, and fixpoint)

Is ∅ a model of P? No:
TP (∅) = {q(0)}

Deductive databases

The simplest form of deductive database:

‘rules’ definite clauses

IDB

EDB
‘facts’ atoms

EDB is the ‘extensional database’
IDB is the ‘intensional database’
(stupid terminology)

The database content is
ClIDB(EDB)

the ‘closure of facts EDB under rules IDB ’

Definition ClIDB(EDB) is the smallest (set inclusion) set X of atoms such that:

(1) EDB ⊆ X

(2) TIDB(X) ⊆ X (‘X is closed under IDB ’)

11

How do we know ClIDB(EDB) exists and is unique?

• atoms(IDB ∪EDB), the set of all ground atoms of IDB ∪ EDB , satisfies conditions
(1) and (2) above:

– EDB ⊆ atoms(IDB ∪ EDB) (EDB is a set of ground atoms)

– TIDB(atoms(IDB ∪ EDB)) ⊆ atoms(IDB ∪ EDB)

• If TIDB is monotonic (which it is when the rules IDB are all definite clauses) then:

if X1 satisfies conditions (1) and (2) above, and X2 satisfies conditions (1) and (2),
then X1 ∩X2 satisfies conditions (1) and (2). (Easy exercise.)

So ClIDB(EDB) is the intersection of all sets of ground atoms that satisfy conditions
(1) and (2).

How do we compute ClIDB(EDB) ?

Let
T ′IDB(I)

def
= TIDB(I) ∪ I

Then:
ClIDB(EDB) = T ′IDB↑ω(EDB)

Exercise IDB ∪ EDB is also a set of definite clauses. Show:

TIDB∪EDB↑ω = T ′IDB↑ω(EDB)

Exercise Construct an example (see Tutorial Exercise sheet) to show that, in general

TIDB↑ω(EDB) 6= T ′IDB↑ω(EDB)

This is the basis of

• bottom-up computation methods for deductive databases

The ‘naive’ method implements T ′IDB↑ω(EDB) directly.

The ‘semi-naive’ method uses the fact that

• X ⊆ T ′IDB(X)

to eliminate unnecessary recomputation on each iteration.

(There are other methods (e.g. ‘not so naive’) which are a bit cleverer.)

12

Normal logic programs

The above all holds for definite clauses. If we allow negative conditions in clauses (‘normal
logic programs’) then none of the nice properties hold in general.

Definition Let P be a normal logic program and I a set of ground atoms of P .

TP (I) = {α ∈ atoms(P) | α← L1, . . . , Lm (m ≥ 0) is a ground instance of a clause in P

and for all Li, 0 ≤ i ≤ m:

if Li is an atom, then Li ∈ I; if Li is of the form not Bi, then Bi /∈ I}
Equivalently: if we write head(r) for the head of a clause r, body+(r) for the set of positive
atoms in the body of r, and body−(r) for the set of atoms appearing in negation-by-failure
literals in the body of r, then:

TP (I) = {head(r) | r is a ground instance of a clause in P ,

body+(r) ⊆ I, and body−(r) ∩ I = ∅ }

Let I be a set of ground atoms of a normal logic program P .

• I is a model of P iff TP (I) ⊆ I (‘I is closed under TP ’)

• I is a supported interpretation of P iff TP (I) ⊇ I

So we are still interested in fixpoints TP (I) = I, and in minimal fixpoints. But there is no
guarantee, in general, that a fixpoint exists, or if it exists, that there is a unique minimal
fixpoint.

For example, consider the logic program/database P :

p(1)←
q(2)←
r(X)← not q(X)

• There are two different minimal models of P :

{p(1), q(2), r(1)} and {p(1), q(2), q(1)}
Note that the first one is supported and the second one is not. (The atom q(1) in
the second model has no support.)

• The model intersection property does not hold. For example:

{p(1), q(2), r(1)} ∩ {p(1), q(2), q(1)} = {p(1), q(2)}
is not a model of P .

• The immediate consequence operator TP is no longer continuous. It is not even
monotonic, in general. For example, for the P above:

TP (∅) = {p(1), q(2), r(1), r(2)}
TP ({q(2)}) = {p(1), q(2), r(1)}

Clearly ∅ ⊆ {q(2)} but TP (∅) 6⊆ TP ({q(2)})

13

Example Even simpler: consider P = {p← not q}.

• TP is not monotonic: TP (∅) = {p} but TP ({q}) = ∅.

• {p} and {q} are both (minimal) models:

TP ({p}) = {p} (and so a fixpoint, and supported);
TP ({q}) = ∅ (a model, but not supported)

Example Consider P = {p← not q, q ← not p}.
{p} and {q} are both (minimal) supported models:

TP ({p}) = {p} and TP ({q}) = {q}

Let’s try to compute TP↑ω:

TP (∅) = {p, q}
TP ({p, q}) = ∅

Not getting anywhere!

Note that TP↑ω =
⋃
n≥0 TP↑n = ∅ ∪ {p, q} = {p, q}.

But TP ({p, q}) 6= {p, q}. So TP↑ω is not a fixpoint of this TP .

Note, in this case, {p, q} is a model of P , though obviously not a minimal model. Also not
supported.

Small remark

The references to TP↑ω — as opposed to TP↑ω(∅), which is the same thing — and to the
property that TP is ‘continuous’ are for historical reasons only. That is the way the van
Emden-Kowalski theorem was originally stated and proved.

For our purposes it does not matter what ‘continuous’ means. Here follows all the technical
background that we need.

14

Operators, closures

We will keep seeing many of the same properties over and over again. This next bit of
material will come later but you might find it helpful to see some of it now. If you don’t
find it helpful, ignore it for now.

Here is a summary of the theory of operators in a set U . The first part is very general. U
can be any set. Operators are just mappings of ℘(U) into itself.

Definition

1. An operator in U is any mapping F : ℘(U)→ ℘(U).

2. An operator F is called monotonic (sometimes: monotone) if, for all subsets S1, S2

of U , S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).

3. An operator F is called anti-monotonic (sometimes: anti-monotone) if, for all subsets
S1, S2 of U , S1 ⊆ S2 ⇒ F (S2) ⊆ F (S1).

4. An operator F is called compact (sometimes: finitizable) if, for all subsets S of U , if
α ∈ F (S) then α ∈ F (S ′) for some finite subset S ′ ⊆ S.

5. An operator F is called progressive if, for all subsets S of U , S ⊆ F (S).

Examples

• The immediate consequence operator TP for a definite logic program P is an operator in
atoms(P) (the set of atoms of P), i.e. TP : ℘(atoms(P))→ ℘(atoms(P)).

The immediate consequence operator TP is

• monotonic: I1 ⊆ I2 ⇒ TP (I1) ⊆ TP (I2).

• not progressive: e.g. P = {p← q}. TP ({q}) = {p}. {p} 6⊆ {q}.

• compact, because the body of every clause has a finite number of conditions. Spelled
out in detail: if A ∈ TP (I) then there is a ground instance A ← B1, . . . , Bm of a
clause in P such that {B1, . . . , Bm} ⊆ I. And so A ∈ TP (I ′) for a finite subset
I ′ = {B1, . . . , Bm} of I.

We can also define an operator T ′P (I)
def
= I∪TP (I). T ′P is obviously monotonic, progressive,

and compact (if P has a finite number of atoms).

• Classical propositional consequence Th: ℘(L)→ ℘(L) maps sets of formulas of L to sets
of formulas of L.

Th is monotonic, progressive (since W ⊆ Th(W)), and compact.

15

Theorem (Knaster-Tarski lemma) Let F : ℘(U)→ ℘(U) be a monotonic operator.

1. The operator F possesses a least fixpoint. This least fixpoint is equal to F↑α(∅) for
some ordinal α.

2. If, in addition, F is compact then the least fixpoint of F is equal to F↑ω(∅).

Theorem Let F : ℘(U) → ℘(U) be a monotonic and progressive operator. Then for
every subset X ⊆ U , there is a least set S such that X ⊆ S and S is a fixpoint of F .
This set S is of the form F↑α(X). If, in addition, F is compact then this set S is equal to
F↑ω(X).

F↑0(X)
def
= X

F↑n+1(X)
def
= F (F↑n(X))

F↑ω(X)
def
=

⋃
n≥0 F↑n(X)

Examples

• Let P be a definite logic program (i.e., no negation by failure not, no negation ¬).

TP (I) ⊆ I means that I is a model of P . It is easy to check that TP (I) ⊆ I iff T ′P (I) ⊆ I.
Since I ⊆ T ′P (I), the least (unique, smallest) model of P is also the least fixpoint of T ′P ,
i.e. (Knaster-Tarski) T ′P↑ω(∅).
The least (unique, smallest) model of P that contains atoms EDB is T ′P↑ω(EDB).

The original fixpoint semantics for definite logic program P is given in terms of the least
fixpoint of TP , which is TP↑ω.

How does T ′P↑ω(∅) compare to TP↑ω?

T ′P↑0(∅) = ∅ = TP↑0. T ′P↑1(∅) = ∅∪TP (∅) = TP↑1. T ′P↑2(∅) = T ′P (T ′P↑1(∅)) = TP (T ′P↑1(∅))∪
T ′P↑1(∅) = TP (TP↑1)∪ TP↑1 = TP↑2 ∪ TP↑1. And you can easily check (by induction on n)
that

T ′P↑n(∅) =
⋃n
i=0 TP↑n

So then we have T ′P↑ω(∅) def
=

⋃
n≥0 T

′
P↑n(∅) =

⋃
n≥0 TP↑n

def
= TP↑ω.

The immediate consequence operator TP for definite logic programs has other properties
(e.g. it is ‘continuous’) which we won’t go into here.

• What is the least fixpoint of Th? Since Th is monotonic, progressive and compact, the
least fixpoint is Th↑ω(∅). But since Th(Th(S)) = Th(S), Th↑ω(∅) = Th(∅). So the least
fixpoint of Th is Th(∅) (the set of all propositional tautologies). Exactly as we should
expect. And the least fixpoint of Th containing the set of formulas W is just Th(W).
Again, exactly as we would expect.

16

Definition Let F be an operator in U and let X be a subset of U . The closure of X
under the operator F — denoted ClF (X) — is the smallest subset S of U such that:

X ⊆ S and F (S) ⊆ S

How do we know that ClF (X) exists and/or is unique?

Proposition U satisfies the closure conditions (1)–(2) of ClF (X).

Proposition If F is monotonic, then if subsets S1 and S2 of U both satisfy the closure
conditions (1)–(2) of ClF (W), then so does their intersection S1 ∩ S2.

Proposition If F is monotonic, ClF (X) is the intersection of all sets S satisfying the
closure conditions (1)–(2).

ClF (X) is the least set S satisfying X ⊆ S and F (S) ⊆ S. If in addition F is progressive,
S ⊆ F (S). So then ClF (X) is the least fixpoint of F that contains X.

Proposition If F is progressive, then ClF (X) is the least fixpoint of F that contains X.
If F is monotonic and progressive and compact, then ClF (X) = F↑ω(X).

(There is more about operators, closures, etc, later in the course.)

Note the notation and terminology:

• ClIDB(EDB) — closure of EDB under the rules IDB

• ClF (X) — closure of X under the operator F

(They are different things. Sorry about that but it’s convenient to use the same word and
similar notation.)

17

Example: definite deductive databases

By definition, ClIDB(EDB) is the least set of atoms X such that

• EDB ⊆ X

• TIDB(X) ⊆ X

It is very easy to check that TIDB(X) ⊆ X iff T ′IDB(X) ⊆ X.

(Because A ⊆ B iff A ∪B ⊆ B.)

So, ClIDB(EDB) is the least set of atoms X such that

• EDB ⊆ X

• T ′IDB(X) ⊆ X

For definite clauses IDB, T ′IDB is obviously progressive, monotonic and compact.

So then ClIDB(EDB) = ClT ′
IDB

(EDB) = T ′IDB ↑ω (EDB).

Note the notation and terminology:

• ClIDB(EDB) — closure of EDB under the rules IDB

• ClT ′
IDB

(EDB) — closure of EDB under the operator T ′IDB

(I hope there’s no confusion. Sorry about that but it’s convenient.)

Note also

• ClIDB(EDB) = ClTIDB
(EDB) (because TIDB(X) ⊆ X iff T ′IDB(X) ⊆ X)

• But ClTIDB
(EDB) 6= TIDB ↑ω (EDB) (because TIDB is not necessarily progressive).

(However: ClIDB(EDB) = ClTIDB
(EDB) = ClT ′

IDB
(EDB) = T ′IDB ↑ω (EDB).)

Exercise ClIDB maps sets of atoms to sets of atoms. If IDB is definite then ClIDB is a
classical consequence operator (Tarski):

• X ⊆ ClIDB(X)

• ClIDB(ClIDB(X)) ⊆ ClIDB(X)

• if X1 ⊆ X2 then ClIDB(X1) ⊆ ClIDB(X2)

18

